
8.04 Quantum Physics Lecture XV


One-dimensional potentials: potential step


Figure I: Potential step of height V0. The particle is incident from the left with energy 
E. 

We analyze a time independent situation where a current of particles with a well-
defined energy is incident on the barrier. The time-independent SE is 

Ĥu(x) = Eu(x) (15-1) 

h̄2 d2u −
2m dx2 

(x) + V (x)u(x) = Eu(x) (15-2) 

d2u 2m 
dx2 

= − 
h̄2 [E − V (x)]u(x) (15-3) 

Qualitative features of solutions for regions of constant V1: 
If E − V1 > 0, the solutions are of the form e±ik1x with h̄2k2 

= E − V1, k1 real.
2m 

¯Interpretation. h2k2 
is the KE of the particle with total energy E in a region of 

2m 
potential V1, the e±ikx wavefunctions correspond to particles traveling left / right. 

Figure II: In a region where the particle energy is greater than the (constant) potential, 
the solutions of the SE are plane waves e±ikx, where E − V1 = h̄2k2/2m is the kinetic 
energy of the particle in that region. 

If E − V1 < 0, the solutions are of the form e±κ1x with h̄2

2
κ
m 
1
2 

= V1 − E, κ1 

real. These are damped exponentials with a decay length constant κ1 (decay length 
κ1
−1), where h̄2κ1

2 
= V1 − E represents the “missing” kinetic energy of the particle 

2m 
As E V , the decay length κ1

−1 becomes longer and longer. → 
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Figure III: In a region where the particle energy is less than the (constant) potential, 
the solutions of the SE are exponentially growing or decaying functions, e±κx, where 
V1 − E = h̄2κ2/2m is the ”missing kinetic energy” of the particle in that region. 

Figure IV: When a light wave experiences total internal reflection on a glass-vacuum 
interface, an evanescent (non-traveling, exponentially decaying wave) builds up inside 
the vacuum. The closer we are to the critical angle for total internal reflection, the 
longer the decay length of the evanescent wave. This phenomenon is analogous to a 
particle entering a classically forbidden region with V1 > E. The less forbidden the 
region, the longer the decay length. 

Note. There is a non-zero probability to find the particle with energy E in a “clas
sically forbidden region” with E < V1. The less the region is forbidden (the smaller 
V1 − E), the further the particle penetrates into the forbidden region (the longer the 
decay length κ1

−1). The phenomenon is similar to total internal reflection inside glass 
at a glass-vacuum interface. 

The light field has non-zero amplitude in the “forbidden region”. How do we 
know? Approach with a second prism. The evanescent (decaying) field existing in 
the vacuum is converted back into a traveling wave in the second prism. 

Similarly, a particle can tunnel through a potential barrier even if its energy 
is insufficient to surpass it. 

Back to potential step Assume E > V0: define 
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Figure V: The light field ”tunneling” through the forbidden region can be detected 
as it emerges on the other side in a second prism. 

Figure VI: As a particle tunnels through a barrier and emerges from the other side, 
the energy E and the Broglie wavelength 2π/k remain the same. The amplitude of 
the emerging wave is smaller than that of the incident wave. 

Figure VII: Potential step 

h̄2k2 

2m 
h̄2 q2 

2m 

= E 

= E − V0 

(KE in region x < 0) 

(KE in region x > 0) 

(15-4) 

(15-5) 
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The most general solution is 

Aeikx + Be−ikx in the region x < 0 (15-6)


Ceiqx + De−iqx in the region x > 0 (15-7)


If we choose as the initial condition a particle incident from the left (A = 0), then 
the particle can be transmitted to the RHS (C = 0), or, as we shall see, partially 
reflected by the barrier in spite of E > V0 (B = 0). However, if no particle is incident 
from the right then D = 0. 

Calculate the particle current (or flux) 

In region x < 0: 

h̄ du du∗ 
j< =

2im 
u∗ 
dx 
− 

dx 
u (15-8) 

h̄ �� � � � � 
=

2im 
A∗e−ikx + B∗e ikx ikAeikx − ikBe−ikx − c.c. (15-9) 

=
2

hk

m 
|A|2 + AB∗e 2ikx − A∗Be−2ikx − |B|2 − c.c. (15-10) 

hk¯ � 
2 2 

� 
= 
m 
|A| − |B| → net current for x < 0 (15-11) 

We define the reflection amplitude r = B , and the reflection coefficient as R = r 2 = � � A | |�B �2 
.

