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Abstract

Consider a seller who seeks to provide service to a col-
lection of interested parties, subject to feasibility con-
straints on which parties may be simultaneously served.
Assuming that a distribution is known on the value of
each party for service—arguably a strong assumption—
Myerson’s seminal work provides revenue optimizing
auctions [12]. We show instead that, for very general
feasibility constraints, only knowledge of the median of
each party’s value distribution, or any other quantile
of these distributions, or approximations thereof, suf-
fice for designing simple auctions that simultaneously
approximate both the optimal revenue and the optimal
welfare. Our results apply to all downward-closed feasi-
bility constraints under the assumption that the under-
lying, unknown value distributions are monotone hazard
rate, and to all matroid feasibility constraints under the
weaker assumption of regularity of the underlying dis-
tributions. Our results jointly generalize the single-item
results obtained by Azar and Micali [2] on parametric
auctions, and Daskalakis and Pierrakos [6] for simulta-
neously approximately optimal and efficient auctions.

∗Supported by a Sloan Foundation Fellowship, a Microsoft Re-
search Faculty Fellowship and NSF Award CCF-0953960 (CA-

REER) and CCF-1101491.
†Supported by a NSF Graduate Research Fellowship and NSF

award CCF-1101491.

1 Introduction

We study the problem of a seller who seeks to maxi-
mize her revenue when auctioning off service to a col-
lection of interested buyers. Each buyer i is willing to
pay some (private) vi for receiving service, while the
seller may have constraints on which buyers can receive
service simultaneously. Traditionally, starting with the
seminal work of Myerson [12], it is assumed that the val-
ues v1, ..., vn are drawn from independent distributions
F1, ..., Fn, and that these distributions are known to the
seller. This assumption is often too strong, and we may
instead want to construct mechanisms that guarantee
good revenue, even when the seller has more limited
knowledge about the buyers’ values. In this paper, we
study the design of auctions under the much weaker
assumption that the seller only knows some parame-
ters of the distributions F1, ..., Fn, generalizing work by
Azar and Micali [2] who construct parametric single-
item and digital goods auctions which only use the mean
and variance of each distribution. Our new results al-
low the seller to construct competitive auctions even
when she only knows the medians of the distributions,
or other quantiles, or approximations thereof, and ap-
ply to much more general settings beyond single-item
and digital goods settings as discussed below. We com-
plement these results by providing upper bounds on the
attainable fraction of the optimal revenue by a seller
who only knows the medians of the value distributions.

In addition, it is often desirable to guarantee good
approximations to the optimal revenue and welfare
simultaneously. We present two informal motivational
examples where this is the case. The first example is a
spectrum auction. The government does not just want
to maximize the income it obtains from this sale. It also
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wants to ensure that the spectrum frequencies are sold
to companies who can use them best. A second example
is a repeated auction. If the auction does not guarantee
good welfare for the buyers, they will not return as
customers. Therefore, a simultaneous revenue/welfare
guarantee is desirable to any auctioneer, even one who
only cares about revenue.

The auctions we construct will simultaneously ap-
proximate the optimal welfare and the optimal rev-
enue achievable by a seller who knows the distributions
F1, ..., Fn. This improves on the work of Daskalakis and
Pierrakos [6], who show how to construct a single-item
auction that simultaneously guarantees 20% of the op-
timal revenue and the optimal welfare, when the seller
knows the distributions. We show how to construct
such auctions when the seller only knows parameters
of F1, ..., Fn, and our results hold for much more gen-
eral auction settings. In particular, our results provide
a simple, parametric, and approximately revenue- and
welfare- optimal auction for arbitrary matroid environ-
ments when the underlying distributions are regular, and
arbitrary downward-closed environments when the un-
derlying distributions are monotone hazard rate.

1.1 Techniques Our main technical contribution is
a reduction from downwards-closed single-dimensional
multi-bidder auction design to pricing a single item for
a single bidder. Our reduction will apply even when
the seller has limited information. Formally we show
that, if Pi is a (possibly randomized) pricing scheme
that obtains an α-fraction of the optimal revenue for
selling a single item to bidder i, then running a VCG
auction with a separate reserve for each bidder i de-
fined according to Pi obtains a (α/2)-fraction of the
optimal revenue for the single-dimensional downwards-
closed multi-bidder setting. The only necessary condi-
tion for our reduction to hold is that the VCG auction
with optimal monopoly reserve prices obtain a 1

2 ap-
proximation to the optimal revenue. It is shown in [7]
that this holds in all downwards-closed settings when
each Fi is MHR, and in all matroid settings when each
Fi is regular. So in these settings our reduction can be
readily applied.

