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Atomic Physics II (8.422) Spring 2005 
Ketterle / Chuang 

Problem Set 10 REVISED 
Due Wednesday, May 4 (just in time for Cinco de Mayo) 

1. Decoherence and the Operator Sum Representation 

Our study of decoherence has centered around the master equation, but in class we 
have seen that alternatives such as the quantum monte­carlo wavefunction technique 
are also valid. Here is another approach, known as the “operator sum representation”, 
which is suitable for input­output treatments where you want to know what happens 
due to a system­environment interaction only after a specific time. 

We assume that we can write the initial system­plus­environment as a product state, 
ρS ⊗ ρE . This total system evolves according to some unitary transform U . The final 
state of the system S, ρ�, which we find by tracing over the environment E, can be 
given by a quantum operation, E (ρS ). 

ρ� ≡ E (ρS ) = trE 

� 
U (ρS ⊗ ρE )U † 

�	
(1) 

Let	 ek be an orthonormal basis for the environment, and ρE = |e0��e0| be the initial 
state of the environment. We can then rewrite equation (1) as 

E (ρS ) = 
� 

ek U (ρS ⊗ |e0��e0|) U † ek (2) 
k 
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= 
� 

Ek ρS Ek
† (3) 

k 

where the “operation elements” given by Ek ≡ ek U e0 , are subject to the condition 
that 

�
k E

†Ek = I. This is known as the operator sum representation (OSR). Some of k 

the physics implied by this model are very insightful. 

(a)	 Suppose we have a single qubit system interacting with a single qubit environment 
through the transform 

U = P0 
S ⊗ I + P1 

S ⊗ σE	 (4)x 
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x where P0 ≡ and P1 ≡ are projectors acting on the system and σE is|0��0| |1��1|
the Pauli matrix acting on the environment. Give the quantum operation for this 
process, in the OSR, assuming the environment starts in the state 0 (i.e., find 
E0 and E1). (The transform U represents a controlled­NOT gate where ρS is the 
control qubit.) 

Bloch Sphere Deformation: There is an elegant geometric method for picturing 
quantum operations on a single qubit. This method allows one to get an intuitive feel 
for the behavior of quantum operations in terms of their action on the Bloch sphere. 
Recall that the state of a single qubit can always be written in the Bloch representation, 

y (5) 
I + �r �σ 1 1 + rz rx − ir

˙ρS = 
· 

= 
+ iry 1 − rz2 2 rx 

where �r is the three­comp onent Bloch vector. The effect of quantum operation is to

map each point on the Bloch sphere onto a point on some other surface, i.e., to deform

the Bloch sphere. 

(rx, ry , rz ) → (r�x, r
�
y , r

�
z ) (6) 

(b) Suppose a projective measurement is performed on 
+ 0 1 )/

√
2. In the event 

a single qubit in the basis 
that we are ignorant of the ,|−�, where |±� ≡ (

result of the measurement, the density matrix evolves according to the equation 

= ρS (7)ρS → E (ρS ) |+��+| |+��+| + |−��−|ρS |−��−| 
Find the transformation of the Bloch sphere, and sketch it. 

Amplitude Damping: An important application of quantum operations is the de­
scription of energy dissipation. 

(c) Suppose we have a single optical mode containing the quantum state a 0 + b 1 , 
impinging on a beamsplitter. The beamsplitter couples this mode to another 
optical mode (the “environment”) which starts with zero photons, according to 

a†ˆ ab†)
�
. The output of the beamsplitter is the unitary operator B = exp 

�
θ(ˆ b− ˆˆ

B 0 E (a 0 + b 1 ) = a 00 + b cos θ 01 + b sin θ 10 (8)| � | � | � | � | � | � 
Tracing over the “environment”, find the operation elements E0 and E1 for de­
scribing this situation in the OSR, defining γ ≡ sin2 θ. 

