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SUMMARY

We study the problem of determining an unknown microseismicevent location relative

to previously located events using a single monitoring array in a monitoring well. We

show that using the available information about the previously located events for locating

new events is advantageous compared to locating each event independently. By analyz-

ing confidence regions, we compare the performance of two previously proposed location

methods, double-difference and interferometry, for varying signal-to-noise ratio and un-

certainty in the velocity model. We show that one method may have an advantage over

another depending on the experiment geometry, assumptionsabout uncertainty in veloc-

ity and recorded signal, etc. We propose a unified approach torelative event location that

includes double-difference and interferometry as specialcases, and is applicable to ve-

locity models and well geometries of arbitrary complexity,producing location estimators

that are superior to those of double-difference and interferometry.

Key words: Theoretical seismology, hydraulic fracture location, earthquake location,

double-difference, interferometry, uncertainty, velocity uncertainty, Bayesian
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1 INTRODUCTION

Locating seismic events is an important problem both in global seismology and in ex-

ploration. Applications of this problem vary in scale from earthquake characterization

to hydraulic fracture monitoring. In hydraulic fracture monitoring, locating microseismic

events is an indirect method to image fractures or monitor their growth (Huang et al.,

2006; Bennett et al., 2006; Michaud et al., 2004).

Traditionally event location is performed as follows. For each event observed from a

single well, its arrival time and polarization are estimated. Polarization can only be esti-

mated with multi-component receivers, and it provides an indication of the direction of

the arriving signal. Combining the measured travel time andpolarization with an assumed

velocity model allows the recorded event to be, for instance, ray traced to its estimated

location. Microseismic events are located one by one, and the location of one is not used

to improve the estimated location of another.

As will be elaborated further, the classical location technique described above fails to

use important information that couples data from differentevents, and that can be used

to constrain the location of an unknown event relative to already located events (Dewey,

1972; Fitch, 1975; Spence, 1980; Richards et al., 2006; Hulsey et al., 2009; Kummerow,

2010). If multiple events originate in the same fracture then this relative location could

contain useful information about the geometry of the fracture or its growth in time (Eisner

et al., 2006). When multiple fractures are created sequentially, relative distances between

the events from different fractures reveal important information about the geometry of the

entire fracture system.

When one event is located relative to another, the uncertainty in the origin time and ab-

solute location of the reference event propagates to the estimates of the origin time and

the absolute location of the unknown event. However, estimating quantities such as the

fracture size or fracture spacing does not require the knowledge of the absolute locations

of the events. For example, we may hypothetically move the entire fracture system in

space without changing the size of individual fractures or their relative arrangement. Rel-
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ative location is a method of recovering quantities that arenot sensitive to absolute event

positions.

In this paper, we consider two methods of relative location that have been previously

proposed: double-difference (DD)(Waldhauser and Ellsworth, 2000; Zhang and Thurber,

2003) and interferometry (Poliannikov et al., 2011). Both methods use correlations of

waveform data around direct arrivals from different sources at multiple receivers, hence-

forth called correlograms, to couple the arrivals of pairs of events. These correlograms

produce new measurements of wave propagation between the events that are less sensi-

tive to the global variations of the velocity (Zhang and Thurber, 2003; Borcea et al., 2005;

Zhang and Thurber, 2006).

While the rationale for using double-difference and interferometry is similar, the meth-

ods differ in important aspects. The double-difference location method seeks to match

predicted correlograms with observed ones uniformly across all receivers, while the in-

terferometric location method fits the correlogram only at asingle stationary receiver

where the correlation lag is maximal.

In order to compare the performance of each method, an objective measure is required.

Such a measure can then be used to test each method for a range of realistic scenarios.

We consider here a numerical experiment with a single monitoring well and two frac-

tures that are located near one another. Event locations in the first reference fracture are

assumed known, and we attempt to locate an event in another fracture using all the in-

formation that is available. We assume that the velocities in the overburden are uncertain

and that the recorded signal is noisy. Using these assumptions we define location estima-

tors for both methods and compute the associated uncertainty. Analysis of the location

uncertainty reveals the situations in which one method is superior to another.

The uncertainty analysis that we develop is general and applies to any relative location

method that uses the fit between predicted correlograms and observed ones. Accordingly,

instead of choosing between the two methods, we seek a correlogram-based location

method that minimizes the location uncertainty given accepted assumptions on the signal

noise and velocity uncertainty (Tarantola and Valette, 1982; Pavlis, 1986). Specifically,
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we seek the subset of receivers, which when used for relativelocation, minimizes the un-

certainty of the estimate of the event location. The output of this procedure is the set of

optimal receivers and the associated event location uncertainty. In some cases the opti-

mal receivers will be nearly stationary. In other cases, it may be advantageous to use all

or a subset of available receivers away from the stationary point. The search for optimal

receivers is fully automated and by construction outperforms both double-difference and

interferometry.

The structure of this paper is as follows. In Section 2, we discuss event location in a

known velocity when event origin times are known. In Section3, we introduce the notion

of relative location in an unknown velocity, build a framework for evaluating the perfor-

mance of different methods, and propose a unified relative location method. In Section 4,

we generalize our methodology to events whose origin times are unknown. In Section 5,

we present a set of one- and two-dimensional examples that demonstrate the versatility of

our methodology. The paper closes with a concluding section.

2 LOCATION IN A KNOWN VELOCITY

2.1 Classical location

A collection of seismic events excites elastic waves that are then recorded by a set of

single-component or multiple-component receivers. The problem is to locate these events

using the recorded signals. A classical method of event location is to locate each event

individually. For each event, the arrival time of each recorded phase is picked at each re-

ceiver, and when combined with an assumed velocity model andevent polarity informa-

tion, ray tracing can be used to find the event location. Throughout the paper we consider

a situation where the recorded signal is noisy, and thus the picked travel times are noisy.

