MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Sensitivity of polynomial composition and
decomposition for signal processing applications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Demirtas, Sefa, Guolong Su, and Alan V. Oppenheim. “Sensitivity of Polynomial
Composition and Decomposition for Signal Processing Applications.” 2012 Conference Record
of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)
(November 2012).

As Published: http://dx.doi.org/10.1109/ACSSC.2012.6489032
Publisher: Institute of Electrical and Electronics Engineers (IEEE])
Persistent URL: http://hdl.handle.net/1721.1/90496

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’'s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90496
http://creativecommons.org/licenses/by-nc-sa/4.0/

Sensitivity of Polynomial Composition and Decompositiam f
Signal Processing Applications

Sefa Demirtas, Guolong Su, and Alan V. Oppenheim
Research Laboratory of Electronics, Massachusetts uitestitf Technology, Cambridge MA, 02139
Email: sefa@mit.edu

Abstract—Polynomial composition is well studied in mathematics but these operations can be used and the extent to which theyinrema
has only been exploited indirectly and informally in signal processing. reliable. For example, such an analysis can suggest wheroages-

Potential future application of polynomial composition for filter imple- ; ; ; ;
mentation and data representation is dependent on its robusess both able signal can be faithfully represented in terms of its ponents

in forming higher degree polynomials from ones of lower degee and N thg presence of gquantization noise. Simi!arly, this ysial can
in exactly or approximately decomposing a polynomial into acomposed quantify the performance of the sharpened filter describefb]i in
form. This paper addresses robustness in this context, deloping sensi- the presence of error in the multiplier coefficients.

tivity bounds for both polynomial composition and decompogion and In Section Il, polynomial composition and decompositiore ar
illustrates the sensitivity through simulations. It also cemonstrates that . . . L .

sensitivity can be reduced by exploiting composition with fist order introduced. A discussion of sensitivity is given in Sectitrollowed
polynomials and commutative polynomials. by several simulations in Section IV. Equivalent composisi with

lower sensitivity are discussed in Section V.
I. INTRODUCTION

) y . [I. POLYNOMIAL COMPOSITION AND DECOMPOSITION
Functional composition of two function8(x) and G(z), denoted

by F(G(x)) or F o G(z), corresponds to replacing the independen
variable of '(-) by G(-). Conversely, functional decomposition is theUencesn, o
process of obtaining two or more functions which, when cosego F(z) = Z Foz™. 1)
yield the original function. There are a number of examples i
Whlc.h fqnctlonal composition has been exploited n sigmatpssing ComposingF'(z) with another polynomial that represents a length-
applications. For example a method for computing the DFT of s?equencq; we obtain
signal on a nonuniform frequency grid using the FFT was thioced "
in [1], where functional composition was used to warp thediency M
axis. Following the main idea in [1], an audio equalizer desi H(z) = F(G(2)) = Z [nG" (x). 2
technigque was proposed in [2]. =0

As another example, linear phase FIR filter design in one btenceh.,, the sequence represented Hyx) becomes
two dimensions represents the frequency response as adnugiric _ 0 1 2 3
polynomial which is in effect functional composition [3}][ ho = folg™) + 11g™) + o 6*) + s (6™) +-. B

