
Atomic Physics II (8.422) Spring 2005 
Prof. Wolfgang Ketterle 

Problem Set 6 
Due Friday, April 1 ­ no fooling 

1. Optical Bloch Equations 
The time independent form of the optical Bloch equations [ref: Cohen­Tannoudji, 
Atom­Photon Interactions, p. 359], including spontaneous emission and the rotating 
wave approximations, are written: 

dσ̂bb Ω1 
= i (ˆ σab)− Γˆσba − ˆ σbb

dt 2

dˆ
σab Ω1 Γ 

= i (ω0 − ωL) ˆ σbb − ˆ ˆσab − i (ˆ σaa)− σab
dt 2 2 

σaa + ˆˆ σbb = 1 

σab = σ∗ˆ ˆba 

a) Weak limit: Show that the solution of these equations to lowest order in Ω1 in 
| | σbb = 0 and ˆthe limit Ω1 � Γ, with the initial conditions ˆ σab = 0, gives 
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What does this solution reduce to in the limit of an infinitely narrow linewidth (Γ →

0)?

b) Short time limit: Show that the solution of these equations to lowest order in Ω1
| |

| | σbb = 0 and ˆin the limit Ω1 t � 1, with the initial conditions ˆ σab = 0, gives 
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irrespective of the values of (ω0 − ωL) and Γ. 
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2. Van Der Waals Scattering and the Refractive Index for Matter Waves 
This problem addresses several concepts discussed in class including the van der Waals 
potential, elastic cross section, and partial waves . The elastic cross section leads to 
attenuation of the atomic beam and is expressed by the imaginary part of an index 
of refraction of matter waves. This problem nicely demonstrates analogies between 
ordinary optics and matter wave optics. 
When a wave passes through a medium, two things happen. The wave is attenuated 
and its phase is shifted. Both of these effects are accounted for by introducing a 
complex index of refraction n. This is true whether it is a light wave passing through 
glass or a matter wave passing through a dilute gas. The attenuation (related to the 
imaginary part of n) of particle beams passing through gas samples has been studied 
extensively. The main difficulty is to accurately know, in absolute terms, the density 
of the gas sample. Recently, the phase shift (related to Re(n)) of a matter wave 
passing through a gas sample has been measured. The measurement requires an in­
terferometer so that the wave coming out of the sample can be compared (interfered) 
with a wave that did not pass through the sample. This is a probe of the interatomic 
potentials governing the scattering process that, on the microscopic scale, determine 
the macroscopic quantity n. In this problem we will estimate the quantities Re(n) 
and Im(n) for a system that turns out to be described quite well by the Van der 
Waals potential: the scattering of sodium (Na) on Xenon (Xe). [ref: Schmiedmayer 
et al., Phys. Rev. Lett., (74), 1043 (1995); J.J. Sakurai, Modern Quantum Mechan­
ics, Chapter 7] 

The wavefunction for a wave can be written Ψ(x) = Ψ(0)eiklabx where klab is the 
wavevector in the lab frame. Suppose that at x = 0, the wave enters a medium with 
complex index of refraction 

Δφ(x) 
n = 1 + 

klabx 

where 
2π 

Δφ(x) = Nxf(k, θ = 0). 
k 

N is the density of the medium, k is the wavevector in the center­of­mass frame, and 
f(k, θ = 0) is the (complex) amplitude of the forward scattered wave (hence θ = 0). 

a) Show that the wave function is 

i 2π N xRe[f (k,0)]e− N xIm[f (k,0)]
k k .Ψ(x) = Ψ(0)e iklabx e 

2π 

Verify, using Δφ(x) as chosen above, the optical theorem for the total scattering 
cross­section. (Look at the intensity of the wave.) 

b) The forward scattering amplitude is written as a sum over angular momentum as 
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δl(k) is the phase shift for a partial wave with angular momentum l and center­of­
mass wavevector k. This experiment used a beam of atoms at thermal energies so 
several hundred partial waves contribute to the sum. It is therefore valid to replace 
the sum over l with an integral over the classical impact parameter b. 
Use the correspondence relation ¯ 1 ¯h(l + 

2
) = b hk to express f(k, 0) in integral form. · 

c) To do the integral, we first need to calculate the phase shift δ(b, k). This is 
easier when the collision energy is much greater than the potential, that is, when the 
potential varies only a small amount over a wavelength. Then we can use the Eikonal 
approximation, in which δ is calculated as the phase accumulated by the sodium atom 
along a straight­line path with impact parameter b through the potential. Thus 

δ(b, k) = 
h2 

mN a 
� +∞ 

V (r)dz. −
2k¯ −∞ 

Calculate δ(b, k) for the case V (r) = −C6r
−6 . 
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d) Separate the integral for f(k, 0) into real and imaginary parts and use the result 
from c) to calculate them. 

(The integrals are analytic. You will find it convenient to make a change of variables 
and integrate over δ instead of b. In each case, paying close attention to [ ], first use 
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e) Now plug in the numbers. The value of C6 is needed to evaluate Re(f) and Im(f). 
3 ¯ ¯h ω1ω2In Homework Assignment #5 you derived C6 = 
2 
¯

ω1+¯
α1α2 using the dominant 

¯ ω2 
2ne ¯ ¯level approximation. By using α = 

me ̄
to substitute for ω1 and ω2, where n is the 

ω2 

number of valence electrons (also equal to the sum over oscillator strengths), derive 
an expression for C6 in terms of the polarizabilities (the Slater­Kirkwood formula). 

A3 and αX e = 4.1 ˚Use αN a = 24.1 ˚ A3 and n = 6 for xenon to calculate C6 for the 
Na­Xe system. 

f) Using a velocity of 1000 m/s for the sodium atom, calculate klab using the deBroglie 
wave relation. The center­of­mass wavevector for this system is k = 0.85 klab. Evalu­
ate Re(f) and Im(f). Then, for a 1 mTorr xenon gas, evaluate Re(n−1) and Im(n−1). 

g) Note the order of magnitude of n − 1. Why is this measurable in an atom inter­
ferometer, that is, why would it be much harder to measure an equivalent magnitude 
of n− 1 in an optical interferometer? 
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