While our results build upon those of [7], our tech-
niques are orthogonal. Our main result is a reduction
from the n bidder auction problem with downward clo-
sure constraints to the single-bidder pricing problem.
Our reduction not only simultaneously preserves ap-
proximations for revenue and welfare, but also works
even when the seller has arbitrary limited information
about the distribution.

1.2 Related Work The Wilson doctrine [13] sug-
gests that practical mechanisms should be detail-free.
That is, they should not depend on prior information
that the designer has about the buyers participating in
the mechanism. Our work is in the spirit of the Wilson
doctrine, in that we attempt to use as little information
as possible about the buyers’ valuations.

Goldberg, Hartline, Karlin, Saks and Wright [8]
construct prior-free multi-unit auctions. They show
that, even when buyers’ values are not drawn from
a distribution, they can still guarantee revenue equal
to at least a constant fraction of some benchmark
F2(v1, ..., vn). As made explicit by Hartline and Rough-
garden [10], any auction that guarantees a constant frac-
tion of this benchmark for all value vectors (v1, ..., vn),
also guarantees a constant fraction of the optimal rev-
enue when the values are drawn from identical and inde-
pendent distributions. However, when the distributions
are not identical, there are examples where no prior-free
auction can guarantee a constant fraction of the optimal
revenue.

Our auctions follow the framework of simple, ap-
proximately optimal auctions proposed by Hartline and
Roughgarden [11], where it is shown that VCG auctions
with monopoly reserve prices obtain a constant fraction
of the optimal revenue.

Our work is most closely related to that of Dhang-
watnotai, Roughgarden and Yan [7], who show how
to guarantee approximately optimal revenue when the
seller only has access to one sample from the joint distri-
bution F1×...×Fn. This is already a strong result in the
area of maximizing revenue with limited information.
Our results build on theirs in a few ways: First, their
techniques are inherently limited to sampling-based in-
formation, as they obtain their results through Bulow-
Klemperer type inequalities. Our techniques apply to
any collection of “good” pricing schemes for selling a
single item to each single bidder. Second, our auctions
obtain a simultaneous revenue/welfare guarantee, which
is often desirable in practice.

In addition, while there are certainly many practical
settings where it is easy to access a single sample from
each value distribution, it is not hard to imagine a
setting where this is difficult. Realistically, such a
sample would be obtained by sampling a bidder from
each population Fi and learning their value for obtaining
service (possibly from existing data). However, it is
often the case that bidders do not know exactly their
value for obtaining service. It is generally regarded as
much easier for a bidder to evaluate whether they are
willing to purchase service at a given price. In this
sense, it may be easier in practice to (approximately)
learn quantiles of each value distribution by asking
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questions of this form, rather than obtaining even a
single sample. It is also easy to imagine settings where
it is easier to obtain samples, or learn the means, or
other useful, albeit limited information. Rather than
argue which type of information is most accessible in
practice, our results accommodate all types: if the seller
has enough information to give a good approximation
to the optimal revenue and welfare for the single-bidder
problem, then she has enough information to give a good
approximation to the optimal revenue and welfare for
multi-unit auctions with many bidders. Finally, our
results come with a nice robustness guarantee: any
approximation error in estimating the statistics can
be directly absorbed into the approximation error for
revenue and welfare.

2 Preliminaries

Single-Dimensional Environments In our
model, there is one seller who can provide a service to n
buyers. The seller has some constraints over the sets of
buyers she can serve simultaneously. These constraints
are represented by a collection of sets I ⊂ 2{1,...,n}.
A set S ⊆ {1, ..., n} of buyers can only be served
simultaneously if S ∈ I. We call this setting a downward
closed environment if for every S ∈ I and every T ⊂ S,
we have T ∈ I. We call such a setting a matroid
environment if the collection of sets I forms a matroid.1

Valuations Each buyer has a private value, vi, for
being served, sampled independently from a continuous
distribution over positive real numbers. We denote by
Fi(x) = Pr[vi ≤ x] the cumulative density function of
this distribution, and by fi(x) its probability density
function. We denote by v = (v1, ..., vn) the vector of
values, and by F = F1 × ... × Fn the joint product
distribution from which it is drawn. When we want to
emphasize the value vi, we will write v = (vi, v−i).

