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ABSTRACT

Efficient, on-line implementationsof filters for Toeplitz systems are

presented. For the optimal filter, the information transfer among

subsystems is shown to be relaizable by a spatial transfer function.

Suboptimal filters are proposed in order to overcome two difficulties

associated with the optimal filter.



I. INTRODUCTION

Toeplitz systems are infinite-dimensional, spatially-invariant linear systems.

They are composed of an infinite number of identical subsystems having stationary

dynamics. Two particular areas where such systems arise are the control of a

string of vehicles [1], [2] and the recursive estimation of images [3], [4].

Hager and Horowitz [5] have rigorously solved the optimal filtering problem for

Toeplitz systems. The goal of this paper is to build upon the optimal centralized

filter to obtain optimal and suboptimal filters having efficient on-line

implementations. The key observation in achieving this goal is that the information

transfer among subsystems can be decomposed into a spatial transfer function.

This spatial transfer function can be recursively realized by two linear systems

moving up and down the line of subsystems. when the output operator is block diagonal, these

two linear systems are simply two spatial Kalman filters. The two spatial filters

immediately suggest efficient, suboptimal schemes for filtering of Toeplitz

systems.

Much of the motivation for this development comes from the work of Attasi [3]

in recursive processing of noisy images. In searching for computationally tractable

estimation formulas, Attasi introduced a particular two-parameter model for images.

On the basis of this model, Attasi considered "line-by-line" filtering of an

image, i.e. the ith line of an image is estimated from all the lines to the left

of line i. Attasi then showed that the measurement update step of this filter

was essentially a smoothing problem and so could be solved by operating up and

down the line. We use Attasi's ideas in much of our development of filtering

for Toeplitz systems.

The organization of this paper now follows. After some preliminary results in

Section II, the optimal solution to the Toeplitz filtering problem is presented

in Section III. Then, motivated by work in the image processing field [31, [4],

Section IV proposes an implementation of the optimal filter that involves only

very.limited inter-subsystem communication. Section V considers time-invariant

filters having a finite-dimensional spatial realization. Decentralized filters having

only finite (spatial) memory and their corresponding implementation are given in

Section VI. Conclusions are detailed in Section VII.



II. PRELIMINARIES

A. Toeplitz Systems

The dynamics of the kth subsystem in a stochastic, discrete-time, Toeplitz

system are given by

xk(i+l) = __ _x(i) + DkZw(i) 2.1)

where the state of the kth subsystem at time i is xk(i) 6 IR and k=0,+l,.....

The kth output is

Yk(i) = C k-kx(i) + k(i) (2.2)

where Yk(i) G IRP . The noises wQ(i) and v9(i) are independent, zero-mean,

Gaussian white noise processes,

(2.3)E{wk(i)w(J)} = Qo i,j k, (2.3)

E{vk(i)vi(j)} = R0
6 i,j k, (2.4)

The initial state xk(0) is also assumed to be zero-mean and Gaussian and is

independent of the driving and observation noises.

For notational simplicity, the infinite-dimensional state, output, and noise

vectors are defined.

x(i) x (i) , w(i) w, y(i) = yi V(i) v(i)

X~i) X,0(i) 1~i) w0(i) Y~i) YOW v~i) v 0(i)
l(i) w(1)/ 1 (i) v /)

In terms of these vectors, the infinite set of equations represented by (2.1)

and (2.2) are written as:
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x(i+l) = A x(i) + D w(i) (2.5)

y(i) = C x(i) + v(i) (2.6)

where the Toeplitz system matrix is

A0 A 1 A-2 A_3

A 0= A AO A-1 -2

A A A A
2 a1 0

3 2 A0

Matrics C and D have the same form.

The mutual interaction between subsystems k and £ depends only on k-k, as

can be seen from (2.1). It is in this sense that Toeplitz systems are spatially

invariant. The z-transform can be used formally to decouple Toeplitz systems.

the i-transform of the state vector x(i) is

x(i,z) =- Zxk (i)]

- o

= xk(i) Zk (2.7)-

-co.

The transforms y(i,z), w(i,z), v(i,z) are defined similarly. The transform of

the system matrix is

A(z) = Z[A ]
k

= L Akz (2.8)
k=-Lo

Likewise, the matrices C(z) and D(z) are defined from C and D.
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The system dynamics (2.1) and output (2,2) equations can now be rewritten in

the z-domain. Using the property of the z-transform for convolution sums [6] yields

x(i+l,z) = A(z) x(i,z) + D(z)' w(i,z)' (2.9)

y(i,z) - C(z) x(i,z) + v(.i,z) (2.10)

where the noises w and v are white noises in both i and z, i.e.

