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SUMMARY

We study the problem of determining an unknown microseisgaent location relative
to previously located events using a single monitoringyaimaa monitoring well. We
show that using the available information about the presliplocated events for locating
new events is advantageous compared to locating each exkgendently. By analyz-
ing confidence regions, we compare the performance of twoqarsly proposed location
methods, double-difference and interferometry, for vagysignal-to-noise ratio and un-
certainty in the velocity model. We show that one method mayehan advantage over
another depending on the experiment geometry, assum@imng uncertainty in veloc-
ity and recorded signal, etc. We propose a unified approadidative event location that
includes double-difference and interferometry as spexaaks, and is applicable to ve-
locity models and well geometries of arbitrary complexiygducing location estimators

that are superior to those of double-difference and intenfetry.
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1 INTRODUCTION

Locating seismic events is an important problem both in glaeismology and in ex-
ploration. Applications of this problem vary in scale frorartaquake characterization

to hydraulic fracture monitoring. In hydraulic fracture miwring, locating microseismic

events is an indirect method to image fractures or moniteir throwth (Huang et al.,

2006; Bennett et al., 200\5; Michaud et al., 2004).

Traditionally event location is performed as follows. Fa@ck event observed from a
single well, its arrival time and polarization are estintateolarization can only be esti-
mated with multi-component receivers, and it provides atication of the direction of

the arriving signal. Combining the measured travel timegoldrization with an assumed
velocity model allows the recorded event to be, for instangg traced to its estimated
location. Microseismic events are located one by one, amtbttation of one is not used

to improve the estimated location of another.

As will be elaborated further, the classical location teghe described above fails to

use important information that couples data from differevents, and that can be used

to constrain the location of an unknown event relative teady located events (Dewey,

1972; Fitch| 1975; Spence, 1980; Richards et al., 2006;dywds al.| 2009; Kummerow,

2010). If multiple events originate in the same fracturentti@s relative location could

contain useful information about the geometry of the freetar its growth in time (Eisner

et al.[2006). When multiple fractures are created secaigntielative distances between

the events from different fractures reveal important infation about the geometry of the

entire fracture system.

When one event is located relative to another, the uncéytairthe origin time and ab-
solute location of the reference event propagates to thea&sts of the origin time and
the absolute location of the unknown event. However, estngajuantities such as the
fracture size or fracture spacing does not require the kexgé of the absolute locations
of the events. For example, we may hypothetically move th&eefracture system in

space without changing the size of individual fracturedeirtrelative arrangement. Rel-
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ative location is a method of recovering quantities thatretesensitive to absolute event
positions.

In this paper, we consider two methods of relative locatiwat have been previously

proposed: double-difference (DD)(Waldhauser and Ellg$hw@000; Zhang and Thurber,

2003) and interferometry (Poliannikov et al., 2011). Boththods use correlations of

waveform data around direct arrivals from different soaraemultiple receivers, hence-
forth called correlograms, to couple the arrivals of pairewents. These correlograms

produce new measurements of wave propagation between ¢hésdhat are less sensi-

tive to the global variations of the velocity (Zhang and 2008; Borcea et al., 2005;

Zhang and Thurber, 2006).

While the rationale for using double-difference and irgevfetry is similar, the meth-
ods differ in important aspects. The double-differencatmn method seeks to match
predicted correlograms with observed ones uniformly acedlsreceivers, while the in-
terferometric location method fits the correlogram only airagle stationary receiver

where the correlation lag is maximal.

In order to compare the performance of each method, an olgacieasure is required.
Such a measure can then be used to test each method for a faagkstic scenarios.
We consider here a numerical experiment with a single mangowell and two frac-
tures that are located near one another. Event locatiofeifirst reference fracture are
assumed known, and we attempt to locate an event in anoteturfe using all the in-
formation that is available. We assume that the velocitiehé overburden are uncertain
and that the recorded signal is noisy. Using these assunspire define location estima-
tors for both methods and compute the associated uncgrtainalysis of the location
uncertainty reveals the situations in which one methodpesar to another.

The uncertainty analysis that we develop is general andegpf any relative location
method that uses the fit between predicted correlogramsiaseiwed ones. Accordingly,
instead of choosing between the two methods, we seek a agragh-based location

method that minimizes the location uncertainty given ategpssumptions on the signal

noise and velocity uncertainty (Tarantola and VQ[I tte, vlis, 198]6). Specifically,




4

Poliannikov et al.

we seek the subset of receivers, which when used for relatation, minimizes the un-
certainty of the estimate of the event location. The outpubis procedure is the set of
optimal receivers and the associated event location waingrt In some cases the opti-
mal receivers will be nearly stationary. In other cases,ay e advantageous to use all
or a subset of available receivers away from the stationainytpThe search for optimal
receivers is fully automated and by construction outpem®both double-difference and
interferometry.