A 
For x > 0: 

h̄q
j> = 

m 
|C|2 (15-12) 

Continuity of wavefunction at x = 0: 

ψ(x 0) = A + B = ψ(x 0) = C (15-13) → ← 

In spite of the potential step, the derivative of the wavefunction must also be contin
uous: � 

du 
� � 

du 
� � � d 

� 
du 
� 

dx x=� 

− 
dx x=−� 

= 
−� 
dx 
dx 

2m 
� � 

dx 
(15-14) 

= − 
h̄2 

−� 
dx[E − V (x)]u(x) = 0 (15-15) 

For future applications, we note that if the potential contains a delta function term 
λδ(x − a), with some magnitude of the delta function λ, then the same calculation 
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gives
 � � � � � a+�du du 2m 
dx x=a+� 

− 
dx x==a−� 

= 
h̄2 

a−� 
dxλδ(x − a)u(λ) (15-16) 

2m 
= 

h2 λu(a) (15-17) 
¯

To summarize, we have the following rules: 

Rule 1. The wavefunction u(x) is always continuous 

duRule 2. The first spatial derivative of the wavefunction 
dx is continuous if the po

tential does not contain δ-function like terms. (It may contain potential steps). 

Rule 2.1. if the potential contains a term λδ(x − a), the the first derivative du is
dx 

discontinuous at x = a amnd satisfies the relation 

du du 2m 
dx x=a+� 

− 
dx x=a−� 

= 
h̄2 λu(a) (15-18) 

Figure VIII: A discontinuity in the slope of the wavefunction occurs at a delta function 
potential. The difference in wavefunction slopes is proportional to the strength of the 
δ potential, and to the value of the wavefunction at the cusp. 

Continuity of ψ: A + B = C (15-19)


Continuity of ψ�: ik(A − B) = iqC (15-20)
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Solve for B, C in terms of A 

k 
C = A + B = (15-21) 

q

k	 k 

A 1 − 
q 

= −B 1 + 
q 

(15-22) 

A
q − k 

= −Bq + k 
(15-23) 

q q 

B = A (15-24) 
k + q 

2 

� 

k − q

k − q
C A B A A A (15-25) + += = = 

k + q k + q 

Reflection amplitude r = 
B 

= 
k − q 

(15-26) 
A k + q 
C 2k 

Transmission amplitude	 t = = (15-27) 
A k + q�22

B
 k − q

Reflection coefficient	 r 2 (15-28)
|
 |
 =
 =


A
 k + q

2 

4k2C

A


Transmission coefficient	 t 2 (15-29)
|
 |
 =
 =

(k + q)2 �2

hk 
Reflection current j = 

hk¯
B 2 =

¯ k − q
A 2 (15-30) ←	

m 
| |

m k + q 
| |

¯ 2 ¯ 4kq 2
2hq hk 

Transmission current j→,x>0 = 
m 
|C| = 

m (k + q)2 
|A| (15-31) 

hk hk 
Net current for x < 0 j< =

¯

m 
(|A|2 − |B|2) = 

¯

m 
|A|2 

(k 
4

+ 
kq 
q)2 

(15-32) 

hq hk 
Net current for x > 0 j> =

¯

m 
|C|2 =

¯

m (k 
4

+ 
kq 
q)2 
|A|2 (15-33) 

The current obeys the continuity equation (see problem set) 

∂j	 ∂ 
∂x 

+ 
∂t
|ψ|2 = 0	 (15-34) 

Here we are considering stationary states, ∂ ψ 2 = 0 (no change of probability density 
∂t | |

in time), = j = const, current is continuous across the potential step, ⇒ 

j< = j>,	 (15-35) 
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or 

h̄k 2jinc = j→,x<0 = 
m 
|A| = jrefl + jtrans (15-36) 

= j ,x<0 + j ,x>0 (15-37) ← →

hk¯ 2 ¯ 2hq 
= 
m 
|B| + 

m 
|C| . (15-38) 

Note. |r|2 + |t|2 = 1 because the particle velocity is different for � x > 0 from that for 
x < 0. 

Discussion of results 

In contrast to classical mechanics, there is some reflection at the potential step even 
though the energy of the particle is sufficient to surpass it. This is familiar from 
optics, where a step-like change in the index of refraction (e.g., air-glass interface) 
leads to partial reflection. The particle reflection is a consequence of the matching of 
the wavefunction and its derivative at the boundary. Again, this is similar to optics 
where the matching of th electromagnetic fields at the boundary results in a reflected 
field. 

Note. For a very smooth change of potential (or refractive index in optics) there is 
not reflection. What is smooth? A change over many wavelengths. Changes of the 
potential over a distance l short compared to a wavelength λ = 2

k
π result in reflection. 