An example of polynomial composition as a special case of-funwhere ¢(*) corresponds ta self-convolutions of the sequenag..
tional composition idfilter sharpening[5] where multiple instances Equivalently
of a given filter with Fourier transforn@(e’*') are used in differ- h =Cf 4)
ent configurations in order to improve the passband and atwpb . . (k1)
characteristics of that given filter. Since, in general,asing can be Where thekth column of matrixC consists ofg ; andf andh
represented as composition witff, the Fourier transform of a filter &€ the coefficient vectors df (z) and G(x) in the ascending order,
cascaded wih itself correspondsdg o G(ej“). More sophisticated respectively. It |s relatively st_ralghtforV\_/ard to obtahe_tc_oefﬂmen?s
addition and multiplication operations @#(¢7) are described in [5] °f the composition polynomiali(z) given the coefficients of its
that correspond to the composition of high order polynosniafics ~ COMPONents”(z) andG(x). The inverse problem is, however, more
with G(e’*) to obtain better performance in both the passband aﬁigf"?”lt' ) )
the stopband. Polynomial composition and decompositioperde ~_ CivVen @ polynomialH (z) that is known to be decomposable as
particular attention since polynomials are ubiquitoushia form of £ °G (%) with deg(F) = M anddeg(G) = N, several methods have
the z-transform representation of discrete-time FIR Slend signals. PEen Proposed in the literature to obtaif(x) and G(z) [6], [7],
Utilizing polynomial decomposition, a discrete time sifidn] can  L8]- Decomposition methods in [6], [7] do not require knodge of
be represented by fewer parameters than its nonzero ceatficif (he degrees of the composing polynomials. However thisrinégion
its z-transformH (=) is decomposable a& o G(z) since in general 1S usually not critical sinceleg(F) and deg(G) are restricted to

the degree offf () is larger than the sum of the degrees ofz) be factors ofdeg(H). On the (_)th_er hand, thg algorithm given in
and G(2). [8] employs a more systematic implementation than the nustho

presented in [6] and [7].

t Consider F'(x), the polynomial that represents a lendth-se-

n=0

The main focus of this paper is the sensitivity of the polyrm
composition and the decomposition operations. This is ulisef I1l. SENSITIVITY

understanding the types of signal processing applicationshich
g P g P g app In this section, the sensitivity for polynomial compositiand

This work was supported by Texas Instruments Leadershipvesity ~decomposition are formally defined. Explicit expressionsnell as
Program, and Bose Corporation. upper and lower bounds for certain sensitivity measureslataned.



A. Composition Sensitivity

The coefficients of a decomposable polynonmi&|z) that is given
as in equation (2) are linearly dependent on the coefficiehfs(x)
and nonlinearly dependent on the coefficient&/¢f). The sensitivity
of composition for a given decomposable polynomia(x) can be
defined as the maximum magnification of a small perturbation
in its composing polynomials, i.e.

Su_H = max Ean/En

Au EAU/EU (5)

Equivalently,

Ah = DAg (15)

where D is an (MN + 1) x (N + 1) Toeplitz matrix the first
column of which consists of the coefficients of the polyndniigz),
namely[do di da ...dunt+1-~]7, with zero padding of lengtiV.
The sensitivity of composition with respect @(z) becomes, by
equations (5) and (15),

IDAg |lgll3
3l 1Ih3

(16)

Sc_ g = max
Ag

whereU is either F' or G depending on which is being perturbed,

En = ||h||3 is the energy of the coefficient vecthr Ey = ||u]|3 is
the energy of the coefficient vector and|| - ||3 is the square of the
two norm of a vector. The relative increase in perturbatiepeshds
on the direction of the perturbation vectdru when its magnitude
is arbitrarily small; and sensitivity is defined at the diien of
maximum magnification.

1) Formulation of Sr—, i: Due to the linear relationship given in

equation (4), a perturbatioAf in the coefficient vector of”(z) will
result in a change in the coefficients Hf(z) given by

Ah = CAf. (6)

The sensitivity of composition with respect #®(z) becomes, by
equation (4), (5) and (6)
ICAf|]3 |If]]3
SF_>H = maX ——a5 . (7)
ar [|Af])3 ||CE[3
For a give2n decomposition of a polynomiéll(z) as F’ 02G(m), the
[Nz 5 ; Afll5
factor TS is constant. The maximum value % is equal
to aé’mw, where oc,maqz iS the maximum singular value of.
Therefore equation (7) becomes

[N
[

8)

2
Sr—n = 0C,max

2
Furthermore,‘l”cf‘f'ﬁ‘2 is bounded above byg>, ., and bounded below
Z :

by ag?mw for any f. Hence, regardless of'(z), the sensitivity
Sr_.u satisfies

2
UC,maw

1<SF—>H <

9)

