Radial equation for spherically symmetric potential

The SE in 3D in spherical coordinates is

\[-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) \psi(r) + \frac{L^2}{2mr^2} \psi(r) + V(r) \psi(r) = E \psi(r) \]

(22-1)

using the ansatz \(\psi(r) = R(r) Y(\theta, \phi) \), and inserting for the angular function an eigenfunction

\[Y(\theta, \phi) = Y_{lm}(\theta, \phi) = \langle \theta, \phi | l, m \rangle, \]

(22-2)

we have, using \(L^2 Y_{lm}(\theta, \phi) = \hbar^2 (l + 1) Y_{lm}(\theta, \phi) \) after dividing by \(Y_{lm} \) for the radial equation,

\[\left[-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{\hbar^2 l(l + 1)}{2mr^2} + V(r) \right] R_{nl}(r) = E_{nl} R_{nl}(r). \]

(22-3)

Here, we have added two subscripts \(n, l \) to the radial wavefunction \(R(r) \) and the eigenenergy \(E \) because the SE for the radial part of the wavefunction depends on the total angular momentum \(l \) of the 3D wavefunction \(\psi(r) \).

Note. The \(z \)-component of angular momentum \(L_z \), and the corresponding magnetic quantum number \(m \), do not appear in the radial equation.

We can define an \(l \)-dependent effective potential,

\[V_{eff,l} = V(r) + \frac{\hbar^2 l(l + 1)}{2mr^2}, \]

(22-4)

where the additional term is the centrifugal barrier for a particle with angular momentum

\[\langle L^2 \rangle = \hbar^2 l(l + 1). \]

(22-5)

The radial equation can be brought into a more familiar-looking form by introducing a new function:

\[u(r) = r R(r) \]
\[R(r) = \frac{u(r)}{r} \]

(22-6)

Then,

\[R' = \frac{u' r - u}{r^2} = \frac{u'}{r} - \frac{u}{r^2} \]

(22-7)
\[\frac{2}{r} R' = \frac{2u'}{r^2} - \frac{2u}{r^3} \]

(22-8)
\[R'' = \frac{u'' r - u'}{r^2} - \frac{u'^2 - u2r}{r^4} = \frac{u''}{r} - \frac{2u'}{r^2} + \frac{2u}{r^3} \]

(22-9)
\[\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) R(r) = R'' + \frac{2}{r} R' = \frac{u''}{r} \]

(22-10)
and the radial equation is
\[
-\frac{\hbar^2}{2mr} \frac{\partial^2 u}{\partial r^2} + \left[\frac{\hbar^2 l(l+1)}{2mr^2} + V(r) \right] \frac{u(r)}{r} = E \frac{u(r)}{r} \tag{22-11}
\]
or
\[
\left[-\frac{\hbar^2}{2mr} \frac{\partial^2}{\partial r^2} + \frac{\hbar^2 l(l+1)}{2mr^2} + V(r) \right] \frac{u_{nl}(r)}{r} = E_{nl} u_{nl}(r) \tag{22-12}
\]
This equation for \(u(r) = rR(r)\) has the same form as the 1D SE in the effective potential
\[
V_{\text{eff},l}(r) = V(r) + \frac{\hbar^2 l(l+1)}{2mr^2}, \tag{22-13}
\]
but with slightly different boundary conditions. Therefore, \(u(r)\) looks like an anti-

Figure I: \(u(r) = rR(r)\) has the same form as the 1D SE in the effective potential \(V_{\text{eff},l}(r)\), but with slightly different boundary conditions.

symmetric solution in all space. Consequences are, e.g., that since an antisymmetric

bound state does not always exist in 1D, that a bound state does not always exist in 3D (in contrast to 1D, where a symmetric bound state always exist in a potential well). 3D wavefunctions \(u(r)\) are like antisymmetric 1D wavefunctions in the effective potential
\[
V_l(r) = V(r) + \frac{\hbar^2 l(l+1)}{2mr^2}. \tag{22-14}
\]
Hydrogen atom

\[V(r) = -\frac{Ze^2}{4\pi\epsilon r} \quad \text{→ (and the radial equation is)} \quad (22-15) \]

\[\left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} - \frac{Ze^2}{4\pi\epsilon r} + \frac{\hbar^2 l(l+1)}{2mr^2} - E \right) u(r) = 0 \quad (22-16) \]

We introduce a dimensionless position coordinate \(\rho \) by \(\rho^2 = \frac{8m\hbar^2}{E} r^2 \), and define for \(E < 0 \)

\[\frac{Ze^2}{r16\pi\epsilon|E|} \sqrt{\frac{8m}{\hbar^2}} \sqrt{\frac{\hbar^2}{8m}} = \frac{Ze^2}{16\pi\epsilon\hbar} \sqrt{\frac{8m}{|E|}} \sqrt{\frac{\hbar^2}{8m|E|}} \quad (22-17) \]

\[= \frac{Ze^2}{4\pi\epsilon\hbar} \sqrt{\frac{m}{2|E|}} \frac{1}{\rho} \quad (22-18) \]

\[=: \frac{\lambda}{\rho} \quad (22-19) \]

