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SUMMARY

In this abstract we present a method that allows arbitrary el-
ements of the approximate Hessian to be estimated simulta-
neously. Preliminary theoretical and numerical investigations
suggest that the number of forward models required for this
procedure does not increase with the number of shots. As the
number of shots increases this means that the cost of estimat-
ing these approximate Hessian entries becomes negligible rel-
ative to the cost of calculating the gradient. The most obvious
application would be to estimate the diagonal of the approx-
imate hessian. This can then be used as a very inexpensive
preconditioner for optimization procedures, such as the trun-
cated Newton method.

INTRODUCTION

The least squares (L2) misfit functional

χ(m) =
1
2
||Su(m)−d||22 (1)

has traditionally received a lot of attention in the full waveform
inversion (FWI) community. Newton’s method

Hδm =−g (2)

determines the model parameter update δm in terms of the
Hessian H and gradient g of the misfit functional. The impor-
tance of using the Hessian in the inversion process is illustrated
by Pratt et al. (1998). However, the Hessian is rarely explicitly
computed due to its excessive cost. Inexpensive alternatives
have been investigated in the past, for example the ‘pseudo-
Hessian’ presented by Shin et al. (2001). The pseudo-Hessian
shares many characteristics with the approximate Hessian and
is less costly to compute. Other ways of reducing the cost of
Newton’s method have also been investigated. The L-BFGS
method (Byrd et al., 1995) uses the gradient from the mul-
tiple nonlinear iterations to approximate the effect of the in-
verse Hessian. The inverse Hessian itself is never computed.
Another alternative is the truncated Newton method (Métivier
et al., 2012). The first and second adjoint wavefields are calcu-
lated (Fichtner and Trampert, 2011) which are then used to cal-
culate the action of the Hessian on an arbitrary vector. Krylov
subspace methods are then employed for a finite number of
iterations to approximate the solution to (2). These methods
only require the action of the Hessian on a vector and not ex-
plicit computation of the entire Hessian. The authors demon-
strate that truncated Newton sometimes outperforms L-BFGS
in its ability to recover complicated structures, justifying its
higher computational cost.

In this paper we introduce a method for estimating arbitrary
elements of the approximate Hessian simultaneously, at low
cost. Estimating the diagonal of the approximate Hessian and
using that as a cheap preconditioner for (2) may be beneficial.

REVIEW OF THE FREQUENCY DOMAIN
L2 FWI-HESSIAN

In continuous mathematics, the constant density acoustic
frequency-domain forward model is written as

L(m,x)u(x,ω) = (−mω
2−∇

2)u(x,ω) = f (x,ω), (3)

where L(m,x) denotes the Helmholtz operator with model m
and Laplacian ∇2 operating on x, and f (x,ω) and u(x,ω) are
respectively the source term and the acoustic wavefield at fre-
quency ω and x is the spatial coordinate. The least-squares
misfit functional χ(m) is defined as

χ(m) =
1
2
||Su(m)−d||22 =

1
2
〈Su(m)−d,Su(m)−d〉d

=
1
2

ΣsΣrΣω

[(
Srus(m,x,ω)−ds,r(ω)

)
×
(

Srus(m,x,ω)−ds,r(ω)

)]
, (4)

where < . , . >d is the inner product in data space and the
overbar is complex conjugation. The operator S samples the
wavefield at the receiver locations; Sr samples specifically at
receiver location r, and the wavefield in model m due to shot s
at frequency ω is denoted by us(m,x,ω). Taking two Gâteaux
derivatives of the misfit functional (4) gives the Hessian oper-
ating on model perturbations m1(y) and m2(y′) (Virieux and
Operto, 2009)

δ 2χ

δm(y)δm(y′)

∣∣∣∣
mi

(m1(y),m2(y′)) =

Happr(m1(y),m2(y′))+Hr(m1(y),m2(y′)), (5)

where

Happr(m1(y),m2(y′)) = Re
{〈

SF [m1(y)] ,SF
[
m2(y′)