Truthful Auctions Let b = (b1, ..., bn) denote
a vector of bids. An auction is given by a pair of
vector functions (x, p), where xi(b) ∈ [0, 1] denotes
the probability that bidder i will receive service, and
pi(b) ∈ R+ denotes the expected price that bidder i will
be charged under bid vector b (where the probability
and the expectation are taken with respect to the
randomness in the auction). Given the bid vector b,
bidder i’s utility from participating in the auction is
xi(b) · vi − pi(b), where vi is his value. We say that the
auction is dominant strategy truthful if, for each bidder
i, all vi’s in the support of Fi, and all bid vectors b =
(bi, b−i), we have xi(vi, b−i)·vi−pi(vi, b−i) ≥ xi(bi, b−i)·

1We recall that I is a matroid if it is downward closed, and

furthermore, for any S, T ∈ I with |T | < |S|, there exists an
element e ∈ S − T such that T ∪ {e} ∈ I.

vi−pi(bi, b−i). It is well known [12, 1] that an auction is
dominant strategy truthful if and only if xi is increasing

in bi, and pi(bi, b−i) = xi(bi, b−i)bi −
∫ bi
0
xi(zi; b−i)dzi.

When the auction is deterministic (i.e. x(b) is a 0/1
vector for all b), this implies that there exists a reserve
price pi(b−i) such that bidder i obtains service if and
only if bi ≥ pi(b−i), and pays the reserve price only if
he obtains service.

Revenue and Social Welfare Given a valuation
vector v, a bid vector b and auction A = (x, p),
its revenue is

∑n
i=1 pi(b), and its social welfare is∑n

i=1 xi(b)vi. Given an auction A, we denote by
Rev(A,F ) its expected revenue and by SW (A,F ) its
expected social welfare when the bidder values are
drawn from distribution F and the bidders bid their
values truthfully.

Monotone Hazard Rate and Regular Distri-
butions Given a distribution F over the real numbers,

its hazard rate is hi(v) = fi(v)
1−Fi(v)

. The distribution has a

monotone hazard rate (MHR) if hi(v) is increasing. The
virtual valuation function associated with the distribu-
tion is φi(vi) = vi − 1

hi(v)
. We say that the distribution

F is regular if its associated virtual valuation function
is increasing. Clearly, any monotone hazard rate distri-
bution is also regular.

Virtual Surplus and Optimal Auctions Given
a product distribution F = F1 × ... × Fn and a valua-
tion vector (v1, ..., vn), the virtual surplus is defined as∑n
i=1 φi(vi). When the distributions F1, ..., Fn are reg-

ular, Myerson’s optimal auction, which maximizes vir-
tual surplus on every profile obtains the maximum ex-
pected revenue over all truthful auctions with knowledge
of Fi [12].2 We denote by Rev(opt, F ) the expected
revenue of the optimal auction. Given an auction A, its

revenue competitive ratio is defined as Rev(A,F )
Rev(opt,F ) .

VCG auctions Myerson’s auction maximizes rev-
enue, but it may not always serve the bidders who have
the highest value for service. The VCG auction is a
truthful auction that maximizes social welfare. It serves
a set of bidders S such that S ∈ argmaxT∈I

∑
i∈T bi. If

bidder i is served, her price is maxT∈I
∑
j∈T−{i} bj . We

denote by SW (opt, F ) the social welfare generated by
the VCG auction when the bidders’ values are drawn
from F . Given any auction A and distribution F , its so-

cial welfare competitive ratio is defined as SW (A,F )
SW (opt,F ) .

Our goal is to design truthful auctions whose revenue
competitive ratio and social welfare competitive ratio
are simultaneously bounded below by a constant.

2When the distributions are not necessarily regular, Myerson

shows that the optimal auction maximizes ironed virtual valua-
tions. We refer the reader to [12] for more details.
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VCG auctions with Lazy Reserves Finally,
we will use the following type of auction from [7].
For the following definition, each Pi denotes some
randomized pricing scheme.3

Definition 1. V CG-LP (Lazy VCG with reserves P =
(P1, ..., Pn)): First, run the VCG auction to determine
the set of (candidate) winners, W , who would receive
service under VCG. Let V CGi denote the price VCG
would charge bidder i. Then, for each i ∈ W , sample
a price pi from Pi and offer service to bidder i at price
max{pi, V CGi}. (The bidder chooses whether or not to
accept service at this price.)