E[W Ci, z W Cj 6 (z -Z )6. (2.11)E[w(izlw ' (. 2 )] Qo( z 1 2i,j

E[v(i,zl)V' (jz 2)] R 6(Zl-z)6i (2.12)

These equations, of course, are purely formal, But in the transform domain,

the dynamics and observations are decoupled, and the noises are independent.

The transformed subsystems, however, are indexed' by the continuous complex

variable z.

The Toeplitz system matrix A is an operator mapping the sequence {x (i)} into the

sequence {xk(i+l)}. For the operator A to be a bounded operator on the space

of square sunmable sequences, the induced norm of A must be finite, Widom [7] has

shovmn that the operator norm of A is related to the z-transform A(z) by

IIAil = ess sup IA(z) 1. 2

z e 

where the set U is. the unit circle in the complex planet Since only bounded

operators A are of interest as the' system matrix for a Toeplitz system, it is

assumed that the z-transform of A does exist and that the region of convergence

includes the unit circle. This does not imply that the discrete-time system is

itself stable. We are only assuming stability of the spatial interactions among

subsystems. The region of convergence of A(z) is an annulus in the complex plane

consisting of all z for which the defining sum (2.8) is absolutely convergent.

Likewise, the transforms B(z) and C(z) are also assumed to exist and to have regions

of convergence containing the unit circle,
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A further assumption that will be useful throughout this paper is that all the

z-transforms of the matrices used in the Toeplitz model are rational functions of

z. This assumption is not necessary for much of the development, and it will

be explicitly noted when the rationality assumption is used. What this assumption

allows, however, is the construction of an efficient procedure for optimal

linear filtering. In summary,

Assumption 1. All the z-transforms of matrices used in Toeplitz models are

assumed to exist, to have regions of convergence including the unit

circle, and to be rational functions of the complex variable z.

B. Recursive Realization of Toeplitz Operators

It will be useful in the sequel to have a recursive spatial realization of a

Toeplitz operator. EWhat we have in mind here is the realization of a Toeplitz

operator such as the system matrix A by a recursion over the spatial index.

Schoute et al. [4] have given the following realization of such an operator.

Consider the operator L mapping {uk} into {Yk,

Yk -= 7 Lk 2, (2.14)

Also, let S be a linear dynamical system having impulse response {Lk}, i.e., the

output of S is {y } when the input is uk }. The system S may be non-causal

since L is not necessarily zero for all negative k. The impulse response of
k

S may be expressed as the sum of a causal and an anticausal part,

{ Ik} = { h} + {hk} (2.15)

where

{<}~ = {.-.,O 2, . .. }
(2.16)

{hk = }-{...,L L_1j(1 )LO,0,0..

and a is an arbitrary scalar. Let S (respectively S-) be a causal (anticausal)

dynamical system with impulse response {h} ({hk}). Then
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Yk Ok++ k (2.17)

where £k(Ek) is the output of S (S ) when.the input is {ik}. The system S

is anticausal for increasing k, but causal for decreasing k. That is, if S

is viewed as a dynamical system running backward over k, then it is causal.

Thus the output { Ik} is obtained as the sum of the outputs of two linear dynamical

systems --one (S+) running forward over k and one (S-) running backward. This

provides a recursive spatial relaization of (2.14) as desired. Moreover, if L

has a rational z-transform, then the sequences {h} and {hk } have rational z-transforms

also. The linear systems S+ and S , therefore, have finite-dimensional realizations.



III. SOLUTION OF THE OPTIMAL FILTERING PROBLEM

The filtering problem is to obtain the minimum variance estimate xk(ili) of

xk(i) given all the observations up to and including time i, f{y(j)10 < j < i

and all R}. Under the condition of detectability for the system (2.1) and

(2.2), Hager and Horowitz [5] have shown that the solution to this problem is

a Kalman filter,

x (ii) = x(ili-l) + K(i) [y(i) - C x(ili-1)] (3.1)

x(i |i-1) 
= A x'(i-ll i-1) ** (3.2)

K(i) = P(ili-l)C'[C P(ili-1)C' + R] -1 (3.3)

P(ili) = [I - K(i)C]P(iji-1) (3C4)

P(iji-1) = A P(i-lli-l)A' + DQD' (I.6)

where the matrices P(iji) and P(ifi-l) are covariance matrices of the fiitered

error x(ili) - x(i) and the predicted error .(ifi-1) - x(i), respective.ly.

