
MIT Open Access Articles

Quantum Support Vector Machine for Big Data Classification

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Rebentrost, Patrick, Masoud Mohseni, and Seth Lloyd. "Quantum Support Vector
Machine for Big Data Classification." Phys. Rev. Lett. 113, 130503 (September 2014). © 2014
American Physical Society

As Published: http://dx.doi.org/10.1103/PhysRevLett.113.130503

Publisher: American Physical Society

Persistent URL: http://hdl.handle.net/1721.1/90391

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90391

Quantum Support Vector Machine for Big Data Classification

Patrick Rebentrost,1,* Masoud Mohseni,2 and Seth Lloyd1,3,†
1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Google Research, Venice, California 90291, USA
3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 12 February 2014; published 25 September 2014)

Supervised machine learning is the classification of new data based on already classified training
examples. In this work, we show that the support vector machine, an optimized binary classifier, can be
implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number
of training examples. In cases where classical sampling algorithms require polynomial time, an exponential
speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation
technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.

DOI: 10.1103/PhysRevLett.113.130503 PACS numbers: 03.67.Ac, 07.05.Mh

Machine learning algorithms can be categorized along a
spectrum of supervised and unsupervised learning [1–4]. In
strictly unsupervised learning, the task is to find structure
such as clusters in unlabeled data. Supervised learning
involves a training set of already classified data, from
which inferences are made to classify new data. In both
cases, recent “big data” applications exhibit a growing
number of features and input data. A Support Vector
Machine (SVM) is a supervised machine learning algo-
rithm that classifies vectors in a feature space into one of
two sets, given training data from the sets [5]. It operates
by constructing the optimal hyperplane dividing the two
sets, either in the original feature space or in a higher-
dimensional kernel space. The SVM can be formulated as a
quadratic programming problem [6], which can be solved
in time proportional toO(logðϵ−1ÞpolyðN;MÞ), withN the
dimension of the feature space, M the number of training
vectors, and ϵ the accuracy. In a quantum setting, binary
classification was discussed in terms of Grover’s search in
[7] and using the adiabatic algorithm in [8–11]. Quantum
learning was also discussed in [12,13].
In this Letter, we show that a quantum support vector

machine can be implemented with OðlogNMÞ run time in
both training and classification stages. The performance inN
arises due to a fast quantum evaluation of inner products,
discussed in a general machine learning context by us in
[14]. For the performance inM, we reexpress the SVM as an
approximate least-squares problem [15] that allows for a
quantum solution with the matrix inversion algorithm
[16,17]. We employ a technique for the exponentiation of
nonsparse matrices recently developed in [18]. This allows
us to reveal efficiently in quantum form the largest eigen-
values and corresponding eigenvectors of the training data
overlap (kernel) and covariance matrices. We thus effi-
ciently perform a low-rank approximation of these matrices
[Principal Component Analysis (PCA)]. PCA is a common
task arising here and in other machine learning algorithms

[19–21]. The error dependence in the training stage is
O(polyðϵ−1K ; ϵ−1Þ), where ϵK is the smallest eigenvalue
considered and ϵ is the accuracy. In cases when a low-rank
approximation is appropriate, our quantum SVM operates on
the full training set in logarithmic run time.
Support vector machine.—The task for the SVM is to

classify a vector into one of two classes, given M training
data points of the form fð~xj;yjÞ∶ ~xj∈RN;yj¼�1gj¼1…M,
where yj ¼ 1 or −1, depending on the class to which ~xj
belongs. For the classification, the SVM finds a maximum-
margin hyperplane with normal vector ~w that divides the
two classes. The margin is given by two parallel hyper-
planes that are separated by the maximum possible distance
2=j~wj, with no data points inside the margin. Formally,
these hyperplanes are constructed so that ~w · ~xj þ b ≥ 1 for
~xj in the þ1 class and that ~w · ~xj þ b ≤ −1 for ~xj in the −1
class, where b=j~wj is the offset of the hyperplane. Thus, in
the primal formulation, finding the optimal hyperplane
consists of minimizing j~wj2=2 subject to the inequality
constraints yjð~w · ~xj þ bÞ ≥ 1 for all j. The dual formu-
lation [6] is maximizing over the Karush-Kuhn-Tucker
multipliers ~α ¼ ðα1;…; αMÞT the function