The structure of this paper is as follows. In Section 2, weuls event location in a
known velocity when event origin times are known. In SecBowe introduce the notion
of relative location in an unknown velocity, build a frameawdor evaluating the perfor-
mance of different methods, and propose a unified relativation method. In Section 4,
we generalize our methodology to events whose origin timesiaknown. In Section 5,
we present a set of one- and two-dimensional examples thadmigrate the versatility of

our methodology. The paper closes with a concluding section

2 LOCATION IN A KNOWN VELOCITY
2.1 Classical location

A collection of seismic events excites elastic waves thatthen recorded by a set of
single-component or multiple-component receivers. Tloblem is to locate these events
using the recorded signals. A classical method of eventitmtas to locate each event
individually. For each event, the arrival time of each releat phase is picked at each re-
ceiver, and when combined with an assumed velocity modeksaadt polarity informa-
tion, ray tracing can be used to find the event location. Tginout the paper we consider
a situation where the recorded signal is noisy, and thusithkeg travel times are noisy.
For clarity we first assume that the event origin times arenkmdn sectior 4, we show

that our approach fully extends to the case of unknown otigies.

Suppose that, for a given wave arrival, the picked (mea3uradel time,Tw-, of phase
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« at receiverj can be written as

~

TaJ:Ta(S,'f’j)—F&aJ, Oé:P,S,..., jzl,...,Nr, (1)

where NV, is the number of receivers in the monitoring wél; (s, r;) and 7s (s, r;)
are the predicted travel time of tlireandS-wave from an event locatios to a receiver
locationr; computed by raytracing in the assumed velocity magebr Vs respectively;
£a,; Is independent Gaussian noise, giverthy ~ .4'(0, 07 .), i.e., normally distributed
with zero-mean and variancz%j. We may potentially use a richer set of phaseto
distinguish between SH and SV or include other arrivals agcteflections from known
interfaces if we can model them theoretically and they agsgmt in the data. The method
is also easily generalized to the case of correlatedwith a known covariance matrix.

For now we will use the notation as it has been defined. ThéiHiked function for the

ma:é);&isn&wl_al. (2010):

. 2
. 1 1 To,; —To(8,75)
peL <{Ta7 1 8) = exp | —5 . ’ , @
J (27T)Nr/2 H Ua,j 2 Z UOé,j
a?]

a7j

observed travel times is given by Tarantola and Vall

where CL stands for classical. The posterior distributjen, (s | {Ta,j}>, of the event

location, s, given the observed travel time,, ; }, is obtained using Bayes'’ rule:
PoL ({Taj} | 3) p(s)

oo 12) = [ reu (7.3 1) ot ds ?

wherep(s) is the prior probability density. Assuming a uniform prigopability p(s) =

const, we have

PoL (s | {Taj}> X exp _% Z (Ta,j - T, (S,Tj)> . (4)

Oa,j

a7j

2.2 Reducing uncertainty by using correlograms

In practice, we may need to locate many seismic events. \&ak#t and Ellsworth (2000)

have shown that instead of locating sources one by one wessaavailable information
about previously located events in order to obtain bettémeses of the locations of

subsequent events.
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Assume, for example, that we have already locatgdvents:sy, ..., sy,. The goal is to
locate an unknown event In order to use information from the already located events
we use the original waveforms to compute cross-correlatduirect arrivals from events

s; with that from evens for each receiver. We obtain correlogram picks
Tyij = Ta (8i,8,7) + Naijs (5)

wherer, (s;, s, r;) is the predicted correlogram moveout in the assumed vglowiidel

V..
To (8i,8,75) =T, (s,7;) — Ty (8i,75) (6)

and . ; is independent Gaussian noise givenipy ; ~ 4 (0,¢2, ;). Note that al-
though the predicted correlogram event moveouts in Equéiare differences of the
corresponding travel times in the original gathers, cogeim picksy7, ; ;, are not sim-
ply differences of the travel time picks; they are computadependently directly from

the waveforms.

Assuming that the events, . .., sy, have already been located, we simultaneously fit
the predicted travel timegy, (s, r;) to the observed time pické”avj, and the predicted
correlogram moveouts, (s;, s, r;), to the observed lags,, ; ;. This allows us to cal-
culate the conditional distribution of the unknown everaton s given the previously
located events. Since both the errors in the travel timesimtide lags have Gaussian
distributions, we can perform an analysis similar to the ion®ectior 211, and write the

estimator of the locatior given the observed travel times and lags as

Oa,j

. 2
. . 1 Toj—Ta(s,Tj)
PpD (8 | 51, ~~>sta{Ta,j}>{7a,i,j}) X exp —52 ( ’ ’ )
a,]
1 Faii — Ta (8i,8,7)\°
% exp - 1,7 « (3] » 5] ) )
[ 2 zz:;%]: < Coe,i,j ]
(7)

Following/Waldhauser and Ellsworth (2000) and Zhang anibﬁu 2003), we call this

location technique the double-difference method, so nasnedo the differencing of two

residuals;, ; ; andr, (s;, s,r;), which are themselves differences of travel times. The
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classical method of direct event location given by Equafigomrocesses each event inde-
pendently, and thus fails to utilize the important constiithat couple pairs of events.
Those constraints enter Equat[dn 7 in the form of additiexalonentials of lag misfits.
This may result in a larger uncertainty in the classical fiocatechnique as compared to

the double-difference method.