Equations (3.1), (3.3), (3.4) define the measurement update step; the preditlion

step is given by (3.2) and (3.5).

If the initial state covariance matrix P(01-1) is Toeplitz, then tK(, Pa(ili),

and P(ifi-1) will he Toeplitz matrices for all i. Thus the Kalman filter can b

written in the z-transform domain,

X(i,zli) = -x(i,zi-l) + K(i,z) [y(i,z) - C(z)x(i,zli-1)] (3,6)

x(i,z[i-l) A(z) x(i-l,zli-l) (3.7)

K(i,z) = P(i,z!i-l)C*(z)[C(z)P(i,zii-l)C*(z) + R(z)] 1 (3.8)
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P(i,zli) = [I - K(i,z)C(z)]JP(i,zJi-l) (3.9)

P(i,zji-l) = A(z) P(i-l,zli-1) A*(z) + D(z)Q(z)D*(z) (3.10)

The z-transforms P(i,zli) and P(i,zli-1) are the spectra of the filtered and

predicted errors, respectively.

It is to be noted that the Kalman filtering equations (3.6) - (3.10) can be

though of formally as defining the optimal filter for the z-transformed system

(2.9) and (2.10). The filtering problems for different values of z are independent

of one another, e.g., the estimate x(i,z Ji) depends on only the observations

y(j,z ), j < i. The solution to the filtering problem, therefore, is just a0
set of finite-dLmensional Kalman filters (3.6) - (3.10) indexed by the continuous

transform variable z.

····. ., I ·-·-- ·· -· ~ __ ~ _ __ ~ 



IV. IMPLEMENTATION OF THE OPTIMAL FILTER

The objective in this section is to demonstrate how the optimal filter (3.1) -

(3.5) can be efficiently implemented. To this end, we fix the time index i

and address separately the update and prediction cycles of the filter.

A. The Measurement Update Cycle

The on-line portion of the measurement update cycle is given by (3.6). We are

viewing the filter gain K(i,z) as a dynamical system in the transform variable

z with i constant. From this perspective, the realization procedure proposed

by Schoute et al. can be used to implement the filter gain K(i,z) by the linear
+

systems S (i) and S (i) (see Section II.A). This realization is illustrated

in Figure 1. The linear system S (i) (respectively, S-(i)) propagates a forward

(backward) "wave of information" along the subsystems.

s (i)

OI

Subsystem k+2 O

Subsystem k+l 0

Subsystem k 4Xk (1 i)

Subsystem k-1 (

Subsystem k-2 a

* s+(i)

FIGURE 1. For fixed i, the filter gain matrix is realized by

two linear systems moving up and down the line of

subsystems.
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Together, these two waves summarize all the information about xk(i) contained in

the measurement at time i. Furthermore, under Assumption that A(z), C(z),

D(z), and P(O,zj-1) are all rational, the transformed filter gain K(i,z) is also

rational. This implies that the linear systems S (i) and S'(i) will have finite-

dimensional realizations.

The role of these two spatial systems can be explored further by defining the

predicted error of substate k at time i,

ek(i) = xk(i) - x(ili-l) (4.1)

The innovations process Ik(i) is related to the predicted error by

e + Vk M (4.2)

By the Orthogonal Projection Theorem of Hilbert Space Theaory [8], the

estimate xk(i ll) is simply the sum of Xk (ili-l) and e k(i, the optimal estimate of

W}(£i). Thus by (3.1), the optimal estimate of ek(i) is just the (spatial)

convolution of the filter gains {Kk(i)} with the innovations process {Ik(i)},

k k9

kt(i) a Yk-S (i) I (i ) 3

The filter gain, however, can be realized by the systems S (i) and S (i). Then

Ek(i) ;+ Sk(i) (A.4)

where (i and are the outputs of S(i) and S (i), respectively, when thewhere Ek(i) and gk(i) are the outputs of

input is ak (i)}.

Summarizing the development this far, the on-line aspects3 (of the filter update

cycle consist of the following steps:
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1.) Run the forward and backward systems S+(i) and S-(i) with input

Ik(i).

