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Abstract: We perform full 3D topology optimization (in which “every
voxel” of the unit cell is a degree of freedom) of photonic-crystal structures
in order to find optimal omnidirectional band gaps for various symmetry
groups, including fcc (including diamond), bcc, and simple-cubic lattices.
Even without imposing the constraints of any fabrication process, the
resulting optimal gaps are only slightly larger than previous hand designs,
suggesting that current photonic crystals are nearly optimal in this respect.
However, optimization can discover new structures, e.g. a new fcc structure
with the same symmetry but slightly larger gap than the well known
inverse opal, which may offer new degrees of freedom to future fabrication
technologies. Furthermore, our band-gap optimization is an illustration of a
computational approach to 3D dispersion engineering which is applicable
to many other problems in optics, based on a novel semidefinite-program
formulation for nonconvex eigenvalue optimization combined with other
techniques such as a simple approach to impose symmetry constraints. We
also demonstrate a technique for robust topology optimization, in which
some uncertainty is included in each voxel and we optimize the worst-case
gap, and we show that the resulting band gaps have increased robustness to
systematic fabrication errors.
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1. Introduction

In this paper, we present the first fully three-dimensional (3D) robust topology optimization (in
which every voxel is a degree of freedom) of complete photonic band gaps in 3D photonic crys-
tals, in contrast to earlier band-gap topology-optimization work [1–7] that was limited to two
dimensions (2D) and did not address robustness to manufacturing defects. Our results in §3.1
confirm that, for diamond symmetry, known “hand-designed” 3D crystal structures [8], appear
to be close to optimal with respect to the fractional band gap. However, the optimization also
appears to discover some previously unknown structures for other symmetry groups, includ-
ing a new fcc-symmetry structure that has a larger gap for the same bands than the well-known
“inverse-opal” design [9] (although its gap is still smaller than diamond). On the one hand, cases
where the optimization yields structures that are reminiscent of previous hand designs with only
slightly larger gaps, despite searching a large space of continuously varying structures without
regard for ease of fabrication, suggest limitations on the prospects for future improvements in
band-gap sizes with conventional dielectric materials, in which we find gaps for index contrasts
≥ 1.9 : 1 (in §3.3) similar to previous authors [10]. On the other hand, the ability of optimization
to discover new designs for a given symmetry group may inspire exploration of new fabrica-
tion technologies that are better suited to those topologies (or a distorted version thereof) than
to previous structures. Moreover, our optimization approach (in §2) builds on and illustrates
our recent subspace and semidefinite-program (SDP) formulation [7] that is applicable to many
other dispersion-relation design problems. Our approach also demonstrates our new “fabrica-
tion adaptivity” (FA) algorithm [11] for robust topology optimization (see §3.4)—optimization
of the “worst case” subject to manufacturing and other uncertainties—which differs from pre-
vious work on robust optimization in electromagnetism [12–20] by taking into account the
material constraints that arise in topology optimization. We also describe a new technique for
imposing complex symmetry constraints (e.g. diamond symmetry) which retains the simplicity
of an orthogonal grid of degrees of freedom (in §2), and allows us to explore a much wider va-
riety of symmetry groups than were considered in most previous topology-optimization work.

Photonic band gaps are frequency ranges ∆ω in which there are no propagating electro-
magnetic waves, and have many potential applications, e.g, waveguides, filters, resonant cav-
ities, etc. Band gaps can be achieved in a variety of periodic dielectric structures (photonic
crystals) in 3D. The earliest 3D structures were designed by hand or by optimizing over a
few parameters [8, 10, 21–28]. In contrast to few-parameter optimization, topology optimiza-