Slow changes of potential over many λ do not result in reflection if particle energy 
exceeds barrier height. 

Figure IX: A potential that varies smoothly over many de Broglie wavelengths does 
not produce partial reflection if the particle energy is sufficient to surpass it. 

Intermediate region l λ: we expect resonance phenomena (non-monotonic ∼
changes of reflection probability with particle energy). For the potential step, the 

Massachusetts Institute of Technology XV-7 



�


����
 ����
 ����
 ����
����
 ����
 ����
 ����
 �

� � 

8.04 Quantum Physics Lecture XV


reflection probability 

|r|
2

2 → 0 for k → q (E � V1), and (15-39) 

|r| → 1 for q → 0 (E � V1), as expected. (15-40) 

(15-41) 

Interestingly, the reflection probability can be written as 

|r|
2 =


√
E −

√
E − V1 

�2 

√
E + 
√
E − V1 

(15-42)


i.e. it does not depend explicitly on h̄. However, the reflection is still inherenetly non
classical in that the potential needs to change abruptly compared to the particle’s de 
Broglie wavelength, that depends on h̄. 

Solution for E < V0: We define 

h̄2k2 

= E (KE for x < 0) (15-43) 
2m 

h2κ2¯
= V0 − E (“missing KE to surpass barrier”) (15-44) 

2m 

Most general solution 

Aeikx + Be−ikx for x < 0 (15-45) 

Ce−κx + Deκx for x > 0 (15-46) 

The e+κx term is not normalizable, D = 0 
We can go through the same procedure as before using the continuity of ψ1ψ

� 

at x = 0, or use the previous calculation if we set q iκ (Ceiqx Ce−κx then).→ →
Consequently, 

2 2 
k2 + κ2B


A

k − iκ
2 = 1 (15-47)
|r|
 =
 =
 =


k2 + κ2k + iq

2 2 

4k2 + κ2C

A


2k

k + iκ


2 = 0 (15-48) |t|
 =
 =
 =

k2 + κ2 

(15-49) 

A part of the wave penetrates the barrier, which is why the ’transmission’ amplitude 
does not vanish. Note, however, that there is no associated particle current: Since 
Ce−kx does not have a spatially varying phase, the particle current 

j = 
h̄ 

2im 
ψ∗ 
∂ψ 
∂x 
− c.c. (15-50) 
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vanishes for x > 0, 

h̄k 2j< = 
m 

(|A| − |B|2) = 0 (15-51) 

j> = 0 (15-52) 

The net current is zer0 in steady-state because all particles are reflected. 

Note. The reflected wave has an energy-dependent phase shift 

r = 
B 

= 
k − iκ 

(15-53) 
A k + iκ 

(k − iκ)2 

= (15-54) 
k2 + κ2 

k2 − κ2 − 2ikκ 
= (15-55) 

k2 + κ2 

= e iφ (15-56) 

2kκ with tan φ = − −κ2k2

The phase shift of the wave is important in 3D scattering problems. 

Can we localize the particle in the forbidden region? 

Figure X: The wavefunction for E < V0 protrudes into the forbidden region x > 0. 
Can the particle be observed there? 

To be sure that we have measured the particle inside the barrier, and not outside, 
we must measure its position at least with accuracy Δx ≈ κ−1 . Then according to 

¯Heisenberg uncertainty, a momentum kick exceeding Δp ≥ h hκ will be trans
Δx ∼ ¯

ferred onto the particle. 
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How much energy do we transfer? 

ΔE = E(p + Δp) − E(p) (15-57) 

(p + Δp)2 p2 

= (15-58) 
2m 

− 
2m 

pΔp (Δp)2 

= + (15-59) 
m 2m 

p = h̄k (15-60) 

pΔp can be positive or negative, (Δp)2 is always positive. the transferred energy is 
on average 

(Δp)2 h̄2 h̄2κ2 

�ΔE� =
2m 

=
2m(Δx)2 

=
2m 

= V0 − E (15-61) 

According to Heisenberg uncertainty, the measurement that localizes the particle 
inside the barrier transfers enough energy to allow the particle to be legitimately 
there. 

Rule. A positive KE E − V1 > 0 corresponds to a spatially oscillating wavefunction 
e±ikx with rate constant k (oscillation period λ = 2

k
π ). A negative (“missing”) KE 

E − V1 < 0 corresponds to a spatially decaying or growing wavefunction e±κx with 
decay rate constant κ (decay length κ−1). 

The “missing” KE is associated with the size of the region (κ−1) that the particle 
occupies in the classically forbidden space. 

Massachusetts Institute of Technology XV-10 