For clarity we first assume that the event origin times are known. In section 4, we show

that our approach fully extends to the case of unknown origintimes.

Suppose that, for a given wave arrival, the picked (measured) travel time,T̂α,j, of phase
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α at receiverj can be written as

T̂α,j = Tα (s, rj) + εα,j, α = P, S, . . . , j = 1, . . . , Nr, (1)

whereNr is the number of receivers in the monitoring well,TP (s, rj) andTS (s, rj)

are the predicted travel time of theP andS-wave from an event locations to a receiver

locationrj computed by raytracing in the assumed velocity modelVP or VS respectively;

εα,j is independent Gaussian noise, given byεα,j ∼ N
(

0, σ2
α,j

)

, i.e., normally distributed

with zero-mean and varianceσ2
α,j . We may potentially use a richer set of phasesα to

distinguish between SH and SV or include other arrivals suchas reflections from known

interfaces if we can model them theoretically and they are present in the data. The method

is also easily generalized to the case of correlatedεα,j with a known covariance matrix.

For now we will use the notation as it has been defined. The likelihood function for the

observed travel times is given by Tarantola and Valette (1982); Eisner et al. (2010):

pCL

(

{T̂α,j} | s
)

=
1

(2π)Nr/2
∏

α,j

σα,j
exp



−
1

2

∑

α,j

(

T̂α,j − Tα (s, rj)

σα,j

)2


 , (2)

where CL stands for classical. The posterior distribution,pCL

(

s | {T̂α,j}
)

, of the event

location,s, given the observed travel times,{T̂α,j}, is obtained using Bayes’ rule:

pCL

(

s | {T̂α,j}
)

=
pCL

(

{T̂α,j} | s
)

p(s)
˚

pCL

(

{T̂α,j} | s
)

p(s) ds
, (3)

wherep(s) is the prior probability density. Assuming a uniform prior probabilityp(s) ≡

const, we have

pCL

(

s | {T̂α,j}
)

∝ exp



−
1

2

∑

α,j

(

T̂α,j − Tα (s, rj)

σα,j

)2


 . (4)

2.2 Reducing uncertainty by using correlograms

In practice, we may need to locate many seismic events. Waldhauser and Ellsworth (2000)

have shown that instead of locating sources one by one we can use available information

about previously located events in order to obtain better estimates of the locations of

subsequent events.
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Assume, for example, that we have already locatedNs events:s1, . . . , sNs
. The goal is to

locate an unknown events. In order to use information from the already located events,

we use the original waveforms to compute cross-correlations of direct arrivals from events

si with that from events for each receiver. We obtain correlogram picks

τ̂α,i,j = τα (si, s, rj) + ηα,i,j, (5)

whereτα (si, s, rj) is the predicted correlogram moveout in the assumed velocity model

Vα:

τα (si, s, rj) = Tα (s, rj)− Tα (si, rj) , (6)

and ηα,i,j is independent Gaussian noise given byηα,i,j ∼ N
(

0, ζ2α,i,j
)

. Note that al-

though the predicted correlogram event moveouts in Equation 6 are differences of the

corresponding travel times in the original gathers, correlogram picks,̂τα,i,j , are not sim-

ply differences of the travel time picks; they are computed independently directly from

the waveforms.

Assuming that the eventss1, . . . , sNs
have already been located, we simultaneously fit

the predicted travel times,Tα (s, rj) to the observed time picks,̂Tα,j, and the predicted

correlogram moveouts,τα (si, s, rj), to the observed lags,̂τα,i,j. This allows us to cal-

culate the conditional distribution of the unknown event locations given the previously

located events. Since both the errors in the travel times andin the lags have Gaussian

distributions, we can perform an analysis similar to the onein Section 2.1, and write the

estimator of the locations given the observed travel times and lags as

pDD

(

s | s1, . . . , sNs
, {T̂α,j}, {τ̂α,i,j}

)

∝ exp



−
1

2

∑

α,j

(

T̂α,j − Tα (s, rj)

σα,j

)2




× exp

[

−
1

2

Ns
∑

i=1

∑

α,j

(

τ̂α,i,j − τα (si, s, rj)

ζα,i,j

)2
]

.

(7)

Following Waldhauser and Ellsworth (2000) and Zhang and Thurber (2003), we call this

location technique the double-difference method, so nameddue to the differencing of two

residuals,̂τα,i,j andτα (si, s, rj), which are themselves differences of travel times. The
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classical method of direct event location given by Equation4 processes each event inde-

pendently, and thus fails to utilize the important constraints that couple pairs of events.

Those constraints enter Equation 7 in the form of additionalexponentials of lag misfits.

This may result in a larger uncertainty in the classical location technique as compared to

the double-difference method.

We illustrate the relative performance of the two methods ina numerical experiment with

a layered velocity model and the source and receiver configuration shown in Figure 1a.

The 16 receivers are equally spaced in a vertical well at depths between 1300 m and

2900 m. The locations of the25 events in the reference fracture, situated at an offset

(horizontal distance) of300 m, are assumed known. The unknown event is located further

away at an offset of600 m. The known layered velocity is shown in Figures 1b and 1c.

In this initial demonstration we assume that the origin times of all events are known.

Later we show how to remove this assumption. The travel times, T̂α,j, from the unknown

event are picked with errors, and the standard deviation of these errors isσα,j ≡ 4 ms.

The waveforms of the direct arrivals from the unknown event and the reference events are

cross-correlated, and the lags are picked with the uncertainty ζα,i,j ≡ 4 ms. We use Equa-

tions 4 and 7 to compute the conditional density of the location estimators given by the

classical and double-difference methods. We use a fast eikonal solver to compute travel

times from each of the16 receivers. The likelihood function values, and hence the poste-

rior distribution values, can then be efficiently computed throughout the 3D volume. For

this layered model, a two-point ray tracer might have been adequate. We use an eikonal

solver because our methodology is appropriate for general 3D models and our software

is written for this general case.