We illustrate the relative performance of the two methods mumerical experiment with
a layered velocity model and the source and receiver comfligur shown in Figuré_la.
The 16 receivers are equally spaced in a vertical well athdepetween 1300 m and
2900 m. The locations of th5 events in the reference fracture, situated at an offset
(horizontal distance) af00 m, are assumed known. The unknown event is located further

away at an offset d600 m. The known layered velocity is shown in Figutes$ 1bladd 1c.

In this initial demonstration we assume that the origin 8noé all events are known.
Later we show how to remove this assumption. The travel tiffigs from the unknown
event are picked with errors, and the standard deviatiohexd errors is,, ; = 4 ms.
The waveforms of the direct arrivals from the unknown evet e reference events are
cross-correlated, and the lags are picked with the unogytai ; ; = 4 ms. We use Equa-
tions[4 and 7 to compute the conditional density of the l@acaéstimators given by the
classical and double-difference methods. We use a fasha&llemlver to compute travel
times from each of thé6 receivers. The likelihood function values, and hence trstgo
rior distribution values, can then be efficiently computedtghout the 3D volume. For
this layered model, a two-point ray tracer might have beegadte. We use an eikonal
solver because our methodology is appropriate for gen@&ah8dels and our software

is written for this general case.

Because the medium is layered and the well is vertical, batthods fail to recover
the azimuth. The azimuthal information is available whea #zimuthal symmetry of
the model is broken, such as by a non-vertical well and/orlacity model that is not
horizontally stratified. Here we will analyze the uncertgim the offset-depth plane,
where offset is horizontal distance between the receivayand the event. The azimuth

can be estimated by analyzing the polarization of the inogmwave if three-component
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receivers are available. This issue is not relevant to tbation algorithms discussed in
this paper and we will not consider it any further.

We compare the performance of each method in Figlre 2. Fér mathod we display

the corresponding5%-confidence region. Both estimators are unbiased but treadpr
of the estimator constructed using the double-differene¢hod is much smaller. This
example shows how the use of already located events canwmfite location accuracy

of subsequently located events.
[Figure 1 about here.]

[Figure 2 about here.]

3 LOCATION IN UNCERTAIN VELOCITY

3.1 Relative location

In the previous section we have shown that if the velocity ehasl known, then the
double-difference method provides a better estimate dbiteion of the unknown event
than the classical method. Now we consider a scenario wherediocity model is un-
certain. We denote the family comprising all admissibleggl models as/.

The probability density functions given by Equatidhs 4 @nehlicitly depend on the as-
sumed velocity model. If that velocity is incorrect, thee tiesulting estimators are based
on erroneously predicted travel times and can be biasedarticplar, the performance
of the classical location method given by Equafidon 4 mayifigantly deteriorate. On
the other hand, correlograms are less sensitive to theitseloucertainty because cross-
correlation in effect subtracts the travel times, and ifwlaes from two event locations
travel to a receiver along similar paths, then the model daicey along the shared por-
tion of the rays is largely canceled. Our goal, as beford, valto estimate the location
of the unknown event relative to previously located onesl mnanalyze the resulting
uncertainty due to both the noise in the signal and the uaicgytin the velocity model.
We emphasize the dependence of all computed travel timéeoretocity model) € 7,

by explicitly conditioning on the latter. The travel timesdathe correlogram lags will
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henceforth be denoted &3 (s, | V') andr, (s;, s, | V). The conditional distribution
of the unknown event locatiofis denoted (s |81,y 880 AT b {Fai b V). Then
the total uncertainty over all velocity models is descrileth the marginal distribution
of s obtained by averaging properly normalized posterior ilistrons over all possible

velocity models in?

P (S | S1,---3 8Ny {Ta,j}a {ﬁx,i,j}) - Z p <8 | 81,5, 8Ny, {Ta,j}a {%a,i,j}v V) p(V)
Very

(8)
If the velocity models are equally likely, theril”) = 1/|V|, where|V| is the cardinality
of V. In what follows we consider two previously proposed methtat relative event
location: the double-difference method and the interfeaimmethod. We compare their
relative performance in various scenarios and analyze steingths and weaknesses.
This analysis will then form a basis for the new unified applotnat combines the best

of the two techniques and results in a location algorithnh dldperforms either one.