]〉
d

}
,
(6)

and F is the Jacobian operator δus(m)
δm(y) |mi evaluated at the cur-

rent model mi. The combination of operator F and its argu-
ment (F [m1(y)] for instance) corresponds to an inner product
in space. The term F [m1(y)] can be interpreted physically as
first order scattering of the wavefield in current model mi due
to a perturbation m1(y). The term of (5) involving Hr is of-
ten discarded in practice and the approximate Hessian Happr is
used in (3) instead of the full Hessian. Using adjoint operators,
represented by ∗, the approximate Hessian applied to a single
perturbation can be rewritten as

Happr(m1(y),(·)) = Re{F∗S∗SF [m1(y)]} [(·)] , (7)

where [(·)] is the operator slot where the second perturbation
m2(y′) is inserted resulting in an integration over space. The
operator F∗ implicitly includes a summation over the shots. In
discretized form the operators are replaced by their discretized
versions (e.g., m1(y) becomes a vector). Column k of the Hes-
sian can conveniently be computed by making m1(y) a unit
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perturbation at node location yk. Since the adjoint operator
F∗ includes a summation over the shots, calculating a column
of Happr requires two forward propagations, for F [m1(y)], and
one backward propagation, per shot. The total computation per
column of Happr is 2ns forward propagations and ns backward
propagations, where ns is the number of sources.

Using our knowledge of the wave operator we can derive an
alternative expression for Happr. The derivative with respect to
m of equation (3) is:

L(mi,x)
δus(x,ω)

δm(y)
=−δL(mi,x)

δm(y)
us(x,ω). (8)

Equation 8 shows that the first order scattered field δus(x,ω)
δm(y)

satisfies the wave equation. Using the notion of Green’s func-
tion (8) can be rewritten as

δus(x,ω)

δm(y)
= ω

2G(x,y,ω)us(y,ω). (9)

Equation 9 is the first order forward scattered field due to shot
s and a delta perturbation in m at location y. The waves travel
with speed dictated by the unperturbed model mi, as shown in
(8). The approximate Hessian (6) can therefore be written as

Happr[y,y′] = Re
{

ΣsΣrΣω Sr

(
ω

2G(x,y,ω)us(y,ω)
)

×Sr
(
ω2G(x,y′,ω)us(y′,ω)

)}
, (10)

where Happr[y,y′] represents the Hessian entry corresponding
to perturbations at nodal locations y and y′. This expression
can be simplified when two assumptions are made:

1. the sampling operator Sr perfectly samples the wave-
field at location xr,

2. the source is a spatial delta function at xs and all sources
have spectrum W (ω).

Under these assumptions (10) can be rewritten as

Happr
[
y,y′
]
= Re

{∑
ω

∑
s

∑
r

ω
4|W (ω)|2

×G(y,xs,ω)G(xr,y,ω)G(y′,xs,ω)G(xr,y′,ω)

}
. (11)

COMPLEXITY REDUCTION WITH WHITE-NOISE
VIRTUAL-SOURCE SETS

In this section we rewrite (11) in a form that may be more effi-
cient for computation; there is no additional field data required
for the proposed method of computation. We replace the sums
over the sources and receivers by using concepts from passive
seismic interferometry. When virtual white-noise sources are
placed at each of the true receiver locations a virtual receiver at
node location y measures the following response, at a specific
frequency

P̃k(y) =
nr∑

i=1

G(y,xi,ω)Nk(xi,ω), (12)
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Figure 1: Acoustic P-wave velocity for 100x100 square section
of Marmousi2 (Martin et al., 2006) with node spacing 20m.
Sources and receivers are placed on all the 100 nodes on top.
Part of Hessian column corresponding to black pixel in center
is displayed in Figure 3

where Nk(xi,ω) is the spectrum of the noise emitted by the
virtual source at frequency ω and at the receiver node location
xi, subscript k is a specific realization, and nr is the number
of receivers. The ensemble average of the cross-correlation
between the measured pressures P̃(y) and P̃(y′) over nk real-
izations is thus〈

P̃(y)P̃(y′)
〉

r
=

nr∑
i=1

nr∑
j=1

G(y,xi,ω)G(y′,x j,ω)

× 1
nk

nk∑
k=1

Nk(xi,ω)Nk(x j,ω). (13)

