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Abstract—Polynomial composition is well studied in mathematics but
has only been exploited indirectly and informally in signal processing.
Potential future application of polynomial composition for filter imple-
mentation and data representation is dependent on its robustness both
in forming higher degree polynomials from ones of lower degree and
in exactly or approximately decomposing a polynomial into acomposed
form. This paper addresses robustness in this context, developing sensi-
tivity bounds for both polynomial composition and decomposition and
illustrates the sensitivity through simulations. It also demonstrates that
sensitivity can be reduced by exploiting composition with first order
polynomials and commutative polynomials.

I. I NTRODUCTION

Functional composition of two functionsF pxq andGpxq, denoted
by F pGpxqq or F �Gpxq, corresponds to replacing the independent
variable ofF p�q by Gp�q. Conversely, functional decomposition is the
process of obtaining two or more functions which, when composed,
yield the original function. There are a number of examples in
which functional composition has been exploited in signal processing
applications. For example a method for computing the DFT of a
signal on a nonuniform frequency grid using the FFT was introduced
in [1], where functional composition was used to warp the frequency
axis. Following the main idea in [1], an audio equalizer design
technique was proposed in [2].

As another example, linear phase FIR filter design in one or
two dimensions represents the frequency response as a trigonometric
polynomial which is in effect functional composition [3], [4].

An example of polynomial composition as a special case of func-
tional composition isfilter sharpening[5] where multiple instances
of a given filter with Fourier transformGpejωq are used in differ-
ent configurations in order to improve the passband and stopband
characteristics of that given filter. Since, in general, squaring can be
represented as composition withω2, the Fourier transform of a filter
cascaded wih itself corresponds toω2 �Gpejωq. More sophisticated
addition and multiplication operations onGpejωq are described in [5]
that correspond to the composition of high order polynomials of ω
with Gpejωq to obtain better performance in both the passband and
the stopband. Polynomial composition and decomposition deserve
particular attention since polynomials are ubiquitous in the form of
the z-transform representation of discrete-time FIR filters and signals.
Utilizing polynomial decomposition, a discrete time signal hrns can
be represented by fewer parameters than its nonzero coefficients if
its z-transformHpzq is decomposable asF �Gpzq since in general
the degree ofHpzq is larger than the sum of the degrees ofF pzq
andGpzq.

The main focus of this paper is the sensitivity of the polynomial
composition and the decomposition operations. This is useful in
understanding the types of signal processing applicationsin which
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these operations can be used and the extent to which they remain
reliable. For example, such an analysis can suggest when a decompos-
able signal can be faithfully represented in terms of its components
in the presence of quantization noise. Similarly, this analysis can
quantify the performance of the sharpened filter described in [5] in
the presence of error in the multiplier coefficients.

In Section II, polynomial composition and decomposition are
introduced. A discussion of sensitivity is given in SectionIII followed
by several simulations in Section IV. Equivalent compositions with
lower sensitivity are discussed in Section V.

II. POLYNOMIAL COMPOSITION AND DECOMPOSITION

ConsiderF pxq, the polynomial that represents a length-M se-
quencefn,

F pxq � M̧

n�0

fnx
n
. (1)

ComposingF pxq with another polynomial that represents a length-N

sequencegn, we obtain

Hpxq � F pGpxqq � M̧

n�0

fnG
npxq. (2)

Hencehn, the sequence represented byHpxq becomes

hn � f0pgp0qq � f1pgp1qq � f2pgp2qq � f3pgp3qq � . . . (3)

where gpiq corresponds toi self-convolutions of the sequencegn.
Equivalently

h � Cf (4)

where thekth column of matrixC consists ofgpk�1q; and f andh

are the coefficient vectors ofF pxq andGpxq in the ascending order,
respectively. It is relatively straightforward to obtain the coefficients
of the composition polynomialHpxq given the coefficients of its
componentsF pxq andGpxq. The inverse problem is, however, more
difficult.

