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SUMMARY

A boundary element method (BEM) combined with a linear
slip boundary condition is proposed to calculate SH wave scat-
tering from fractures. The linear slip boundary condition was
proposed by Schoenberg (1980) to model elastic wave prop-
agation through an imperfectly bonded interface, where the
traction cross the interface is continuous and displacement is
discontinuous. Here, we demonstrate how to simulate SH wave
scattering from fractures by applying the BEM and this linear
slip boundary. Comparisons between results obtained using
our model with those obtained using a computationally expen-
sive finite difference method (FDM) (Coates and Schoenberg,
1995; Kriiger et al., 2005) are performed to show the validity
and accuracy of our approach. An example of SH wave scat-
tering from three curved, crossing fractures is also given. Al-
though our discussion here is focused on the linear slip bound-
ary condition, our approach can easily be adopted to various
slip boundary conditions that specify the displacement discon-
tinuity and traction relations depending on different physical
models of fractures.

INTRODUCTION

Underground fracture network characterization and localiza-
tion are very important for enhanced recovery of oil and gas
as well as for guiding the development of geothermal energy
reservoirs. This is because the permeability of fractures can
be orders of magnitude higher than that of the surrounding
matrix. Commonly used techniques to image and character-
ize these fractures rely heavily on surveys using both surface
seismic and vertical seismic profiling (VSP) data (Willis et al.,
2006). In order to properly interpret these seismic data for
imaging fractures, it is essential to have an accurate and fast
method to simulate seismic wave propagation through frac-
tures. This forward modeling problem has been extensively
discussed in various literature using different physical mod-
els of fractures combined with analytical and numerical tech-
niques including BEM (Kelner et al., 1999; Pointer et al., 1998;
Iturraran-Viveros et al., 2005, 2008; Gu et al., 1997), FDM
(Fehler and Aki, 1978; Coates and Schoenberg, 1995; Kriiger
etal.,2005; Groenenboom and Falk, 2000; Vlastos et al., 2003;
Slawinski and Krebes, 2002; Zhang, 2005; Zhang and Gao,
2009), Finite Element Method (FEM) (Nakagawa et al., 2003)
and analytical methods(Liu et al., 1997; Sanchez-Sesma and
Iturrardn-Viveros, 2001). Compared to the FDM, FEM and
analytical methods, BEM is potentially more flexible and ac-
curate in handling complicated fracture boundary shapes and
conditions. It is more computationally efficient since it needs
to compute one less space dimension than FDM and FEM ex-
cept for some scenarios with special geometries of fracture
sets (Nakagawa et al., 2003). The major drawback of BEM is

that the computational cost can be very high for 3D fractures
or large 2D fracture networks. This issue may potentially be
solved by applying fast multi-pole method(FMM) (Greengard
and Gropp, 1990).

In this paper, we apply BEM and the linear slip boundary con-
dition to simulate the scattering of SH waves from 2D frac-
tures. The use of the linear slip boundary condition makes our
model appropriate for the modeling of fractures in real rock.
Another advantage of our method is that it is not restricted to
the linear slip boundary condition and can also flexibly imple-
ment other slip boundary conditions that specify the relation
between the displacement discontinuities and traction across a
fracture surface, as described by various authors (Fehler, 1982;
Liu et al., 1995; Hudson et al., 1996; Liu et al., 2000; Bakuh
and Molotkov, 1997; Nakagawa and Schoenberg, 2007).

BEM MODELING OF SCATTERING FROM FRACTURES

In this section, we will first show mathematical derivations
for applying BEM to calculate the scattering from a single 2D
fracture with the linear slip condition and then briefly discuss
the calculation of scattering from multiple 2D fractures.

Scattering from a 2D fracture
The scattered displacement (Aki and Richards, 1980) from a
fracture in the free space is expressed as
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where & is a point on the 2D fracture surface s, as shown in
Figure 1; Cyjqp (&) is the elastic tensor; G¥ (x, &) is the it dis-
placement component of the Green’s function at point x due
to a unit force in the p™ direction at point & on the fracture
surface; n; is the j component of the normal vector n at the
fracture surface S; [ ()] is the k™ component of the displace-
ment discontinuity
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where u, (§) and u (§) is the total displacement on the upper
and lower surface of the fracture, respectively.
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The total displacement field uy (&) is the sum of the incident
and scattered displacement. In this paper, the displacement

discontinuity is determined from the linear slip condition (Schoen-

berg, 1980), which assumes that the displacement discontinu-
ity is linearly proportional to the traction on the fracture sur-
face, and the traction is continuous across the fracture. For the
SH wave, we have
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Figure 1: Geometry of a 2D fracture

where Z; is the tangential compliance defined by Schoenberg
(1980). Inserting Equation 3 into Equation 1, we can express
the scattered field as
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where G(x,&) = G3(x,§). The displacement at any x is the
sum of the incident and scattered displacement
up (x) = ull(x) + 15 (x).