tion [29] (in which the geometry is completely arbitrary, constrained only by the spatial resolu-
tion) involves qualitatively different computational methods and geometric parameterizations.
Previous topology parameterizations include level-set descriptions [4, 30–32] and continuous
relaxations in which ε (the dielectric permittivity) of every voxel can vary continuously in
[εmin,εmax] [1–3,5,6,33–36]. In principle, the latter approach can yield structures with unphys-
ical intermediate materials, but we find in practice that this does not occur in our 3D band-gap
optimization here (we encountered rare counter-examples elsewhere, e.g., §4.3 in [37]), and
in any case there are various regularization approaches to eliminate these artifacts if needed
(e.g., the homogenization method in [38], the SIMP method introduced in [39] and [40], an
alternative interpolation method proposed in [41], and the SINH method in [42]). A variety
of optimization methods have been proposed for topology optimization of gaps [1–4, 33] or
fractional gaps [5, 6]. Although many previous topology-optimization works maximize the ab-
solute gap ∆ω , the fractional gap size ∆ω/ω̄ (where ω̄ is the mid-gap frequency) is typically
the preferred metric [10] due to its scale invariance, and optimizing ∆ω generally produces
a sub-optimal fractional gap. One major difficulty with frequency-gap optimization, and with
eigenvalue optimization in general, is that eigenvalues are not generally differentiable functions
of the design variables when eigenvalues are degenerate, and this can cause gradient-based op-
timization methods to break down. Moreover, we found that these breakdowns are particularly
problematic in 3D band structures where many accidental degeneracies can arise. Methods like
the generalized gradient have been proposed to deal with the sensitivity of the repeated eigen-
values [43, 44]. Our approach instead builds on a subspace projection to reformulate the opti-
mization problem as a convex semidefinite program, in which eigenvalue sensitivities are not
explicitly required. Schematically, the process is depicted in Fig. 1: we describe the unit cell by
discretized εi voxels (symmetrized in §2), solve it to find the band structure λ (k,ε) (λ =(ω/c)2

are the Maxwell eigenvalues [10]), and then optimize the fractional gap f (ε) := ∆λ/λ̄ by a se-
quence of SDPs. This nominal optimization problem is denoted by PN . (We show in §2 that
optimizing ∆λ/λ̄ is equivalent to optimizing ∆ω/ω̄ , but we find the former more convenient. )

The optimization problem proposed above aims to find a nominal optimal solution ε∗ =
argmaxε f (ε) (where ε ∈ Rn parameterizes the geometry), in which the process assumes the
fractional gap f is exact and deterministic, and the optimal solution ε∗ can be fabricated pre-
cisely. This clearly poses limitations in realistic settings where f may contain uncertainties or ε∗

cannot be exactly built due to fabrication errors. A methodology to address this problem is ro-
bust optimization, which is a broad category of optimization approaches that take uncertainties
into account [15,45–47]. Here, we adopt a maximin version of the robust optimization formula-
tion, see PR in Fig. 1, in which the worst case is optimized, i.e., ε̃∗= argmaxε minε ′ f (ε,ε ′), and
the variable ε ′ contains the uncertainties. Previous works on robust optimization either focused
on convex robustification where the robust formulation retains the convex structure of the nom-
inal problem [15, 46, 47], or on nonconvex robust-optimization problems with the worst-case
unknowns ε ′ residing in a space independent of ε [13, 14, 16–20]. In the framework of topol-
ogy optimization, in which each voxel is an independent degree of freedom, one important
type of uncertainty is in the value of each voxel, i.e., ε,ε ′ are in the same space S. The robust
formulation hence becomes ε̃∗

δ
= argmaxε∈S minε ′∈S,‖ε ′−ε‖≤δ f (ε,ε ′). The modeling and com-

putational issues of this formulation were addressed in 2D photonic crystals by our previous
work [11].



fig1.pdf

Fig. 1. Schematic of optimization process of photonic-crystal band-gap structures. Compu-
tation from (a) to (b) is often known as the forward problem, in which given the photonic
crystal dielectric function (or in a discrete representation εi), one computes the band struc-
ture by solving the Maxwell equations. The optimal design problem (PN ), or the inverse
problem, seeks to compute the optimal dielectric function ε∗ that maximizes the frequency
band gap. The robust optimal design problem (PR) seeks to compute a more robust optimal
solution ε̃∗

δ
by solving a maxmin optimization problem, in case the nominal optimum ε∗ is

not easily fabricable.

2. Problem Formulations and Solution Methods

The time-harmonic Bloch-wave magnetic-fields H(r)eik·r−ωt of the Maxwell equations solve
the following eigenproblem [10],

∇k×
(

1
ε(u)

∇k×H
)
=
(

ω

c

)2
H := λH, (1)

where c is the vacuum speed of light, and ∇k :=∇+ ik for each Bloch wavevector k in Brillouin
zone B. In the nominal design problem PN , we seek to maximize the frequency-gap ratio g(u)
between two bands ωm(ε(u),k) and ωm+1(ε(u),k),

g(u) :=
min
k∈B

ωm+1(ε(u),k)−max
k∈B

ωm(ε(u),k)

1
2

(
min
k∈B

ωm+1(ε(u),k)+max
k∈B

ωm(ε(u),k)
) . (2)

The simplest parametrization of ε , given a computational solver for Eq. (1) on a discrete grid,
would simply be εi ∈ [εmin,εmax] on each grid point. Our implementation is similar to this
approach in spirit, but uses a slightly different parametrization ε(u) for variables u ∈ D :=
[0,1]Nu that is described in detail below.

