
submitted to Geophys. J. Int.

Surface-wave eikonal tomography for dense

geophysical arrays

Pierre Gouédard1, Huajian Yao1,2, Fabian Ernst3, and Robert D. van der Hilst1

1Earth, Atmospheric and Planetary Sciences department, Massachusetts Institute of Technology,

2Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography,

3Shell Projects and Technology

SUMMARY

Surface-wave tomography often involves the construction of phase (or group) ve-

locity maps through linearized inversion of measured phase (group) arrival times.

Such inversions require a priori information about the medium (that is, a reference

model) in order to calculate source-receiver paths, which is inaccurate for complex

media, and requires regularization. The surface-wave eikonal tomography proposed

here bypasses these limitations and has the advantage of being simple to implement

and use, with virtually no input parameters. It relies on accurate phase arrival time

measurement, which can be challenging for dispersive waves and complex waveforms.

We present a measurement method based on the evaluation of phase arrival time

differences at nearby receivers. We show, using an exploration data set, that the pro-

duced Rayleigh-wave velocity maps are in agreement with results from traditional

tomography, but the latter have lower resolution due to the need of regularization to

accommodate for the heterogeneity of the study area and noise in data. Eikonal to-

mography requires averaging over results from multiple sources to produce a proper

image, and we evaluate this requirement to a 200 m source spacing in the considered

scattering environment. In addition, we validate the approach of combining seismic
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interferometry and eikonal tomography, for the cases where the source coverage is

inappropriate.

Key words: Tomography; Interferometry; Controlled source seismology; Seismic

tomography; Surface waves and free oscillations

1 INTRODUCTION

Surface waves are of increasing interest in exploration geophysics, in particular for overbur-

den characterization, as they provide information about shallow structures (e.g., Campman &

Riyanti 2007; Socco & Boiero 2008). They are usually processed using a local layered medium

approximation to obtain, in a first step, phase- or group-velocity maps for specific frequencies,

which in a second step are then inverted into a S- (and sometimes P-) wave velocity model

at shallow depth (e.g., Luo et al. 2008). The first step usually requires a ray tracer to com-

pute traveltimes in the chosen model, which implies some underlying approximations about

how waves propagate in the medium. We present here a different approach to surface-wave

tomography: surface-wave eikonal tomography combined with a neighborhood-based cross-

correlation method for phase arrival picking. This data driven approach takes advantage of

the high density receiver arrays that are common in exploration seismics and can deal with

complex media and waveforms. Eikonal tomography neither needs a priori information nor

ray tracing (because it uses a local equation, the eikonal equation, to describe wave prop-

agation) and has become possible for seismic exploration as recent technological advances

made sub-wavelength spatial sampling feasible. It is easy to implement and produces results

that are robust and not dependent on the choice of input parameters. Eikonal tomography

has been successfully applied in a global seismology context, using ambient noise wavefields,

to image crustal structure beneath western North America using the EarthScope/USArray

Transportable Array (Lin et al. 2009).

Measuring the phase arrival times that are used as input for this type of velocity analysis is

challenging when working with waveforms that are complex owing to dispersion and scattering.

Lin et al. (2009) built traveltime maps from (virtual) source–receiver phase measurements

in narrow frequency bands. Direct measurement is efficient if the medium varies smoothly

on a spatial scale that is (much) larger than the wavelengths of the waves considered, but

is not accurate in the presence of scattering and multi-pathing. To improve the quality of

traveltimes measurements when dealing with complex waveforms, we propose a traveltime
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picking algorithm that is based on the integration of delays between neighboring receivers

(obtained from cross-correlation).

In the first section of this paper we present the theory of eikonal tomography and the

phase measurement algorithm that we use. In a second part we apply surface-wave eikonal

tomography to data from a hydrocarbon exploration experiment for velocity analysis of a

strongly heterogeneous and scattering medium. In a third section we use this data set for source

depopulation—that is, we quantify the source spacing that is necessary to obtain a reliable

velocity model for the area. The final section is devoted to the validation of the combination

of seismic interferometry and eikonal tomography, which is useful when the coverage of active

sources is not suitable for traditional eikonal tomography.