2.) Combine the two outputs sk(i) and sk(i) by (4.4) to get ek(i).

3.) The updated estimate is xk(ili) = x(ii-l) + ek (i)-

The off-line computations are propagation of the error covariance by (3.8) -

(3.10) and obtaining realizations for S (i) and S-(i). It is clear that we

could realize the observation operator C by two (spatial) linear systems and,

thereby, obtain Ik (i) from Yk(i) and the Sx,(ili-l).

From (4.2), the innovations are nothing but linear observations of the ek(i)

corrupted by additive noise. In general, each Ik(i) depends on all the e (i).

However, in the important special case when each subsystem observes a suboutput

which is a function of only the local substate (i.e., C(z) = CO), the innovation

Ik(i) is simply a noisy observation of e (i),

Ik (i) = Cek(i) + vk(i) (4.2')

Assumption 2. C(z) C , i.e., Ck = C ,
o k o kO

In this case, we have a great deal of intuition about the role of the systems

S+(i) and S (i). In fact, it will be shown that these two systems are spatial

KaLMan filters. This provides an interpretation of the preceding development

and leads directly to the suboptimal filters presented in the next two sections.

Recall that the time index i is fixed in this discussion. Then since each

innovation is an observation of a local error, determining the estimates

{ek(i)} from the innovations {Ik(i)} may be viewed as a smoothing problem.

The optimal estimate Zk(i) cannot be made on the basis of Ik(i) alone because

of the cross-correlation among the predicted errors. The cross-correlation

between ek(i) and eR(i) is given by

Pkq(ili-l) = E[e (i)ec(i)] i(4.5)
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and so P(i,z li-1i) is the spectrum of the predicted error process. P(i,zli-l)

will be a rational function of z if Assumption 1 is valid. In other words, the

stationary discrete process ek(i), as a function of k, has a rational spectrum.

Since the process ek(i) does have a rational spectrum, the spectral factorization

theorem [9] guarantees that one can obtain a finite-dimensional, time (space) -

invariant linear system

(i) Ci k+l(i) + r(i) k(i) (4.6)

Mk(i) = (i) k(i)4.7)

driven by the vector white noise process Vk(i) having identity covariance, such

that the spectrum of Sk(i) equals P(i,zli-l). That is to say, the sequence

ek(i) can be identified with the sequence k(i) and viewed as the output of the

above system. Then the innovations Ik(i) are simply noisy linear observations

of the state 5k(i),

kfi) = C0o(i) Sk(i) + vk (i ) (4.8)

A A

and can be used to estimate it. The optimal estimate %k(i) is now 0(i) wk(i) where Wk(i)

is the smoothed estimate of Mk(i).

There are many ways to obtain the smoothed estimate tk(i); the discrete-time

two-filter smoother described in [10] is most appropriate for our purposes. Using

this smoother, the estimate is

^ ^ f )^ b
(i) (i Ps( [P i) [klk(i) + Pb (i) kk +l(i 4.9)

-1 -1 1 -1
P (i) = [ i) + P(i) (i) (4.10)

where

tf
Mk(i) = E{ I k(i)Ir(i), rfk

- the forward Kalman filter estimate of MktiB

~:.;;~-^-..----~..~~. ~·~---------~---- -------- k
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^b
kjk+l (i) = E{~k(i ) I Ii), Z>k}

- the backwards Kalman filter one-step-ahead predicted

estimate of Mk(i)

Pf (i) = the steady-state covariance of the forward Kalman filter

estimate

P (i) = the steady-state covariance of the backwards Kalman filterb
predicted estimate

P (i) the smoothed error covariance

af Ci) = . the steady-state a preo0' system covariance of (4.6)

Figure 2 illustrates this smoother employing two Kalman filters - the forward

Kalman filter operates in the positive k direction; the backward Kalman filter

operates in the negative k direction. Both filters are in the steady-state

since the k index extends to plus and minus infinity.

With Assumptions 1 and 2, the update cycle of the filter has the following

steps:

1.) Propagate the error spectrum by (3.8) - (3.10).

2.) Obtain a realization (4(i), r(i), 0(i)) of P(i,zfi-1).

3.) Perform forward and backward Kalman filtering for this system.

4.) Combine the filtered estimates according to (4.9) to get the smoothed

estimate of Mk(i).