It turns out that the fractional gap in eigenvalues λ = (ω/c)2,

f (u) :=
min
k∈B

λm+1(ε(u),k)−max
k∈B

λm(ε(u),k)

1
2

(
min
k∈B

λm+1(ε(u),k)+max
k∈B

λm(ε(u),k)
) (3)

is a monotonic function of g(u); hence it is equivalent to optimize f (u) or g(u), and we found
f (u) easier to work with. It is a straightforward exercise to prove this monotonicity, e.g., by
showing [g(u1)− g(u2)][ f (u1)− f (u2)] ≥ 0 for all u1,u2 ∈ D from the semi-definiteness [10]
of the eigenproblem. Conversely, neither g nor f are monotonic in the absolute gap ∆ω , so our
optimization problem is not equivalent to optimizing ∆ω .

In principle, the band gaps must be determined from the band extrema over the entire Bril-
louin zone B. However, the problem simplifies for the high-symmetry structures to which we
constrain ourselves below. First, B can be reduced by the rotational/mirror symmetries to an
irreducible Brillouin zone (IBZ) [10]. Furthermore, it can easily be shown that the vertices and
edges of the IBZ (denoted as ∂B) are local extrema of the bands, due to the rotational sym-
metries. Empirically, it has been observed that the global band extrema almost always fall on
∂B, with rare exceptions [48]. As a practical matter, one typically designs photonic band gaps
by considering only ∂B, and then the interior of B is checked a posteriori [10]. We adopt that



procedure here, as well: we only consider ∂B when maximizing f (u), and we verify afterwards
that none of the optimized structures have gap edges elsewhere in B.

The optimal solution of maxu f (u) often cannot be fabricated directly, for example, due to
fabrication errors, technological limitations on the resolution of the fine features, or unavailable
materials as a result of a non-binary solution u, i.e., 0 < ui∈I < 1. This nonfabricability of the
nominal optimal design occurs in many optimization algorithms that do not explicitly incor-
porate in the solution robustness, and is an especially common issue in topology optimization,
because the large number of degrees of freedom may make it easier to find non-robust so-
lutions. However, large band gaps tend to be inherently robust to non-systematic errors, e.g.,
surface roughness [49], and so we found that it was not necessary to design that type of ro-
bustness explicitly. Instead, we modified our algorithm to ensure robustness to systematic (i.e.,
periodic and symmetric) errors, by solving the following maximin fabrication-adaptivity (FA)
problem [11]:

ũ∗
δ
= arg max

u∈[0,1]Nu
min

‖u′−u‖1/Nu≤δ , u′∈[0,1]Nu
f (u′), (4)

where δ is the robustness parameter and ‖·‖1 denotes the L1 norm, and signifies the percentage
range of allowable perturbation.

The basic optimization algorithm used here for solving Eq. (3) is a subspace-based
semidefinite-program (SDP) formulation previously proposed in 7. The FA optimization prob-
lem in Eq. (4) is solved using a linear-program (LP) based iterative algorithm proposed in §3
of [11]. Numerical solutions to the Maxwell eigenvalue equation Eq. (1) required by both op-
timization problems PN and PR are computed using an efficient preconditioned block-iterative
eigensolver in a planewave basis (from the MPB package [50]).

Successful optimization of the 3D structures also relies on some efficient geometry model-
ing. The periodic unit cell in 3D photonic crystal is a parallelepiped, but in order to restrict
ourselves to high-symmetry structures (e.g. the diamond symmetry in Fig. 2), we should, in
principle, have design variables εi only in the “asymmetric unit” [51] of the cell: this is a typ-
ically wedge-shaped polyhedron whose symmetry operations (e.g., rotations, reflections, etc.)
yield the entire unit cell. However, it is computationally inconvenient to define a structured
mesh of design variables over such a polyhedron. Instead, we employ the following transfor-
mation. We define a 3D grid of design variables ui ∈ [0,1] over the smallest parallelepiped that
encloses the asymmetric unit, denoted as U in Fig. 2. To obtain the material ε at any point r,
we first perform all symmetry operations on U , interpolate u(r) from the grid ui for each of
these transformations (e.g., 48 for diamond symmetry), compute the average ū of all of these
u(r), and finally obtain ε(r) = εmin + ū(εmax− εmin). This projection procedure allows us to
easily impose any desired symmetry group while maintaining the simplicity of a Cartesian grid
of unknowns.