2 THEORY AND METHODS

2.1 Eikonal tomography

Traveltime tomography concerns the estimation of spatial variations in the propagation speed

of seismic waves from a set of traveltimes of seismic phases between known source and receiver

locations. Essentially, the traveltime is an integration (averaging) of the local wave slowness

over the source–receiver paths:

t(rs, rr) =

∫
K(r, rs, rr)

c(r)
dr , (1)

where t is the traveltime from a source in position rs to a receiver in position rr, c(r) is the

local structural phase velocity that we want to recover, and K is the integration kernel. The

integration is done over 3-D space, but the spatial extent of the wave sensitivity depends on

the theoretical approximations made: in the case of ray theory K vanishes everywhere except

along the ray, whereas it is oscillatory (with non-zero values away from the ray) in the case of

finite frequency wave theory (Dahlen et al. 2000; de Hoop & van der Hilst 2005). Traveltimes

measurements are classically inverted, in a “de-integration” operation, to map local phase

velocity in the sampled area.

A different approach would be to use

|∇t(rs, r)|2 =
1

c2s(r)
+

∆A

Aω2
, (2)

which is derived from the Helmholtz equation (e.g., Wielandt 1993; Friederich et al. 2000). In

(2), ∆ = ∇2 is the Laplacian, ω the angular frequency, and A the amplitude of the waves. The

latter includes source and receiver site effects and propagation effects (attenuation, scattering,

interferences. . . ). When using this equation to infer the local wavespeed, the inversion process
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(if any) takes place when building the traveltime map, and not in a “de-integration” step as in

classical traveltime tomography. Notice that for surface waves equation (2) is an approximation

as these waves do not, in general, obey the Helmholtz equation. It is valid, however, if we

neglect mode conversions and the directivity of scattering from a point heterogeneity, which

is justified as long as the medium can be considered locally homogeneous, i.e., if it is only

slightly or smoothly inhomogeneous compared to the heterogeneity of the wavefield (Friederich

et al. 1993). The Helmholtz equation can be used for laterally heterogeneous media if the

receiver network is dense enough to account for the interferences among several plane waves

and the second spatial derivatives of the wavefield be accurately estimated (Friederich et al.

2000). Lin et al. (2011) applied this technique, which they called Helmholtz tomography, to

earthquake surface-wave data to image the crust beneath the western part of the contiguous

United States.

The second term on the right-hand side of equation (2) accounts for finite frequency effects

and can sometimes be neglected, which leads to the eikonal equation:

|∇t(rs, r)|2 ≈
1

ĉ2(r)
. (3)

Strictly speaking, ĉ is the dynamic velocity, which is affected by propagation effects (and in

particular by the curvature of the wavefront and interference with other waves) and not the

structural velocity c used in (2), which represents the medium properties (Wielandt 1993;

Friederich et al. 2000). While true only for plane waves, we assume here that ĉ equals c. Lin

et al. (2009) used his equation to image the lithosphere of Western USA from ambient seismic

noise.

In principle, the traveltime t (in equations (2) and (3)) needs to be known at each point

of the study area, but the gradient can be computed with sufficient accuracy if t is measured

at receivers on a dense grid (which is usually the case in seismic exploration). Any source and

receiver geometry is suitable for this method, provided that the sensor spacing is sufficiently

dense and realizing that interpolation may be needed to fill gaps in the spatial sampling or to

map the recording points on a regular grid to ease the computation of the numerical gradient.

Equation (3) can be used to construct phase velocity maps for specific frequencies. In our

study we use it to produce phase velocity maps of the Rayleigh-wave fundamental mode. In

a second step, the dispersion curves at each location of the map could then be inverted for

a local (shear-wave) velocity profile as function of depth (Park et al. 1999; Socco & Strobbia

2004), and lateral juxtaposition of these depth profiles would then form (with interpolation,

if necessary) 3-D volumes of shear wavespeed. This second step requires a priori information

about the medium and is not done here.



Eikonal tomography 5

The above procedure is straightforward and easy to implement, but we make a few com-

ments. First, we note that the point-wise inversion for local shear wavespeed profiles (that is,

the second step) renders the mapping between data and structure essentially asymptotic.

Second, consideration of azimuthal anisotropy is straightforward, as shown by Lin et al.

