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On the O(1/k) Convergence of Asynchronous Distributed Alternating
Direction Method of Multipliers∗

Ermin Wei† and Asuman Ozdaglar†

Abstract— We consider a network of agents that are co-
operatively solving a global optimization problem, where the
objective function is the sum of privately known local objective
functions of the agents and the decision variables are coupled
via linear constraints. Recent literature focused on special
cases of this formulation and studied their distributed solution
through either subgradient based methods with O(1/

√
k) rate

of convergence (where k is the iteration number) or Alternating
Direction Method of Multipliers (ADMM) based methods,
which require a synchronous implementation and a globally
known order on the agents. In this paper, we present a novel
asynchronous ADMM based distributed method for the general
formulation and show that it converges at the rate O (1/k).

I. INTRODUCTION

We consider the following optimization problem with a
separable objective function and linear constraints:

min
xi∈Xi,z∈Z

N∑
i=1

fi(xi) s.t. Dx+Hz = 0. (1)

Here each fi : Rn → R is a (possibly nonsmooth) convex
function, Xi and Z are closed convex subsets of Rn and
RW , and D and H are matrices of dimensions W ×nN and
W×W . The decision variable x is given by the partition x =
[x′1, . . . , x

′
N ]′ ∈ RnN . We denote by set X the product of

sets Xi, hence the constraint on x can be written compactly
as x ∈ X .

Our focus on this formulation is motivated by distributed
multi-agent optimization problems, which attracted much
recent attention in the optimization, control and signal
processing communities. Such problems involve resource
allocation, information processing, and learning among a
set {1, . . . , N} of distributed agents connected through a
network G = (V,E), where E denotes the set of M
undirected edges between the agents. In such applications,
each agent has access to a privately known local objective
(or cost) function, which represents the negative utility or
the loss agent i incurs at the decision variable x. The goal
is to collectively solve a global optimization problem

min

N∑
i=1

fi(x) s.t. x ∈ X. (2)
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This problem can be reformulated in the general formulation
(1) by introducing a local copy xi for each node i and
imposing the constraint xi = xj for all agents i and j
with edge (i, j) ∈ E. Since these problems often lack a
centralized processing unit, it is imperative that iterative
solutions of problem (2) involve decentralized computations.

Though there have been many important advances in the
design of decentralized optimization algorithms for multi-
agent optimization problems, several challenges still remain.
First, many of these algorithms are based on first-order
subgradient methods [1], [12], [9], which for general convex
problems have slow convergence rates (given by O(1/

√
k)

where k is the iteration number),1 making them impractical
in many large scale applications. Second, with the excep-
tion of [6] and [10], existing algorithms are synchronous,
meaning that computations are simultaneously performed
according to some global clock, but this often goes against
the highly decentralized nature of the problem, which pre-
cludes such global information being available to all nodes.
Moreover, neither of the works [6] and [10] provides a rate
of convergence analysis of the asynchronous algorithm.

In this paper, we focus on the more general formulation (1)
and propose an asynchronous decentralized algorithm based
on the classical Alternating Direction Method of Multipliers
(ADMM) (see [2], [3], [4], [5], [13] for convergence analysis
of classical ADMM, and also [8], [11] for its applications and
analysis in distributed network settings), where we adopt the
following asynchronous implementation: at each iteration k,
a random subset of the constraints is selected, which in turn
selects the components of x that appear in these constraints.
We refer to the selected constraints as active constraints and
selected components as the active components (or agents).
We design an ADMM-type algorithm which at each iteration
updates the primal and dual variables using information
from the active parts of the problem. Under the assumption
that each constraint has a positive probability of being
selected, we establish that the (primal) asynchronous iterates
generated by this algorithm converge almost surely to an
optimal solution. Under further assumption of compactness
of the constraint sets X and Z, we provide a performance
guarantee of O(1/k), which to our knowledge is the best
rate available for this problem without additional smoothness

1Under further assumption of Lipschitz and bounded gradient, gradient
methods can converge at rate O(1/k2), see [7].



assumptions.
The paper is organized as follows: in Section II, we

focus on the more general formulation (1), present the
asynchronous ADMM algorithm. Section III contains our
convergence and rate of convergence analysis. Section IV
concludes with closing remarks. Due to space limitation, we
omit the proofs here. We refer the reader to [14] for the
missing details.
Basic Notation and Notions:

A vector is viewed as a column vector. For a matrix A, we
write [A]i to denote the ith column of matrix A, and [A]j to
denote the jth row of matrix A. For a vector x, xi denotes
the ith component of the vector. We use x′ and A′ to denote
the transpose of a vector x and a matrix A respectively. We
use standard Euclidean norm (i.e., 2-norm) unless otherwise
noted, i.e., for a vector x in Rn, ||x|| =

(∑n
i=1 x

2
i

) 1
2 .