SG.pdf

Fig. 2. Material structure and the optimization design region in a diamond lattice. The
optimization design region is limited to the rectangular parallelepiped, denoted by U in (1),
and is only 1/64 of the cube. Through necessary symmetric operations, e.g., (2), . . . ,(48),
the material ε(u) (top) is reconstructed.

Besides the geometry modeling discussed above, we also explore efficient parallel compu-
tation whenever possible. The eigensolver MPB [50] includes a distributed-memory parallel
version. The optimization solver we use for the SDP and LP problems, MOSEK [52], supports
multithreaded computation. In addition, the FA problem Eq. (4) is also conveniently paral-
lelized, thanks to the numerous and independent LPs to be solved. The resulting software allow



us to solve a typical 3D problem PN in §3.1 in less than an hour with 8 CPUs, and a typical 3D
problem PR in §3.4 in less than a day with 8 CPUs.

3. Results and Discussion

For most of the structures shown below (except for §3.3), we consider two contrasting dielectric
materials, where the high refractive-index material has nhi = 3.6 (similar to GaAs in the near
infrared), and the low refractive-index material has nlo = 1 (air). We also consider various
prescribed symmetries, for example, simple cubic (space group no. 221), face-centered cubic
(no. 225), body-centered cubic (no. 214) and diamond (no. 227), as they correspond to some
known structures with sizable band gaps [8, 23, 28].

3.1. Optimal structures: SC5, Diamond2, Diamond8, BCC2, and FCC8

Starting from any random distribution of material configuration (which generically has a neg-
ative gap f ), the optimization algorithm is always able to increase the gap size. However, we
are only able to obtain gaps between certain pairs of bands (m and m+1), similar to previous
authors (and unlike 2D [4, 6, 37]). Furthermore, the non-convexity means that some starting
points lead to suboptimal local optima (often small or negative gaps) even for the known sep-
arable bands. Nevertheless, by repeating the optimization for many random starting points, we
were able to obtain several structures with large gaps. For the diamond structures, we only found
a handful of local optima, so that the large-gap structure was found for about 20% of starting
points. For the simple-cubic structures, the large-gap structure was found for only about 5%
of the starting points. For the face-centered cubic structures, we find at least two optima, one
inverse-opal–like structure about 5% of the time and another (larger-gap) structure about 15%
of the time. As explained in §2, we optimize one symmetry group at a time, where constraining
the symmetry group has the essential benefit of allowing us to evaluate only the edges of the
irreducible Brillouin zone.

A structure constrained to have symmetry Pm3̄m (space group no. 221) in simple cubic
lattice, denoted “SC5”, is shown in Fig. 3(a) and resembles a cubic lattice of hollow spheres
connected by cylindrical “bonds.” SC5 has a frequency gap of 16.3% between the 5th and
the 6th bands. Structures very similar to SC5, which also had a gap of ∼ 13% (for 3.6 : 1
index contrast) between the same bands, were found by few-parameter optimization in previous
work [23, 24, 28], although the previous work did not identify the possibility of improving the
gap by introducing air holes in the center of each dielectric sphere. SC5 was the only case of a
substantial gap (> 10%) in a cubic lattice that we found after examining many pairs of bands,
and is probably quite challenging to fabricate at infrared scales.

A structure constrained to have symmetry Fd3̄m (space group no. 227) in face-centered cu-
bic lattice (or commonly known as diamond symmetry), denoted “Diamond2”, is shown in
Fig. 3(b), and has a 30.2% gap between the 2nd and 3rd bands. The topology of this design is
very reminiscent of a large number of diamond-like photonic-crystal hand designs in previous
works [8], all of which had 20–30% gaps between the second and third bands. (The connectivity
resembles the bond pattern in atomic diamond structures [10].) The many published variations
on this structure were intended to adapt the structure to various fabrication technologies. Our
results show that, even if one removes the constraint of easy fabrication, only a slight improve-
ment on the gap size can be obtained for this symmetry and this pair of bands.