Lð~αÞ ¼
XM
j¼1

yjαj −
1

2

XM
j;k¼1

αjKjkαk; ð1Þ

subject to the constraints
P

M
j¼1 αj ¼ 0 and yjαj ≥ 0. The

hyperplane parameters are recovered from ~w ¼ P
M
j¼1 αj~xj

and b ¼ yj − ~w · ~xj (for those j where αj ≠ 0). Only a few
of the αj are nonzero: these are the ones corresponding to
the ~xj that lie on the two hyperplanes—the support vectors.
We have introduced the kernel matrix, a central quantity in
many machine learning problems [19,21],Kjk¼kð~xj;~xkÞ ¼
~xj ·~xk, defining the kernel function kðx; x0Þ. More compli-
cated nonlinear kernels and soft margins will be studied
below. Solving the dual form involves evaluating the

PRL 113, 130503 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

26 SEPTEMBER 2014

0031-9007=14=113(13)=130503(5) 130503-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503

MðM − 1Þ=2 dot products ~xj · ~xk in the kernel matrix and
then finding the optimal αj values by quadratic pro-
gramming, which takes OðM3Þ in the nonsparse case
[22]. As each dot product takes time OðNÞ to evaluate,
the classical support vector algorithm takes time
O(logð1=ϵÞ ×M2ðN þMÞ) with accuracy ϵ. The result
is a binary classifier for new data ~x:

yð~xÞ ¼ sgn

�XM
j¼1

αjkð~xj; ~xÞ þ b

�
: ð2Þ

Quantum machine learning with the kernel matrix.—In
the quantum setting, assume that oracles for the training
data that return quantum vectors j~xji¼1=j~xjj

P
N
k¼1ð~xjÞkjki,

the norms j~xjj, and the labels yj are given. The quantum
machine learning performance is relative to these oracles
and can be considered a lower bound for the true complex-
ity [23]. One way of efficiently constructing these states is
via quantum RAM, which usesOðMNÞ hardware resources
but onlyOðlogMNÞ operations to access them; see [14,24].
Using the inner product evaluation of [14] to prepare the
kernel matrix, we can achieve a run time for the SVM of
O(logð1=ϵÞM3þM2 logN=ϵ). Classically, the inner product
evaluation isO(ϵ−2polyðNÞ) by sampling when the compo-
nents of the ~xj are distributed unevenly, for example, when a
Fourier transform is part of the postprocessing step [23].
The kernel matrix plays a crucial role in the dual for-

mulation Eq. (1) and the least-squares reformulation dis-
cussed in the next section. At this point we can discuss an
efficient quantum method for direct preparation and expo-
nentiation of the normalized kernel matrix K̂ ¼ K=trK. For
the preparation, first call the training data oracles with the
state 1=

ffiffiffiffiffi
M

p P
M
i¼1 jii. This prepares in quantum parallel the

state jχi ¼ 1=
ffiffiffiffiffiffi
Nχ

p P
M
i¼1 j~xijjiij~xii, with Nχ ¼

P
M
i¼1 j~xij2,

in OðlogNMÞ run time. If we discard the training set
register, we obtain the desired kernel matrix as a quantum
density matrix. This can be seen from the partial trace
tr2fjχihχjg¼1=Nχ

P
M
i;j¼1h~xjj~xiij~xijj~xjjjiihjj¼K=trK. See

[25] for an independent estimation of the trace of K.
For quantum mechanically computing a matrix inverse

such as K̂−1, one needs to be able to enact e−iK̂Δt efficiently.
However, the kernel matrix K̂ is not sparse for the appli-
cation of the techniques in [27,28]. For the exponentiation of
nonsparse symmetric or Hermitian matrices, a strategy was
developed by us in [18]. We adapt it to the present problem.
Adopting a density matrix description to extend the space
of possible transformations gives, for some quantum state
ρ, e−iK̂ΔtρeiK̂Δt ¼ e−iLK̂ΔtðρÞ. The superoperator notation
LKðρÞ ¼ ½K; ρ� was defined. Applying the algorithm of [18]
obtains