2
O—C,min

0'2 . e
where —$-m2z is the square of the condition number Gf

2) Forcrﬁﬁilrétion of Sem: Perturbing a single coefficienjy in
G(x) by Agr does not affect the coefficient of” in H(z) for
k > n. Such a perturbation results in the composition

H(z) = F(G(z) + Agrz") = H(z) + AH(x)

(10)

where

~
~

AH(z) ~ F'(G(z))Agpz” (1)

As in the previous section, for a given decomposition M(z)

2
. . A
as F o G(x), “:51:2 is constant. The maximum value |Agg\|H2
2 2

is a%,maz, where op,mas 1S the maximum singular value db.
Therefore equation (16) becomes

NN

|lg]
|3
An upper bound forSg—.m can be obtained by an alternative
representation of the coefficient vector Bf(z) given in equation
(13) in the form of equation (4), i.e.

Sconm = 0—]23,maac (17)

d=Cf=cCVf (18)

wheref is the coefficient vector of” (x) and V is the (M + 1) x

(M + 1) matrix with superdiagonal elements2,... M and zeros
elsewhere, corresponding to the derivative operator. Eotovsd,

Ah andAg, which are related through equation (14), a general result
given in the appendix for the convolution of two sequenceglies

Ean
Eng

Therefore, from the definition in equation (%) » can be bounded
as

< (N +1)Eq. (19)

Eq 2 ||CVE|[3
S S (N+1)Eg— = (N +1 20
Defining
w = Cf, (21)

it can be showrf = (CTC) ™" CTw sinceC is full rank. Therefore
equation (20) becomes

2 |ICV

CTe) ™ CTwl|2
St < (N + 1)||glRIEY(CO) I

[wll3 (22)

< (N +Dllgll2 o7 max

where the matrixT = CV (CTC)™'CT and or,mas is the
maximum singular value dT.

B. Decomposition Sensitivity

assumingAg;. is small and only the first term in the Taylor series A small perturbationAh on the coefficients of a decomposable

for equation (10) is considered. Fbr< n, equation (11) implies
Ahn = Agkdn—k (12)

"~* in the polynomial D(z)

where d,,_, is the coefficient ofz
defined as

D(z) = F'(G()).

Perturbation of all the coefficients,, £ =0,1,..
addition of error terms in equation (12), i.e.

k<n

(13)

., N results in the

(14)

polynomial H(x) = F o G(x) will render it nondecomposable in
general. In this case, defining the sensitivity of decontosiis
not meaningful. In other case (x) may remain decomposable but
the new componentsd’(z) and G(x) may have different degrees
than F'(x) and G(x), respectively. These cases are excluded from a
discussion regarding their sensitivity here as well sitheedecompo-
sition process may be regarded as having failed by not piedithe
orders of the components correctly. Consequently, the itefinfor
sensitivity of the decomposition will be restricted to case which
the perturbation preserves decomposability with comptzneh the
same order.
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Fig. 1. Sensitivity of the coefficients dff (z) with respect to the coefficients Fig. 2. Sensitivity of the coefficients dff (x) with respect to the coefficients
of F(x). The order ofG(z) is seven in all compositions. Each point isof G(x). The order of F'(x) is seven in all compositions. Each point is
the median ofSr_, y obtained from ten thousand compositions, where ththe median ofSs_, ; obtained from ten thousand compositions, where the
vertical bars indicate the range from the maximum to the mimh values vertical bars indicate the range from the maximum to the mmimn values
attained. attained. The dashed line indicates the upper bound givegution (22).

Perturbations in composing polynomidix) andG(x) may lead vector of C that corresponds to its smallest singular value. Since the
to much smaller perturbations in the coefficients Bfx). This condition number can be made as large as desired by diffeheites
implies that decomposition under this perturbatiorHige) will yield  of G(z), for example when the leading coefficie6t(x) is made
larger relative perturbations if'(z) and G(x). The sensitivity of arbitrarily small, the composition sensitivity~_. z is unbounded.