In the limit, as nk→ ∞, the second term of (13) simplifies,

1
nk

nk∑
k=1

Nk(xi,ω)Nk(x j,ω) = µN(ω)δi j, (14)

where δi j is the Kronecker delta and µN(ω) is the expected
value of the autocorrelation Nk(xi,ω)Nk(xi,ω) at frequency ω .
When nk is sufficiently large, the ensemble average in (13) re-
duces to〈

P̃(y)P̃(y′)
〉

r
≈ µN

nr∑
i=1

G(y,xi,ω)G(y′,xi,ω). (15)

If instead virtual noise sources are placed at all of the true
source locations, a similar expression is obtained〈

P̃(y)P̃(y′)
〉

s
≈ µN

ns∑
i=1

G(y,xi,ω)G(y′,xi,ω). (16)

Inserting both (15) and (16) into equation (11) gives

Happr
[
y,y′
]
≈Hs

[
y,y′
]
=

Re
[∑

ω

ω4

µ2
N
|W (ω)|2

〈
P̃(y)P̃(y′)

〉
s

〈
P̃(y)P̃(y′)

〉
r

]
, (17)
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Figure 2: A section of the diagonal extracted from the approx-
imate Hessian calculated with the adjoint method (7) is plot-
ted against the estimate using (17) with the ensemble averages
done using 250 realizations.

where the subscripts s and r indicate whether the virtual noise
sources are placed at the source or receiver locations and Hs is
the stochastic approximate Hessian. Equation 17 allows arbi-
trary elements of the Hessian to be evaluated by simply firing a
sufficient number of virtual white noise sources at the frequen-
cies of interest at the true source and true receiver locations.
All the Happr entries corresponding to specific combinations
of y and y′ can be approximated simultaneously.

For a finite length white noise sequence, discretely sampled in
time, it can be proven that its spectrum at each frequency ω

has a normally distributed real and imaginary part with zero
mean. So a white noise realization can be generated directly in
the frequency domain by letting

Re
{

Nk(x,ω)

}
∼N (0,1), Im

{
Nk(x,ω)

}
∼N (0,1),

(18)
where N (µ,σ2) represents a normal distribution with mean
µ and variance σ2. With the probability distributions in (18),
µN(ω) = 2.

NUMERICAL EXAMPLE

The derivations presented in the previous section are valid for
both 2D and 3D geometries. The synthetic example presented
in this section is based on a 100x100 section of the Marmousi2
P-wave velocity model (Martin et al., 2006) surrounded by a
300 m wide PML, see Figure 1. A subsection of the model
is investigated so Happr can be calculated exactly columnwise
in a computationally tractable manner using (7). The stochas-
tic estimation Hs as given in (17) is compared to Happr. All
simulations are performed using the authors’ Python Seismic
Inversion Toolbox (PySIT). Sources and receivers are placed
on all of the 100 nodes at the top of the domain. It should
be mentioned that such dense coverage in source and receivers
is not required. The comparison is done at a frequency of 6Hz
and both the ensemble averages <>s and <>r in (17) use nk =
250 realizations. Figure 2 compares part of the diagonal of Hs
with Happr. The node numbering in the grid is top to bottom

Figure 3: A section of the column for node 5050, in the center
of figure 1. The comparison is for nk = 250 in both ensemble
averages in equation (17).

and then left to right. This gives characteristic peaks with a
periodicity of 100 entries along the diagonal. The entries of
Happr corresponding to nodes close to the surface have a larger
amplitude because they experience less geometrical spreading.
Figure 2 shows that the diagonal is well approximated using
250 realizations.

Similar results are obtained when off-diagonal elements are
estimated. Figure 3 shows column 5050 in the Hessian, corre-
sponding to the node indicated by the black square in Figure 1.
Equation 6 shows that each Happr entry is a cross-correlation
between the first order scattered fields from both perturbations
m1 and m2 with sums over the sources and receivers. When
the distance between the perturbations is small relative to the
wavelength this will result in constructive interference of the
first order scattered fields at the receiver locations. Because
of this, the approximate Hessian contains off-diagonal regions
with significant positive values. Figure 3 only shows part of
column 5050 corresponding to elements approximately 600
meters to the right of the black pixel in Figure 1. The first
order scattered fields will on average only have small correla-
tions. There is also little apparent structure as can be seen in
Figure 3. The approximate Hessian entries show large fluctu-
ations although some periodicity of 100 nodes is visible. We
see that the approximation from (17) is still quite accurate.