3.2 Double-difference location

Because the velocity model is uncertain, the predictecettames, T, (s, r), are biased.
For example, if the velocity is overestimated, then the ed&tance will have an over-
estimation bias. To partially mitigate this problem, we osgy the correlogram lags to
construct an estimate of the relative location of the unkmewent:

R T, — To (85,87 |V
pDD({TaJ‘,j} | 8,81,...,81\73, ocexp [—_ZZ ( a,i,g ozC iy J | ))
01727]

i=1 a,j

(9)
The modified posterior distribution of the event locatioonditional on the velocity

model, is given by

PDD {Ta,z,]} ‘ S8,81,.. SNsuv)

pop(s |81, 8N {Taij ) V) :
///pDD {Ta,z,]} | S,81,.. SND,V) dS

Averaging over all possible velocity models, we obtain atineste of the location ok

(10)
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relative tosy, ..., sy.:

pon(s |81, 8n {Fais}) = Y poo(s | 81, sn, {Faigh, VIp(V). (12)
Vey

Using a large number of lag points significantly reduces theaict of signal noise. Be-
cause the correlograms are less sensitive to the veloamgrtainty between the receivers
and the events, the estimator given in Equakidn 11 is lese8ithan the original double-

difference estimator from Equatibh 7. However, the biastgperfectly mitigated (Miche-

lini and Lomax, 2004), and in order to attempt to remove it eneffectively we will

construct in the next section a related estimator basedterfenometry.

3.3 Interferometric location

The interferometric location method, proposed_by Polikowiet al. (2011), is another
technique that can be employed to locate an unknown eveaivelto other events
with known locations. Partially reconstructing the Greduhction between the unknown
event and the known event locations provides additionarmétion that is complemen-
tary to that contained in the direct arrival times pickechatteceivers. A summary of the
method is as follows.

We first assume a velocity modél, and perform a stationary phase analysis of the cor-
relogram moveout. Specifically, for each reference ewgniwve take the observed lag
moveout,7, ; ;, interpolate it between the receivers as necessary, andfstdtionary

receiver locationr, ; ., defined in our example with an observation well by
87“7/:&77;7]‘ = 07 (12)

whered,. denotes a directional derivative with respect to the reggdosition along the
well trajectory. (For a 2D array of receivers, we would havditferentiate with respect to
both spatial variables.) We interpolate the stationaration from the lag measurements

and compute the stationary (maximum) lag

Tayipe = Tasisjlp , . - (13)

As further elaborated by Poliannikov et al. (201#), . and7, ;. may be used to con-
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strain the locations, of the unknown event relative to all other eversts,with which s

forms stationary pairs. Their likelihood function is weitt as

Ns

R 1 7A_a7i7* — Ta (8i7 S, ri7* | V) ?
pINT({Ta,i,*u Ta,i,*} ‘ S,81,...,8N;, V) X exp | —3 Z

2 Ca,i,*

i=1

N. 2
1 ~ a'1'7_01 (sia S, Tayix | V)
X eXp [_EZ( 2<Ocz*

1=1

(14)
The posterior distribution of the event location then hasftrm
% Lotk A Y V
PINT(S | 81, SNy {Tis Tayiie ), V) Pt ({Faice Fai} | 8 81 5, V)
///pINT {Tz *77-04,2,*} | S,81, ... SNsvv) dS
(15)

Marginalizing over all possible velocity models,e 7', we obtain the velocity-independent

distribution ofs given all the reference evends, . . ., sy,:

PiNT(S | 815+, SN {T i Tain}) = Z PNt (S | 815, SN {T i Tasin V) P(V).
Ver
(16)
In order to solve Equations12 and 15 numerically, we appnakeé the partial derivative

with a finite difference:

Ta (Si, S, 'r‘a,i,* + Ar | V) — Ta (Sia s, ra,i,* — Ar | V)
2| Ar| '
(17)

a'1'7_01 (Siv S, /roc,i,* | V) ~

which, as for double-difference, allows us to efficientlymquute the posterior distribution

in Equatiorl_ 15 using an eikonal solver for fully three-diraiemal velocity models.

3.4 Comparison of the two location methods

The double-difference and interferometric location mdthpresented above have advan-
tages and disadvantages. The double-difference locdtjonithm partially removes the
velocity uncertainty by using travel time differences aimghgicantly reduces the impact
of noise by averaging over many receivers thus reducinggreasd of the estimator. The

interferometric method is even less sensitive to veloadstyrbations between the refer-
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ence sources and the monitoring well when the geometry ialdaias is the case when
the velocity is layered and monitoring well is vertical.
In order to test the performance of both methods we considentimerical experiment
shown in Figurd1l. We assume that the signal, and héhgeand Ty, @re noisy. In
addition we also assume that the velocity in the overburthenathe events is uncertain.
Although our approach can accommodate different forms lofoity uncertainty, for ease
of presentation we consider here a simplified uncertaintgehim which there is only a
single uncertainty parameter. L€t o, « € {P, S} be the true velocity models shown in

Figure[1a. The estimated velocitiés,(z) are assumed to have the form

Va(2) = Vao(2) (1 +n(2)), (18)
where
n z < 2500
n(z) = : (19)
0 2z >2500

This means that the velocities inside the production layerkmown exactly, whereas
the velocity above that can be overestimated or underegdray the random factor
n. Assuming zero uncertainty in the reservoir layer alsovadlais to clearly separate
the effects of noise and velocity uncertainty in the ovediear We will consider a more
general example in the last section of the paper.