Given a polynomialHpxq that is known to be decomposable as
F �Gpxq with degpF q � M anddegpGq � N , several methods have
been proposed in the literature to obtainF pxq and Gpxq [6], [7],
[8]. Decomposition methods in [6], [7] do not require knowledge of
the degrees of the composing polynomials. However this information
is usually not critical sincedegpF q and degpGq are restricted to
be factors ofdegpHq. On the other hand, the algorithm given in
[8] employs a more systematic implementation than the methods
presented in [6] and [7].

III. SENSITIVITY

In this section, the sensitivity for polynomial composition and
decomposition are formally defined. Explicit expressions as well as
upper and lower bounds for certain sensitivity measures areobtained.



A. Composition Sensitivity

The coefficients of a decomposable polynomialHpxq that is given
as in equation (2) are linearly dependent on the coefficientsof F pxq
and nonlinearly dependent on the coefficients ofGpxq. The sensitivity
of composition for a given decomposable polynomialHpxq can be
defined as the maximum magnification of a small perturbation∆u

in its composing polynomials, i.e.

SUÑH � max
∆u

E∆h{Eh

E∆u{Eu

(5)

whereU is eitherF or G depending on which is being perturbed,
Eh � ||h||22 is the energy of the coefficient vectorh, Eu � ||u||22 is
the energy of the coefficient vectoru and || � ||22 is the square of the
two norm of a vector. The relative increase in perturbation depends
on the direction of the perturbation vector∆u when its magnitude
is arbitrarily small; and sensitivity is defined at the direction of
maximum magnification.

1) Formulation ofSFÑH : Due to the linear relationship given in
equation (4), a perturbation∆f in the coefficient vector ofF pxq will
result in a change in the coefficients ofHpxq given by

∆h � C∆f . (6)

The sensitivity of composition with respect toF pxq becomes, by
equation (4), (5) and (6)

SFÑH � max
∆f

||C∆f ||22||∆f ||2
2

||f ||22||Cf ||2
2

. (7)

For a given decomposition of a polynomialHpxq asF �Gpxq, the

factor ||f ||2
2||Cf ||2
2

is constant. The maximum value of||C∆f ||2
2||∆f ||2

2

is equal

to σ2

C,max, where σC,max is the maximum singular value ofC.
Therefore equation (7) becomes

SFÑH � σ
2

C,max

||f ||22||Cf ||2
2

. (8)

Furthermore, ||f ||22||Cf ||2
2

is bounded above byσ�2

C,min and bounded below

by σ�2

C,max for any f . Hence, regardless ofF pxq, the sensitivity
SFÑH satisfies

1 ¤ SFÑH ¤ σ2

C,max

σ2

C,min

(9)

where
σ2

C,max

σ2

C,min

is the square of the condition number ofC.

2) Formulation ofSGÑH : Perturbing a single coefficientgk in
Gpxq by ∆gk does not affect the coefficient ofxn in Hpxq for
k ¡ n. Such a perturbation results in the composition

H̃pxq � F pGpxq �∆gkx
kq � Hpxq �∆Hpxq (10)

where
∆Hpxq � F

1pGpxqq∆gkx
k (11)

assuming∆gk is small and only the first term in the Taylor series
for equation (10) is considered. Fork ¤ n, equation (11) implies

∆hn � ∆gkdn�k (12)

where dn�k is the coefficient ofxn�k in the polynomialDpxq
defined as

Dpxq � F
1pGpxqq. (13)

Perturbation of all the coefficientsgk, k � 0, 1, . . . , N results in the
addition of error terms in equation (12), i.e.