(2009). Indeed, the vectorial form of equation (3) gives directly access to the wave-vector

ks(r) = (ω/ĉs(r)) us(r), where us(r) is the local propagation direction at point r for a source

at rs, and cs(r) is the local velocity at this point and for this direction. Keeping track of both

the norm and the direction of ks (us being different for each source position) allows getting

velocity-versus-azimuth plots at each pixel of the final map, which usually gives the informa-

tion about azimuthal anisotropy. Because of limitations of the data set, however, we did not

consider this possibility in this paper. Third, there is no limitation to use eikonal tomography

either for other surface-wave modes (including Love waves if two horizontal components of

the wavefield are available) or for body waves (provided that t can be measured on a 3-D grid,

which is not usually practical).

2.2 Phase arrival time measurements

Taking the gradient is a numerically unstable operation and measuring the phase arrival times

must be done with great care to ensure a smooth traveltime map. The dispersive nature of

the surface waves used in this study makes it difficult to define the arrival time. Moreover,

scattering can produce complex waveforms (as is the case in our study) making it difficult to

track individual phases. To address these observational challenges we propose a neighborhood-

based cross-correlation method to measure arrival time differences between nearby receivers.

This method is similar to the multi-channel cross-correlation method (Vandecar & Crosson

1990), in which each trace is cross-correlated with all other traces to obtain the relative

time shifts, but we limit the correlation to nearby stations in order to avoid cycle-skipping

and ensure similar waveforms. For each source s, the relationship between the arrival time

differences between to receivers and the source–receiver traveltimes can be written

D ts = ∆ts , (4)

where D is a differentiation matrix (a sparse matrix with one ‘+1’ and one ‘-1’ per line) of

size Nr × Nr(Nr − 1)/2 (Nr being the number of receivers), ts = (tsi )i=1...Nr is the vector

of traveltimes at each receiver, and ∆ts = (∆tsij = tsj − tsi )i=1...Nr, j=1...Nr is the vector of

measured arrival time differences between receivers, from cross-correlation of narrow-band

filtered (fundamental mode) surface waves. The number of pairs of receivers considered in
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practice may vary, depending on data quality and medium heterogeneity, but we will limit

ourselves to the closest neighbors. The measurement error on ∆ts is evaluated as the width

of the 90 % confidence interval from the correlation of waveforms.

Equation (4) describes a Bayesian problem, which can be solved with a quasi-Newton

method (e.g., Tarantola 2005):

ts ≈ D̃−1 ∆ts , (5)

where D̃−1 is the pseudo-inverse of the differentiation matrix D (that is, D̃−1 is an integration

matrix), which can be written as

D̃−1 =
(
DT C−1

D D+C−1
M

)−1
DT C−1

D , (6)

where DT denotes the transpose of D, CD is a data covariance matrix, and CM is a model

covariance matrix. For CD we use a diagonal matrix with elements are proportional to the

measurement error in ∆t. Regularization is introduced by choosing a second order differenti-

ation matrix for C−1
M . This definition of the covariance matrix ensures a traveltime map close

to the one expected for an homogeneous model (the second derivative of the traveltime with

respect to the distance is null).

As D̃−1 is an integration operator, ts is defined modulo a constant of integration. This

ambiguity could be resolved by extrapolating the traveltime ts towards zero offset, where

it has to be zero, but this is difficult in practice because traveltime measurements at short

offsets from the source (within one or two wavelengths) are not reliable due to near field effects

(figure 2b). The value of the integration constant is irrelevant, however, because we are only

interested in the gradient of ts (see equation (2)).

Equations (3) and (5) may suggest that our approach is equivalent to double difference

tomography (Zhang & Thurber 2003). It is different, however, because we do not have to

include any a priori information, such as a starting model and we do not have to trace any

rays because the ray information is naturally included in the gradient from equation (2). For

a more complete discussion on how rays are handled in eikonal tomography we refer to Lin

et al. (2009).