We first show the effect of the uncertainty in velocity and #reor in the lag time
pick on the performance of both methods. Figule 3 contaiesldbation results for
the two methods for a range gfand (. The relative velocity errof, assumes values
—20%, —10%, 0, 10%, 20%, and( takes valued ms, 2 ms, and1 ms. Each row in Figure
corresponds to the same velocity error, and each columeasponds to the sange We
show the 95% confidence region in the offset-depth domamyésults of the double-
difference method are shown in blue, and the results of tte¥ferometric method are
shown in green.

Evaluating panels from the same row in Figure 3, we obsemeas becomes smaller,

so do the uncertainty regions for both methods. The unceytaegion of the double-
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difference method is always smaller due to averaging ovarget number of measure-
ments.

Examining panels from the same column, we see that varyiegehocity error in the
overburden leaves the uncertainty produced by the intaerfetric estimator very stable.

This is because the effect of overburden velocity uncegtasnmitigated during the sta-

tionary phase analysis (Poliannikov et al., 2011). At theaesdime, the results of the

double-difference method show a clear dependence on tbeityeérror. The larger the

error, the more biased the results become.

[Figure 3 about here.]

In practice we cannot know for sure how much the assumed tgloodel is different

from the true one. The total uncertainty of the estimatedtioa should include veloc-
ity uncertainty as spelled out by Equatidns 11 16. Fostithtion purposes, we will
assume that Equatiohs]18 dnd 19 hold wjth- .47(0, 10%). We compute the total un-
certainty of the event location for different choices of tioerelation pick uncertainty and

show the results in Figuieé 4.

Each of the three panels in Figlile 4 can be loosely thought ahaverage (weighted by
the Gaussian probabilities) of the respective columnsgafe 3. The bias that the double-
difference method produces for each realization of thecigionodel,V € 7, translates
into a larger uncertainty region when we compute the totakuainty by averaging over
V. The tortuous shape of the uncertainty region is due to therda velocity and the
specific model for the velocity uncertainty. Different asgations on the velocity would
result in different (generally non-Gaussian) shapes ofitteertainty regions. The artifact
in Figurel4t is due to the insufficiently high spatial reswntof the numerical model.
The relative performance of the double-difference locatieethod versus the interfero-
metric location method for this example depends on the rsiremgth and the velocity
uncertainty. Wher goes to zero, the velocity uncertainty dominates. The fietemet-
ric location method, which is better adapted to handle thisxpected to perform better.

On the other hand, if the velocity is well resolved then threredue to signal noise domi-
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nates. By averaging over a larger number of measuremeatdotible-difference location

method then produces a better estimator.

[Figure 4 about here.]

3.5 Unified Bayesian method

Both location methods presented above use the locations@fik events to produce
estimators of an unknown event location. Both methods deaiditional information
about the unknown event location from the correlograms kinditpredicted travel time
differences into observed correlations. The differend¢esben the two methods lies in the
choice of the norm used for the fitting. The double-diffeeelucation method is based on
fitting the predicted correlogram events to the observerktairons by using thé, norm
over all receivers. When the noise in the signal is uncaedland Gaussian, this leads
to the optimal estimate. The interferometric method attsrgp match the predicted and
observed correlograms only at the stationary phase pommthyin a suitable geometry,
may lead to a better estimator in the case of an uncertairoxeen velocity.

The quality of an estimator may be judged by the volume of theettainty region for a
fixed confidence level once velocity uncertainty has beemimalized away. The method
that produces a confidence region smaller than all othengtisial for a given geometry
and set of assumptions about uncertainty. We use this siogag€o propose a new unified
method of location of one event relative to others. Instddittimg the data at all receivers
equally or fitting it just at the locations of stationary reegs, we assign binary weights,
wa,i; € {0,1}, to each phase, and each receivey, for each reference source,The

weighted likelihood function has the form:

1 Ng 7/\_ S (S' S. T | V) 2
pBAY({%aﬂ'J} | S$,81,...,8N,, V) X exp [—5 ZZ:; ;wa,i,j ( a,,] oeCa;; 1y )
(20)

The resulting estimator can be written as

PBAY {Ta,z,]} | S,81,.. SNsuv)

pBAY(S ‘ S1,...,8N,, {Ta,z,j} v )
///pBAY {Ta,z,]} | S,81,.. SNsuv) ds

(21)



A unified Bayesian framework for relative microseismic tama 15

and

peav (8 | 81, 8n {Taig}) = Z peav(s | s, ., sn {Taigh, V)p(V).  (22)
ver

Having constructed the estimator, we can compute the vglumef its 95% confidence

region. The optimal weights are then found by solving theimipation problem:

{wg,i,j} = arg gjnln w. (23)

Solving this minimization problem for a large dataset anchyredmissible velocity mod-
els is not completely trivial. We illustrate the unified Itioa method by using a slightly
simplified optimization procedure organized as follows. &ach reference event number
i, we seek the connected window of receivérs,; + 1, . ..}, that minimizes the estimate
of the location uncertainty. This greatly reduces the patamspace for the optimization

problem, and is likely to be optimal for all examples showthie paper.
[Figure 5 about here.]