e−iLK̂ΔtðρÞ ≈ tr1fe−iSΔtK̂ ⊗ ρeiSΔtg
¼ ρ − iΔt½K̂; ρ� þOðΔt2Þ: ð3Þ

Here, S ¼ P
M
m;n¼1 jmihnj ⊗ jnihmj is the swap matrix of

dimension M2 ×M2. Equation (3) is the operation that is
implemented on the quantum computer performing the
machine learning. For the time slice Δt, it consists of the
preparation of an environment state K̂ (see above) and
the application of the global swap operator to the combined
system and environment state followed by discarding the
environmental degrees of freedom. Equation (3) shows that
enacting e−iK̂Δt is possible with error OðΔt2Þ. The efficient
preparation and exponentiation of the training data kernel
matrix, which appears in many machine learning problems
[19,21], potentially enables a wide range of quantum
machine learning algorithms. We now discuss a complete
quantum big data algorithm.
Quantum least-squares support vector machine.—A key

idea of this work is to employ the least-squares reformu-
lation of the support vector machine developed in [15] that
circumvents the quadratic programming and obtains the
parameters from the solution of a linear equation system.
The central simplification is to introduce slack variables ej
(soft margins) and replace the inequality constraints with
equality constraints (using y2j ¼ 1):

yjð~w · ~xj þ bÞ ≥ 1 → ð~w · ~xj þ bÞ ¼ yj − yjej: ð4Þ

In addition to the constraints, the implied Lagrangian
function contains a penalty term γ=2

P
M
j¼1 e

2
j , where

user-specified γ determines the relative weight of the
training error and the SVM objective. Taking partial
derivatives of the Lagrangian function and eliminating
the variables ~u and ej leads to a least-squares approxima-
tion of the problem:

F

�
b
~α

�
≡

�
0 ~1T

~1 K þ γ−11

��
b
~α

�
¼

�
0

~y

�
: ð5Þ

Here, Kij ¼ ~xTi · ~xj is again the symmetric kernel matrix,

~y ¼ ðy1;…; yMÞT , and ~1 ¼ ð1;…; 1ÞT . The matrix F is
ðM þ 1Þ × ðM þ 1Þ dimensional. The additional row and

column with the ~1 arise because of a nonzero offset b. The
αj take on the role as distances from the optimal margin and
usually are not sparse. The SVM parameters are determined
schematically by ðb;~αTÞT¼F−1ð0;~yTÞT. As with the quad-
ratic programming formulation, the classical complexity of
the least-squares support vector machine is OðM3Þ [22].
For the quantum support vector machine, the task is to

generate a quantum state jb; ~αi describing the hyperplane
with the matrix inversion algorithm [16] and then classify a
state j~xi. We solve the normalized F̂jb; ~αi ¼ j~yi, where F̂ ¼
F=trF with jjFjj ≤ 1. The classifier will be determined by
the success probability of a swap test between jb; ~αi and j~xi.
For application of the quantum matrix inversion algorithm,
F̂ needs to be exponentiated efficiently. The matrix F̂ is

PRL 113, 130503 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

26 SEPTEMBER 2014

130503-2

schematically separated as F̂ ¼ ðJ þ K þ γ−11Þ=trF, with
J ¼

�
0 ~1T

~1 0

�
, and the Lie product formula allows for

e−iF̂Δt ¼ e−iΔt1=trFe−iJΔt=trFe−iKΔt=trF þOðΔt2Þ. The matrix
J is straightforward [27] (a “star” graph). The two nonzero
eigenvalues of J are λstar� ¼ � ffiffiffiffiffi

M
p

and the corresponding
eigenstates are jλstar� i ¼ 1=

ffiffiffi
2

p ðj0i � ð1= ffiffiffiffiffi
M

p ÞPM
k¼1 jkiÞ.