Because the medium is layered and the well is vertical, both methods fail to recover

the azimuth. The azimuthal information is available when the azimuthal symmetry of

the model is broken, such as by a non-vertical well and/or a velocity model that is not

horizontally stratified. Here we will analyze the uncertainty in the offset-depth plane,

where offset is horizontal distance between the receiver array and the event. The azimuth

can be estimated by analyzing the polarization of the incoming wave if three-component
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receivers are available. This issue is not relevant to the location algorithms discussed in

this paper and we will not consider it any further.

We compare the performance of each method in Figure 2. For each method we display

the corresponding95%-confidence region. Both estimators are unbiased but the spread

of the estimator constructed using the double-difference method is much smaller. This

example shows how the use of already located events can improve the location accuracy

of subsequently located events.

[Figure 1 about here.]

[Figure 2 about here.]

3 LOCATION IN UNCERTAIN VELOCITY

3.1 Relative location

In the previous section we have shown that if the velocity model is known, then the

double-difference method provides a better estimate of thelocation of the unknown event

than the classical method. Now we consider a scenario where the velocity model is un-

certain. We denote the family comprising all admissible velocity models asV .

The probability density functions given by Equations 4 and 7implicitly depend on the as-

sumed velocity model. If that velocity is incorrect, then the resulting estimators are based

on erroneously predicted travel times and can be biased. In particular, the performance

of the classical location method given by Equation 4 may significantly deteriorate. On

the other hand, correlograms are less sensitive to the velocity uncertainty because cross-

correlation in effect subtracts the travel times, and if thewaves from two event locations

travel to a receiver along similar paths, then the model uncertainty along the shared por-

tion of the rays is largely canceled. Our goal, as before, will be to estimate the location

of the unknown event relative to previously located ones, and to analyze the resulting

uncertainty due to both the noise in the signal and the uncertainty in the velocity model.

We emphasize the dependence of all computed travel times on the velocity model,V ∈ V ,

by explicitly conditioning on the latter. The travel times and the correlogram lags will
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henceforth be denoted asTα (s, r | V ) andτα (si, s, r | V ). The conditional distribution

of the unknown event locations is denotedp
(

s | s1, . . . , sNs
, {T̂α,j}, {τ̂α,i,j}, V

)

. Then

the total uncertainty over all velocity models is describedwith the marginal distribution

of s obtained by averaging properly normalized posterior distributions over all possible

velocity models inV

p
(

s | s1, . . . , sNs
, {T̂α,j}, {τ̂α,i,j}

)

=
∑

V ∈V

p
(

s | s1, . . . , sNs
, {T̂α,j}, {τ̂α,i,j}, V

)

p(V ).

(8)

If the velocity models are equally likely, thenp(V ) = 1/|V |, where|V | is the cardinality

of V . In what follows we consider two previously proposed methods for relative event

location: the double-difference method and the interferometric method. We compare their

relative performance in various scenarios and analyze their strengths and weaknesses.

This analysis will then form a basis for the new unified approach that combines the best

of the two techniques and results in a location algorithm that outperforms either one.

3.2 Double-difference location

Because the velocity model is uncertain, the predicted travel times,Tα (s, r), are biased.

For example, if the velocity is overestimated, then the event distance will have an over-

estimation bias. To partially mitigate this problem, we useonly the correlogram lags to

construct an estimate of the relative location of the unknown event:

pDD({τ̂α,i,j} | s, s1, . . . , sNs
, V ) ∝ exp

[

−
1

2

Ns
∑

i=1

∑

α,j

(

τ̂α,i,j − τα (si, s, rj | V )

ζα,i,j

)2
]

.

(9)

The modified posterior distribution of the event location, conditional on the velocity

model, is given by

pDD(s | s1, . . . , sNs
, {τ̂α,i,j}, V ) ∝

pDD({τ̂α,i,j} | s, s1, . . . , sNs
, V )

˚

pDD({τ̂α,i,j} | s, s1, . . . , sNs
, V ) ds

. (10)

Averaging over all possible velocity models, we obtain an estimate of the location ofs
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relative tos1, . . . , sNs
:

pDD(s | s1, . . . , sNs
, {τ̂α,i,j}) =

∑

V ∈V

pDD(s | s1, . . . , sNs
, {τ̂α,i,j}, V ) p(V ). (11)

Using a large number of lag points significantly reduces the impact of signal noise. Be-

cause the correlograms are less sensitive to the velocity uncertainty between the receivers

and the events, the estimator given in Equation 11 is less biased than the original double-

difference estimator from Equation 7. However, the bias is not perfectly mitigated (Miche-

lini and Lomax, 2004), and in order to attempt to remove it more effectively we will

construct in the next section a related estimator based on interferometry.

3.3 Interferometric location

The interferometric location method, proposed by Poliannikov et al. (2011), is another

technique that can be employed to locate an unknown event relative to other events

with known locations. Partially reconstructing the Green’s function between the unknown

event and the known event locations provides additional information that is complemen-

tary to that contained in the direct arrival times picked at the receivers. A summary of the

method is as follows.