∆hn �
ķ¤n

∆gkdn�k. (14)

Equivalently,
∆h � D∆g (15)

where D is an pMN � 1q � pN � 1q Toeplitz matrix the first
column of which consists of the coefficients of the polynomial Dpxq,
namelyrd0 d1 d2 . . . dMN�1�N sT , with zero padding of lengthN .
The sensitivity of composition with respect toGpxq becomes, by
equations (5) and (15),

SGÑH � max
∆g

||D∆g||22||∆g||2
2

||g||22||h||2
2

. (16)

As in the previous section, for a given decomposition ofHpxq
as F � Gpxq, ||g||2

2||h||2
2

is constant. The maximum value of||D∆g||2
2||∆g||2

2

is σ2

D,max, where σD,max is the maximum singular value ofD.
Therefore equation (16) becomes

SGÑH � σ
2

D,max

||g||22||h||2
2

. (17)

An upper bound forSGÑH can be obtained by an alternative
representation of the coefficient vector ofDpxq given in equation
(13) in the form of equation (4), i.e.

d � Cf̃ � CVf (18)

where f̃ is the coefficient vector ofF 1pxq andV is the pM � 1q �pM � 1q matrix with superdiagonal elements1, 2, . . .M and zeros
elsewhere, corresponding to the derivative operator. For vectorsd,
∆h and∆g, which are related through equation (14), a general result
given in the appendix for the convolution of two sequences implies

E∆h

E∆g

¤ pN � 1qEd. (19)

Therefore, from the definition in equation (5),SGÑH can be bounded
as

SGÑH ¤ pN � 1qEg
Ed

Eh

� pN � 1q||g||22 ||CVf ||22||Cf ||2
2

(20)

Defining
w � Cf , (21)

it can be shownf � �
CTC

��1
CTw sinceC is full rank. Therefore

equation (20) becomes

SGÑH ¤ pN � 1q||g||22 ||CV
�
CTC

��1
CTw||22||w||2

2¤ pN � 1q||g||22 σ2

T,max

(22)

where the matrixT � CV
�
CTC

��1
CT and σT,max is the

maximum singular value ofT.

B. Decomposition Sensitivity

A small perturbation∆h on the coefficients of a decomposable
polynomial Hpxq � F � Gpxq will render it nondecomposable in
general. In this case, defining the sensitivity of decomposition is
not meaningful. In other cases,Hpxq may remain decomposable but
the new componentŝF pxq and Ĝpxq may have different degrees
thanF pxq andGpxq, respectively. These cases are excluded from a
discussion regarding their sensitivity here as well since the decompo-
sition process may be regarded as having failed by not predicting the
orders of the components correctly. Consequently, the definition for
sensitivity of the decomposition will be restricted to cases in which
the perturbation preserves decomposability with components of the
same order.
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Fig. 1. Sensitivity of the coefficients ofHpxq with respect to the coefficients
of F pxq. The order ofGpxq is seven in all compositions. Each point is
the median ofSFÑH obtained from ten thousand compositions, where the
vertical bars indicate the range from the maximum to the minimum values
attained.

Perturbations in composing polynomialsF pxq andGpxq may lead
to much smaller perturbations in the coefficients ofHpxq. This
implies that decomposition under this perturbation inHpxq will yield
larger relative perturbations inF pxq and Gpxq. The sensitivity of
decomposition hence can reasonably be defined as

SHÑU � max
∆u

�
E∆h{Eh

E∆u{Eu


�1

(23)

where againU is eitherF or G. SHÑU corresponds to the case
where the perturbation on the components occurs in the direction of
maximum attenuation.

1) Formulation of SHÑF : The sensitivity associated with ob-
taining F pxq from a decomposable polynomialHpxq becomes, by
equations (4), (23) and (6)

SHÑF � �
min
∆f

||C∆f ||22||∆f ||2
2

||f ||22||Cf ||2
2


�1 � �
σ
2

C,min

||f ||22||Cf ||2
2


�1

.

(24)

Furthermore,
� ||f ||2

2||Cf ||2
2

	�1

is bounded above byσ2

C,max and bounded

below byσ2

C,min. Hence similar to equation (9), for anyF pxq, the
sensitivitySHÑF is bounded by the square of the condition number
of C, which only depends onGpxq, i.e.