II. ASYNCHRONOUS ADMM ALGORITHM

We present the problem formulation and assumptions in
Section II-A. In Section II-B, we discuss the asynchronous
implementation considered in the rest of this paper that
involves updating a subset of components of the decision
vector at each time using partial information about problem
data and without need for a global coordinator. Section II-C
contains the details of the asynchronous ADMM algorithm.

A. Problem Formulation and Assumptions

We consider the optimization problem given in (1), which
arises in large-scale multi-agent (or processor) environments
where problem data is distributed across N agents, i.e.,
each agent i has access only to the component function
fi and maintains the decision variable component xi. The
constraints usually represent the coupling across components
of the decision variable imposed by the underlying connec-
tivity among the agents. Motivated by such applications,
we will refer to each component function fi as the local
objective function and use the notation F : RnN → R
to denote the global objective function given by their sum
F (x) =

∑N
i=1 fi(xi).

We adopt the following standard assumption.
Assumption 1: (Existence of a Saddle Point) The La-

grangian function of problem (1), L(x, z, p) = F (x) −
p′(Dx + Hz), has a saddle point, i.e., there exists a
solution-multiplier pair (x∗, z∗, p∗) with L(x∗, z∗, p) ≤
L(x∗, z∗, p∗) ≤ L(x, z, p∗) for all x in X , z in Z and p
in RW .

Moreover, we assume that the matrices have special struc-
ture that enables solving problem (1) in an asynchronous
manner:

Assumption 2: (Decoupled Constraints) Matrix H is di-
agonal and invertible. Each row of matrix D has exactly one

nonzero element and matrix D has no columns of all zeros.2

The diagonal structure of matrix H implies that each
component of vector z appears in exactly one linear con-
straint. The conditions that each row of matrix D has only
one nonzero element and matrix D has no column of zeros
guarantee the columns of matrix D are linearly independent
and hence matrix D′D is positive definite. The condition on
matrix D implies that each row of the constraint Dx+Hz =
0 involves exactly one xi. This assumption is satisfied by
an equivalent transformation of the distributed multi-agent
optimization problem that motivates this work.

B. Asynchronous Algorithm Implementation

In the large scale multi-agent applications described above,
it is essential that the iterative solution of the problem in-
volves computations performed by agents in a decentralized
manner (with access to local information) with as little
coordination as possible. This necessitates an asynchronous
implementation in which some of the agents become active
(randomly) in time and update the relevant components of
the decision variable using partial and local information
about problem data while keeping the rest of the components
of the decision variable unchanged. This removes the need
for a centralized coordinator or global clock, which is an
unrealistic requirement in such decentralized environments.

To describe the asynchronous algorithm implementation
we consider in this paper more formally, we first introduce
some notation. We call a partition of the set {1, . . . ,W} a
proper partition if it has the property that if zi and zj are
coupled in the constraint set Z, i.e., value of zi affects the
constraint on zj for any z in set Z, then i and j belong to the
same partition, i.e., {i, j} ⊂ ψ for some ψ in the partition.
We let Π be a proper partition of the set {1, . . . ,W} , which
forms a partition of the set of W rows of the linear constraint
Dx+Hz = 0. For each ψ in Π, we define Φ(ψ) to be the set
of indices i, where xi appears in the linear constraints in set
ψ. Note that Φ(ψ) is an element of the power set 2{1,...,N}.

At each iteration of the asynchronous algorithm, two
random variables Φk and Ψk are realized. While the pair
(Φk,Ψk) is correlated for each iteration k, these variables are
assumed to be independent and identically distributed across
iterations. At each iteration k, first the random variable Ψk

is realized. The realized value, denoted by ψk, is an element
of the proper partition Π and selects a subset of the linear
constraints Dx+Hz = 0. The random variable Φk then takes
the realized value φk = Φ(ψk). We can view this process
as activating a subset of the coupling constraints and the
components that are involved in these constraints. If l ∈ ψk,
we say constraint l as well as its associated dual variable
pl is active at iteration k. Moreover, if i ∈ Φ(ψk), we say

2We assume without loss of generality that each xi is involved at least
in one of the constraints, otherwise, we could remove it from the problem
and optimize it separately. Similarly, the diagonal elements of matrix H are
assumed to be non-zero, otherwise, that component of variable z can be
dropped from the optimization problem.



that component i or agent i is active at iteration k. We use
the notation φ̄k to denote the complement of set φk in set
{1, . . . , N} and similarly ψ̄k to denote the complement of
set ψk in set {1, . . . ,W}.