3 APPLICATION FOR SHALLOW SUBSURFACE IMAGING

3.1 Data and pre-processing

For our study we use data from a high-resolution survey of a 1 km ×1 km carbonate (karst)

area in Northern Oman conducted by Petroleum Development Oman (PDO). Receiver points
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Figure 1. A shot gather, band-pass filtered between 10 and 20 Hz, illustrating the complexity of the

waveform. The amplitude is normalized.

are located at the nodes of a 40×40 grid (25 m×25 m spacing). Each receiver point consists of

a cluster of 12 vertical geophones, from which data are stacked on-site. Sources are vibrator

trucks acting at the nodes of a similar grid, shifted with respect to the receiver grid by half

a grid distance in both directions (that is, 12.5 m). Records are 4 s long and the sampling

frequency is 125 Hz. For a more complete description of the data set, we refer to Herman &

Perkins (2006) and Gouédard et al. (2008). Figure 1 illustrates the complexity of the waveforms

produced by scattering.

The complete data set consists of 1600×1600 vertical component source–receiver time-

domain signals, and constitutes an exhaustive measurement of the transfer functions of the

half-space medium over a 1-km2 area. Because of the 2-D acquisition geometry the data set

includes mainly Rayleigh waves.

Records are first filtered around the different working frequencies using a Gaussian filter of

10 % width. The central frequencies considered in the following are 10 Hz, 15 Hz and 20 Hz.

The filtered waveforms are then windowed in time around the maximum of the envelope,

corresponding to the fundamental mode Rayleigh wave in this small scale setup.

3.2 Inversion and discussion

To account for possible data quality reduction due to noise when using real data we subjected

the measured traveltime differences ∆t to quality control. The correlation-based approach

that we used to measure ∆t assumes that the recorded waveforms are similar between neigh-

bors. We thus used the correlation coefficient between these waveforms, windowed around

the fundamental mode Rayleigh wave, as a quality criterion. We choose a threshold value of

0.98 for this correlation coefficient, and any measurement with smaller value is not considered.

This procedure typically rejects 30 % of the measurements for each source. This data selection

helps stabilize the inversion for a single source, but when results from different sources are

stacked this selection is not critical because the implied averaging smooths out the outliers in

single-source velocity models. For instance, lowering the threshold value to 0.9 would result
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Figure 2. a. Traveltime map for the fundamental mode Rayleigh wave at 15 Hz, for one source located

at the center of the array. b. Same as a., but with the mean gradient (1187 m/s) removed to emphasis

differences with an homogeneous medium (for illustration purposes only, not used in the inversion).

c. Dynamic phase velocity map for this source, obtained from the spatial gradient of the map in a.,

following equation (3). The source location is indicated by the black dot in the center of the array.

Offsets smaller than 200 m are omitted because of their unreliability due to near field effects (Lin et al.

2009). d. Structural phase velocity map for this source, obtained following equation (2).

in the rejection of less than 0.5 % of the measurements but produces a final velocity map that

differs by less than 0.5 % (on a per-pixel basis) from the one presented on figure 4a.

Equation (2) (or (3)) can be used to produce maps of the structural (or dynamic) velocity

from a single source (figure 2). Subsequently, phase velocity maps from all sources can be

combined, which leads to the velocity maps presented in figures 3a and 3b for average dynamic

and structural velocities, respectively.

Structural velocity is preferred, as it represents a medium property, but the calculation of

the dynamic velocity is easier and numerically more stable because it avoids the calculation

of the second derivative and division by the amplitude. Moreover, equation (2) is not easy to

use because the recorded Rayleigh wave amplitudes are not always meaningful or accurate. In
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Figure 3. Comparison of the Rayleigh wave fundamental mode a. dynamic and b. structural phase

velocity maps, at 15 Hz. c. Difference of the two maps (structural minus dynamic). d. Cross-plot of

the dynamic and structural velocities for each pixel.

our data set, for instance, the records are not from a single receiver but from a cluster of 12

receivers so that the original amplitudes are not retained. Figures 2 and 3 demonstrate that

the differences between the two velocities are small and do not have any spatial structure,

which justifies the use of the dynamic velocity (which avoids the above-mentioned issues with

amplitude).