The final results for this model are shown in Figlle 5. The adifnethod outperforms
both the double-difference and the interferometric methgdaking the best of both
worlds. For each reference source, the algorithm autoaiptiinds a window of re-

ceivers centered roughly at the stationary point. The londtias that is introduced by
receivers above the stationary depth is approximately vechby the bias from receivers
below the stationary location. By combining the contribag of all receivers, we mini-
mize the bias caused by the velocity uncertainty while siamdously reducing noise by

averaging over many receivers.

4 UNKNOWN ORIGIN TIMES

All of the theory presented above assumed the knowledgeigihaimes. Propagation
times could be easily inferred from the corresponding epéks, which greatly simpli-
fied the analysis. In this section we show for completenesktiowledge of event origin
times is not necessary, and our analysis fully extends tonibye realistic case in which

the origin times are unknown.
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4.1 Classical location in known velocity

Suppose as before that a single event with an unknown hyfercems recorded at all
receivers. Denoting its origin timé, we write the following expression for the event

time picks:
Toi=T+To(s,7)+ca;, a=PS ... j=1,... N, (24)

wherez,, ; ~ 4 (0,02 ;). Note thatl,, ; now refers to time of day (absolute time) instead
of its former meaning of travel time, whereds (s, ;) retains its meaning of predicted

travel time.

The likelihood function describing the probability of obgeag specific times given a

source location and an origin time has the form:
PcL ({Ta,j} | 87f>

~ ° 2

(2m) /2 [Ioa,; 2 Oaj
aj

a?j

The posterior joint distribution of the event’s locatiordawrigin time given the observed

time picks is again obtained by Bayes’ theorem:
por. ({Tus} | 8,7) (s, T)

: // per, (T} | 5.T) pls, T) T ds

por (5.7 [ {T0}) (26)
The prior distributionp(s, ZIO”), reflects our very limited understanding of the event origin
times and locations in the absence of any recorded data. $Men@sa uniform distribution
p(s, Clo”) = const on a sufficiently large spatial volume and temporal interVale likeli-
hood functionpc, ({Tw} | s, T) is given above, and it captures the physics of wave
propagation between event locations and receivers. Sosnacompatible with recorded
data, such as the event occurring after it is recorded byeitevers, will be automatically
ruled out by the likelihood function during the computatimfrthe posterior distribution,
pou (8,7 [ {Tas}).

Under the assumption of a uniform prior distribution, theteoior distribution adopts the
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compact form:

N . 2
. R 1 To:,—T —T,(s,7;
PcL (S,T | {ij}) X exp —5 Z ( »J o ( J)) ) (27)
aj !

Equation 2V for the posterior distribution of the event lomaand origin time captures
both the spatial and temporal uncertainty about the evewntedisas the correlation be-
tween the two. This information could potentially be usedréxk the microseismic ac-
tivity as a function of time. If we are interested only in thpatal uncertainty of the event

then that can be obtained by marginalizing away the origneti

PcL (8 | {TAQJ}> x /pCL <s,f | {TAQJ}) dT

_ / exp [-AT? — BT — | af (28)
2
X exp [ZLB_A — C’] ,

where

o2 . ' (29)

4.2 Relative location in uncertain velocity

Assume as before that the reference events,. ., sy., have already been located. The
measured travel-time difference between the two direotasrfrom events ands; has

the form
Taij = To (8i, 8,75 | V)+f_ﬁ+77a,i,ja (30)

wherer, (s;,s,r; | V) = T, (s,7; | V) — T, (85,7 | V), T is the origin time of the
unknown events, andilo}- are the origin times of the reference evestsFor convenience

we define the unknown differences of the origin tim&%, = 7' — 7;,i = 1,..., N,
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and show how they affect the location uncertainty for eackho of relative location

discussed so far.

4.2.1 Double-difference

The posterior distribution of with origin times accounted for is written as:

Ny
A LB
pop(S | 81, ., 8N, {Taij}, V) Hexp [414‘ — Cl} (31)
i=1 v

where
1 1
Ai=35> =5—
2

BZ- _ Z Ta,i,j — Ta (282‘, S,'I”j | V)) (32)

a727.7

a7j

L~ (i = 7o (308,75 | V)
Cz' = 5 Z J 3 ? .

a?j

This result is derived in the Appendix in sectlonlAl. By aggng over all possible veloc-

a7Z7J

ity realizations we obtain a velocity independent doubféetence estimator of the event

location:

pop(8 | 81, 8n {Taig}) = Z pop(s | s, v {Taigh, V) (V). (33)
ver

4.2.2 Interferometric location

For the interferometric likelihood function with arbitgaorigin times, we have

Ng
. : B;
pINT(S | S1,...,8N;; {Ta,i,*a Ta,i,*}a V) X H exXp |:4A - Czi| (34)
i=1 !