decomposition hence can reasonably be defined as Hence composition can be very ill-conditioned with respecthe
-1 coefficients of F(z). However for a fixedF'(z), it is not obvious
B Ean/En v : L
Suou = max m (23) that Sr—.m as given in equation (8) can be made arbitrarily large
u Au u

with different choices for matrixC. This follows from the fact that
where againU is either I’ or G. Su—u corresponds to the casematrix C is restricted to have a certain structure, namely its cokimn
where the perturbation on the components occurs in thetitireof  has to be self convolutions of the coefficients of sofier).
maximum attenuation. The sensitivitySr_, , as defined in equation (8), is shown in Fig.
1) Formulation of Sy r: The sensitivity associated with ob-1 as a function of the degree @f(z). In Fig. 1, each point shows
taining F'(z) from a decomposable polynomi@f (z) becomes, by the median value ofr_. obtained from composing one hundred

equations (4), (23) and (6) instances ofF'(z) of the corresponding order with each one of one

CAFl12 11F112 \ 1 £z 0\ 1 hundred instances off(z) of order seven. The vertical bars show

SHoF = <minu Ly > = (020 i m) the maximum and minimum values attained in these ten thausan
At [|Af])3 [1Cf][3 et

(24) compositions. For consistency, the same se€f) were used for

. . ; . .

Furthermore,( \g‘!%z) is bounded above by ... and bounded each degree of'(z). The smjulatl.on resullts are consistent with the
, MG o ) ’ lower and upper bounds given in equation (9), namelgnd the

below by oc ;- Hence similar to equation (9), for any(z), the  gquare of the condition number 6f, respectively. However the upper

sensitivity Sir—  is bounded by the square of the condition numb&g, ng has been omitted from this figure due to very large salat

of C, which only depends oti/(z), i.e. exceed the display scale by multiple orders although itghttii.e.

O man attainable for certain choices @ (x).
1< Su-r < oz (25 2) Evaluation of Sg_r: The sensitivity Sa_#, as defined in

] o ) ] equation (17), is shown in Fig. 2 as a function of the degre@ (af).
_2)_ Formulation of Sy.c: The sensitivity _assouated with ob- |, Fig. 2, each point indicates the median valueSef_. ; obtained
taining G;(z) from a decomposable polynomidl () becomes, by from composing one hundred instancegfc) of the corresponding

equations (23) and (15), order with each one of one hundred instance$'6f) of order seven.
. IDAg|3 |23 -1 ) g3 -1 The dashed line indicates the upper bound given in equa#@h (
SH-c = (I{Allgn aegllz ||h||2> = ( D,min ||h||2> where||g||3 = 1 and o ma. is evaluated for the(z) that attains
? 2 2 (26) the maximum value obc—,x in the simulations for each degree.
IV. SIMULATIONS B. Simulations for decomposition sensitivity
In the following subsections, several simulation results pro- 1) Evaluation ofSg—r: Fig. 3 illustrates the sensitivity of the

vided to illustrate the sensitivity of the polynomial consjtion and coefficients of F'(x) with respect to the perturbations it (z),
decomposition operations. The vectors of coefficients ef tom- NamelySy_r as described in equation (24). The values are extracted
posing polynomialsF (z) and G(z) were selected from a standardffom the experiments performed in Section IV-Al.

normal distribution by the andn function of MATLAB and were  2) Evaluation ofSy_.c: Sk, as described in equation (26) the

normalized to have unit energy. The effect of normalizatamd ~Sensitivity of the coefficients af(x) with respect to the perturbations
scaling will be discussed in Section V. in H(x) is illustrated in Fig. 4. The values are extracted from the

experiments performed in Section IV-A2.
A. Simulations for composition sensitivity
1) Evaluation of Sp_m: In Section llI-Al, Sp_, g was shown
to be bounded by the square of the condition numberCofas A. Compositions with first order polynomials
given in equation (9) regardless of the specific valugZ¢k). This From a decompositiorF’ o G(x) for H(zx), equivalent decom-
bound is in fact attained if is aligned with the right singular positions can be obtained through basic operationsF¢m) and

V. EQUIVALENT COMPOSITIONS WITH LOWER SENSITIVITY
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Fig. 3. Sensitivity of the coefficients df'(z) with respect to the coefficients
of H(xz). The order ofG(x) is seven in all compositions. Each point is
the median ofSy_, » obtained from ten thousand compositions, where the
vertical bars indicate the range from the maximum to the mmimh values
attained.