The matrix γ−11 is trivial. For K=trK, proceed according
to Eq. (3) by rescaling time by a factor trK=trF ¼ Oð1Þ
appropriately. This e−iF̂Δt is employed conditionally in
phase estimation.
The right-hand side j~yi can be formally expanded into

eigenstates juji of F̂ with corresponding eigenvalues
λj, j~yi ¼

PMþ1
j¼1 hujj~yijuji. With a register for storing an

approximation of the eigenvalues (initialized to j0i), phase
estimation generates a state which is close to the ideal state
storing the respective eigenvalue:

j~yij0i →
XMþ1

j¼1

hujj~yijujijλji →
XMþ1

j¼1

hujj~yi
λj

juji: ð6Þ

The second step inverts the eigenvalue and is obtained as in
[16] by performing a controlled rotation and uncomputing
the eigenvalue register. In the basis of training set labels,
the expansion coefficients of the new state are the desired
support vector machine parameters: (C ¼ b2 þP

M
k¼1 α

2
k),

jb; ~αi ¼ 1ffiffiffiffi
C

p
�
bj0i þ

XM
k¼1

αkjki
�
: ð7Þ

Classification.—We have now trained the quantum SVM
and would like to classify a query state j~xi. From the state
jb; ~αi in Eq. (7), construct by calling the training data oracle

j ~ui ¼ 1ffiffiffiffiffiffi
N ~u

p
�
bj0ij0i þ

XM
k¼1

αkj~xkjjkij~xki
�
; ð8Þ

with N ~u ¼ b2 þP
M
k¼1 α

2
kj~xkj2. In addition, construct the

query state

j~xi ¼ 1ffiffiffiffiffiffi
N ~x

p
�
j0ij0i þ

XM
k¼1

j~xjjkij~xi
�
; ð9Þ

with N ~x ¼ Mj~xj2 þ 1. For the classification, we perform a
swap test. Using an ancilla, construct the state jψi ¼
1=

ffiffiffi
2

p ðj0ij ~ui þ j1ij~xiÞ and measure the ancilla in the state
jϕi ¼ 1=

ffiffiffi
2

p ðj0i − j1iÞ. The measurement has the success
probability P¼jhψ jϕij2¼ 1

2
ð1−h ~uj~xiÞ. The inner product

is given by h ~uj~xi ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N ~xN ~u

p ðbþP
M
k¼1 αkj~xkjj~xjh~xkj~xiÞ,

which isOð1Þ in the usual case when the α are not sparse. P
can be obtained to accuracy ϵ by iterating O(Pð1 − PÞ=ϵ2)
times. If P < 1=2 we classify j~xi as þ1; otherwise, −1.

Kernel matrix approximation and error analysis.—We
now show that quantum matrix inversion essentially per-
forms a kernel matrix principal component analysis and
give a run time and error analysis of the quantum algorithm.
The matrix under consideration, F̂ ¼ F=trF, contains the
kernel matrix K̂γ ¼ Kγ=trKγ and an additional row and
column due to the offset parameter b. In case the offset is
negligible, the problem reduces to matrix inversion of the
kernel matrix K̂γ only. For any finite γ, K̂γ is positive
definite, and thus invertible. The positive eigenvalues of F̂
are dominated by the eigenvalues of K̂γ . In addition, F̂ has
one additional negative eigenvalue which is involved in
determining the offset parameter b. The maximum absolute
eigenvalue of F̂ is no greater than 1 and the minimum
absolute eigenvalue is ≤ Oð1=MÞ. The minimum eigen-
value arises, e.g., from the possibility of having a training
example that has (almost) zero overlap with the other
training examples. Because of the normalization the eigen-
value will be Oð1=MÞ and, as a result, the condition
number κ (the largest eigenvalue divided by the smallest
eigenvalue) is OðMÞ in this case. To resolve such eigen-
values would require exponential run time [16]. We define a
constant ϵK such that only the eigenvalues in the interval
ϵK ≤ jλjj ≤ 1 are taken into account, essentially defining an
effective condition number κeff ¼ 1=ϵK. Then, the filtering
procedure described in [16] is employed in the phase
estimation using this κeff . An ancilla register is attached to
the quantum state and appropriately defined filtering
functions discard eigenvalues below ϵK when multiplying
the inverse 1=λj for each eigenstate in Eq. (6). The desired
outcome is obtained by postselecting the ancilla register.
The legitimacy of this eigenvalue filtering can be

rationalized by a PCA argument. Define the N ×M
(standardized) data matrix X ¼ ð~x1;…; ~xMÞ. The M ×M
kernel matrix is given by K ¼ XTX. The N × N covariance
matrix is given by Σ ¼ XXT ¼ P