We first assume a velocity model,V , and perform a stationary phase analysis of the cor-

relogram moveout. Specifically, for each reference eventsi, we take the observed lag

moveout,τ̂α,i,j , interpolate it between the receivers as necessary, and finda stationary

receiver location,rα,i,∗, defined in our example with an observation well by

∂r τ̂α,i,j = 0, (12)

where∂r denotes a directional derivative with respect to the receiver position along the

well trajectory. (For a 2D array of receivers, we would have to differentiate with respect to

both spatial variables.) We interpolate the stationary location from the lag measurements

and compute the stationary (maximum) lag

τ̂α,i,∗ = τ̂α,i,j|
rα,i,∗

. (13)

As further elaborated by Poliannikov et al. (2011),rα,i,∗ and τ̂α,i,∗ may be used to con-
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strain the location,s, of the unknown event relative to all other events,si, with whichs

forms stationary pairs. Their likelihood function is written as

pINT({rα,i,∗, τ̂α,i,∗} | s, s1, . . . , sNs
, V ) ∝ exp

[

−
1

2

Ns
∑

i=1

(

τ̂α,i,∗ − τα (si, s, ri,∗ | V )

ζα,i,∗

)2
]

× exp

[

−
1

2

Ns
∑

i=1

(

∂rτα (si, s, rα,i,∗ | V )

2ζα,i,∗

)2
]

.

(14)

The posterior distribution of the event location then has the form

pINT(s | s1, . . . , sNs
, {ri,∗, τ̂α,i,∗}, V ) ∝

pINT({rα,i,∗, τ̂α,i,∗} | s, s1, . . . , sNs
, V )

˚

pINT({ri,∗, τ̂α,i,∗} | s, s1, . . . , sNs
, V ) ds

.

(15)

Marginalizing over all possible velocity models,V ∈ V , we obtain the velocity-independent

distribution ofs given all the reference eventss1, . . . , sNs
:

pINT(s | s1, . . . , sNs
, {rα,i,∗, τ̂α,i,∗}) =

∑

V ∈V

pINT(s | s1, . . . , sNs
, {rα,i,∗, τ̂α,i,∗}, V ) p(V ).

(16)

In order to solve Equations 12 and 15 numerically, we approximate the partial derivative

with a finite difference:

∂rτα (si, s, rα,i,∗ | V ) ≈
τα (si, s, rα,i,∗ +∆r | V )− τα (si, s, rα,i,∗ −∆r | V )

2|∆r|
,

(17)

which, as for double-difference, allows us to efficiently compute the posterior distribution

in Equation 15 using an eikonal solver for fully three-dimensional velocity models.

3.4 Comparison of the two location methods

The double-difference and interferometric location methods presented above have advan-

tages and disadvantages. The double-difference location algorithm partially removes the

velocity uncertainty by using travel time differences and significantly reduces the impact

of noise by averaging over many receivers thus reducing the spread of the estimator. The

interferometric method is even less sensitive to velocity perturbations between the refer-
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ence sources and the monitoring well when the geometry is suitable as is the case when

the velocity is layered and monitoring well is vertical.

In order to test the performance of both methods we consider the numerical experiment

shown in Figure 1. We assume that the signal, and henceT̂α,i and τ̂α,i,j, are noisy. In

addition we also assume that the velocity in the overburden above the events is uncertain.

Although our approach can accommodate different forms of velocity uncertainty, for ease

of presentation we consider here a simplified uncertainty model in which there is only a

single uncertainty parameter. LetVα,0, α ∈ {P, S} be the true velocity models shown in

Figure 1a. The estimated velocities,Vα(z) are assumed to have the form

Vα(z) = Vα,0(z)
(

1 + η(z)
)

, (18)

where

η(z) =











η z < 2500

0 z ≥ 2500

. (19)

This means that the velocities inside the production layer are known exactly, whereas

the velocity above that can be overestimated or underestimated by the random factor

η. Assuming zero uncertainty in the reservoir layer also allows us to clearly separate

the effects of noise and velocity uncertainty in the overburden. We will consider a more

general example in the last section of the paper.

We first show the effect of the uncertainty in velocity and theerror in the lag time

pick on the performance of both methods. Figure 3 contains the location results for

the two methods for a range ofη and ζ . The relative velocity errorη assumes values

−20%,−10%, 0, 10%, 20%, andζ takes values4 ms, 2 ms, and1 ms. Each row in Figure

3 corresponds to the same velocity error, and each column corresponds to the sameζ . We

show the 95% confidence region in the offset-depth domain; the results of the double-

difference method are shown in blue, and the results of the interferometric method are

shown in green.

Evaluating panels from the same row in Figure 3, we observe that asζ becomes smaller,

so do the uncertainty regions for both methods. The uncertainty region of the double-
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difference method is always smaller due to averaging over a larger number of measure-

ments.

Examining panels from the same column, we see that varying the velocity error in the

overburden leaves the uncertainty produced by the interferometric estimator very stable.

This is because the effect of overburden velocity uncertainty is mitigated during the sta-

tionary phase analysis (Poliannikov et al., 2011). At the same time, the results of the

double-difference method show a clear dependence on the velocity error. The larger the

error, the more biased the results become.

[Figure 3 about here.]

In practice we cannot know for sure how much the assumed velocity model is different

from the true one. The total uncertainty of the estimated location should include veloc-

ity uncertainty as spelled out by Equations 11 and 16. For illustration purposes, we will

assume that Equations 18 and 19 hold withη ∼ N (0, 10%). We compute the total un-

certainty of the event location for different choices of thecorrelation pick uncertainty and

show the results in Figure 4.

Each of the three panels in Figure 4 can be loosely thought of as an average (weighted by

the Gaussian probabilities) of the respective columns in Figure 3. The bias that the double-

difference method produces for each realization of the velocity model,V ∈ V , translates

into a larger uncertainty region when we compute the total uncertainty by averaging over

V . The tortuous shape of the uncertainty region is due to the layered velocity and the

specific model for the velocity uncertainty. Different assumptions on the velocity would

result in different (generally non-Gaussian) shapes of theuncertainty regions. The artifact

in Figure 4c is due to the insufficiently high spatial resolution of the numerical model.

The relative performance of the double-difference location method versus the interfero-

metric location method for this example depends on the noisestrength and the velocity

uncertainty. Whenζ goes to zero, the velocity uncertainty dominates. The interferomet-

ric location method, which is better adapted to handle this,is expected to perform better.