3 A reduction from downward closed
single-dimensional environments to pricing

In this section, we will show a generic reduction from
single-dimensional downward-closed environments to
pricing a single item for a single bidder. Theorem 3.1
below states this formally. First, we must prove two
simple facts about V CG-LP . These facts are immedi-
ate when P is a deterministic pricing scheme, and are
not hard to see in general. We include them below for
completeness.

Lemma 3.1. V CG-LP is truthful for all P .

Proof. Bidders cannot control the price offered to them
once they are in W . Therefore, it is clear that bidders
have nothing to gain by changing their bid but staying
above/below V CGi. Changing the bid from above
V CGi to below V CGi can only cost bidder i service
when they might have been willing to pay for it.
Changing from below V CGi to above V CGi also cannot
increase the buyers’ utility because the price offered for
receiving service is always at least V CGi. �

Lemma 3.2. Let q′i(vi) denote the probability that bid-
der i receives service in V CG-LP , conditioned on vi
and i ∈ W . Let also qi(vi) denote the probability that
bidder i receives service in Pi conditioned on vi. Then
q′i(vi) = qi(vi) for all i, vi.

Proof. Let pi be a random variable denoting the price
drawn from Pi. Then the probability that bidder i
receives service in V CG-LP conditioned on vi and i ∈
W is exactly the probability that vi ≥ max{pi, V CGi}.
As i ∈W , we must have vi ≥ V CGi. So the probability
that vi ≥ max{pi, V CGi} is exactly the probability that
vi ≥ pi, which is exactly qi(vi). �

3A randomized pricing scheme samples a price pi from Pi and
offers price pi.

Theorem 3.1. Let F = F1 × ... × Fn be a product
distribution, where each marginal Fi is regular. Let
P = (P1, ..., Pn) be any collection of randomized single-
item, single-bidder pricing schemes that each obtain an
α-fraction of the optimal expected revenue (for selling a
single item to bidder i respectively). Then in all envi-
ronments where V CG-L with Myerson reserves obtains
expected revenue at least 1

2Rev(opt, F ), V CG-LP ob-
tains expected revenue at least α

2Rev(opt, F ).

Proof. We will prove the theorem by showing directly
that the expected virtual surplus of V CG-LP is at
least an α-fraction of the expected virtual surplus of
Lazy VCG with Myerson reserves. As expected virtual
surplus equals exactly expected revenue, and Lazy VCG
with Myerson reserves obtains half the expected virtual
surplus of Myerson’s auction by hypothesis, this suffices
to prove the theorem.

Let’s first write an expression for the expected
virtual surplus of Lazy VCG with Myerson reserves.
For each possible value vi, there is some expected
probability that i ∈ W , conditioned on vi.

4 Denote
this value by πi(vi). If i ∈ W and additionally vi
exceeds the Myerson reserve, Mi, bidder i receives
service. Otherwise, he receives nothing. So the expected
virtual surplus of Lazy VCG with Myerson reserves is:∑

i

∫ ∞
Mi

fi(vi) · πi(vi) · φi(vi)dvi.

This is simply integrating over all i, vi ≥Mi, the prob-
ability that bidder i’s value is vi, times the probability
that bidder i is in W conditioned on vi, times the virtual
value of bidder i with value vi.

Let’s now write an expression for the expected
virtual surplus of V CG-LP . Below, qi(vi) denotes the
probability that bidder i receives service in V CG-LP
conditioned on vi and i ∈W :

∑
i

∫ ∞
0

fi(vi) · πi(vi) · qi(vi) · φi(vi)dvi

This again is integrating over all i, vi the probability
that bidder i’s value is vi, times the probability that
bidder i is in W conditioned on vi, times the probability
that V CG-LP awards them service conditioned on vi
and i ∈ W , times the virtual value of bidder i with
value vi.

By Lemma 3.2, qi(vi) is exactly the probability that
bidder i with value vi is awarded service in Pi. As Pi
obtains an α-fraction of the optimal expected revenue

4This expectation is taken over the randomness in b−i assum-
ing every bidder reports truthfully.

599 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

6/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



when selling a single item to bidder i, we have the
following inequalities for all i:

∫ ∞
0

fi(vi) · qi(vi) · φi(vi)dvi ≥(3.1)

α

∫ ∞
Mi

fi(vi) · φi(vi)dvi.

