Problem Set 5 – Van der Waals Interaction and Casimir Effect

Due: March 18, 2005

Problem 1. Long-range (Van der Waals) interaction between ground-state atoms

The electrostatic interaction between atoms a and b is described to first order by the dipoledipole term:

$$H_{el}(R) = \frac{\vec{d_a} \cdot \vec{d_b} - 3(\vec{d_a} \cdot \hat{R})(\vec{d_b} \cdot \hat{R})}{R^3}$$
(1)

where

 $\vec{d_a} = e\vec{r_a}$ is the electric dipole operator of atom a $\vec{d_b} = e\vec{r_b}$ is the electric dipole operator of atom b

 $R = R_{nb} - R_{na}$ is a position vector pointing from the nuclei of a to the nuclei of b.

We will use time-independent perturbation theory to calculate the effect of H_{el} . This is simpler than the time-dependent perturbation expansion discussed in class and does not lead to a virtual-photon picture of the Van der Waals interaction. Notation:

Let $|g_a g_b\rangle$ denote atom a and atom b in the ground state.

Let $|i_a g_b\rangle$ denote atom a in an excited state i and atom b in the ground state.

- (a) What is the first non-vanishing term in the series for the perturbed ground state energy of the system?
- (b) Dipole matrix elements in atomic physics are often discussed in terms of "oscillator

strength," $f_{ig} = \frac{2m\omega_{ig}}{\hbar} |\langle i|x|g \rangle|^2$. Note: $\omega_{ig} = \frac{E_i - E_g}{\hbar}$, so f_{ig} is positive for absorption and negative for emission. Also, $\sum_i f_{ig} = 1$, the Thomas-Reiche-Kuhn sum rule.

Express your result from (a) in terms of oscillator strengths. You will have to make some arguments (non-mathematical if you prefer) about the symmetry of photon emission to get rid of annoying cross terms.

(c) We can estimate C_6 using the approximation that the oscillator strength f_{ig} is large for only one transition, $|g\rangle \rightarrow |i\rangle$. The $|nS\rangle \rightarrow |(n+1)P\rangle$ transitions in alkalai atoms are the classic examples, with $f \approx 0.98$. Use this in combination with the sum rule above and the definition of the static polarizability of the ground state:

$$\alpha_g = 2e^2 \sum_i \frac{|\langle i|z|g\rangle|^2}{E_i - E_g} \tag{2}$$

and express your result for C_6 from (b) in terms of polarizabilities $\alpha_g^{(a)}$ and $\alpha_g^{(b)}$. (You should not have any summation signs in your final answer.)

Problem 2. Long-range interaction between an excited atom and a ground-state atom

Consider the case where one atom is excited and the other atom is in its ground state. For simplicity model each atom as a two level system with one ground state and one excited state.

- (a) Assume you have two atoms a and b with almost (but not quite) degenerate ground \leftrightarrow excited state transition energies $(E_i^{(a)} E_g^{(a)}) \approx (E_i^{(b)} E_g^{(b)})$. How does the energy of the state $|i_a g_b\rangle$ change as a function of the separation R for large distances? What about state $|g_a i_b\rangle$? For what separation does perturbation theory become invalid?
- (b) Now assume you have two identical (i.e. same transition energy) atoms. Calculate the long-range interaction potential curves for the case of one excited atom and one ground state atom.
- (c) For case (b) what is the relation between the spontaneous decay rate of the atom and its long-range interaction coefficient?

Problem 3. Casimir model of the electron

Model the electron as two parallel plates of area a^2 , separated by distance a and carrying charge $q = \frac{e}{2}$. Balance the Casimir and electrostatic forces and from this determine a value for the fine-structure constant $\alpha \equiv \frac{e^2}{\hbar c}$ (cgs units).