On the other hand, if the velocity is well resolved then the error due to signal noise domi-
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nates. By averaging over a larger number of measurements, the double-difference location

method then produces a better estimator.

[Figure 4 about here.]

3.5 Unified Bayesian method

Both location methods presented above use the locations of known events to produce

estimators of an unknown event location. Both methods derive additional information

about the unknown event location from the correlograms by fitting predicted travel time

differences into observed correlations. The difference between the two methods lies in the

choice of the norm used for the fitting. The double-difference location method is based on

fitting the predicted correlogram events to the observed correlations by using theℓ2 norm

over all receivers. When the noise in the signal is uncorrelated and Gaussian, this leads

to the optimal estimate. The interferometric method attempts to match the predicted and

observed correlograms only at the stationary phase point, which, in a suitable geometry,

may lead to a better estimator in the case of an uncertain overburden velocity.

The quality of an estimator may be judged by the volume of the uncertainty region for a

fixed confidence level once velocity uncertainty has been marginalized away. The method

that produces a confidence region smaller than all others is optimal for a given geometry

and set of assumptions about uncertainty. We use this simpleidea to propose a new unified

method of location of one event relative to others. Instead of fitting the data at all receivers

equally or fitting it just at the locations of stationary receivers, we assign binary weights,

wα,i,j ∈ {0, 1}, to each phaseα, and each receiver,j, for each reference source,i. The

weighted likelihood function has the form:

pBAY({τ̂α,i,j} | s, s1, . . . , sNs
, V ) ∝ exp

[

−
1

2

Ns
∑

i=1

∑

α,j

wα,i,j

(

τ̂α,i,j − τα (si, s, rj | V )

ζα,i,j

)2
]

.

(20)

The resulting estimator can be written as

pBAY(s | s1, . . . , sNs
, {τ̂α,i,j}, V ) ∝

pBAY({τ̂α,i,j} | s, s1, . . . , sNs
, V )

˚

pBAY({τ̂α,i,j} | s, s1, . . . , sNs
, V ) ds

, (21)
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and

pBAY(s | s1, . . . , sNs
, {τ̂α,i,j}) =

∑

V ∈V

pBAY(s | s1, . . . , sNs
, {τ̂α,i,j}, V ) p(V ). (22)

Having constructed the estimator, we can compute the volume, W , of its 95% confidence

region. The optimal weights are then found by solving the minimization problem:

{w0
α,i,j} = arg min

{wα,i,j}
W. (23)

Solving this minimization problem for a large dataset and many admissible velocity mod-

els is not completely trivial. We illustrate the unified location method by using a slightly

simplified optimization procedure organized as follows. For each reference event number

i, we seek the connected window of receivers,{j, j +1, . . .}, that minimizes the estimate

of the location uncertainty. This greatly reduces the parameter space for the optimization

problem, and is likely to be optimal for all examples shown inthe paper.

[Figure 5 about here.]

The final results for this model are shown in Figure 5. The unified method outperforms

both the double-difference and the interferometric methodby taking the best of both

worlds. For each reference source, the algorithm automatically finds a window of re-

ceivers centered roughly at the stationary point. The location bias that is introduced by

receivers above the stationary depth is approximately removed by the bias from receivers

below the stationary location. By combining the contributions of all receivers, we mini-

mize the bias caused by the velocity uncertainty while simultaneously reducing noise by

averaging over many receivers.

4 UNKNOWN ORIGIN TIMES

All of the theory presented above assumed the knowledge of origin times. Propagation

times could be easily inferred from the corresponding eventpicks, which greatly simpli-

fied the analysis. In this section we show for completeness that knowledge of event origin

times is not necessary, and our analysis fully extends to themore realistic case in which

the origin times are unknown.
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4.1 Classical location in known velocity

Suppose as before that a single event with an unknown hypocenter s is recorded at all

receivers. Denoting its origin time̊T , we write the following expression for the event

time picks:

T̂α,j = T̊ + Tα (s, rj) + εα,j, α = P, S, . . . , j = 1, . . . , Nr, (24)

whereεα,j ∼ N
(

0, σ2
α,j

)

. Note thatT̂α,j now refers to time of day (absolute time) instead

of its former meaning of travel time, whereasTα (s, rj) retains its meaning of predicted

travel time.

The likelihood function describing the probability of observing specific times given a

source location and an origin time has the form:

pCL

(

{T̂α,j} | s, T̊
)

=
1

(2π)Nr/2
∏

α,j

σα,j
exp



−
1

2

∑

α,j

(

T̂α,j − T̊ − Tα (s, rj)

σα,j

)2


 .
(25)

The posterior joint distribution of the event’s location and origin time given the observed

time picks is again obtained by Bayes’ theorem:

pCL

(

s, T̊ | {T̂α,j}
)

=
pCL

(

{T̂α,j} | s, T̊
)

p(s, T̊ )
¨

pCL

(

{T̂α,j} | s, T̊
)

p(s, T̊ ) dT̊ ds
. (26)

The prior distribution,p(s, T̊ ), reflects our very limited understanding of the event origin

times and locations in the absence of any recorded data. We assume a uniform distribution

p(s, T̊ ) ≡ const on a sufficiently large spatial volume and temporal interval. The likeli-

hood function,pCL

(

{T̂α,j} | s, T̊
)

, is given above, and it captures the physics of wave

propagation between event locations and receivers. Scenarios incompatible with recorded

data, such as the event occurring after it is recorded by the receivers, will be automatically

ruled out by the likelihood function during the computationof the posterior distribution,

pCL

(

s, T̊ | {T̂α,j}
)

.