where now

1
AZ:ZF’

Q%

7A-cu,ipk — Ta (8i7 S, Taix ‘ V)
Bi = — Z 2 ) (35)

Q%

(%ai* — Ta <8i757rai* ‘ V))2 arTa (Si,S,T'ai* | V)
Ci = & & &
2 2 [

Q% Q%
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This result is derived in the Appendix in section]A2. Averagover different velocity

uncertainties, we obtain:

pINT(S | Sty sN57 {ra,i,*v fa,i,*})

- Z pINT(s | Sty SNsa {roc,i,*a %a,i,*}v V) p(V)
Vey

(36)

4.2.3 Unified Bayesian method

The formulas for the likelihood function and the posterigstidbution for the unified
method are notationally identical to those for the doubffecence method. The only
difference is that the summations , ; . are performed only over tripletsy, 4, j), for

which the weightsu,, ; ; are nonzero.

4.3 Numerical results

The 95% uncertainty regions for all three methods are shovFigure[6. Qualitatively

they are very similar to the case of known origin times. We saa that due to a larger
number of constraints used to build the estimator, the aedbference method better
handles the uncertainty in the origin times than the interfeetric method. The unified
method as before outperforms both the double-differendetla@ interferometric meth-

ods.

[Figure 6 about here.]

5 MORE GENERAL VELOCITY MODELS

We have presented a unified method of relative location ahsieievents. Given an ex-
plicitly given set of assumption about the velocity uncertiaand signal noise, we can
select the best receivers that minimize the location uac#yt In many practical cases
the production layer is known better due to the availabitifyhorizontal wells in the
production layer, well logs, and the better ray coverage éyopation shots. We have
demonstrated the power of our relative location methodimtiipe of situation.

The formulas that govern all of the location methods presgabove are general. They do
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not require assumptions about a specific form of the velaritertainty or well geometry.
Here we show numerical results of applying our methodologyther realistic scenarios.
The list of setups is not exhaustive; it simply confirms thieeirent versatility of our

approach.

We generalize the familiar numerical setup in two ways.tFine assume that the ve-
locity inside the production layer is also uncertain. Sel;ame allow the velocity inside
each layer to vary horizontally as well as vertically. Sfeally, we suppose that the
mean velocity inside each layer is as before. The assumedityeis the sum of the mean
velocity and a realization of a Gaussian random field witlozeean. The standard devi-
ation of random perturbations is 10% in the overburden, awaries from 1% to 10% in
the production layer. We will thus consider a range of saesdrom the one where the
production layer uncertainty is small to one where the wagay in the production layer
is as large as it is in the overburden. The correlation len§tandom velocity perturba-
tions is fixed at 100 m in the vertical direction, and it variesn 100 m to 5 km in the
horizontal direction. We assume throughout this sectianttie standard deviation of the

error in time picks is 1 ms.

Figure[T shows typical velocity realizations for each setygtimal receivers obtained
by the hybrid method, and the resulting minimal uncertaiBtiiptical approximations
are used to display the confidence regions, to save computatne. For these more
complicated models many velocity realizations are need@ttain a smooth curve, but
good elliptical approximations can be made with relativiely realizations. We can see
that when the uncertainty inside the production layer islsmaar-stationary receivers
produce the smallest uncertainty. This is in agreement prighrious results for the fully
known production layer. When the uncertainty inside thelpobion layer becomes larger,
using only the nearly stationary receivers presents nordadga. Consequently, it appears
in this case best to simply use more receivers in order toceethe effects of velocity

uncertainty and signal noise.

The horizontal correlation length of the velocity uncertgialso affects the optimization

result. When the horizontal length is small, rays that cohtigee same shallow receiver
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to different sources travel through uncorrelated parthefrhedium, and errors in travel
time do not cancel during cross-correlation. Includingstheeceivers in the likelihood
function adds noise and increases uncertainty. As the draak correlation length in-
creases, the situation changes. The correlation betweers @n travel time along dif-
ferent rays increases, and thus these errors are cancgll@ods-correlation. Including
shallow receivers in this case helps minimize location uagegty. In the extreme case,
where correlation is long and the model takes on a more fiaglgred structure, and the
velocity uncertainty in the overburden and the producteyel are equally large, only
shallow receivers are useful. Travel times along the rays fnear-stationary receivers to
the events have the largest errors, and thus these recaredoest left unused.

The analysis presented above serves as an illustrationeopdkver of the proposed
methodology of finding the best relative location algoritimmaarious situations. The con-
clusions drawn in this section are model specific and do nieinelxto other geometries;

however, the overall methodology does.

[Figure 7 about here.]