We also examined many other pairs of bands in diamond-symmetry structures, and only
found one other possibility for a large gap, which is denoted “Diamond8” and is shown in
Fig. 3(c). This structure has a 15.3% complete gap between the 8th and 9th bands, and does
not bear any obvious resemblance to previous designs. Since the gap is smaller than in Dia-
mond2, however, there seems little reason to seek a variant of Diamond8 that might be easier
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Fig. 3. Optimized photonic crystals of prescribed symmetries (space groups no. 214, 221,
225, 227) with complete gaps between consecutive bands.

to fabricate.
A structure constrained to have symmetry I4132 (space group no. 214) in body-centered

lattice, denoted “BCC2”, is shown in Fig. 3(d), and has a gap of 27.4% between the 2nd and 3rd
bands. The existence of this gap has been previously reported in [24,53], but with smaller sizes
than the optimum we have here. The crystal structures correspond to a family of bicontinuous
cubic structures, specifically the single gyroid, which have been explored for self-assembly of
large-scale photonic materials.

A structure constrained to have symmetry Fm3̄m (space group no. 225) in face-centered
cubic lattice, denoted “FCC8”, is shown in Fig. 3(e), and has a gap of 17.4% between the 8th
and 9th bands. As we go to higher bands and lower-symmetry structures, such as FCC8, we
find that there are many more local optima in the gap-optimization problem. For example in
Fig. 4, two locally optimal structures are obtained starting from different initial solutions. With
a random initial structure (initial u) like the one shown on the top left of Fig. 4(a), which has
a negative gap, we often obtain the optimal crystal structure shown on the top right. About
5% of the time, however, or alternatively if we had started the optimization with the “inverse
opal” structure, shown on the top left of Fig. 4(b) as a close-packed fcc lattice of air holes in a
dielectric matrix [9], we would obtain an inverse-opal–like local optimum shown at the top right
of Fig. 4(b) with a gap of 15.4%. (Note that optimization also reproduces the later discovery
that it is advantageous to introduce additional air voids and pores [54] which can be modeled by
overlapping spherical shells [10].) The FCC8 structure seems to be topologically distinct from
the inverse opal: if we view the hollow dielectric blobs at the faces and corners of the cubes
as “atoms,” then the atoms in the inverse opal are connected by 8 rod-like “bonds” per atom,
whereas the FCC8 structure has 12 bonds per atom. Essentially, FCC8 is an fcc lattice of small
hollow spherical shells, each of which is connected to all 12 nearest neighbors via dielectric
rods (and we explicitly reparameterize the structure in this fashion below).

3.2. Gap vs. geometry parametrization: SC5(r1,r2,r3), Diamond2(r) and FCC8(r1,r2,r3)

Although we used topology optimization to exploit the maximum number of degrees of ge-
ometric freedom, the resulting SC5 and Diamond2 structures are relatively simple and can
ultimately be described by a much smaller number of parameters, and the gaps are relatively
insensitive to small geometric variations (such as the exact shape of the diamond “bonds”). For
example, we can reproduce a structure very similar to SC5 with a sphere-and-cylinder structure
characterized by three parameters (r1,r2,r3), shown in Fig. 5(a). Here r1 denotes the radius of
the air sphere, r2 denotes the radius of the dielectric sphere, and r3 denotes the radius of the
dielectric cylinder of length a−2r2, where a is the lattice constant. Optimizing over those three
parameters, with values given in Fig. 5(a), yields a gap that is 16.7%, comparable to the one
discovered by topology optimization (16.3%), with the 0.4% difference (relative to ω̄) due to
differences in discretization (pixel boundaries in the projected degrees of freedom versus the
parametrized objects) at the 32× 32× 32 resolution used here. Similarly, Diamond2 can be
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Fig. 4. Band structures of initial and optimized photonic crystals of a face-centered cubic
(fcc) lattice (no. 225). The two initial solutions and their band structures are shown on the
left, and their corresponding optimal solutions and the band structures are shown on the
right.

sc5-geometry.pdf

Fig. 5. (a) Geometry characterization of SC5 with three parameters (r1,r2,r3). (b) Recon-
structed photonic crystal with (r∗1,r

∗
2,r
∗
3) = (0.14a,0.36a,0.105a), and a frequency gap of

16.7%.