Under the assumption of a uniform prior distribution, the posterior distribution adopts the
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compact form:

pCL

(

s, T̊ | {T̂α,j}
)

∝ exp



−
1

2

∑

α,j

(

T̂α,j − T̊ − Tα (s, rj)

σα,j

)2


 . (27)

Equation 27 for the posterior distribution of the event location and origin time captures

both the spatial and temporal uncertainty about the event aswell as the correlation be-

tween the two. This information could potentially be used totrack the microseismic ac-

tivity as a function of time. If we are interested only in the spatial uncertainty of the event

then that can be obtained by marginalizing away the origin time:

pCL

(

s | {T̂α,j}
)

∝

ˆ

pCL

(

s, T̊ | {T̂α,j}
)

dT̊

=

ˆ

exp
[

−AT̊ 2 − BT̊ − C
]

dT̊

∝ exp

[

B2

4A
− C

]

,

(28)

where

A =
1

2

∑

α,j

1

σ2
α,j

,

B = −
∑

α,j

T̂α,j − Tα (s, rj)

σ2
α,j

,

C =
1

2

∑

α,j

(

T̂α,j − Tα (s, rj)
)2

σ2
α,j

.

(29)

4.2 Relative location in uncertain velocity

Assume as before that the reference events,s1, . . . , sNs
, have already been located. The

measured travel-time difference between the two direct arrivals from eventss andsi has

the form

τ̂α,i,j = τα (si, s, rj | V ) + T̊ − T̊i + ηα,i,j, (30)

whereτα (si, s, rj | V ) = Tα (s, rj | V ) − Tα (si, rj | V ), T̊ is the origin time of the

unknown event,s, andT̊i are the origin times of the reference events,si. For convenience

we define the unknown differences of the origin times∆T̊i = T̊ − T̊i, i = 1, . . . , Ns,
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and show how they affect the location uncertainty for each method of relative location

discussed so far.

4.2.1 Double-difference

The posterior distribution ofs with origin times accounted for is written as:

pDD(s | s1, . . . , sNs
, {τ̂α,i,j}, V ) ∝

Ns
∏

i=1

exp

[

B2
i

4Ai
− Ci

]

, (31)

where

Ai =
1

2

∑

α,j

1

ζ2α,i,j
,

Bi = −
∑

α,j

τ̂α,i,j − τα (si, s, rj | V )

ζ2α,i,j
,

Ci =
1

2

∑

α,j

(τ̂α,i,j − τα (si, s, rj | V ))2

ζ2α,i,j
.

(32)

This result is derived in the Appendix in section A1. By averaging over all possible veloc-

ity realizations we obtain a velocity independent double-difference estimator of the event

location:

pDD(s | s1, . . . , sNs
, {τ̂α,i,j}) =

∑

V ∈V

pDD(s | s1, . . . , sNs
, {τ̂α,i,j}, V ) p(V ). (33)

4.2.2 Interferometric location

For the interferometric likelihood function with arbitrary origin times, we have

pINT(s | s1, . . . , sNs
, {rα,i,∗, τ̂α,i,∗}, V ) ∝

Ns
∏

i=1

exp

[

B2
i

4Ai
− Ci

]

, (34)

where now

Ai =
∑

α

1

2ζ2α,i,∗
,

Bi = −
∑

α

τ̂α,i,∗ − τα (si, s, rα,i,∗ | V )

ζ2α,i,∗
,

Ci =
∑

α

[

(τ̂α,i,∗ − τα (si, s, rα,i,∗ | V ))2

2ζ2α,i,∗
+

∂rτα (si, s, rα,i,∗ | V )

8ζ2α,i,∗

]

.

(35)
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This result is derived in the Appendix in section A2. Averaging over different velocity

uncertainties, we obtain:

pINT(s | s1, . . . , sNs
, {rα,i,∗, τ̂α,i,∗})

=
∑

V ∈V

pINT(s | s1, . . . , sNs
, {rα,i,∗, τ̂α,i,∗}, V ) p(V ).

(36)

4.2.3 Unified Bayesian method

The formulas for the likelihood function and the posterior distribution for the unified

method are notationally identical to those for the double-difference method. The only

difference is that the summations
∑

α,i,j are performed only over triplets(α, i, j), for

which the weightswα,i,j are nonzero.

4.3 Numerical results

The 95% uncertainty regions for all three methods are shown in Figure 6. Qualitatively

they are very similar to the case of known origin times. We cansee that due to a larger

number of constraints used to build the estimator, the double-difference method better

handles the uncertainty in the origin times than the interferometric method. The unified

method as before outperforms both the double-difference and the interferometric meth-

ods.

[Figure 6 about here.]

5 MORE GENERAL VELOCITY MODELS

We have presented a unified method of relative location of seismic events. Given an ex-

plicitly given set of assumption about the velocity uncertainty and signal noise, we can

select the best receivers that minimize the location uncertainty. In many practical cases

the production layer is known better due to the availabilityof horizontal wells in the

production layer, well logs, and the better ray coverage by perforation shots. We have

demonstrated the power of our relative location method in this type of situation.

The formulas that govern all of the location methods presented above are general. They do
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not require assumptions about a specific form of the velocityuncertainty or well geometry.

Here we show numerical results of applying our methodology to other realistic scenarios.

The list of setups is not exhaustive; it simply confirms the inherent versatility of our

approach.

We generalize the familiar numerical setup in two ways. First, we assume that the ve-

locity inside the production layer is also uncertain. Second, we allow the velocity inside

each layer to vary horizontally as well as vertically. Specifically, we suppose that the

mean velocity inside each layer is as before. The assumed velocity is the sum of the mean

velocity and a realization of a Gaussian random field with zero mean. The standard devi-

ation of random perturbations is 10% in the overburden, and it varies from 1% to 10% in

the production layer. We will thus consider a range of scenarios from the one where the

production layer uncertainty is small to one where the uncertainty in the production layer

is as large as it is in the overburden. The correlation lengthof random velocity perturba-

tions is fixed at 100 m in the vertical direction, and it variesfrom 100 m to 5 km in the

horizontal direction. We assume throughout this section that the standard deviation of the

error in time picks is 1 ms.