Equation (3.1) simply states that the expected virtual
surplus of Pi is at least α times that of using Myerson’s
reserve. We can rewrite Equation (3.1) as:

∫ Mi

0

fi(vi) · qi(vi) · φi(vi)dvi +(3.2)

+

∫ ∞
Mi

fi(vi) · (qi(vi)− α) · φi(vi)dvi ≥ 0.

Now, observe first that fi(vi) and qi(vi) are both
non-negative, and φi(vi) ≤ 0 for all vi ≤Mi. So the first
term only integrates over negative values. In addition,
we may denote by xi the smallest value of vi such that
q(xi) ≥ α and xi ≥ Mi. Then for all Mi ≤ vi ≤ xi,
qi(vi)− α ≤ 0, fi(vi) ≥ 0 and φi(vi) ≥ 0, so the second
term only integrates negative values from Mi through
xi. For all vi ≥ xi, qi(vi) − α ≥ 0, so the second
term only integrates positive values from xi through∞.
Therefore, we may again rewrite Equation (3.2) as:

∫ ∞
xi

fi(vi) · (qi(vi)− α) · φi(vi)dvi ≥(3.3)

−
∫ Mi

0

fi(vi) · qi(vi) · φi(vi)dvi

−
∫ xi

Mi

fi(vi) · (qi(vi)− α)φi(vi)dvi.

Now, observe further that πi is an increasing func-
tion of vi. As each side of Equation (3.3) integrates only
positive terms, we obtain the following two inequalities:

∫ ∞
xi

πi(vi) · fi(vi) · (qi(vi)− α) · φi(vi)dvi ≥(3.4)

πi(xi) ·
(∫ ∞

xi

fi(vi) · (qi(vi)− α) · φi(vi)dvi
)

;

−πi(xi)
∫ Mi

0

fi(vi) · qi(vi) · φi(vi)dvi(3.5)

−π(xi)

∫ xi

Mi

fi(vi) · (qi(vi)− α)φi(vi)dvi ≥

−
∫ Mi

0

πi(vi) · fi(vi) · qi(vi) · φi(vi)dvi

−
∫ xi

Mi

πi(vi) · fi(vi) · (qi(vi)− α)φi(vi)dvi.

Putting Equations (3.3), (3.4) and (3.5) together,
we obtain the following inequality:

∫ ∞
xi

πi(vi) · fi(vi) · (qi(vi)− α) · φi(vi)dvi ≥(3.6)

−
∫ Mi

0

πi(vi) · fi(vi) · qi(vi) · φi(vi)dvi

−
∫ xi

Mi

πi(vi) · fi(vi) · (qi(vi)− α)φi(vi)dvi.

Finally, we may rearrange Equation (3.6) back to
obtain:

∫ ∞
0

πi(vi) · fi(vi) · qi(vi) · φi(vi)dvi ≥(3.7)

α

(∫ ∞
Mi

πi(vi) · fi(vi) · φi(vi)dvi
)
.

After summing over all i, Equation (3.7) exactly
says that the expected virtual surplus of V CG-LP is
at least an α-fraction of the expected virtual surplus
of Lazy VCG with Myerson reserves and completes the
proof. �

Formally proving Theorem 3.1 requires analyzing
virtual surplus and carefully moving around equations.
But there is a clean intuition as to why Theorem 3.1
holds. Assume we are forced to use a Lazy VCG
mechanism with some reserves, and are just trying
to pick good reserves. Conditioned on i ∈ W and
fixing the remaining bids, this is exactly coming up
with a good pricing scheme for a single bidder sampled
from Fi, conditioned on vi ≥ V CGi. It is not hard
to see that the optimal solution for this single-bidder
pricing problem is to set price max{Mi, V CGi}. What
Theorem 3.1 is claiming is that if Pi is a good pricing
scheme for Fi, then sampling pi from Pi and setting
price max{pi, V CGi} is a good pricing scheme for Fi,
conditioned on vi ≥ V CGi.

Virtually the same proof yields a similar theorem
for welfare:

600 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

6/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Theorem 3.2. Let F = F1 × ... × Fn be any prod-
uct distribution. Let also P = (P1, ..., Pn) be any col-
lection of randomized single-item, single-bidder pricing
schemes that each obtain an α-fraction of the optimal
expected welfare (for selling a single item to bidder i re-
spectively). Then V CG-LP obtains expected welfare at
least αSW (opt, F ).