(&)

For a point on the fracture surface x(x1,x3) s, it should satisfy
Equation 5
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where  donates the hyper-singular integral equation or a Cauchy’s

S
principal value. We take derivatives of Equation 6 over x; and
X3, respectively
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by applying a theorem proved by Martin and Rizzo (1989).
We now turn the displacement boundary integral equation (1)
into two traction-related boundary integral equations (7 and 8).
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Figure 2: Geometry of three parallel fractures and receivers. A plane wave is normal incident
on the fracture from the left

Solving these two equations provides values of the displace-
duy (x) duy(x)
nd oxr

ment derivitive ox across the fracture. By in-
serting these two derivitives into Equation 4, the displacement
field scattered from the 2D fracture can be finally calculated.

Scattering from multiple fractures

In order to calculate the scattering from multiple fractures, we
need to calculate the scattered field on fracture i due to the
displacement discontinuity on fracture j
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Different from equation 4, Equation 9 does not need to handle
the singularity issue since x; and &§; are elements belonging to

different fractures. We need to solve four unknowns %(f"),
D) dua(x; dup(x;) . .
17';2 () s (x;) ,and 22 () simultaneously to include the cou-
X3i (9)(]] (9X3j

pling between different fractures, which requires a larger ma-
trix inversion compared to a single fracture scenario. The com-
putation cost dramatically increases as the number of fractures
increases, which makes this method impractical for a large and
complex fracture networks. One way to avoid the large matrix
inversion is to apply an iterative method that calculates and
sums enough orders of multiple scattering (Born series) un-
til the traction across the fracture surface is converged. This
method has been discussed in much more details in Kelner
et al. (1999). The iterative method could reduce the compu-
tational cost since it only needs to perform the inversion of the
coefficient matrix for each individual fracture. The iterative
method, however, may not always converge especially when
the scattering from fractures is very strong compared to the
incident field. In the future, we may consider developing a hy-
brid method combining matrix inversion method and the itera-
tive method to calculate the multiple scattering from a fracture
network.
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Figure 3: Comparison of received time traces between BEM and FD.
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Figure 4: Geometry of two orthogonal fractures, source and receivers.
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Figure 5: Comparison of received time traces between BEM and FD. The geometry of source,
receivers and fractures are rotated in FD simulation correspondingly to make fractures coin-

cide with grids.
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Figure 6: Geometry of source, horizontal and vertical receiver arrays and three curved and
crossed fractures.

VERIFICATION AND ILLUSTRATIVE NUMERICAL EX-

AMPLE

In this section, we first provide two examples where we com-
pare results of using our BEM method for simulating fracture
scattering with these obtained by using the FDM (Coates and
Schoenberg, 1995). We then show an example of the scatter-
ing of SH waves from three curved fractures that cross over
each other. The FDM that we use is fourth order in space and
second order in time. We used a grid interval of 1 m. For the
BEM method, we calculate the complete scattered displace-
ment field by simultaneously inverting the coupled equations
(7,8 and 9).

For all examples, fractures are taken to be embedded in a ho-
mogeneous medium with shear velocity 2000 m/s and density
2200 kg/m?3. The tangential compliance of the fractures Z; is
10~%m/Pa. A plane wave with a 40 Hz Ricker time-history is
normally incident on the fractures.

In example 1, the lengths of the three fractures are 100 m and
the wavelength at 40 Hz is 50 m, as shown in Figure 2. Fig-
ure 3 shows the comparison of the waveforms simulated using
BEM and FDM at three receivers. We find an excellent match
between these two methods.

In example 2, we show the comparison of traces from two or-
thogonal fractures whose geometry is shown in Figure 4. The
elevation angles of the fractures are 65 and 155 degree respec-
tively. For the FDM, we rotated the fractures to make them
coincident with grids and also rotated the source and receiver
locations to maintain the same geometry. The comparison be-
tween two methods is very good, as shown in Figure 5.

Finally, we show the scattered SH displacement field (Incident
field is purposely removed) from more geologically compli-
cated fractures that are curved and crossing over each other, as
shown in Figure 6. The scattered fields received on a vertical
array is shown in Figure 7(a), which shows several distinguish-
able events due to the primary scattering from three fractures
and multiple scattering between fractures. Figure 7(b) shows
the scattered fields received on a horizontal array, which also
contains complicated scattered arrivals from fractures.
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Figure 7: (a) Received time traces on the vertical array (b) Received time traces on the hori-
zontal array.

CONCLUSION

In this paper, we propose a method to use BEM with a linear
slip boundary condition to calculate SH wave scattering from
2D fractures that are characterized by the linear slip boundary
condition, and show the validity and accuracy of our method
by comparing with FDM. This method can also easily adopt
other slip boundary conditions and calculate seismic scatter-
ing from fracture networks with complex geometries. Because
of computational efficiency and accuracy of BEM, our method
can potentially be used to perform Monte-Carlo simulations
to characterize the statistics of scattering signal from under-
ground fractures.
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