5.) The updated estimate is xk5.) The updated estimate is xk(ifi) &*(iii-1) + 0(i) C (i).k xk ~~~~k
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.,I~~ eg

Ik+2 e k+2

I Backward Kalman Filter

k+21k+l k+2

B I e
k+l k+l

~f b

k+llk klk+l

k-I k-i

^ ^b

Forward Kalman k- k-21k-1
Filter

Ik2 k-2

time i

FIGURE 2. Under Assumption 2, the measurement
update step is equivalent to a smoothing
problem and so can be solved by forward
and backward spatial Kalman filters.
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The first two steps, of course, can be done off-line.

The actual procedure will now be explained by considering subsystem k as it

estimates ek(i) (See Figure 2). The estimate ek(i) is obtaining by combining

the outputs of two spatial Kalman filters. Subsystem k-l computes the forward
^f .^f

estimate Ek- li) and communicates it to subsystem k. The estimate klk(i) can now

be computed a -

klk (i) k-ll 4 + K(i) [Ik(i) - CO (i) 'O(i) k 1 k (4.11)

where Kf(i) is the steady-state gain of the forward filter. This estimate

is then furnished to subsystem k+l, and the forward filter continues up

the line. Meanwhile, the backwards filter is operating down the line independently

of the forward filter. At some point, the backwards filter reaches subsystem k+l.

The one-step-ahead predicted estimate for the backwards filter, klk+li), is

then furnished to subsystem k from subsystem k+l. The next estimate is computed

from

^b b

k-lk(i) = bi kk+l(i) + Kb(i) ki -c(i) +Ik+l(i)] (4.12)

where Kb(i) is the steady-state gain of the backwards filter and the backwards

system matrix is b(i) = a(i) ' (i) C l(i). The backwards filter then continues

in the negative k direction. Subsystem k can now use (4.9)and (4.10) to obtain the

smoothed estimate Sk(i) and then ek(i) = (i) i).

The striking aspect of the update step of this Kalman filter is the very limited

communication between adjacent subsystems. All that is required is that each

subsystem furnish its two nearest neighbors with estimates of the process

Ek(i). When Assumption 2 is not valid, the update step can be realized by a

causal and an anticausal dynamical system. These two systems do not have the

interpretation of Kalman filters, but they can be implemented by the same

inter-subsystem communication pattern described above. Therefore, the update step

requires only limited communication between adjacent subsystems, regardless of

whether Assumption 2 holds.
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B. The Prediction Cycle

The remaining step in the filtering algorithm is prediction. In the spatial

domain, the prediction step will be a convolution sum,

=k -li-1) (4.13)

One noteworthy feature of this expression is that if the dynamics of each subsystem

depend directly on only a finite number of other subsystems, then the convolution

sum (4.13) will be a finite sume. For example, suppose the Toeplitz system has

only nearest neighbor interactions, i.e., Ak=0, k/-l,0,1. The predicted estimate

of substate k is then simply

k(ii i-) = A x k+li-lli-) + Ao (i-li-1) + AlXk (i-ii-i) (4.14)

This means that subsystem k can form the predicted estimate of its own state from

the state estimates of its two nearest neighbors. That is, each subsystem can

predict optimally with only nearest neighbor communication of local estimates.

Of course, whenever the subsystem interactions are localized spatially, a similar

result holds.

In the general case, the Toeplitz operator A can be realized by the procedure

introduced in Section II.A. Namely, consider the sequence {fA} to be the impulse

response of a linear system, and then express this response as the sum of a causal

and an anti-causal part. In this way the predicted estimate % (ii-l) is obtained

as the sum of the outputs of a forward and a backward linear system. These systems

have inputs xk(i-1i-l) and have a finite-dimensional realization if A(z) is

rational.

In summary, the prediction and update steps of the Toeplitz Kalman filter can

both be realized by forward and backward linear dynamical systems. Under Assumption 1,

thesd systems are finite-dimensional for all i. The prediction step can be

obtained as a finite sum whenever there are only a finite number of subsystem

interactions. Under Assumption 2, the update step is equivalent to a smoothing

problem and can be realized by forward and backward Kalman filters.



V. TIME-INVARIANT FILTERS AND FINITE-DIMENSIONAL APPROXIMATIONS

The optimal centralized Kalman filter discussed in Sections III and IV has

a very appealing inter-subsystem communication pattern but is time-varying.