M
m¼1 ~xm~x

T
m. Often, data

sets are effectively described by a few unknown factors
(principal components) which admit a low-rank approxi-
mation for Σ=trΣwith largeOð1Þ eigenvalues. The matrices
K and Σ have the same nonzero eigenvalues. Keeping the
large eigenvalues and corresponding eigenvectors of the
kernel matrix by setting the cutoff ϵK ¼ Oð1Þ thus retains
the principal components of the covariance matrix, i.e., the
most important features of the data. See Supplemental
Material for further discussion of the low-rank approxi-
mation [25].Oð1Þ eigenvalues of K=trK exist, for example,
in the case of well-separated clusters with OðMÞ vectors
in them. A simple artificial example is K ¼ 12×2 ⊗
ð~1~1TÞM=2×M=2. The principal components of the kernel
matrix are found in quantum parallel by phase estimation
and the filtering procedure.
We continue with a discussion of the run time of the

quantum algorithm. The interval Δt can be written as
Δt ¼ t0=T, where T is the number of time steps in the
phase estimation and t0 is the total evolution time

PRL 113, 130503 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

26 SEPTEMBER 2014

130503-3

determining the error of the phase estimation [16]. The
swap matrix used in Eq. (3) is 1-sparse and e−iSΔt is
efficiently simulable in negligible time ~O(logðMÞΔt) [28].
The ~O notation suppresses more slowly growing factors,
such as a log�M factor [16,28]. For the phase estimation,
the propagator e−iLF̂Δt is enacted with error OðΔt2jjF̂jj2Þ;
see Eq. (3). With the spectral norm for a matrix A,
jjAjj ¼ maxj~vj¼1jA~vj, we have jjF̂jj ¼ Oð1Þ. Taking powers
of this propagator, e−iLF̂τΔt for τ ¼ 0;…; T − 1 leads to an
error of maximally ϵ ¼ OðTΔt2Þ ¼ Oðt20=TÞ. Thus, the run
time is T ¼ Oðt20=ϵÞ. Taking into account the preparation of
the kernel matrix in OðlogMNÞ, the run time is thus
Oðt20ϵ−1 logMNÞ. The relative error of λ−1 by phase
estimation is given by O(1=ðt0λÞ) ≤ O(1=ðt0ϵKÞ) for λ ≥
ϵK [16]. If t0 is taken Oðκeff=ϵÞ ¼ O(1=ðϵKϵÞ), this error is
OðϵÞ. The run time is thus ~Oðϵ−2K ϵ−3 logMNÞ. Repeating
the algorithm for Oðκ effÞ times to achieve a constant
success probability of the postselection step obtains a final
run time of Oðκ3effϵ−3 logMNÞ. To summarize, we find a
quantum support vector machine that scales asOðlogMNÞ,
which implies a quantum advantage in situations where
classically OðMÞ training examples and OðNÞ samples for
the inner product are required.
Nonlinear support vector machines.—One of the most

powerful uses of support vector machines is to perform
nonlinear classification [5]. Perform a nonlinear mapping
~ϕð~xjÞ into a higher-dimensional vector space. Thus, the
kernel function becomes a nonlinear function in ~x:

kð~xj; ~xkÞ ¼ ~ϕð~xjÞ · ~ϕð~xkÞ: ð10Þ

For example, kð~xj; ~xkÞ ¼ ð~xj · ~xkÞd. Now perform the SVM
classification in the higher-dimensional space. The sepa-
rating hyperplanes in the higher-dimensional space now
correspond to separating nonlinear surfaces in the origi-
nal space.
The ability of quantum computers to manipulate high-