Proof. Virtually the same proof as Theorem 3.1 works
after some modifications. First, instead of comparing
to Lazy VCG with Myerson reserves, we just compare
to VCG. Second, we compare expected welfare rather
than expected virtual welfare. Moreover, as VCG al-
ways achieves exactly optimal expected welfare without
any assumptions, we do not need to make any assump-
tions on Fi or lose anything in the approximation factor.
Also, since we are comparing to VCG instead, we should
replace Mi with 0 everywhere (think of 0 as VCG’s re-
serve). Finally, since we are computing expected wel-
fare instead of virtual welfare, we need to replace φi(vi)
with vi everywhere. After making these replacements,
the proof is identical. �

4 Optimal and Efficient Parametric Auctions

Our reduction from downward-closed settings to single-
bidder problems not only preserves approximately op-
timal revenue and welfare, but also does so when the
seller has limited information about what buyers are
willing to pay. In particular, if the seller only knows
some parameters about each bidder i’s distribution, our
reduction allows us to build new parametric auctions for
downward-closed and matroid environments by solving
the simpler single bidder versions.

Median, quantiles, and approximations
thereof. We show that, if the underlying distributions
are regular, then knowledge of the median of these dis-
tributions allows for a simultaneous 1

4 -approximation of
the optimal revenue and welfare. This guarantee is ro-
bust to approximate knowledge of the median or some
other quantile of the distributions. We begin by recall-
ing a lemma from Cai and Daskalakis [5].

Lemma 4.1. [5] Let F be a regular distribution and let
RF (x) = x ·F−1(1−x) be the revenue curve in quantile
space (i.e. RF (x) is the expected revenue for setting
price F−1(1 − x) which has probability of sale exactly
equal to x). Then for all 0 < q̄ ≤ q < 1,

RF (q) ≥ (1− q)RF (q̄).

Using this lemma, we can easily obtain the following
corollary:

Corollary 4.1. Let F be a regular distribution, and
let p = F−1(1 − q). Then the single-item, single-
bidder pricing scheme that sets price p obtains at least
a min{q, 1 − q}-fraction of the optimal revenue and at
least a q-fraction of the optimal welfare.

Proof. That a q-fraction of the optimal welfare is
achieved is trivial: the pricing scheme achieves welfare
exactly equal to q ·E[v|v ≥ p]. As conditioning on v ≥ p
can only increase the expected welfare, this is at least
q ·E[v], q times the maximum possible expected welfare.

That a min{q, 1−q}-fraction of the optimal revenue
is achieved comes from the following argument, where
M denotes Myerson’s reserve. Maybe p ≥ M . In
this case, Myerson’s pricing scheme clearly makes at
most M revenue. As p ≥ M , the revenue obtained by
setting price p is exactly qp ≥ qM . Maybe p ≤ M .
In this case, we can use Lemma 4.1 to observe that
the revenue obtained by setting price p is at least
(1− q) times the revenue obtained by Myerson’s pricing
scheme. Therefore, no matter where Myerson’s reserve
lies with respect to p, we obtain a min{q, 1−q}-fraction
of the optimal revenue. �

Using Corollary 4.1, Theorems 3.1 and 3.2, and [7]
we immediately obtain the following:5

Theorem 4.1. Let P be any collection of single-bidder
deterministic pricing schemes such that for all i, the
probability of sale qi satisfies x ≤ qi ≤ 1−x. Then in all
regular matroid environments and all MHR downward-
closed environments, the auction V CG-LP simultane-
ously obtains an (x/2)-fraction of the optimal revenue
and an x-fraction of the optimal welfare. In particular,
if x = 1/2 (i.e. we use the median as a reserve for each
bidder), this is 1

4 of the optimal revenue and 1
2 of the

optimal welfare.

Observe that Theorem 4.1 is inherently robust: as
long as we can learn some price with a reasonably
good probability of sale, we obtain good revenue. For
instance, if we can find for every bidder some price pi
such that the probability of sale lies in [1/4, 3/4], then
we may take x = 1/4 in Theorem 4.1 and get 1

8 of the
optimal expected revenue and 1

4 of the optimal expected
welfare.

We also show that, for a large class of distributions,
a similar result can be obtained with just knowledge of
the mean and standard deviation. We first recall what it
means for a distribution to be c-informative and define
a variant of symmetric distributions called c-symmetric.