Figure 3a presents the Rayleigh-wave phase velocity at 15 Hz and results for two other

frequencies are presented in figures 4a and 4b. These maps reveal strong medium heterogene-

ity. This heterogeneity would complicate any tomography that requires ray tracing, such as

traditional or double-difference tomography, and it is likely that in such applications much of

the structural details inferred here would have been lost due to regularization. We note that

the averaged slowness values at each frequency match values found by Gouédard et al. (2011,

figure 2) for a laterally-homogeneous equivalent medium for this area. The observed increase

of velocity with increasing frequency may be a bias due to scattering (Kaelin & Johnson
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Figure 4. Rayleigh-wave phase-velocity maps obtained from eikonal tomography at a. 10 Hz; and

b. 20 Hz. c. Rayleigh-wave fundamental mode group velocity obtained using traveltime tomography

(from Gouédard et al. (2011))

1998), or it could represent a real depth variation in average wavespeed—and, hence, material

properties—with depth.

We recall that a 3-D velocity model can be obtained from velocity maps such as presented

in figure 4 (but then calculated for a range of frequencies) through point-wise inversion of

the (fundamental mode Rayleigh-wave) dispersion curve for a S- and P-wave velocity profile

with depth (e.g., Socco & Strobbia 2004; Luo et al. 2008). This requires a priori information
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# of sources 400 100 25 9 1

R 0.9995 0.9926 0.9612 0.8542 0.7285

Table 1. Correlation coefficients R between the Rayleigh-wave phase velocity maps obtained by de-

creasing the number of sources, and the map obtained using the 1600 available sources.

about the medium (in order to calculate the proper sensitivities to relate dispersion to elastic

medium properties at different depths) and is not done here.

In figure 4c we show the group velocity model obtained by Gouédard et al. (2011) from

the same data. Gouédard et al. (2011) used a traveltime tomography approach to produce

a fundamental mode Rayleigh-wave group velocity map (as opposed to phase velocity here)

in a broader frequency band (10–25 Hz) than considered here. Despite the differences in

inversion method, frequency content, and wave type, the results are consistent: while the

tomography result is smoother due to regularization and the use of lower frequency data,

the main structures of figures 3a, 4a and 4b are also present in figure 4c. We also checked

(not shown here) that approximating the group slowness with the frequency derivative of the

phase slowness times the frequency yields a map close to the one displayed in figure 4c. This

comparison shows that, as expected, eikonal tomography yields higher resolution maps.

3.3 Source depopulation: How many sources are necessary?

The averaging over multiple sources suppresses the effects of wave propagation (due to medium

heterogeneity) on the estimation of dynamic velocity from equation (3) (Friederich 1998). A

question that immediately arises is how many sources are actually necessary to recover a good

velocity model. To address this question, we conducted a source depopulation exercise by

considering fewer and fewer sources in the averaging process, as illustrated by figure 5. Notice

that figure 2c completes the series, with only one source, located at the center of the image

area. To assess the quality of model reconstruction we compare the obtained velocity models

to the one obtained using all available sources (figure 4b), which we assume to be the best

possible recovery of the medium fundamental mode Rayleigh wave velocity. The comparison

is done by computing the correlation coefficient R between the value of the velocity at each

pixel. Table 1 shows that using 25 sources instead of the 1600 available (200 m spacing instead

of 25 m) degrades the result only slightly. An a posteriori comparison of figures 4b and 2c

also shows that, despite having more artifacts, the map obtained with only one source already

includes the main features of the final map.
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Figure 5. Source depopulation at 15 Hz. Maps are obtained by using less sources than the 1600

available involved to produce figure 4b. The number of sources (which locations are indicated by the

black dots) used for each figure is as follow: a. 400 sources (one over two in both directions); b. 100

sources (one over four in both directions); c. 25 sources; d. 9 sources. Figure 2c completes the series

with only one source used.

4 INTERFEROMETRY

We discussed above how averaging over sources helps to get a reliable velocity model. An-

other practical limitation comes from the source distribution, i.e., the actual location of these

sources. Even though, in theory, any source/receiver geometry is suitable for the technique

to work (as long as the receiver array is sufficiently dense), in practice only a limited range

of source–receiver offsets can be used. Traveltime measurements in the near field are not re-

liable, as illustrated by figure 2, which defines the short offset limit. At offsets that are too

large, poor signal-to-noise ratio prevents the traveltime differences between neighbors to be

measured accurately. These practical limits can obstruct the construction of velocity maps for

the whole array.
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It is well established that (under appropriate conditions) cross-correlation of a wavefield

recorded at two receivers can yield the Green’s function for waves propagating between them,

(e.g., Campman et al. 2005; Gouédard et al. 2008, 2011, for applications in a prospecting

context). This technique, usually referred-to as seismic interferometry, allows one to have

a virtual source at any of the receiver locations. In the context of this paper it allows the

transformation of the source–receiver geometry constraints to receiver–receiver constraints,

which are easier to satisfy thanks to the dense receiver array.

