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Atomic Physics II (8.422) Spring 2005


Problem Set 3 
Due Friday, March 4th 2005 

1. Measures of pure state entanglement 

Entanglement is a property of a composite quantum system that cannot be changed by 
local operations and classical communications. How do we mathematically determine 
if a given state is entangled or not? And if a state is entangled, how entangled is it? 
For a bipartite system (composed of two sub-systems with independent Hilbert spaces), 
the Schmidt number provides one measure of entanglement. You should review the 
proof of the Schmidt decomposition on page 109 of Nielsen and Chuang (2005). 

By virtue of the Schmidt decomposition, a pure state ψ in the Hilbert 
space of systems A and B can be written as 

|ψ� = 
� 

λk , (1) 
k 

|kA�|kB � 

where kA and kB are orthonormal states of systems A and B, respectively, 
and 

�|
k λ

2

� 
= 1. The Schmidt number Sch(|ψ�) is the number of nonzero λkk


and Sch( ψ ) = Rank[TrB ( )].
| � |ψ��ψ|


(a) Prove that ψ is a product state, that is ψ = , if and only if Sch( ψ ) = 
1. This corresponds to no entanglement. 

| � |ψA�|ψB � | �

(b) Prove that the Schmidt number cannot be changed by local unitary transforms 
(transforms to one qbit of a pair) and classical communication. (The Schmidt 
number is strictly nonincreasing under more general conditions, for arbitrary local 
operations, but you don’t need to prove that here). 

(c) Give the Schmidt numbers for each of the following states: 

|φ1� |00 + 11 + 22 + 33 01 + 10
= 

� | � | � | � |φ2� = 
|00� − | � | � − |11� 

(2)
2


|00 + 01 + 10
|φ3� = 
� | � | � − |11�


2 

|φ4� = 
|00 + 01 + 11� |√

3 

� | � 
. (3)

2 

(d) Prove that if a bipartite state ψ can be expressed as any state of the form ψ = 
, where kB are orthonormal states of B and φk are arbitrary (possi-

�
k |φk�|kB � | � 

| � 
| �

bly un-normalized) states of A, then the number of terms in the sum is at least as 
great as the Schmidt number of ψ . Recall that Rank[A+B]≤Rank[A]+Rank[B]. 

1




� | | � | � 

� 

� 

2. Measures of mixed state entanglement 

The entanglement of mixed states is much more difficult to characterize than for pure 
states, and many simple questions concerning mixed state entanglement remain un­
solved. However, some simple facts are known, one of which is explored in this problem. 

A density matrix ρ of a composite system AB is separable (i.e. represents an unentan­
gled state) if and only if it can be separated into a sum of direct products, 

ρ = 
� 

pk [ρ
A ⊗ ρB ] ,	 (4)k k 

k 

where ρA and ρB are states of A and B, respectively, and pk are nonnegative weightsk k


satisfying 
�

k pk = 1.


(a) Recall that ρ is a valid density matrix if and only if tr(ρ) = 1 and ρ is positive, 
meaning that	 φ ρ φ ≥ 0 for any state φ (i.e. its eigenvalues are non-negative). 
Prove that if ρ is a density matrix, then ρT (the transpose of ρ) is also a density 
matrix. 

(b) In general, ρ can be written as the matrix 

ρ = ρm,µ,n,ν [|mA��nA| ⊗ |µB ��νB |] ,	 (5) 
m,n,µ,ν 

where the pure states are orthonormal basis vectors of the Hilbert spaces of A 
and B. Define σ as the partial transpose state of ρ, 

σ = ρm,µ,n,ν [|nA��mA| ⊗ |µB ��νB |] ,	 (6) 
m,n,µ,ν 

such that if ρ were separable, we would have 

σ = 
� 

pk [(ρ
A 
k )

T ⊗ ρB ] .	 (7)k 
k 

Prove that a necessary condition for separability is that σ has non-negative eigen­
values. It turns out that positivity of the eigenvalues of the partial transpose of 
ρ is necessary and sufficient for separability, but proof of this fact is beyond the 
scope of this problem set. 