Since the transformed filter gain K(i,z) is recursively computed from the

discrete-time Riccati equation (3.8)-(3.10), the degree of K(i,z) as a rational

function of z grows rapidly with increasing i. The dimension of the linear

systems S+(i) and S-(i) which implement K(i,z), therefore, will be growing.

Thus even though the realization problems for S (i) and S (i) can be solved

off-line, the growing dimension of the realizations leads one to consider

a time-invariant sub-optimal filter. Even with a time-invariant filter, we

note that each estimate tk(i) requires infinite computation.

The time-invariant steady-state Kalman filter is specified by the steady-state

predicted error covariance P. The corresponding spectrum P(z) is given by

the discrete-time algebraic Riccati equation in the transform domain,

~P(z) = A(z) {P(z) - P(z)C*(z) [C(z)P(z)C*(z) + R] C(z)P(z)} A*(z)

+ D(z) Q D*(z) (5.1)

The difficulty here is that even though P(i,zli-1) is a rational function

of z for all i, in general, the limiting value P(z) witll not be a rational

function. It is possible [10] for the steady-state error spectrum P(z),

and hence the filter gain K(z), to be a.rational function of z. Although

characterizing precisely when this is the case is still-an open problem, it

is expected that the occurrence of a rational P(z) will be quite rare.

When P(z) is irrational, some approximation must be made in order to obtain

a finite-dimensional realization of K(z). Let P (z) be a rational approximation
a

of P(z). The corresponding approximate filter gain K (z) is given by
a

K (z) P (z)C*(z) [C(z) Pa(z)C*(z) + R(z)] 1 (5.2)aa a

Alternatively, one could directly approximate K(z) by some rational Ka(z)

without the intermediate step of obtaining P a(z). In either case, the steady-
without ~~~~a
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state covariance that results when K (z) is used as the filter gain is of
a

interest.

The predicted error is given by

e(i+l) = x(i+l) - x(i+ll i)

= {A x(i) + Dw(i)} - A{x(i i-l) + K [y(i) - CS(i i-l)]}
a

= A[I - K C]e(i) + Dw(i) - AK v(i) (5.3)
a a

If the filter system matrix A [I-K C] is stable, then the predicted error

covariance reaches a steady-state value. The resulting predicted error

spectrum P (z) is given by
p

Pp(z)=A(z) [I-K (z)C(z)]P (z) [I-K (z)C(z)]*A*(z) + D(z)Q(z)D*(z) +
p a p a

+ A(z)K (z)R(z)K (z)A (z) (5.4)

Equation (5.4) is just the steady-state Lyapunov equation for the system

described by (5.3). In terms of P (z), the filtered error spectrum Pf(z)
p f

is simply

P (z) = [I-K (z)C(z)] Pp (z) [I-K (z)C(z) + K (z)R(z)K (z) (5.5)

The suboptimality of the approximate filter gain K (z) can be evaluated,

therefore, from (5.4) and (5.5).

The update step when Assumption 2 holds, i.e. C(z)=Co , will be briefly

considered further. Recall that in this case the update step is equivalent to

a smoothing problem and can be realized by two Kalman filters. The irrational

steady-state error spectrum P(z) can be approximated arbitrarily closely by

a rational function P (z). Assume that P (z) is a sufficiently accurate
a a

approximation, and let (a' ra' O ) be the corresponding finite-dimensional

linear system. The dimension of this realization, while finite, might well

be quite high - too high, in fact, to directly design a fiiter from it.

Rather than using (Ra' ra O a) to implement the smoothing of the predicted

errors, we propose using it as a benchmark against which reduced-order smoothers
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can be compared. The suboptimality of smoothing with the reduced-order model

(r' rr' Or) instead of the high-order model can be evaluated from the results

in [10] - assuming that the spectrum P (z) is the actual error spectrum. Since
a

Pa (z) is an accurate representation of the error spectrum, this approach

provides a useful measure of the suboptimality of the reduced-order smoother.

In this section, time-invariant filters employing only finite-dimensional

realizations S + and S have been discussed. A second approximation will be

required, however, in order to obtain an estimate k (ili) with only finite

computation.



VI. FINITE MEMORY FILTERS

In addition to the growing dimension of the realization of the filter gain, the

optimal Kalman filter has a second undesirable property. The estimate Uk(i) of

the error at subsystem k depends, in general, on the innovations all along the

line, i.e., Vt. This centralized estimate is obtained from two linear systems,

both starting infinitely far away from subsystem k. The resulting delay in

computing k(i) must be infinite.