1 ¤ SHÑF ¤ σ2

C,max

σ2

C,min

. (25)

2) Formulation of SHÑG: The sensitivity associated with ob-
taining Gpxq from a decomposable polynomialHpxq becomes, by
equations (23) and (15),

SHÑG � �
min
∆g

||D∆g||22||∆g||2
2

||g||22||h||2
2


�1 � �
σ
2

D,min

||g||22||h||2
2


�1

.

(26)

IV. SIMULATIONS

In the following subsections, several simulation results are pro-
vided to illustrate the sensitivity of the polynomial composition and
decomposition operations. The vectors of coefficients of the com-
posing polynomialsF pxq andGpxq were selected from a standard
normal distribution by therandn function of MATLAB and were
normalized to have unit energy. The effect of normalizationand
scaling will be discussed in Section V.

A. Simulations for composition sensitivity

1) Evaluation ofSFÑH : In Section III-A1, SFÑH was shown
to be bounded by the square of the condition number ofC as
given in equation (9) regardless of the specific value ofF pxq. This
bound is in fact attained iff is aligned with the right singular
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Fig. 2. Sensitivity of the coefficients ofHpxq with respect to the coefficients
of Gpxq. The order ofF pxq is seven in all compositions. Each point is
the median ofSGÑH obtained from ten thousand compositions, where the
vertical bars indicate the range from the maximum to the minimum values
attained. The dashed line indicates the upper bound given inequation (22).

vector ofC that corresponds to its smallest singular value. Since the
condition number can be made as large as desired by differentchoices
of Gpxq, for example when the leading coefficientGpxq is made
arbitrarily small, the composition sensitivitySFÑH is unbounded.
Hence composition can be very ill-conditioned with respectto the
coefficients ofF pxq. However for a fixedF pxq, it is not obvious
that SFÑH as given in equation (8) can be made arbitrarily large
with different choices for matrixC. This follows from the fact that
matrixC is restricted to have a certain structure, namely its columns
has to be self convolutions of the coefficients of someGpxq.

The sensitivitySFÑH , as defined in equation (8), is shown in Fig.
1 as a function of the degree ofF pxq. In Fig. 1, each point shows
the median value ofSFÑH obtained from composing one hundred
instances ofF pxq of the corresponding order with each one of one
hundred instances ofGpxq of order seven. The vertical bars show
the maximum and minimum values attained in these ten thousand
compositions. For consistency, the same set ofGpxq were used for
each degree ofF pxq. The simulation results are consistent with the
lower and upper bounds given in equation (9), namely1 and the
square of the condition number ofC, respectively. However the upper
bound has been omitted from this figure due to very large values that
exceed the display scale by multiple orders although it is tight, i.e.
attainable for certain choices ofF pxq.

2) Evaluation ofSGÑH : The sensitivitySGÑH , as defined in
equation (17), is shown in Fig. 2 as a function of the degree ofGpxq.
In Fig. 2, each point indicates the median value ofSGÑH obtained
from composing one hundred instances ofGpxq of the corresponding
order with each one of one hundred instances ofF pxq of order seven.
The dashed line indicates the upper bound given in equation (22)
where ||g||22 � 1 andσT,max is evaluated for theGpxq that attains
the maximum value ofSGÑH in the simulations for each degree.

B. Simulations for decomposition sensitivity

1) Evaluation ofSHÑF : Fig. 3 illustrates the sensitivity of the
coefficients of F pxq with respect to the perturbations inHpxq,
namelySHÑF as described in equation (24). The values are extracted
from the experiments performed in Section IV-A1.

2) Evaluation ofSHÑG: SHÑG, as described in equation (26) the
sensitivity of the coefficients ofGpxq with respect to the perturbations
in Hpxq is illustrated in Fig. 4. The values are extracted from the
experiments performed in Section IV-A2.

V. EQUIVALENT COMPOSITIONS WITH LOWER SENSITIVITY

A. Compositions with first order polynomials

From a decompositionF � Gpxq for Hpxq, equivalent decom-
positions can be obtained through basic operations onF pxq and



2 4 6 8 10 12 14 16
10

0

10
3

10
6

10
9

10
12

10
15

deg(F(x))

S
en

si
tiv

ity
 S

 H
→

F
deg(G(x)) = 7

Fig. 3. Sensitivity of the coefficients ofF pxq with respect to the coefficients
of Hpxq. The order ofGpxq is seven in all compositions. Each point is
the median ofSHÑF obtained from ten thousand compositions, where the
vertical bars indicate the range from the maximum to the minimum values
attained.