dimensional vectors affords a natural quantum algorithm
for polynomial kernel machines. Simply map each vector
j~xji into the d-times tensor product jϕð~xjÞi≡ j~xji ⊗ � � � ⊗
j~xji and use the feature that hϕð~xjÞjϕð~xkÞi ¼ h~xjj~xkid.
Arbitrary polynomial kernels can be constructed using this
trick. The optimization using a nonlinear, polynomial
kernel in the original space now becomes a linear hyper-
plane optimization in the d-times tensor product space.
Considering only the complexity in the vector space dimen-
sion, the nonlinear d-level polynomial quantum kernel
algorithm to accuracy ϵ then runs in time Oðd logN=ϵÞ.
Note that, in contrast to classical kernel machines, the
exponential quantum advantage in evaluating inner products
allows quantum kernel machines to perform the kernel
evaluation directly in the higher-dimensional space.

Conclusion.—In this work, we have shown that an
important classifier in machine learning, the support vector
machine, can be implemented quantum mechanically with
algorithmic complexity logarithmic in feature size and the
number of training data, thus providing one example of a
quantum big data algorithm. A least-squares formulation of
the support vector machine allows the use of phase
estimation and the quantum matrix inversion algorithm.
The speed of the quantum algorithm is maximized when the
training data kernel matrix is dominated by a relatively
small number of principal components. We note that there
exist several heuristic sampling algorithms for the SVM
[29] and, more generally, for finding eigenvalues or vectors
of low-rank matrices [30,31]. Information-theoretic argu-
ments show that classically finding a low-rank matrix
approximation is lower bounded by ΩðMÞ in the absence
of prior knowledge [32], suggesting a similar lower bound
for the least-squares SVM. Aside from the speedup, another
timely benefit of quantum machine learning is data privacy
[14]. The quantum algorithm never requires the explicit
OðMNÞ representation of all the features of each of the
training examples, but it generates the necessary data
structure, the kernel matrix of inner products, in quantum
parallel. Once the kernel matrix is generated, the individual
features of the training data are fully hidden from the user.
Recently, quantum machine learning was discussed in
[33,34]. In summary, the quantum support vector machine
is an efficient implementation of an important machine
learning algorithm. It also provides advantages in terms of
data privacy and could be used as a component in a larger
quantum neural network.

Thisworkwas supported byDARPA,NSF, ENI,AFOSR,
the Google-NASA Quantum Artificial Intelligence
Laboratory, and Jeffrey Epstein. The authors acknowledge
helpful discussions with Scott Aaronson and Nan Ding.

*rebentr@mit.edu
†slloyd@mit.edu

[1] D. J. C. MacKay, Information Theory, Inference and Learn-
ing Algorithms (Cambridge University Press, Cambridge,
England, 2003).

[2] E. Alpaydin, Introduction to Machine Learning (Adaptive
Computation and Machine Learning) (MIT Press,
Cambridge, MA, 2004).

[3] C. M. Bishop, Pattern Recognition and Machine Learning
(Springer, New York, 2007).

[4] K. P. Murphy, Machine Learning: A Probabilistic Perspec-
tive (MIT Press, Cambridge, MA, 2012).

[5] C. Cortes and V. Vapnik, Mach. Learn. 20, 273 (1995).
[6] S. Boyd and L. Vandenberghe, Convex Optimization

(Cambridge University Press, Cambridge, England, 2004).
[7] D. Anguita, S. Ridella, F. Rivieccion, and R. Zunino, Neural

Netw. 16, 763 (2003).
[8] H. Neven, V. S. Denchev, G. Rose, and W. G. Macready,

arXiv:0811.0416.

PRL 113, 130503 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

26 SEPTEMBER 2014

130503-4

http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/S0893-6080(03)00087-X
http://dx.doi.org/10.1016/S0893-6080(03)00087-X
http://arXiv.org/abs/0811.0416

[9] H. Neven, V. S. Denchev, G. Rose, and W. G. Macready,
arXiv:0912.0779.

[10] K. L. Pudenz and D. A. Lidar, Quantum Inf. Process. 12,
2027 (2013).

[11] V. S. Denchev, N. Ding, S. V. N. Vishwanathan, and H.
Neven, in Proceedings of the 29th International Conference
on Machine Learning, Edinburgh, Scotland, UK, 2012
(Omnipress, Wisconsin, 2012).