6 CONCLUSIONS

In this paper, we propose a unified framework for locating aknewn event relative

to other known events. This problem is pervasive in hydatfne monitoring where we

seek to describe the position of one fracture relative tdreroWe have analyzed two
methods for event location, double-difference and interfeetry, and compared them in
numerical experiments with receivers in a vertical momigmell. We have shown that
each of them is well-suited for specific assumptions abagdometry of the experiment,
the signal noise, and the uncertainty in the velocity moaebur experiment the double-
difference method handles the noise in the signal well, amelduces the effect of the
velocity uncertainty. The interferometric location mathie even better at mitigating the
velocity uncertainty in the overburden, but it is less aloledéal with the noise in lag

picks.

In order to deal with a full range of uncertainty scenariagthlin the velocity and in the
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recorded signal, we have proposed a unified location mefftod algorithm incorporates
the best properties of double-difference and interferoyrst selectively using data so as

to minimize the uncertainty of event locations.
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APPENDIX A: POSTERIOR DISTRIBUTIONS FOR RELATIVE LOCATION
METHODS

Al Posterior distribution for double-difference

Adding the unknown event origin times leads to the followfogn of the likelihood
function:
pDD({f'a,i,j} ‘ S, ATl, ce Asta S1,..., SNS, V)

Ne R A\ 2 (A1)
1 Tayi,j — Ta (Si, S, 'I“j | V) — AE
- _522< o |

i=1 a,j

Applying Bayes’ rule and assuming thas, ATy, ... ATNS) = const, we obtain

pDD(SyATla .. .,A]ﬁ]\[S | S1,.. '78N57{7A-Oc,i,j}7v)
pDD({%a,i,j} | S,Afl,. . .,ATNS,Sl, .. .,SNS,V)

X .
//'/pDD({%a,i,j} | S, ATl, ey ATNS, S1y---5,8Ny, V) dAjj—‘l s dAj)—‘NS ds
(A.2)




A unified Bayesian framework for relative microseismic tama 23

The posterior distribution of is written as:

pDD(S ‘ S1,..., SNS, {%a,i,j}a V)

= /-/pDD(S, Afl, cey ATNS,

/'/pDD({%a,i,j} ‘ S,Afl, .. .,ATNS,Sl,. . .,SNS,V) dATl . ‘dAfNS

81y SN {Fmis b, V) AATY - - - dATy,

//'/pDD({%a,i,j} ‘ S, Afl, Cey Asta S1,..., SNS, V) dAj)H v 'dAfNSdS
(A.3)

The multidimensional integral oveﬂo}, . ATNS in the numerator and the denominator
of the right hand side of the last equation can be again cozdprtalytically. Indeed, we

have

/'/pDD({%a,i,j} ‘ S,Afl,. . .,AfNS,Sl,. . .,SNS,V) dA’jjl s ‘dAfNS

N o\ 2

- 1 Aaz"_ a\2iy°2, 15 V _AE r
I o e N

i=1 2a,j G

Ns (A.4)
~11 / exp [—A,—Aff — BAT, — (Ji] dAT,
=1
N,
- s B?
- - e
Ly =P {4Ai }
where
1 1
A= 9 Z 2
a,j LI
7A-Oc,i,' — Ta (siv 8,7 | V)
Bi:‘z : z : g (A.5)
a,j a,t,]

C 1 (%a,i,j — Ta (8i7 S, Ty | V))2
=32 s '
a7i7j
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A2 Posterior distribution for interferometric location

For the interferometric likelihood function, we have

pINT({ra,i,*a 7A'a7i7*} | S, Afl, e AfNS, S1,---3,8N; V)

o\ 2
[y ()]
X exp [__ZZ (8 - To, 535 T | V))

Following the standard logic, we write the posterior estonas follows:

pINT(S | 81,y SN {Tasins Taiie }s V)

//pINT {’l"a7l7*,7'a2*} | S ATl, .. ATNS,Sl, .. SNS,V) dT1 dTNS

Y

///pINT {7"04727*,7'al*} | S ATl,.. ATND,Sl,.. SND,V) dTl dTN ds

(A7)
where
/./pINT<{ra’i’*’ 720‘77;7*} | S, ATM ety Astu S1y--+3 SNy, V) dfl T dis
ﬁ T B? . (A.8)
= — €X - Vil
LEVa ™0 s,
and
4=
C a 242,2'7*7
7A_oz,i,* — Ta (Si, S, 'r'oz,z,* | V)
Bi=-3 7 : (A.9)
(%a,z,* Ta (sia'S)TOzz* | V))2 a Ta (3273 Taix | V)
Ci = Z 2 2
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Figure 1. (a) The numerical setup witl6 receivers in a monitoring well located at depths fro$00 to 2900 m,
25 events in the reference fractu3@0 m away from the well, and an unknown event in another fraciQéem
from the well; (b) The layered P-velocity; (c) The layeredd&ecity.
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Figure 5. 95% confidence regions for double-difference (blue), fet@metric (green), and unified location
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during optimization.
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