5Recall that it was shown in [7] that V CG-L with Myerson
reserves obtains a 1

2
approximation to the optimal revenue in

all downwards-closed settings, when each Fi is MHR, and in all
matroid settings, when each Fi is regular.
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c-informative and c-symmetric distributions
Let V be a positive real random variable with mean
µ and variance σ2. We say that the distribution of
V is c-informative if µ

σ ≥ c. We denote by Ic the
class of all c-informative distributions, and remark that
any monotone hazard rate distribution is 1-informative
[3]. We say that the distribution of V is c-symmetric
if Pr[V ≥ µ] ≥ c, and note that any symmetric
distribution is 1

2 -symmetric. We denote by Sc the class
of all c-symmetric distributions. We remark that any
monotone hazard rate distribution is 1

e -symmetric [4].
We show that, when a buyer’s distribution belongs

to Fc or Sc for some constant c, we can guarantee a
constant fraction of the optimal revenue in the pric-
ing problem for that buyer with only knowledge of the
mean and variance of the buyer’s distribution. As a
consequence, when the underlying distributions are reg-
ular (monotone hazard rate) we are able to guarantee a
constant fraction of the optimal revenue in multi-bidder
auctions with matroid (downward-closed) constraints.

Lemma 4.2. If V is a random variable with a c-
symmetric distribution, then knowledge of the mean
µ = E[V ] suffices to guarantee a c-approximation to the
optimal revenue and welfare for the single-bidder single-
item problem where the buyer’s value has the same dis-
tribution as V .

Proof. It is clear that the optimal pricing mechanism
cannot obtain more than µ revenue in expectation. A
mechanism that sets a posted price of µ sells to the
buyer when V ≥ µ. Since Pr[V ≥ µ] ≥ c, we obtain a
competitive ratio for revenue bounded from below by

Pr[V ≥ µ] · µ
µ

≥ c.

Moreover, the optimal welfare is µ, while the welfare
achieved by a posted price at µ is at least as much as
the revenue achieved by a posted price at µ, which we
have already shown is at least a c-fraction of µ. �

Notice that we did not require regularity in the
proof of the above lemma. Using our reductions (Theo-
rems 3.1 and 3.2) from the many-bidder auction to the
single-bidder pricing problem, we conclude then:

Theorem 4.2. Let µ = (µ1, ..., µn) be the vector of
means of the buyers’ value distributions, and assume
that these distributions are c-symmetric. For regular
matroid environments and MHR downward closed envi-
ronments, the auction V CG-Lµ simultaneously guaran-
tees a c

2 -fraction of the optimal revenue and a c-fraction
of the optimal welfare.

As noted earlier, it is known [4] that if a variable
V is distributed according to a monotone hazard dis-
tribution, then it is 1

e -symmetric. Thus, we obtain the
following corollary,

Corollary 4.2. For any downward closed environ-
ment with monotone hazard rate distributions, the
mechanism V CG-Lµ that sets the reserve price of bid-
der i at the mean µi of bidder i’s distribution guaran-
tees a 1

2e ≥ 18% fraction of the optimal revenue and a
1
e -fraction of the optimal welfare.

We remark that Hartline, Mirrokni and Sundarara-
jan [9] obtain a similar result for digital good auctions
with means as reserves in their analysis of marketing a
digital good over a network. Our mechanism generalizes
theirs to downward closed environments.

It is possible to construct a distribution with heavy
left tails for which the mechanism V CG-Lµ guarantees
arbitrarily low revenue and welfare. As an example,
consider a single-bidder whose value takes a low value
µ − σt with probability 1

1+t2 , and a high value µ + σ
t

with probability t2

1+t2 . As t → 0, the expected welfare
and revenue of V CG-Lµ become negligible. However, if
we use information about both the mean and standard
deviation to set appropriate reserve prices, we can still
guarantee a constant fraction of the optimal revenue and
welfare, as long as µ

σ > c for some constant c.

Lemma 4.3. [2] Let V be a random variable with mean
µ and standard deviation σ. Let k = k(µσ ) be the unique
real solution to the cubic equation µ

σ = 1
2 (k3 + 3k), and

let ρ(µσ ) = 1 − σ
µk(µσ ). Then a mechanism that sets a

reserve price of µ−σk guarantees a ρ(µσ )-approximation
to the optimal revenue and welfare of the single-bidder
pricing problem where the buyer’s value has the same
distribution as V .

One can show that ρ(·) is an increasing function.
Thus, if µ

σ > c for some constant c, then the single-
bidder pricing mechanism that sets a reserve price of µ−
σk(µσ ) guarantees a ρ(c)-approximation to the optimal
revenue and welfare. Using the reduction from matroid
and downward closed environments to the single-bidder
pricing problem, we can derive the following theorem,
which generalizes the single-item auction from [2] to
matroid and downward closed environments.