The interferometric workflow is similar to the one presented above, but preceded by the

Green’s function reconstruction. This step consists in considering pairs of receivers and aver-

aging the cross-correlation of records at each receiver over a distribution of sources. Following

the discussion in Gouédard et al. (2008), we chose to consider sources in the alignment of

the receiver pair (the so-called endfire lobes). This ensures a good reconstruction of direct

waves, even if only a few sources are recorded by the two receivers, and also avoids inappro-

priate azimuthal energy distribution in the wavefield. The cross-correlation functions are then

symmetrized by stacking their positive- and negative-time sides. The reconstructed Green’s

functions are used as an input to eikonal tomography, as if a source was located at one of

the receivers. The resulting maps, at the same frequencies as used before, are presented in

figure 6. These maps are comparable to these from figure 4, which demonstrates the feasibility

of interferometric eikonal tomography, using active source, similar to using seismic ambient

noise (Lin et al. 2009).

We note that interferometric reconstruction of the amplitude of the Green’s functions is

still a topic of research and is not guaranteed in a general setup and processing workflow

(Gouédard et al. 2008; Cupillard & Capdeville 2010; Lin et al. 2011), only dynamic velocities

can be obtained using this approach.

5 CONCLUSIONS

We propose an alternative approach to imaging subsurface from surface waves, namely surface-

wave eikonal tomography (combined with a neighborhood-based cross-correlation method for

traveltime measurement), which overcomes some important limitations of traveltime tomog-

raphy, viz the need of a priori information about medium heterogeneity and loss of short-

wavelength structure due to regularization. Our approach takes advantage of the high density

of receiver arrays, which allows the use of a local equation to link traveltime and phase velocity

(instead of the integral relationship used for traveltime tomography), is easy to implement

and use, and does not require a priori information (e.g., a starting model).
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Figure 6. Same as figures 3a and 4a–b, but from eikonal tomography applied to reconstructed Green’s

functions obtained with seismic interferometry. As a reminder, the considered frequency bands are:

a. 10 Hz; b. 15 Hz; and c. 20 Hz.

We showed that, at least in the wavenumber ranges used in this study, dynamic phase

velocity can effectively replace structural phase velocity, making the inversion numerically

more stable and the results more robust since amplitude information is not always accurately

preserved during pre-processing.

Surface-wave eikonal tomography requires a dense receiver array as well as numerous
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sources. We studied the effect of reducing the number of sources, in a source-depopulation

exercise, and showed that (for the medium used in our study) a 200 m source spacing is

sufficient to produce an adequate image. When source coverage is not appropriate, either in

terms of spatial distribution or number of sources, seismic interferometry can produce virtual

records that can be used as input for eikonal tomography.

6 ACKNOWLEDGMENTS

The authors thank the Ministry of Oil and Gas of the Sultanate of Oman, Petroleum Develop-

ment of Oman and Shell Research for permission to use the data and publish these results. The

authors are also grateful to Arie Verdel, formerly at Shell International Exploration & Pro-

duction B. V., and now at Delft University of Technology, for his help in starting this project,

and for the stimulating discussions that followed. PG is supported by a Shell Research grant.

REFERENCES

Campman, X. & Riyanti, C. D., 2007. Non-linear inversion of scattered seismic surface waves, Geo-

physical Journal International , 171(3), 1118–1125.

Campman, X. H., van Wijk, K., Scales, J. A., & Herman, G. C., 2005. Imaging and suppressing

near-receivers scattered surface waves, Geophysics, 70(2), V21–V29.

Cupillard, P. & Capdeville, Y., 2010. On the amplitude of surface waves obtained by noise corre-

lation and the capability to recover the attenuation: a numerical approach, Geophysical Journal

International , 181(3), 1687–1700.

Dahlen, F. A., Hung, S.-H., & Nolet, G., 2000. Fréchet kernels for finite-frequency traveltimes—
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