d2-geometry.pdf

Fig. 6. (a) Geometry characterization of Diamond2 with one parameters r. (b) Recon-
structued photonic crystal with r∗ = 0.1a, and a frequency gap of 30.7%.

roughly reproduced by a diamond lattice of dielectric cylinder “bonds“ parameterized by their
radius r, shown in Fig. 6(a). For a radius r∗= 0.1a, this reconstructed structure has a 30.7% gap,
versus the 30.2% of the topology optimal solution. FCC8 can also be reconstructed by a similar
sphere-and-cylinder structure parameterized by three parameters (r1,r2,r3), shown in Fig. 7(a).
The main advantage of this kind of re-parameterization of the topology-optimized structure is
that it makes the results easier to communicate: anyone can use the reconstructed parameters to
reproduce our results, whereas reproducing the topology-optimized structure would be difficult
without access to the electronic data files.



fcc8-geometry.pdf

Fig. 7. (a) Geometry characterization of FCC8 with three parameters (r1,r2,r3). (b) Re-
constructued photonic crystal with (r∗1,r

∗
2,r
∗
3) = (0.12a,0.19a,0.08a), and a frequency gap

of 17.8%.
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Fig. 8. Gap vs. refractive-index contrast nhi/nlo

3.3. Gap vs. refractive index contrast nhi/nlo: SC5, Diamond2, and FCC8

Photonic band-gap sizes are known to be dependent on the refractive-index contrast of the two
constituent dielectric materials. For similar structures, one generally expects the optimal gap to
reduce monotonically as the index contrast decreases (e.g. see Appendix C in [10]), although the
optimal parameters will also change with index contrast. An important question is the minimum
index contrast for which a band gap is possible. To answer this and similar questions, we plot the
optimal gap as a function of index contrast in Fig. 8 for different symmetries and pairs of bands.
The smallest index contrast for which we found a gap was nhi/nlo = 1.9, for the Diamond2
structure, very similar to previous results for hand design of this type of structure [8,10,55,56].
The optimal structures at the highest and lowest index contrasts are shown as insets of Fig. 8,
and the general trend is that at higher index contrasts, the dielectric veins become thinner (a
well known phenomenon dating back to quarter-wave stacks in 1D [10]) and more regular
(cylindrical or spherical) in shape.

3.4. Gap vs. FA parameter: Diamond2(δ )

As discussed in Sec. 2, we also considered a robust/fabrication-adaptive (FA) version of our
gap-optimization problem, which maximizes the worst-case gap with respect to uncertainty in
the parameters u. In this section, we present results from FA optimization of the Diamond2
structure as a function of the amount of uncertainty δ (the mean absolute error in u(r) at each
point). The δ = 0 solution is equivalent to the original (“nominal”) optimization problem, and
with increasing δ one expect the optimum worst-case to have a smaller gap. However, if one
simply added uncertainty to the nominal design, one would expects its gap to decrease faster
with δ than the FA designs (which are redesigned for each δ ). As discussed in Sec. 2, increas-
ing δ represents increasing systematic errors in the structure (i.e. errors that are periodic and
symmetrical).

Precisely this behavior is shown in Fig. 9. The top-most curve is the gap size of the FA-
optimized structure as a function of δ . In particular, we let ũ∗

δ
denote the geometry parameters

found in the solution to the FA optimization problem (4) for a given δ (so that ũ∗0 is the nominal
optimum). The top curve in Fig. 9 is g(ũ∗

δ
), the fractional gap from the the ũ∗

δ
, and as expected

the gap decreases with δ , decreasing especially rapidly for δ & 2.5%. This represents a tradeoff
between robustness to increasing uncertainties versus performance (gap size). The insets show
the corresponding structures: similar to our results in two dimensions [11], the optimal dielec-
tric veins are thinner in the presence of systematic uncertainties. We postulate that these robust
structures could have been captured by formulations based on uniform or random boundary
variations with controlled correlation lengths.
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Fig. 9. Robust optimal designs for Diamond2, where ũ∗
δ

solves the FA problem (4) with
uncertainty δ in u, and ũ∗0 is the nominal optimum. Top curve: gap size g(ũ∗

δ
) of FA struc-

ture versus δ , showing tradeoff between gap size and robustness to greater uncertainties.
Middle curve: worst-case gap mind g(ũ∗

δ
+ d) of the FA structure plus errors, which de-

grades the gap size. Bottom curve: much greater degradation of gap size is found if we add
uncertainty to the nominal (non-robust) structure ũ∗0. (In this case, we show the mean gap
size for random perturbations d, with the standard deviation shown as error bars; this is an
upper bound on the worst-case degradation.)