(c) Why is it important (and interesting!)	 to study entanglement of mixed states? 
Consider a two-qubit system governed by the Hamiltonian H = h̄ω(SZ ⊗ I + I ⊗
SZ ), where SZ = and I = + . The state of this system|0��0| − |1��1| |0��0| |1��1|
in thermal equilibrium is the Boltzmann distribution, 

ρ = e−H/kB T /Z , (8) 

where Z is a normalization factor such that tr(ρ) = 1. Suppose we apply the 
unitary transform ⎡

⎢⎢⎢⎣ 

⎤
⎥⎥⎥⎦ 

1 0 0 1 
0 1 1 0 
0 
1 

1 
0 

−1 
0 

0 
−1 

1 
U = √

2 
(9) 
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to this state, and obtain ρ� = UρU †. Compute the minimum eigenvalue λmin of 
the partial transpose of ρ� as a function of α ≡ h̄ω/kB T , and plot. Show that 
there is a distinct transition around α ≈ 1/2. 
(Optional) Discuss: is this some kind of phase transition? What would happen 
with an n-qubit system with Hamiltonian that is symmetric with respect to the 
n spins? 

3. Entanglement and communication complexity 

Alice is in Amsterdam and Bob is in Boston, and they share an EPR pair in the state 
|QAQB = ( 00 + 11 )/

√
2. Alice chooses some uniformly random bit x (0 or 1 with 

equal probability) and independently, Bob chooses y. Define the rotation operator 
� 
cos α − sin α 

�
R(α) = (10)

sin α cos α 

If x = 1 Alice applies R(π/4) to her qubit QA; otherwise she does nothing. Bob applies 
R(−3π/8); also, if y = 1, Bob applies R(−π/4) to his qubit QB . Both Alice and Bob 
then measure their qubits in the computational basis (along the z axis), obtaining bits 
a and b, respectively. 

(a) Show that prob[a ⊕ b = x ∧ y] > 0.853, where ⊕ denotes addition modulo two 
(1+1=0),∧ is the logical and operation and the bar indicates negation (x nand 
y). 

(b) Now suppose that Alice has a two bit number x = x1x0 and Bob has y = y1y0, 
and let z = z2z1z0 = x + y be their sum. Alice and Bob desire to obtain the 
middle bit of the sum, z1, with high probability. Give a protocol using one EPR 
pair and only two bits of classical communication between Alice and Bob which 
allows them to obtain z2 with probability better than 0.853. 

(c) Show that classically, the best probability achievable with two bits of communi­
cation (and no EPR pairs) is 0.75. 

4. Generation of Squeezed States by Two-Photon Interactions 

Consider a mode �k�ε of the electromagnetic field with frequency ω whose Hamiltonian 
H is given by


hΛ 
�
(a†)2 e−2iωt − a 2 2iωt

�

H = h̄ωa†a + i¯ e (11) 

where a† and a are the creation and annihilation operators of the mode. 

The first term of (11) is the energy of the mode for the free field. The second de­
scribes a two-photon interaction process such as parametric amplification (a classical 
wave of frequency 2ω generating two photons with frequency ω). Λ is a real quantity 
characterizing the strength of the interaction. 

(a) Write, using the Heisenberg point of view, the equation of motion for a(t). Take 

a(t) = b(t)e−iωt . (12) 

What are the equations of motion for b(t) and b†(t) ? 
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(b) Using the Heisenberg picture, the contribution of the mode �k�ε to the electric field 
is written 

� ε 
�
a(t)e i

� r k �E(�r, t) = iEω �
k·� − a†(t)e−i� ·r 

� 
(13) 

where a(t) is the solution of Equation 12. Show that 

bP (t) = 
b(t) + b†(t) 

and bQ (t) = 
b(t) − b†(t) 

(14)
2 2i 

(where b(t) is defined in (12)) represent physically two quadrature components of 
the field. Find the equations of motion of bP (t) and bQ (t) and give their solutions, 
assuming that bP (0) and bQ (0) are known. 

(c) Assume that at t = 0, the electromagnetic field is in the vacuum state. Calculate 
� k� as well as theat time t the mean number of photons, �N , in the mode �ε


dispersion ΔbP (t) and ΔbQ (t) on the two quadrature components of the field.

Explain the results.
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