Theorem 4.3. Let F = F1 × ... × Fn be a product
distribution with mean vector µ = (µ1, ..., µn) and
standard deviation vector σ = (σ1, ..., σn), and assume
that the distributions F1, . . . , Fn are c-informative. Let
µ − σk = (µ1 − σ1k1, ..., µn − σnkn) be a vector of
reserve prices as in lemma 4.3. For regular matroid
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environments and MHR downward closed environments,
the auction V CG-Lµ−σk simultaneously guarantees a
1
2ρ(c)-fraction of the optimal revenue and a ρ(c)-fraction
of the optimal welfare.

5 Upper Bounds on the Competitive Ratio

We provide some upper bounds on the best achievable
revenue competitive ratio for the single-bidder pricing
problem with only knowledge of the median. First, we
show that the regularity assumption cannot be relaxed:
for any deterministic pricing scheme P that only uses
knowledge of the median and all c > 0, there is a (non-
regular) distribution under which P does not obtain a
c-fraction of the optimal revenue. Second, we show that
no deterministic pricing scheme P that only has knowl-
edge of the median can guarantee a worst-case approx-
imation ratio better than 1

2 , even when the (unknown)
distribution is regular. We highlight that all mecha-
nisms we construct in this paper are deterministic and
thus our bounds are tight for deterministic mechanisms.

Lemma 5.1. Let P (m) be a (single-bidder single-item)
deterministic pricing scheme that only uses the median
m of the bidder’s value distribution as input. Then for
all c > 0 and m > 0, there exists a distribution F with
median m such that Rev(P (m), F ) ≤ cRev(opt, F ) <
∞.

Proof. Fix m. We separate into two cases.
If P (m) > m, then the adversary can choose F to

be uniform in [m−ε,m+ε] where m+ε < P (m). This is
a distribution with median m, but where the bidder has
zero chance of being willing to buy the good for price
P (m). Hence, the expected revenue of a mechanism
that sets P (m) > m is zero, and the competitive ratio
of P is zero.

If P (m) ≤ m, the adversary can choose an arbitrar-
ily large H and have the value drawn from the same

distribution as the random variable Y =
m(1+ 1√

H
)2

4 ·X,
where X ∈ [1, H] is distributed according to G(x) =

1
1− 1√

H

·(1− 1√
x

). Note that the median of X is 4
(1+ 1√

H
)2

,

and the median of Y is m. We have 1−G(x) =
1√
x
− 1√

H

1− 1√
H

.

So the revenue curve associated with the random vari-
able Y is

R

(
y =

m(1 + 1√
H

)2

4
· x

)
:= y · (1−G(y))

=
m(1 + 1√

H
)2

4
· x ·

1√
x
− 1√

H

1− 1√
H

,

which is maximized by setting x = H
4 and takes

the maximum value
m(1+ 1√

H
)2

4

√
H

4·(1− 1√
H

)
, which grows

arbitrarily large with H. The revenue of an auction
which sets a reserve price below the median is at most
m. Thus, by choosing H >> m, we can make the
competitive ratio as small as we want. �

Lemma 5.2. Let P (m) be a (single-bidder single-item)
deterministic pricing scheme that only uses the median
m of the bidder’s value distribution as input. For all
m > 0, there is a regular distribution F with median m
such that Rev(P (m), F ) ≤ 1

2Rev(opt, F ).

Proof. Fix m. If P (m) > m, set ε = (P (m) − m)/2
and let F be the uniform distribution on [m− ε,m+ ε].
Then P (m) makes expected revenue 0, but the optimal
revenue is clearly at least m/2.

If P (m) ≤ m, consider the distribution F (x) =
1 − m

m+x . Then F is regular.6 With knowledge of this
distribution, it is easy to see that one can obtain revenue
arbitrarily close to m by setting a sufficiently high
reserve price. It is also easy to see that Rev(P (m), F ) =
mP (m)
m+P (m) . As P (m) ≤ m, this is at most m/2. �

6 Conclusion

We showed that one can reduce the problem of approxi-
mating revenue and social welfare in single-dimensional
multi-bidder settings to the problem of approximating
revenue and social welfare when selling one item to a
single bidder. This provides a unified framework for the
problem of designing auctions with limited information:
If a seller has enough information to sell a single item to
each bidder separately, then they have enough informa-
tion to design an auction for all bidders simultaneously
in very broad settings.
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