Spontaneous emission in a two­level system is also conveniently modelled as amplitude 
damping in the OSR. To see this, we begin with the Jaynes–Cummings interaction for 
a single atom and single photon, in the limit of a single quantum exchanged, 

⎡
⎢⎣ 

⎤
⎥δ 0 0 
⎦ ,H =
− 0 δ g (9) 

0 g −δ 
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(the basis states are 00 , 01 , 10 , from left to right and top to bottom, where the 
left label corresponds to the field/environment, and the right one to the atom/system. 

e−iH t The unitary evolution given by U = is 

δ 
U = e−iδt 00��00 + (cos Ωt + i sin Ωt) 01��01
| | 

Ω 
| |


δ g
+ (cos Ωt − i sin Ωt) 10��10 − i sin Ωt 

�
01��10 + 10��01

� 
, (10)

Ω 
| | 

Ω 
| | | |

where Ω = 
√

g2 + δ2 is the Rabi frequency. 

(d) Set the detuning δ to zero and assume the field is initially 0 ; give the quantum 
operation elements (for the two­level atom) E0 and E1, resulting from taking the 
partial trace over the field, that is E0 = 0 U 0 and E1 = 1 U 0 .� | |

b 

� 
� 

� | | �
� 

a 
(e) For the general single qubit state ρ = show that amplitude damping 

b∗ c 
leads to 

EAD(ρ) = 
� 

Ek ρE† = 

� 
1 − (1 − γ)(1 − a) b

√
1 − γ 

� 

c(1 − γ) 
. (11)k b∗

√
1 − γ 

k 

Give γ in terms of g and t. 

(f) Describ e and sketch the deformation of the Bloch sphere. 

Phase damping: Phase damping is an important decoherence mechanism, describ ed 
by the operation elements 

� 
1 0 

� � 
0 0 

� 

E0 = 0 
√

1 − λ 
and E1 = 0 

√
λ 

(12) 

e−t/2T2Phase damping is often referred to as a T2 relaxation process, where = 
√

1 − λ. 

(g) Find and sketch the transformation of the Bloch sphere for phase damping. 

2. Electro dynamics of the Spherical Paul Trap 

In class, we studied the behavior of a charged atom confined in an ideal one­dimensional 
parabolic potential; here, we consider a realistic physical apparatus and show how the 
ideal model arises from it. 

The real geometry of an ion trap involves a variety of electro des, which in their simplest 
instance, are configured as shown here (the “spherical Paul trap”): 
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The central electrode has minimum radius r0 and is known as the “ring.” The outer two 
electrodes, with minimum separation 2z0, are the “endcaps.” For perfectly hyperbolic 
electrodes, the potential between the electro des is 

� 
x2 + y2 − 2z2 

� 

V = V0 cos(ΩT t) 
d2 

, (13) 
0 

2 2where d0 = 
�

r0 + 2z0 . 

(a)	 Write down the equations of motion for a particle of charge Q in the potential, in 
the z direction and in the radial direction r. 

(b)	 Decompose the complete ztot motion into a slow motion z (the “secular motion”) 
and a small­amplitude high frequency motion zµ at frequency ΩT , such that ztot = 
z + zµ, with zµ � z. Assume z̈ z̈. Give equations of motion for zµ and z. 

(c)	 Average over one period of ΩT to obtain the oscillation frequency ωz of the secular 
motion, and the depth Dz of the average potential seen by the slow motion. This 
“pseudopotential” is the potential used in the ideal analysis. Derive the radial 
pseudopotential as well. 

(d)	 An important dimensionless parameter describing the trap behavior is the Math­
ieu q parameter, defined as 

−8QV0 
q = 

0Ω
2	 (14)

md2 
T 

for the z motion. The trap is stable for q < 0.908; suppose q = 0.2 (a typical 
operating point). For d0 = 1 mm, ΩT = 2π × 10 MHz, and a singly charged 88Sr 
atom, give numerical values for ωz , Dz , and the temperature corresponding to the 
well depth. 
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