One is led to consider a suboptimal filter which estimates ek(i) from only a

finite nunmber of the innovations at neighboring subsystems. This corresponds

to using a filter gain K which has only a finite number of nonzero elements.

Any such gain k has a transform K (z) which is a rational function of z, and
a a

hence (5.4) and (5.5) can be used to evaluate the suboptimality of using only

a finite number of measurements to update each substate estimate xk(i i).

In general, it is not particularly clear how such a K , with only a finite number

of nonzero elements, should be chosen. But under Assumption 2, it is quite

obvious how to handle this situation. Suppose the estimate ek(i) is restricted

to being a function of It(i) for k-N < . < k+N 2 . This is nothing but a finite

interval smoothing problem. Thus, the estimate %k(i) can be obtained as the

output of- two Kalman filters -- the forward one starting at k-N 1 and the backwards

one starting at k+N . The two filters are not in the steady state, but are time

(space)-varying. The covariance of the estimate ek(i) can be obtained from the

reduced order smoother results of [10] assuming that P (z) is the spectrum of the

process e (i).
k

The implementation of this suboptimal finite-interval smoother will now be

considered. Since the estimate ek(i) is obtained from tWo Kalman filters, only

the forward filter will be handled explicitly. Similar ccnmients, of course, apply

to the backwards filter. Once again, the discussion has the time index i

fixed.

The forward estimate of ek(i) is based on I2 (i) for k-Nl< £ < k. This estimate

is obtained from a forward Kalman filter starting at subsystem k-N . If the

forward estimate of ek+ (i) is based on the same number of innovations, i.e.,
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I(i) for k-N + 1 < k < k+l, then another Kalman filter starting at subsystem

k-N1 + 1 is required. Continuing this argument, it is clear that if each estimate

uses exactly Nl+1 of the innovations, then it is necessary to start a forward

Kalman filter at each subsystem. Also, each innovation Iz(i) is used to update

N1+1 different forward Kalman filters. Figure 3 illustrates the use of a separate

filter to obtaim each estimate. The number of updates required to compute the

forward estimate of ek(i), of course, is also N1 + 1.

Since each estimate is computed from a separate forward Kalman filter, this is

a totally parallel computation scheme. Consider now the processing that occurs

at each subsystem as this parallel filtering is performed. The innovations

Ik(i) at subsystem k are used NI+l times to update N1+1 different filters, as

previously noted. Subsystem k transmits N1 of these estimates to subsystem k + 1;

the other estimate yields %e (i). The computational burden at each subsystem

under this parallel filtering procedure, therefore, is very much different

from the burden when all the forward estimates are computed from one filter

starting at minus infinity -- essentially a totally serial computational scheme.

In the latter case, the innovation Ik(i) is used to update only one filter, and

only one estimate is transmitted from subsystem k to subsystem k+l. The

conclusion is that the parallel scheme greatly increases both the number of times

each subsystem must update a filter, and the number of transmissions between

subsystems.

By altering the requirement that each forward estimate must be based on exactly

N1+1 of the innovations, it is possible to obtain a tradeoff between: (i) the

computations and transmissions required at each subsystem, and (ii) the delay

in computing all the forward estimates. Delay here refers to the maximum number

of updates and transmissions needed to compute any particular estimate. This

will become more clear shortly. Suppose the requirement is that at least N +1

innovations are used for every forward estimate and a new Kalman filter is

started every M1 subsystems. This implementation is shown in Figure 4. Under

the totally parallel scheme, M1 was equal to one.

If a new filter happens to be started at subsystem k , this filter provides
0o

its first estimate (based on N +1 innovations) at subsystem k + N1. The next
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filter starts at subsystem k + M1 and provides its first estimate at subsystem

k + M 1 + N1. The filter that started at subsystem ko, therefore, must provide

estimates at subsystems ko+M1, k +M +1,...,k +M1 + N-l -- a total of M1

estimates. This last estimate (the one at subsystem k + M1 + N -1) is based on
0

N1+M1 innovations. This means that the delay in obtaining this estimate

is due to updates at N +M1 subsystems and transmissions between N1 + M1 -1

subsystems. When a new Kalman filter is begun at every subsystem, i.e., M1 = 1,

its last (in fact only) estimate requires just N +1 updates and N1 transmissions.