Our goal is to design an algorithm in which at each itera-
tion k, only active components of the decision variable and
active dual variables are updated using local cost functions
of active agents and active constraints. To that end, we define
fk : RnN → R as the sum of the local objective functions
whose indices are in the subset φk, fk(x) =

∑
i∈φk fi(xi).

We denote by Di the matrix in RW×nN that picks up the
columns corresponding to xi from matrix D and has zeros
elsewhere. Similarly, we denote by Hl the diagonal matrix
in RW×W which picks up the element in the lth diagonal
position from matrix H and has zeros elsewhere. Using this
notation, we define the matrices Dφk =

∑
i∈φk Di, and

Hψk =
∑
l∈ψk Hl.

We impose the following condition on the asynchronous
algorithm.

Assumption 3: (Infinitely Often Update) For all k and all
ψ in the proper partition Π, P(Ψk = ψ) > 0.

This assumption ensures that each element of the partition
Π is active infinitely often with probability 1. Since matrix
D has no columns of all zeros, each of the xi is involved
in some constraints, and hence ∪ψ∈ΠΦ(ψ) = {1, . . . , N}.
The preceding assumption therefore implies that each agent
i belongs to at least one set Φ(ψ) and therefore is active
infinitely often with probability 1. From definition of the
partition Π, we have ∪ψ∈Πψ = {1, . . . ,W}. Thus, each
constraint l is active infinitely often with probability 1.

C. Asynchronous ADMM Algorithm

We next describe the asynchronous ADMM algorithm for
solving problem (1).

I. Asynchronous ADMM algorithm:
A Initialization: choose some arbitrary x0 in X , z0 in
Z and p0 = 0.

B At iteration k, random variables Φk and Ψk takes
realizations φk and ψk. Function fk and matrices
Dφk , Hψk are generated accordingly.
a The primal variable x is updated as xk+1 ∈

argminx∈X f
k(x)− (pk)′Dφkx

+ β
2

∣∣∣∣Dφkx+Hzk
∣∣∣∣2, with xk+1

i = xki , for i
in φ̄k.

b The primal variable z is updated as
zk+1 ∈ argminz∈Z −(pk)′Hψkz +
β
2

∣∣∣∣Hψkz +Dφkxk+1
∣∣∣∣2 , with zk+1

i = zki ,
for i in ψ̄k.

c The dual variable p is updated as

pk+1 = pk − β[Dφkxk+1 +Hψkzk+1]ψk .

We assume that the minimizers in steps B.a and B.b exist,
but need not be unique. This algorithm can be applied to
solve problem (2) in a distributed way using random local
clocks associated with edges to activate the components and
constraints (see [14] for details).

III. CONVERGENCE ANALYSIS FOR ASYNCHRONOUS
ADMM ALGORITHM

In this section, we study the convergence behavior of
the asynchronous ADMM algorithm under Assumptions 1-
3. Our proof relies on relating the asynchronous iterates to
full-information iterates that would be generated by the algo-
rithm that use full information about the cost functions and
constraints at each iteration. We also introduce a weighted
norm and weighted Lagrangian function where the weights
are defined in terms of the probability distributions of random
variables Ψk and Φk representing the active constraints
and components. We use the weighted norm and properties
of the full information iterates to construct a nonnegative
supermartingale along the sequence {xk, zk, pk} generated
by the asynchronous ADMM algorithm and use it to establish
the almost sure convergence of this sequence to a saddle
point of the Lagrangian function of problem (1). By relating
the iterates generated by the asynchronous ADMM algorithm
to the full information iterates through taking expectations of
the weighted Lagrangian function, we can show that under a
compactness assumption on the constraint sets X and Z, the
asynchronous ADMM algorithm converges with rate O(1/k)
in expectation in terms of both objective function value and
constraint violation.

We use the notation αi to denote the probability that
component xi is active at one iteration, i.e., αi = P(i ∈ Φk),
and the notation λl to denote the probability that constraint
l is active at one iteration, i.e., λl = P(l ∈ Ψk). Note that,
since the random variables Φk (and Ψk) are independent
and identically distributed for all k, these probabilities are
the same across all iterations. We define a diagonal matrix
Λ in RW×W with elements λl on the diagonal, i.e., Λll = λl,
for each l ∈ {1, . . . ,W}. Since each constraint is assumed
to be active with strictly positive probability [cf. Assumption
3], matrix Λ is positive definite. We write Λ̄ to indicate the
inverse of matrix Λ. Matrix Λ̄ induces a weighted vector
norm for p in RW as ||p||2Λ̄ = p′Λ̄p. We define a weighted
Lagrangian function L̃(x, z, µ) : RnN ×RW ×RW → R as

L̃(x, z, µ) =

N∑
i=1

1

αi
fi(xi)−µ′

(
N∑
i=1

1

αi
Dix+

∑
l=1

1

λl
Hlz

)
.