Gpxq [9], [10]. For example, given any first order polynomial
λpxq � ax� b, a ¥ 0 with its inverse with respect to composition
λ�1pxq � x

a
� b

a
, the composition can be represented as

F pGpxqq � pF � λ�1q � pλ �Gqpxq � F̄ pḠpxqq. (27)

This implies that the compositionHpxq and the orders ofF pxq
andGpxq can be preserved while the sensitivity can be lowered by
appropriate choices for the coefficients ofλpxq. Similar to equation
(4), equation (27) corresponds to the matrix equation

h � Cf � pCAqpA�1
f q (28)

where A is a square, upper triangular and invertible matrixkth
column of which consists ofk� 1 self convolutions of the sequencetb, au or equivalently the coefficients ofpax�bqk�1 in the ascending
order. From equation (7), the sensitivitySF̄ÑH becomes

SF̄ÑH � max
∆f

||CA∆f ||22||∆f ||2
2

||A�1f ||22||Cf ||2
2

. (29)

Although matrixA can be further decomposed into the product of
two simpler matrices that depend only ona and b, respectively, it
is not obvious howSF̄ÑH will behave as a joint function ofa and
b in general. The effect of pure scaling, which corresponds tothe
casea ¡ 0, b � 0 andA is diagonal, can be inferred by examining
the extremal values ofa. More specifically, asa tends to infinity,
the termmax∆f

||CA∆f ||2
2||∆f ||2

2

also tends to infinity whereas the term||A�1f ||2
2||Cf ||2

2

tends to a constant number if the constant term ofF pxq is
nonzero. The roles of these two terms are reversed asa tends to zero.
In both cases,SF̄ÑH becomes infinity, which suggests the existence
of a minimum at a finite value ofa ¡ 0.
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Fig. 4. Sensitivity of the coefficients ofGpxq with respect to the coefficients
of Hpxq. The order ofF pxq is seven in all compositions. Each point is
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Fig. 5. SF̄ÑH as a function ofa andb. F pxqandGpxq are chosen to be the
pair of polynomials that attained the largest sensitivity in Fig. 1 with F pxq
of order fourteen andGpxq of order seven.

Fig. 5 illustrates the effectiveness of choosing differentvalues for
a and b in order to reduceSFÑH . Here,F pxqandGpxq are chosen
to be the pair of polynomials that attained the largest sensitivity of
6.3� 10

4 in Fig. 1 with F pxq of order fourteen andGpxq of order
seven. The simulation results in Fig. 5 indicate thatSF̄ÑH gets larger
as b tends to infinity in either direction for this pair ofF pxq and
Gpxq. SF̄ÑH attains its minimum ata� � 0.73 and b� � 0.57.
Table I displays the values of all four sensitivities associated with this
composition before and after composition withλpxq � 0.73x�0.57.

The effect of compositions with first order polynomials onSGÑH

is relatively straightforward. SinceDpxq � F 1pGpxqq as given in
equation (13), introducing a first order polynomial and its inverse
into the composition yieldspF � λ�1q1 � pλ �Gpxqq � ppλ�1q1F 1 � λ�1q � λ �Gpxq � 1

a
Dpxq,

(30)
which corresponds to simply scalingDpxq. From equation (16), the
sensitivitySḠÑH becomes,

SḠÑH � max
∆g

|| 1
a
D∆g||22||∆g||2

2

||ag� be||22||h||2
2

� ||g� b
a
e||22||g||2
2

SGÑH

(31)
wheree � r1, 0, . . . , 0sT and it is the same size asg. This implies
that if