Choosing M1 greater than one, therefore, increases the delay in obtaining the

forward estimates.

However, what is the effect of increasing M1 on the computational burden of each

subsystem? Consider the choice N1=3 and M1=5 as depicted in Figure 4. If a

new filter is begun at subsystem k0, then subsystems ko, k +1, and k +2 mustof,10 0
update two different filters, and subsystems k and k +1 must transmit two

o o
estimates apiece. The remaining subsystems update only one filter and transmit

only one estimate. For general N1 and M1, simple counting arguments may be used

to determine how many updates and transmissions must be performed by the various

subsystems. The point here is that the computational burden at the individual

subsystems is reduced by increasing M 1, the separation between adjacent Kalman

filters. Increasing M 1, however, was previously observed to result in an increased

delay before the last estimate of a Kalman filter was available. Therefore the

parameter M1 can be used to perform a tradeoff between (i) computations and

transmissions, and (ii) delay, as was desired.

It should be remembered that this discussion has taken tsI. time index i to be

fixed. There is in fact a clock rate for the Toeplitz sv---tem. This means that

all the filtering computations must take place between i and i+le This clock rate

limits the acceptable delay in computing each estimate..



VII. CONCLUSIONS

In this paper, an efficient implementation of the optimal centralized Kalman

filter of Hager and Horowitz [5] for Toeplitz systems has been presented. The

,key, observation here was that the information transfer among subsystems could

be realized by a spatial transfer function. Implementation of the resulting

spatial transfer functions requires only nearest neighbor communications.

There were two disadvantages associated with the optimal filter, however.

The first was that the order of the spatial realizations may grow unbounded

with increasing time. This led to the time-invariant filters and their finite-

dimensional approximation in Section V. The second disadvantage of the optimal

filter was that infinite computation is required to compute the estimate of

any substate. This led to an examination of finite (spatial) memory filters

in Section VI. In both Sections V and VI, the fact that the measurement

update step is equivalent to a smoothing problem was a key ingredient in the

formulation of suboptimal filters.

Recall that the discussion of Section VI dealt with a suboptimal update step that

uses only a finite number of the innovations to update each subsystem. How

many innovations are required to yield a good estimate of ek(i)? The

process {ek(i)} is being viewed as the output of the linear system [D (i), r(i),

O(i)]. Thus, if the innovations used to estimate ek(i) extend about subsystem

k for several of the slowest "time" (space) constants of o(i), then the resulting

estimate should be quite good. We see that there are two "time" scales of

interest here. First, of course, is the actual time index of the system.

For example, one may ask how large i must be before the system can be considered

to be in the steady state. The second "timee" scale is actually a spatial

scale of the spatial linear system [5(i), r(i), 0(i)]. The question here is

how many neighboring subsystems must be used to provide an accurate estimate

of a substate.

It is important to realize that as more neighboring subsystems are used to compute

a substate estimate, i.e., as the number of space constantsis increased, the

time required to perform the update step is also increased. The time required,

however, must be less than the difference between time i+l and time i. This

means the time and space indices of the system directly interact in the filtering
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process. -There is an interesting and important tradeoff, therefore, between

(i) the actual time period at which the observations are sampled and (ii) the

number of neighboring subsystems used to update a substate estimate. We point

to the work in filtering for systems with multiple time scales, such as [11],

as one area which might be useful here in making this tradeoff.

We also note that the measurement update step is being interpreted as a "vertical"

propagation of information, while the prediction step is interpreted as a

"horizontal" propagation of information.--An intriguing possibility is the use of

"diagonal" propagations of information in the filtering process. What we have in

mind here is incorporating into the estimate of ek(i) not only observatiors taken

at time i by subsystems near k, but also observations taken at (say) time i-1 by

subsystems farther from k. It is to be noted that this suggestion is purely

speculative.

In closing, we point out that there is, of course, a control problem dual to the

filtering problem considered here. The control gain can be implemented by

two linear systems moving up and down the line of subsystems just like the

filter gain. Again by duality, the two spatial Kalman filters used in the

measurement update step have corresponding control problem duals. It is not clear,

however, exactly what are the forward and backward control problems. Also, it

is not clear what is the finite memory controller, dual to the finite memory filter

of Section VI. These issues are touched upon in [10] and will be the subject

of a future publication.
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