Figure 7 shows typical velocity realizations for each setup, optimal receivers obtained

by the hybrid method, and the resulting minimal uncertainty. Elliptical approximations

are used to display the confidence regions, to save computation time. For these more

complicated models many velocity realizations are needed to obtain a smooth curve, but

good elliptical approximations can be made with relativelyfew realizations. We can see

that when the uncertainty inside the production layer is small, near-stationary receivers

produce the smallest uncertainty. This is in agreement withprevious results for the fully

known production layer. When the uncertainty inside the production layer becomes larger,

using only the nearly stationary receivers presents no advantage. Consequently, it appears

in this case best to simply use more receivers in order to reduce the effects of velocity

uncertainty and signal noise.

The horizontal correlation length of the velocity uncertainty also affects the optimization

result. When the horizontal length is small, rays that connect the same shallow receiver
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to different sources travel through uncorrelated parts of the medium, and errors in travel

time do not cancel during cross-correlation. Including these receivers in the likelihood

function adds noise and increases uncertainty. As the horizontal correlation length in-

creases, the situation changes. The correlation between errors in travel time along dif-

ferent rays increases, and thus these errors are cancelled by cross-correlation. Including

shallow receivers in this case helps minimize location uncertainty. In the extreme case,

where correlation is long and the model takes on a more finely layered structure, and the

velocity uncertainty in the overburden and the production layer are equally large, only

shallow receivers are useful. Travel times along the rays from near-stationary receivers to

the events have the largest errors, and thus these receiversare best left unused.

The analysis presented above serves as an illustration of the power of the proposed

methodology of finding the best relative location algorithmin various situations. The con-

clusions drawn in this section are model specific and do not extend to other geometries;

however, the overall methodology does.

[Figure 7 about here.]

6 CONCLUSIONS

In this paper, we propose a unified framework for locating an unknown event relative

to other known events. This problem is pervasive in hydrofracture monitoring where we

seek to describe the position of one fracture relative to another. We have analyzed two

methods for event location, double-difference and interferometry, and compared them in

numerical experiments with receivers in a vertical monitoring well. We have shown that

each of them is well-suited for specific assumptions about the geometry of the experiment,

the signal noise, and the uncertainty in the velocity model.In our experiment the double-

difference method handles the noise in the signal well, and it reduces the effect of the

velocity uncertainty. The interferometric location method is even better at mitigating the

velocity uncertainty in the overburden, but it is less able to deal with the noise in lag

picks.

In order to deal with a full range of uncertainty scenarios, both in the velocity and in the
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recorded signal, we have proposed a unified location method.This algorithm incorporates

the best properties of double-difference and interferometry by selectively using data so as

to minimize the uncertainty of event locations.
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APPENDIX A: POSTERIOR DISTRIBUTIONS FOR RELATIVE LOCATION

METHODS

A1 Posterior distribution for double-difference

Adding the unknown event origin times leads to the followingform of the likelihood

function:

pDD({τ̂α,i,j} | s,∆T̊1, . . . ,∆T̊Ns
, s1, . . . , sNs

, V )

∝ exp



−
1

2

Ns
∑

i=1

∑

α,j

(

τ̂α,i,j − τα (si, s, rj | V )−∆T̊i

ζα,i,j

)2


 .
(A.1)

Applying Bayes’ rule and assuming thatp(s,∆T̊1, . . .∆T̊Ns
) ≡ const, we obtain

pDD(s,∆T̊1, . . . ,∆T̊Ns
| s1, . . . , sNs

, {τ̂α,i,j}, V )

∝
pDD({τ̂α,i,j} | s,∆T̊1, . . . ,∆T̊Ns

, s1, . . . , sNs
, V )

ˆ ˙

pDD({τ̂α,i,j} | s,∆T̊1, . . . ,∆T̊Ns
, s1, . . . , sNs

, V ) d∆T̊1 · · · d∆T̊Ns
ds

.

(A.2)
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The posterior distribution ofs is written as:

pDD(s | s1, . . . , sNs
, {τ̂α,i,j}, V )

=

˙

pDD(s,∆T̊1, . . . ,∆T̊Ns
, | s1, . . . , sNs

, {τ̂α,i,j}, V ) d∆T̊1 · · · d∆T̊Ns

=

˙

pDD({τ̂α,i,j} | s,∆T̊1, . . . ,∆T̊Ns
, s1, . . . , sNs

, V ) d∆T̊1 · · · d∆T̊Ns

ˆ ˙

pDD({τ̂α,i,j} | s,∆T̊1, . . . ,∆T̊Ns
, s1, . . . , sNs

, V ) d∆T̊1 · · ·d∆T̊Ns
ds

.

(A.3)

The multidimensional integral over∆T̊1, . . . ,∆T̊Ns
in the numerator and the denominator

of the right hand side of the last equation can be again computed analytically. Indeed, we

have

˙

pDD({τ̂α,i,j} | s,∆T̊1, . . . ,∆T̊Ns
, s1, . . . , sNs

, V ) d∆T̊1 · · · d∆T̊Ns

=

Ns
∏

i=1

ˆ

exp



−
1

2

∑

α,j

(

τ̂α,i,j − τα (si, s, rj | V )−∆T̊i

ζα,i,j

)2


 d∆T̊i

=
Ns
∏

i=1

ˆ

exp
[

−Ai∆T̊ 2
i − Bi∆T̊i − Ci

]

d∆T̊i

=

Ns
∏

i=1

√

π

Ai
exp

[

B2
i

4Ai
− Ci

]

,

(A.4)

where

Ai =
1

2

∑

α,j

1

ζ2α,i,j
,

Bi = −
∑

α,j

τ̂α,i,j − τα (si, s, rj | V )

ζ2α,i,j
,

Ci =
1

2

∑

α,j

(τ̂α,i,j − τα (si, s, rj | V ))2

ζ2α,i,j
.