] ) ~ Fig. 5. Sg_, 5 as afunction ofz andb. F'(z)andG(x) are chosen to be the
G(z) [9], [10]. For example, given any first order polynomialpair of polynomials that attained the largest sensitivityFig. 1 with F'(x)

A(z) = ax +b, a =0 with its inverse with respect to compositionof order fourteen and:(z) of order seven.
AN (z) = £ — 2, the composition can be represented as

F(G(z)) = (Fox Y o(Ao@G)(z) = F(G(z)). 27) Fig. 5 illustrates the effectiveness of choosing differesiues for
a andb in order to reduceSr_,n. Here, F(z)and G(x) are chosen
to be the pair of polynomials that attained the largest &gitgi of
'3 x 10* in Fig. 1 with F'(z) of order fourteen and:(z) of order
seven. The simulation results in Fig. 5 indicate that, ;; gets larger
as b tends to infinity in either direction for this pair df'(x) and
h = Cf = (CA)(A™'f) (28) G(x). Sp_py attains its minimum aw* = 0.73 and b* = 0.57.
Table | displays the values of all four sensitivities asate with this
where A is a square, upper triangular and invertible matkth  composition before and after composition witt) = 0.73z +0.57.
column of which consists of — 1 self convolutions of the sequence The effect of compositions with first order polynomials 88z
{b, a} or equivalently the coefficients dfiz +b)"~" in the ascending s relatively straightforward. Sinc®(z) = F'(G(z)) as given in

This implies that the compositiod (z) and the orders ofF'(z)
and G(x) can be preserved while the sensitivity can be lowered
appropriate choices for the coefficients Xfz). Similar to equation
(4), equation (27) corresponds to the matrix equation

order. From equation (7), the sensitivii_, ; becomes equation (13), introducing a first order polynomial and itseirse
[|[CAAF||3 ||A~f||3 into the composition yields
Srn SMFATR[CHE 29) 1
2 2 (FoX™) o(AoG(x) = (A" F oA )oAoG(z) = =D(x),

Although matrix A can be further decomposed into the product of a (30)
two simpler matrices that depend only enand b, respectively, it which corresponds to simply scaling(z). From equation (16), the
is not obvious howSr_, ; will behave as a joint function of and  sensitivity S_, ;; becomes,

b in general. The effect of pure scaling, which correspondsh&

1 2 2 bel|2
casea > 0, b = 0 and A is diagonal, can be inferred by examining g, . — max ||aDAg2||2 |lag + b26||2 = llg + aQeHQSG_)H
the extremal values ofi. More specifically, as: tends to infinity, g ||Agll3 |[h]3 lgll3 (31)

[|ICAAEL|2 N
the termmaxar "3z also tends to infinity whereas the termy pore o — [1,0,...,0]" and it is the same size as This implies

—1 2 . . .
7"‘;0“72”2 tends to a constant number if the constant ternFaf) is  that if [go + 2| < |go| wheregp is the constant term it¥(z), Sc—u
nonzero. The roles of these two terms are reversedtasds to zero. Will also be improved. This is indeed the case for the optipaiht

In both casesSy_, ;; becomes infinity, which suggests the existenc# Fig. 5 and introducing a linear composition to improse_, »
of a minimum at a finite value of > 0. has decreasef¢—. . Due to its relationship wittb¢_, i, the effect

is reversed oSy, in such a way that their product remains the
same. On the other hand, the effect$g_, = can be only described
at extreme values ai andb similarly to the case ofz_, ;. Fig. 6
illustrates the behavior of these sensitivities as a fonctf a and

b for same pair of polynomiald’(z) and G(z). Since the optimal
points are not the same for all sensitivitie$, andb* can be chosen
depending on the application.