The equation can be written as

\[\frac{\partial^2}{\partial \rho^2} u + \left(\frac{\lambda}{\rho} - \frac{1}{4} - \frac{l(l+1)}{\rho^2} \right) u = 0 \quad (22-20) \]

with \(\rho = \sqrt{\frac{8m|E|}{\hbar^2}} r \), \(\lambda = \frac{Ze^2}{4\pi\epsilon\hbar} \sqrt{\frac{m}{2|E|}} = Z\alpha \sqrt{\frac{m^2}{2|E|}} \), where \(\alpha = \frac{e^2}{4\pi\epsilon\hbar c} \approx 1.74 \ldots \) is the dimensionless fine structure constant. To solve this equation, we proceed as for the HO: We write a Taylor-expansion solution after having factored out the correct asymptotic behavior.

For very large \(\rho \) we have

\[\frac{d^2}{d\rho^2} u = \frac{1}{4} u \quad (22-21) \]

\[u(\rho) \propto e^{-\frac{1}{2}\rho} \quad (22-22) \]

For very small \(\rho \),

\[\frac{d^2}{d\rho^2} u = \frac{l(l+1)}{\rho^2} u \quad (22-23) \]

\[u(\rho) \propto \rho^{l+1} \quad (22-24) \]

Consequently, we try a solution of the form

\[u(\rho) = s(\rho)\rho^{l+1} e^{-\frac{1}{2}\rho} \quad (22-25) \]
\[u'(\rho) = \left(s'(\rho)\rho^{l+1} + s(\rho)(l+1)\rho^l - \frac{1}{2}s\rho^{l+1}\right) e^{-\frac{1}{2}\rho} \] (22-26)

\[u''(\rho) = \left[s''\rho^{l+1} + 2(l+1)s'\rho^l + s(l+1)l\rho^{l-1} - \frac{1}{2}(s'\rho^{l+1} + (l+1)s\rho^l) \right. \]

\[\left. - \frac{1}{2}(s'\rho^{l+1} + (l+1)s\rho^l - \frac{1}{2}s\rho^{l+1}) \right] e^{-\frac{1}{2}\rho} \] (22-28)

\[= \rho^{l+1} e^{-\frac{1}{2}\rho} \left[s'' + 2(l+1)\frac{s'}{\rho} + \frac{(l+1)}{\rho^2} - s' - \frac{l+1}{\rho} s + \frac{1}{4}s \right] \] (22-29)

\[\left(\frac{\lambda}{\rho} - \frac{1}{4} - \frac{l(l+1)}{\rho^2} \right) u = \rho^{l+1} e^{-\frac{1}{2}\rho} \left(\frac{\lambda}{\rho} - \frac{1}{4} - \frac{l(l+1)}{\rho^2} \right) s \] (22-30)

Inserting this into (??) leads to

\[s'' + \left(\frac{2(l+1)}{\rho} - 1 \right) s' + \left(\frac{(l+1)}{\rho^2} - \frac{l+1}{\rho} + \frac{1}{4} + \frac{\lambda}{\rho} - \frac{1}{4} - \frac{l(l+1)}{\rho^2} \right) s = 0 \] (22-32)

\[s'' + \left[\frac{2l+2}{\rho} - 1 \right] s' + \frac{-l-1}{\rho} s = 0 \] (22-33)

To solve this differential equation, we write a Taylor expansion about \(\rho = 0 \):

\[s(\rho) = \sum_{k=0}^{\infty} a_k \rho^k \] (22-34)

\[s'' = \sum_{k=0}^{\infty} a_k k(k-1)\rho^{k-2} \] (22-35)

\[= \sum_{k=0}^{\infty} a_{k+2} (k+2)(k+1)\rho^k \] (22-36)

\[\left(\frac{2l+2}{\rho} - 1 \right) s' = \left(\frac{2l+2}{\rho} - 1 \right) \sum a_k \rho^{k-1} \] (22-37)

\[= (2l+2) \sum_{k=0}^{\infty} a_{k+2} (k+2)\rho^k - \sum a_{k+1} (k+1)\rho^k \] (22-38)

\[\frac{\lambda - l - 1}{\rho} s = (\lambda - l - 1) \sum_{k=0}^{\infty} a_{k+1} \rho^k \] (22-39)

which substituted into (??) results in

\[\sum k \rho_k \{ (k+2)(k+1)a_{k+2} + 2(l+1)(k+2)a_{k+2} + (\lambda - l - 1 - k - 1)a_{k+1} \} = 0 \] (22-40)
This must vanish term by term, so we obtain a recursion relation

\[(k + 2)(k + 2l + 3)a_{k+2} = (k + l + 2 - \lambda)a_{k+1}\] \hspace{1cm} (22-41)

or

\[
\frac{a_{k+1}}{a_k} = \frac{k + l + 1 - \lambda}{(k + 1)(k + 2(l + 1))} \rightarrow \text{recursion relation for expansion coefficients} \hspace{1cm} (22-42)
\]