��g0 � b
a

��   |g0| whereg0 is the constant term inGpxq, SGÑH

will also be improved. This is indeed the case for the optimalpoint
in Fig. 5 and introducing a linear composition to improveSFÑH

has decreasedSGÑH . Due to its relationship withSGÑH , the effect
is reversed onSHÑG in such a way that their product remains the
same. On the other hand, the effect onSHÑF̄ can be only described
at extreme values ofa and b similarly to the case ofSF̄ÑH . Fig. 6
illustrates the behavior of these sensitivities as a function of a and
b for same pair of polynomialsF pxq andGpxq. Since the optimal
points are not the same for all sensitivities,a� andb� can be chosen
depending on the application.

TABLE I
SENSITIVITY BEFORE AND AFTER COMPOSITION WITHa�x� b�

Sensitivity Original at pa�, b�q
SFÑH 6.3� 104 2.2� 100

SGÑH 1.7� 10
2

1.5� 10
2

SHÑF 1.1� 108 3.5� 101

SHÑG 1.5� 104 1.7� 104
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Ḡ

Fig. 6. The behavior ofSḠÑH , SHÑF̄ andSHÑḠ as a function ofa andb for same pair of polynomialsF pxq andGpxq as in Fig. 5.

B. Commutative polynomials

Equivalent decompositions from a given decomposition can also be
obtained when the components are commutative. For instance, mono-
mials have the commutative property, i.e.xp � xq � xq � xp � xpq

for any nonnegative integersp and q. Another class of polynomials
that has the commutative property is Chebyshev polynomialswhich
are defined asTnpxq � cospn cos

�1pxqq wheren is a nonnegative
integer. This property follows easily since

Tm � Tnpxq � cospm cos
�1pcospn cos

�1pxqqqq� cospmn cos
�1pxqq� cospn cos

�1pcospm cos
�1pxqqqq� Tn � Tmpxq. (32)

An entire set of commutative polynomialsis defined in [10] as a set
of polynomials which contains at least one of each positive degree,
and any two members commute with each other. Furthermore, itis
shown in [10] that only two such classes exist, which are of the
form λ�1 � Pn � λpxq wherePnpxq is a monomial or a Chebyshev
polynomial andλpxq is any first order polynomial. The commutative
property allows reordering the components in a decomposition in a
way to minimize the sensitivity of interest among the four different
definitions in Section III along with first order compositions as
discussed in Section V-A.

VI. CONCLUSION

In this paper, the sensitivities associated with polynomial compo-
sition and decomposition have been studied in order to quantify their
robustness for signal processing applications. Expressions for sensi-
tivities as well as their bounds are obtained and the consistency of
these bounds are validated through simulations. It is also empirically
shown that sensitivity can be improved significantly using equivalent
compositions by utilizing first order polynomials or commutativity of
certain class of polynomials.

APPENDIX

Lemma:Denotes3rns as the convolution of the finite length signals
s1rns which is non-zero only for0 ¤ n ¤ L1 and s2rns which is
non-zero only for0 ¤ n ¤ L2. AssumeL1 ¥ L2, then the energy
of these signals satisfy

Es3 ¤ pL2 � 1qEs1Es2 ,

where the energy is given byEsi � °8
n��8 s2i rns, i � 1, 2, 3.

Proof: For 0 ¤ n ¤ L1 � L2, Cauchy-Schwarz inequality implies

s
2

3rns � �� minpL1,nq¸
m�maxp0,n�L2q s1rmss2rn�ms�
2¤ �� minpL1,nq¸
m�maxp0,n�L2q s21rms�
�� minpL1,nq¸

m�maxp0,n�L2q s22rn�ms�
¤ �� minpL1,nq¸
m�maxp0,n�L2q s21rms�
Es2 .

Summing forn � 0, 1, . . . , pL1 � L2q
Es3 ¤ L1�L2

ņ�0

�� minpL1,nq¸
m�maxp0,n�L2q s21rms�
Es2� L1̧

m�0

�
m�L2

ņ�m

s
2

1rms�Es2 � pL2 � 1qEs1Es2 .
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