10° I deg(F(x)) = 7

Sensitivity S HoG
=
(=]
T

, TABLE |
0= 2 : 8 10 12 14 16 SENSITIVITY BEFORE AND AFTER COMPOSITION WITHa ¥z + b¥

deg(G
ca(ct Sensitivity |  Original at (a*,b¥)

Fig. 4. Sensitivity of the coefficients @ (z) with respect to the coefficients Srou 6.3 x10% | 2.2 x10°

of H(z). The order of F(z) is seven in all compositions. Each point is ScoH 1.7 x10% | 1.5 x 10*

the median ofSy_, ¢ obtained from ten thousand compositions, where the SHoF 1.1 x 108 3.5 x 10!

vertical bars indicate the range from the maximum to the mmimh values SH LG 1.5 x 10% 1.7 x 10%

attained.
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Fig. 6. The behavior o6~ _, ;, Sy, 7 and Sy _, & as a function otz andb for same pair of polynomialg”(x) and G(x) as in Fig. 5.

B. Commutative polynomials Proof: For0 < n < L1 + L2, Cauchy-Schwarz inequality implies
Equivalent decompositions from a given decomposition ¢sm lae ) min(Ly,n)
obtained when the components are commutative. For instammeo- ~ s3[n] = Z si[m]sz2[n —m]
mials have the commutative property, i2€. o 27 = % 0 2P = 2P? m=max(0,n—Lz)
for any nonnegative integegs and ¢q. Another class of polynomials min(Lq,n) min(Ly,n)
that has the commutative property is Chebyshev polynomidish < > s3[m] > s3[n —m)]
are defined ag’,(z) = cos(ncos™!(z)) wheren is a nonnegative m=max(0,n—Lz) m=max(0,n—Lz)
integer. This property follows easily since min(L1,n)
2
< sim] | Es,.
Ty 0 T () = cos(mcos *(cos(ncos ' (z)))) Z iim] :

m=max(0,n—Lg)

-1
cos(mmn cos™ (z)) (32) Summing forn = 0,1,..., (L1 + L2)

cos(n cos™ " (cos(m cos™ ' (x))))

Ly+Lo min(Lj,n)
= Tn o Tm(fC) E83 < Z 8% [TTL] Es2
. . iy ) . n=0 \m=max(0,n—Ls)
An entire set of commutative polynomiddsdefined in [10] as a set Ly /mtLs
of polynomials which contains at least one of each positiegree, _ Z Z s%[m] Ba, = (La + 1)Es, Es,.
and any two members commute with each other. Furthermors, it =0 \ o ? e

shown in [10] that only two such classes exist, which are & th
form A" o P, o A(z) where P,,(z) is a monomial or a Chebyshev _ . ]
polynomial and\(x) is any first order polynomial. The commutative [11 A- Oppenheim, D. Johnson, and K. Steiglitz, “Computatiof spectra
property allows reordering the components in a decompuositi a with unequal resolution using the fast fourier transforfrbceedings

S . . . of the IEEE vol. 59, no. 2, pp. 299 — 301, Feb. 1971.
way to minimize the sensitivity of interest among the fouifedent  [2] c. Asavathiratham, P. Beckmann, and A. Oppenheim, “Beegy warp-

definitions in Section 1l along with first order composit®ras ing in the design and implementation of fixed-point audio aigers,”

discussed in Section V-A. in Applications of Signal Processing to Audio and Acousti@Q9allEEE

Workshop on1999, pp. 55-58.

T. Parks and J. McClellan, “Chebyshev approximation ionrecursive

digital filters with linear phase,Circuit Theory, IEEE Transactions on
In this paper, the sensitivities associated with polyndrodanpo- vol. 19, no. 2, pp. 189 — 194, Mar 1972. o

sition and decomposition have been studied in order to gyaheir 4 R- Mersereau, W. Mecklenbrauker, and J. Quatieri, T.,ctMllan

. . L . transformations for two-dimensional digital filteringspa: Design,”
robustness for signal processing applications. Exprassior sensi- Circuits and Systems, IEEE Transactions, ool. 23, no. 7, pp. 405
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