(A.5)
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A2 Posterior distribution for interferometric location

For the interferometric likelihood function, we have

pINT({rα,i,∗, τ̂α,i,∗} | s,∆T̊1, . . . ,∆T̊Ns
, s1, . . . , sNs

, V )

∝ exp



−
1

2

Ns
∑

i=1

∑

α

(

τ̂α,i,∗ − τα (si, s, rα,i,∗ | V )−∆T̊i

ζα,i,∗

)2




× exp

[

−
1

2

Ns
∑

i=1

∑

α

(

∂rτα (si, s, rα,i,∗ | V )

2ζα,i,∗

)2
]

.

(A.6)

Following the standard logic, we write the posterior estimator as follows:

pINT(s | s1, . . . , sNs
, {rα,i,∗, τ̂α,i,∗}, V )

∝

˙

pINT({rα,i,∗, τ̂α,i,∗} | s,∆T̊1, . . . ,∆T̊Ns
, s1, . . . , sNs

, V ) dT̊1 · · · dT̊Ns

ˆ ˙

pINT({rα,i,∗, τ̂α,i,∗} | s,∆T̊1, . . . ,∆T̊Ns
, s1, . . . , sNs

, V ) dT̊1 · · · dT̊Ns
ds

,

(A.7)

where
˙

pINT({rα,i,∗, τ̂α,i,∗} | s,∆T̊1, . . . ,∆T̊Ns
, s1, . . . , sNs

, V ) dT̊1 · · · dT̊Ns

=
Ns
∏

i=1

√

π

Ai

exp

[

B2
i

4Ai

− Ci

]

,

(A.8)

and

Ai =
∑

α

1

2ζ2α,i,∗
,

Bi = −
∑

α

τ̂α,i,∗ − τα (si, s, rα,i,∗ | V )

ζ2α,i,∗
,

Ci =
∑

α

[

(τ̂α,i,∗ − τα (si, s, rα,i,∗ | V ))2

2ζ2α,i,∗
+

∂rτα (si, s, rα,i,∗ | V )

8ζ2α,i,∗

]

.

(A.9)
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unknown event in another fracture600 m from the well; (b) The layered P-velocity; (c) The
layered S-velocity.

2 95% confidence regions for the layered velocity model with no velocity uncertainty.
3 95% confidence regions for double-difference (blue) and interferometric (green)

location using an incorrect velocity model. Results are shown for various choices of over-
burden velocity perturbationη and signal noiseζ.

4 95% confidence regions for double-difference (blue) and interferometric (green)
location averaged over all admissible velocity models. Results are shown for three choices
of signal noiseζ.

5 95% confidence regions for double-difference (blue), interferometric (green), and
unified location (red). Results are shown for three choices of signal noiseζ.

6 95% confidence regions for double-difference (blue), interferometric (green), and
unified location (red) with unknown origin times. Results are shown for three choices of
signal noiseζ.

7 Elliptical approximations of 95% confidence regions for double-difference (blue),
interferometric (green), and hybrid (red) location. Results are shown for various strengths
of velocity perturbations inside the production layer, andfor various correlation lengths
throughout the model. The signal noise is fixed at 1 ms for all panels. Typical velocity
realizations are shown on the left. Black triangles denote optimal receivers found during
optimization.
34subfigure.7.1 34subfigure.7.2 34subfigure.7.3 34subfigure.7.4 34subfigure.7.5 34subfigure.7.6
34subfigure.7.7 34subfigure.7.8 34subfigure.7.9



28 Poliannikov et al.

0
200

400
600

−200

0

200

1000

1500

2000

2500

3000

 

East (m)North (m)

 

D
ep

th
 (

m
)

Receivers
Reference events
Unknown event

(a)

East (m)

D
ep

th
 (

m
)

 

 

300 600

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

P
−

ve
lo

ci
ty

1500

2000

2500

3000

(b)

East (m)

D
ep

th
 (

m
)

 

 

300 600

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000
S

−
ve

lo
ci

ty

800

900

1000

1100

1200

1300

1400

1500

(c)

Figure 1. (a) The numerical setup with16 receivers in a monitoring well located at depths from1300 to 2900 m,
25 events in the reference fracture300 m away from the well, and an unknown event in another fracture600 m
from the well; (b) The layered P-velocity; (c) The layered S-velocity.
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Figure 2. 95% confidence regions for the layered velocity model with novelocity uncertainty.
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Figure 3. 95% confidence regions for double-difference (blue) and interferometric (green) location using an
incorrect velocity model. Results are shown for various choices of overburden velocity perturbationη and signal
noiseζ.
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Figure 4. 95% confidence regions for double-difference (blue) and interferometric (green) location averaged
over all admissible velocity models. Results are shown for three choices of signal noiseζ.
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Figure 5. 95% confidence regions for double-difference (blue), interferometric (green), and unified location
(red). Results are shown for three choices of signal noiseζ.
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Figure 6. 95% confidence regions for double-difference (blue), interferometric (green), and unified location
(red) with unknown origin times. Results are shown for threechoices of signal noiseζ.
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Figure 7. Elliptical approximations of 95% confidence regions for double-difference (blue), interferometric
(green), and hybrid (red) location. Results are shown for various strengths of velocity perturbations inside the
production layer, and for various correlation lengths throughout the model. The signal noise is fixed at 1 ms for
all panels. Typical velocity realizations are shown on the left. Black triangles denote optimal receivers found
during optimization.
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