CONVERGENCE AND COMPUTATIONAL COMPLEX-
ITY

The ensemble averages in (17) approach their expected value
in the limit when nk goes to infinity. The approximation is then
an equality. The convergence behavior is tested by defining an
average relative mismatch between the estimated values (17)
and the values calculated through the adjoint method

1
Ne

Ne∑
i=1

|est(i)− adj(i)|
|adj(i)|

, (19)

where Ne represents the number of Hessian entries compared.
The convergence behavior of all the diagonal elements is inves-
tigated using (19). We sample log10(nk) at constant intervals.
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Figure 4: Misfit measure (19) plotted against the number of
realizations nk. The same number of realizations is used for
the source and the receiver terms in (17).

After each value nk the saved realizations are discarded and
the process is restarted. The results of this procedure are plot-
ted in Figure 4. Note that the average relative misfit decreases
quickly with increasing nk. There are some oscillations in this
trend due to the sampling of a random distribution. Prelim-
inary theoretical and numerical work indicates that this con-
vergence is independent of the number of nodes as well as the
number of sources and receivers. Further research is required
to confirm this.

In Newton’s method we solve the linear system in (2) for the
model parameter update δm. The right hand side is the gra-
dient of the misfit functional with respect to the model pa-
rameters. Calculating this gradient requires ns forward- and
ns backward propagations (Plessix, 2006). If our preliminary
investigations are correct, the computational cost of estimat-
ing the diagonal of the hessian through (17) is independent of
the number of sources or receivers. Both ensemble averages
in (17) are estimated with nk forward models each. The value
of nk is determined by balancing the desire for higher accuracy
with the need of reducing computational cost. When determin-
ing an appropriate value of nk it is useful to investigate how the
misfit (19) responds to an increased number of realizations, as
is illustrated by Figure 4.

The cost of computing the gradient scales linearly with the
number of shots in a seismic survey. However, the cost of
the stochastic approximate Hessian scales independently of the
number of shots. The diagonal of Happr can be estimated, in-
verted and applied to the imaging condition to enhance the
model parameter update δm at depth as demonstrated by (Shin
et al., 2001). But it can also be used as a preconditioner for
inversion schemes such as truncated newton (Métivier et al.,
2012) since the cost of obtaining it does not seem to scale with
the number of shots ns. This provides an alternative to using
the diagonal of the ‘pseudo-hessian’ of Shin et al. (2001).

We note that we can also get off-diagonal elements this way.
This is demonstrated in Figure 5. A 120x120 subsection of
the approximate and stochastic Hessian are compared for dif-
ferent numbers of realizations nk. All of the three plots of Hs

Hs Hs

Hs Happr

nk=3 nk

nk= 25

= 6

Figure 5: Comparison of Hs and Happr for first 120x120 square
of the Hessian. Different numbers of realizations nk are com-
pared.

are made with different noise realizations. When nk = 3 some
of the structure of Happr is already visible, but there are many
oscillatory artifacts remaining. These gradually become less
when nk increases. The structure of Hs with nk = 25 already
shows great similarity with Happr. Figure 5 shows that the
stochastic Hessian converges towards the approximate Hessian
both for diagonal and off-diagonal elements. If nk is increased
further the mismatch would follow a similar trend as displayed
in Figure 4. Figure 5 shows that Happr has a strongly banded
structure. It may prove to be computationally effient to calcu-
late the most significant bands with the stochastic Hessian and
then use Newton’s method.

CONCLUSIONS

In this abstract we have presented a new method for stochas-
tically estimating both diagonal and off-diagonal elements of
the approximate Hessian. Preliminary investigation has shown
that the cost of computing the stochastic Hessian does not scale
with the number of shots ns. Because the cost of computing the
gradient scales linearly in ns, the cost of estimating the diago-
nal of the approximate Hessian becomes relatively inexpensive
as the number of shots in the seismic survey becomes large.
The inverse of the diagonal can then be used as a precondi-
tioner for Newton’s method. Alternatively the most significant
bands of the approximate Hessian can be estimated and used
in Newtons method.
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