(3)
Theorem 3.1: Let {xk, zk, pk} be the sequence gener-

ated by the asynchronous ADMM algorithm. The sequence
{xk, zk, pk} converges almost surely to a saddle point of the
Lagrangian function of problem (1).

We next analyze convergence rate of the asynchronous
ADMM algorithm. The rate analysis is done with respect to



the time ergodic averages defined as x̄(T ) in RnN , the time
average of xk up to and including iteration T , i.e.,

x̄i(T ) =

∑T
1=1 x

k
i

T
, (4)

for all i = 1, . . . , N ,3 and z̄(k) in RW as

z̄l(T ) =

∑T
k=1 z

k
l

T
, (5)

for all l = 1, . . . ,W .
We introduce some scalars Q(µ), Q̄, θ̄ and L̃0, all of which

will be used to provide an upper bound on the constant term
that appears in the rate analysis. Scalar Q(µ) is defined by
Q(µ) = maxx∈X,z∈Z −L̃(x, z, µ), which implies Q(µ) ≥
−L̃(xk+1, zk+1, µ) for any realization of Ψk and Φk. For
the rest of the section, we adopt the following assumption,
which will be used to guarantee that scalar Q(µ) is well
defined and finite:

Assumption 4: The sets X and Z are both compact.
Since the weighted Lagrangian function L̃ is continuous

in x and z [cf. Eq. (3)], and all iterates (xk, zk) are in the
compact set X×Z, by Weierstrass theorem the maximization
in the preceding equality is attained and finite.

Since function L̃ is linear in µ, the function Q(µ)
is the maximum of linear functions and is thus con-
vex and continuous in µ. We define scalar Q̄ as Q̄ =
maxµ=p∗−α,||α||≤1Q(µ). The reason that such scalar Q̄ <
∞ exists is once again by Weierstrass theorem (maximization
over a compact set).

We define vector θ̄ in RW as θ̄ = p∗ −
argmax||u||≤1

∣∣∣∣p0 − (p∗ − u)
∣∣∣∣2

Λ̄
, such maximizer

exists due to Weierstrass theorem and the fact that
the set ||u|| ≤ 1 is compact and the function∣∣∣∣p0 − (p∗ − u)

∣∣∣∣2
Λ̄

is continuous. Scalar L̃0 is defined
by L̃0 = maxθ=p∗−α,||α||≤1 L̃(x0, z0, θ). This scalar is
well defined because the constraint set is compact and the
function L̃ is continuous in θ.

Theorem 3.2: Let {xk, zk, pk} be the sequence generated
by the asynchronous ADMM algorithm and (x∗, z∗, p∗)
be a saddle point of the Lagrangian function of problem
(1). Let the vectors x̄(T ), z̄(T ) be defined as in Eqs.
(4) and (5), the scalars Q̄, θ̄ and L̃0 be defined as
above and the function L̃ be defined as in Eq. (3). Then
the following relations hold:||E(Dx̄(T ) +Hz̄(T ))|| ≤
1
T

[
Q̄+ L̃0 + 1

2β

∣∣∣∣p0 − θ̄
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
,

||E(F (x̄(T )))− F (x∗)|| ≤ ||p∗||∞
T

[
Q̄+ L̃0

+ 1
2β

∣∣∣∣p0 − p∗
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
+ 1

T [Q(p∗)

+L̃(x0, z0, p∗) + 1
2β

∣∣∣∣p0 − θ̄
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
.

We remark that by Jensen’s inequality and convexity
of the function F , we have F (E(x̄(T ))) ≤ E(F (x̄(T ))),

3Here the notation x̄i(T ) denotes the vector of length n corresponding
to agent i.

and the preceding results also holds true when we replace
E(F (x̄(T ))) by F (E(x̄(T ))).

IV. CONCLUSIONS

We developed a fully asynchronous ADMM based al-
gorithm for a convex optimization problem with separable
objective function and linear constraints. This problem is
motivated by distributed multi-agent optimization problems
where a (static) network of agents each with access to a
privately known local objective function seek to optimize the
sum of these functions using computations based on local
information and communication with neighbors. We show
that this algorithm converges almost surely to an optimal
solution. Moreover, the rate of convergence of the objective
function values and feasibility violation is given by O(1/k).
Future work includes investigating network effects (e.g., ef-
fects of communication noise, quantization) and time-varying
network topology on the performance of the algorithm.
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