After the FA-optimized structure is found, we verified that the structure ũ∗
δ

was much more
robust to systematic errors than the non-robust structure ũ∗0. This is shown in the bottom two
curves in Fig. 9. The middle curve shows mind g(ũ∗

δ
+ d): the worst-case gap in response to

systematic errors d (of mean size δ ) in the robust structure ũ∗
δ

. Naturally this is worse than
the performance of ũ∗

δ
without errors, and the gap vanishes for δ > 3.5%. The insets show

the corresponding worst-case structures. These structures contain many features of the robust
solutions, The insets demonstrate the corresponding worst-case structures, which contain many
features of the robust solutions, but with additional spatially-varying uncertainties that degrade
the bandgap in the worst possible way.

The bottom curve shows a similar but much larger degradation of the nominally optimal
structure ũ∗0 in response to similar perturbations, and in this case the gap typically vanishes
for δ > 1.5%. For the nominal structure, for computational simplicity we only computed the
mean (expected) gap size in response to randomly chosen perturbations d (in 30 trials); since
the mean gap is obviously an upper bound on the worst-case gap, the degradation of the mean
gap is sufficient to show that this structure is much worse than the FA structure.

As a technical computational matter, one question is whether a straightforward iterative op-
timization of the robust problem converges: that is, whether d necessarily converges as ũ ap-
proaches an optimum. In the structures considered in this paper for Fig. 9, we found that d
converges along with ũ without any special handling. However, from previous work [11] we
know that this is problem-dependent: in some instances (outside of the scope of this paper) we
have observed that d does not necessarily converge along with ũ, in which case we add a trust-
region constraint on the values of d(i+1) at iteration (i+ 1), of the form ‖d(i+1)− d(i)‖1 ≤ νi,
where νi is a sequence of descending tolerances. (This forces d to asymptotically remain in a
single local worst-case optimum as we converge to the optimum ũ∗.)

4. Conclusion

Our results show that full 3D topology optimization of photonic band gaps is feasible, but sug-
gest that little room remains for improving upon existing band-gap sizes even when fabrication
constraints are removed. Of course, it is impossible to completely rule out the possibility that
a much larger gap, or a much lower index contrast, is possible, for two reasons. First, the non-
convexity of the optimization problem makes it difficult to prove that one has obtained the
global optimum in such a large parameter space, although the fact that we obtain only a limited
number of local optima from a large number of random starting points suggests that a global
optimum has been found. Second, our optimization only searches one symmetry group and
one pair of bands at a time, and future work could continue searching more groups and band
pairs—our method of imposing a symmetry group, via projections, makes this particularly easy



(as illustrated by the variety of space groups we were able to explore in this paper, in contrast
to previous topology-optimization work). In principle, one could extend our approach in order
to avoid imposing the symmetry group, by making the lattice vectors degrees of freedom and
omitting the symmetry projection of the grid. This would require a much more expensive cal-
culation because it would entail searching the entire Brillouin zone (or equivalently the entire
unit cell in k space), but this may be feasible with a supercomputer-scale calculation or by a
more clever method that performs an inner optimization over k. However, we conjecture that
such a tour de force would merely confirm that the high-symmetry structures are optimal, be-
cause the requirement of an omnidirectional gap tends to favor high-symmetry structures in
order to have the same gap in multiple directions. (Nevertheless, the existence of large gaps in
structures such as the single gyroid, which have only moderately large symmetry groups, lends
some encouragement to a more thorough search.)

Regardless of the need for more band-gap designs, which is likely to be mainly driven by
the discovery of new fabrication methods, the feasibility of 3D gap optimization offers the
prospect of 3D topology optimization for many other dispersion-engineering problems. For
example, our methods could be easily adapted to optimize superprism effects [57–62], su-
percollimation [63–69], dispersion compensation [70–73], phase matching for nonlinear op-
tics [74–76], negative refraction for imaging [77–79] or other dispersion constraints for various
mode-coupling and mode-conversion problems [80]. The SDP approach is essentially the same
regardless of whether one is maximizing a band gap or minimizing the difference between ω(k)
and some desired dispersion shape, and the need for robustness to fabrication variation arises
in many such applications.
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