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Homework Assignment #4 

Physics 8.422, Spring 2005, Prof. W. Ketterle 

Due Friday, March 11. 

1.	 Hanbury Brown and Twiss Experiment with Atoms 
This problem illustrates the coherence and collimation requirements for performing a HBT experiment 
with atoms. (Note: Ignore gravity in this problem.) 
If a free particle starts at point A at time t = 0 with an amplitude (wavefunction) ψA, then the 
amplitude at another point 1 and time t = τ is proportional to ψAe

i(k·rA1 −ωτ ), where rA1 is the vector 
from A to 1, k is the particle’s wavevector, and h̄ω is its total energy. This can be regarded as Huygen’s 
principle for matter waves, and is a special case of the Feynman path integral formulation of quantum 
mechanics. 

(Based on figure 19­5, in G. Baym, Lectures on Quantum Mechanics) 

(a) Correlation function	 Assume we have a particle at A with amplitude ψA and one at B with 
amplitude ψB . The joint probability, P , of finding one particle at 1 and one at 2 is 

P = ψAe 
iφA1 ψB e 

iφB2 ± ψAe 
iφA2 ψB e 

iφB1 
2 

and is proportional to the second­order coherence function g(2)(1, 2). The ± is for bosons/fermions 
and makes the two­particle wavefunction symmetric/antisymmetric under the exchange of par­
ticles. Here, φA1 = kA rA1 − ωτ is the phase factor for the path from point A to detector 1, · 
etc.

Calculate P as a function of r21, the vector from point 2 to point 1 on the detector.


(b) Transverse Collimation 
Assume you are given a source (e.g. a ball of trapped atoms) with transverse dimension W and 
detector with transverse dimension w where |r21| ≤ w. The distance between source and detector, 
d, is much greater than all other distances. 
The transverse component of the phase factor in part (a) can be written: φt = (kA − kB )t (r21)t. 
Assume that the signal at the detector is mainly due to atoms with wavevectors distributed around 
k0. Argue that the transverse collimation required to see second order correlation effects can be 
expressed as W w � dλdB , where λdB is the deBroglie wavelength corresponding to k0. (Hint: 
How does φt vary for atoms originating at different points in the source and being detected at 
different points on the detector?) Assuming a source and detector of approximately equal size 
(W ≈ w), make an order of magnitude estimate of W and w using d = 10cm and a λdB = 100nm 
(appropriate for trapped atoms). 



� � �� 

(c) Longitudinal Collimation 
The longitudinal component of the phase factor in part (a) can be written: φl = (kA − kB )l (r21)l. 
Assume a Gaussian distribution of wavevector differences p(kA − kB ) = e−|kA −kB |2 γ2 

where the 
width, γ, is related to the temperature of the atoms. Calculate �P � using this distribution and 
your result from part (a). Sketch �P � for both fermions and bosons, indicating the extent of (r21)l 

over which the second order correlation effect can be seen. 
Now assume you have a pulsed source of atoms with longitudinal dimension L (the detector is 
assumed to have zero longitudinal extent). Atoms are released at time t = 0 and detected at 
some later time t = τ . Give geometric arguments to show that the wavevectors of detected atoms 
must obey (kA − kB )l ≤ mvL , where the velocity v = d . This implies that the different velocity h̄d τ 
groups separate during the expansion, narrowing (by a factor L 

d ) the velocity distribution of atoms 
detected at any particular time. 

(d) Phase­Space Volume Enhancement 
We now pull all the pieces together. The peak in g(2)(1, 2) is visible for (kA − kB ) · r21 ≤ 2π. 
This is equivalent to saying that we must detect atoms from within a single phase space cell, 
defined by δpxδx ≤ h (and likewise for y and z). In our trapped atom sample, the 3D volume of a 
phase space cell is δxδyδz = (λdB )

3 . Liouville’s theorem says that as our ball of atoms expands, 
the number of phase space cells remains constant. Verify that, by using this pulsed source, the 
volume of a coherent phase space cell is increased by a factor d3/W 2L by the time atoms reach 
the detector. What is the order of magnitude of this increase (assuming L ≈ W )? 

2. Beam splitter 

In last weeks homework you used and measured entangled states. This problem will demonstrate one 
of the ways experimentalists can create and manipulate such states using simple optics such as a beam 
splitter. An ideal beam splitter transforms two input field modes, â and b̂, according to 

ˆ a cos θ + ib̂ sin θ (1) 

b̂out = b̂ cos θ + iˆ

aout = ˆ

a sin θ (2) 

where θ expresses the reflectivity of the beam splitter which transmits with probability T = cos2 θ and 
reflects with probability R = sin2 θ. 

(a) Show that the action of the beam splitter can be described by a unitary transformation U = 

ˆˆ a†ˆ aout = U−1ˆexp iθ ab† + ˆ b . In other words, show that ˆ aU and b̂out = U−1b̂U . 

(b) Using simple optics, describe how you would physical demonstrate the unitary nature of beam 
splitter. What effect should θ have in your optical setup in this case? 

(c) Calculate how the Bell states ( ΨA� = ( 10� + 01�) /
√

2, ΨB � = (|10� − |01�) /
√

2, ΨC � =| | | |
( 00� + 11�) /

√
2, ΨD � = (|00� − |

|
11�) /

√
2 ) are transformed by passing through a beamsplitter. | | |

(Hint: Calculate the effect on the component Fock states first) 

(d) What are the Schmidt numbers (a measure of entanglement used in PS 3, Problem 1) for 



i. The Bell states 
ii. The Fock states which make up the Bell states 
iii. The Bell states after passing through beam splitters with T=50% or T=25%. 
iv. The Fock states after passing through beamsplitters with T=50% or T=25%. 
Which of these processes create or increase the amount of entanglement in the system? 

(e) Assume that the input field modes â and b̂ are in coherent states such that the total state of the 
field is Ψin� = β�. Give an expression for the quantum state of the field Ψout� after the |
beam splitter in terms of ˆ

| |α� |
aout and b̂out. Do you recognize this state and if so what kind of state 

is it? 

(f) Your research adviser has recently purchased a single photon (Fock state) source. During shipping 
the label fell off and both of you are worried that the manufacturer may have instead shipped 
you a highly attenuated laser. A friendly visiting scientist suggests that you should be able to 
determine if you have a Fock state source or a coherent source using a beamsplitter and two 
photon counters. Do the calculations to show how this would work. 

(g) The success of your analysis has emboldened your research adviser to ask how you might be able 
to distinguish any two single photon wavefunctions using the same apparatus. 
See Nature 410, 1067 (2001) for nontrivial applications of such simple manipulations. 

Extra point: Consider the more realistic situation in which two multi­mode 1­photon wavepackets 
interfere on a beamsplitter. Suppose that the two photons are in pure Gaussian wavepackets of duration 
T, delayed with respect to each other by a time τ . What is the coincidence probability of detecting at 
least one photon at both outputs of the beamsplitter? 
References: Science, 290 2282 (2000), Nature 419 594 (2002). 