[12] M. Sasaki and A. Carlini, Phys. Rev. A 66, 022303 (2002).
[13] R. A. Servedio and S. J. Gortler, SIAM J. Comput. 33, 1067

(2004).
[14] S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv:1307.0411.
[15] J. A. K. Suykens and J. Vandewalle, Neural Processing

Letters 9, 293 (1999).
[16] A.W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett.

103, 150502 (2009).
[17] N. Wiebe, D. Braun, and S. Lloyd, Phys. Rev. Lett. 109,

050505 (2012).
[18] S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631

(2014)
[19] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B.

Schölkopf, IEEE Trans. Neural Networks 12, 181 (2001).
[20] L. Hoegaerts, J. A. K. Suykens, J. Vandewalle, and

B. D. Moor, in Proceedings of IEEE International Joint
Conference on Neural Networks, Budapest, Hungary, 2004
(IEEE, New York, 2004).

[21] T. Hofmann, B. Schölkopf, and A. J. Smola, Ann. Stat. 36,
1171 (2008).

[22] The exponent 3 can be improved considerably; see D.
Coppersmith and S. Winograd, J. Symb. Comput. 9, 251
(1990).

[23] S. Aaronson, in Proceedings of the 42nd ACM Symposium
on Theory of Computing, Cambridge, MA, 2010 (ACM,
New York, 2010).

[24] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett.
100, 160501 (2008).

[25] See Supplemental Material http://link.aps.org/
supplemental/10.1103/PhysRevLett.113.130503, which
includes Ref. [26], for the estimation of the trace of the
kernel matrix and details on the kernel matrix low-rank
approximation.

[26] C. Ding and X. He, in Proceedings of the 21st International
Conference on Machine Learning, Banff, AB, Canada, 2004
(ACM, New York, 2004).

[27] A. Childs, Commun. Math. Phys. 294, 581 (2010).
[28] D.W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders,

Commun. Math. Phys. 270, 359 (2007).
[29] S. Shalev-Shwartz, Y. Singer, and N. Srebro, in Proceedings

of the 24th International Conference on Machine Learning,
Corvallis, OR, 2007 (ACM, New York, 2007).

[30] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin,
and M. Tygert, Proc. Natl. Acad. Sci. U.S.A. 104, 20167
(2007).

[31] P. Drineas, R. Kannan, and M.W. Mahoney, SIAM J.
Comput. 36, 158 (2006).

[32] Z. Bar-Yossef, in Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, San Diego, 2003
(ACM, New York, 2003).

[33] N. Wiebe, A. Kapoor, and K. Svore, arXiv:1401.2142.
[34] G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-

Delgado, and H. J. Briegel, Phys. Rev. X 4, 031002
(2014).

PRL 113, 130503 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

26 SEPTEMBER 2014

130503-5

http://arXiv.org/abs/0912.0779
http://dx.doi.org/10.1007/s11128-012-0506-4
http://dx.doi.org/10.1007/s11128-012-0506-4
http://dx.doi.org/10.1103/PhysRevA.66.022303
http://dx.doi.org/10.1137/S0097539704412910
http://dx.doi.org/10.1137/S0097539704412910
http://arXiv.org/abs/1307.0411
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.109.050505
http://dx.doi.org/10.1103/PhysRevLett.109.050505
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1109/72.914517
http://dx.doi.org/10.1214/009053607000000677
http://dx.doi.org/10.1214/009053607000000677
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.130503
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.130503
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.130503
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.130503
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.130503
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.130503
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1007/s00220-009-0930-1
http://dx.doi.org/10.1007/s00220-006-0150-x
http://dx.doi.org/10.1073/pnas.0709640104
http://dx.doi.org/10.1073/pnas.0709640104
http://dx.doi.org/10.1137/S0097539704442696
http://dx.doi.org/10.1137/S0097539704442696
http://arXiv.org/abs/1401.2142
http://dx.doi.org/10.1103/PhysRevX.4.031002
http://dx.doi.org/10.1103/PhysRevX.4.031002