If the series does not break off somewhere, we will have for large \(k\), \(a_k \propto \frac{1}{k} a_{k-1}\) or \(a_k \propto \frac{1}{k!}\), which gives a growth \(s(\rho) \propto e^{+\rho}\), which is not acceptable for \(u(\rho) = s(\rho)e^{-\frac{\rho}{2}}\). Consequently, we require the series to terminate, which implies \(\lambda = k + l + 1\) for some \(L\). Let us call \(n_r = k\) the integer with that property. It is customary to define the principal quantum number as

\[n = n_r + l + 1\] \hspace{1cm} (22-43)

where \(n_r \geq 0\), so \(n \geq 0\), so \(n \geq l + 1\), \(n\) integer, and

\[\lambda_n = \frac{Ze^2}{4\pi\varepsilon_0 \hbar} \sqrt{\frac{m}{2|E_n|}}\] \hspace{1cm} (22-44)

\[= Z\alpha \sqrt{\frac{mc^2}{2|E_n|}}\] \hspace{1cm} (22-45)

\[= n\] \hspace{1cm} (22-46)

Consequently, the eigenenergies of the hydrogen atom are

\[
E_n = -\frac{1}{2} mc^2 \left(\frac{Z\alpha}{n^2}\right)^2 \rightarrow \left(\begin{array}{c}
\text{eigenenergies of}
\text{hydrogenlike atoms}
\end{array}\right)\] \hspace{1cm} (22-47)

This is the same energy eigenspectrum as obtained from the Bohr formula.

Note. There are important differences:

- The principal quantum number \(n = n_r + l + 1\) is really the sum of the radial quantum number \(n_r\) and the total angular momentum quantum number \(l\).

- We have obtained the full radial and angular distribution of the electron, which generalizes the classical concept of an orbit.
First few radial functions

\[\rho^2_n = \frac{8m|E_n|}{\hbar^2} \left(\frac{Z\alpha}{a_0} \right)^2 \]

\[= \frac{8m}{\hbar^2} \frac{1}{2} mc^2 \frac{(Z\alpha)^2}{n^2 - r^2} \]

\[= \frac{(2mcZ\alpha)^2}{\hbar n^2} r^2 \]

\[= \left(\frac{2Z\alpha}{a_0} \right)^2 r^2 \frac{1}{n^2} \]

\[= \frac{2Zr}{na_0} \]

with the Bohr radius

\[a_0 = \frac{\hbar^2}{mc\alpha} \]

Consequently, \(e^{-\frac{1}{2}\rho} = e^{-\frac{Zr}{na_0}} \)

1. \(n_r = l = 0, n = m = \lambda, a_1 = 0 \)

\[u(r) = C\rho e^{-\frac{1}{2}\rho} = C_1 \left(\frac{Zr}{a_0} \right) e^{-\frac{Z\alpha}{a_0}} \]

\[R(r) = \frac{u(r)}{r} = C_2 e^{-\frac{Zr}{a_0}} \]

Note. The probability to find the electron between \(r \) and \(r + dr \) is given by \(r^2|R(r)|^2 dr = |u(r)|^2 dr \).

2. \((a) \) \(n_r = 1, l = 0, n = 2 = \lambda \)

\[\frac{a_1}{a_0} = \frac{-1}{1 \cdot 2} = \frac{-1}{2} \]

\[u_{20}(r) = C\rho e^{-\frac{1}{2}\rho} \left(1 - \frac{1}{2}\rho \right) = C' \frac{Zr}{a_0} \left(1 - \frac{Zr}{2a_0} \right) e^{-\frac{Zr}{2a_0}} \]

\[R_{20}(r) = C' \left(1 - \frac{Zr}{2a_0} \right) e^{-\frac{Zr}{2a_0}} \]
(b) \(n_r = 0, l = 1, n = 2 = \lambda \)

\[
\frac{a_1}{a_0} = 0 \quad \rightarrow \quad a_1 = 0 \tag{22-59}
\]

\[
u_{21}(r) = C \rho^2 e^{-\frac{1}{2} \rho} = C' \left(\frac{Zr}{a_0} \right)^2 e^{-\frac{Zr}{2a_0}} \tag{22-60}
\]

\[
R_{21}(r) = C'' \left(\frac{Zr}{a_0} \right) e^{-\frac{Zr}{2a_0}} \tag{22-61}
\]

\(R_{20} = R_{n=2,l=0} \) and \(R_{21} = R_{n=2,l=1} \) are different states that have the same eigenenergy. The occurrence of different eigenstates with the same energy, (or in general quantum number) is called **degeneracy**.