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Abstract. The control of spatially distributed systems is often complicated by significant un-
certainty about system inputs, both time-varying exogenous inputs and time-invariant parameters.
Spatial variations of uncertain parameters can be particularly problematic in geoscience applications,
making it di�cult to forecast the impact of proposed controls. One of the most e↵ective ways to deal
with uncertainties in control problems is to incorporate periodic measurements of the system’s states
into the control process. Stochastic control provides a convenient way to do this, by integrating
uncertainty, monitoring, forecasting, and control in a consistent analytical framework. This paper
describes an ensemble-based approach to closed-loop stochastic control that relies on a computation-
ally e�cient reduced-order model. The use of ensembles of uncertain parameters and states makes it
possible to consider a range of probabilistic performance objectives and to derive real-time controls
that explicitly account for uncertainty. The process divides naturally into measurement updating,
control, and forecasting steps carried out recursively and initialized with a prior ensemble that de-
scribes parameter uncertainty. The performance of the ensemble controller is investigated here with
a numerical experiment based on a solute transport control problem. This experiment evaluates the
performance of open and closed-loop controllers with full and reduced-order models as well as the
performance obtained with a controller based on perfect knowledge of the system and the nominal
performance obtained with no control. The experimental results show that a closed-loop controller
that relies on measurements consistently performs better than an open loop controller that does not.
They also show that a reduced-order forecasting model based on o↵-line simulations gives nearly the
same performance as a significantly more computationally demanding full order model. Finally, the
experiment indicates that a moderate penalty on the variance of control cost yields a robust control
strategy that reduces uncertainty about system performance with little or no increase in average cost.
Taken together, these results confirm that reduced-order ensemble closed-loop control is a flexible
and e�cient control option for uncertain spatially distributed systems.
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1. Introduction. E↵orts to control dynamic systems can often benefit from
frequent measurements of system behavior. Such measurements can help compensate
for inaccurate predictions or other errors by revealing the actual systems response to
control actions. If we have a perfect model of the system’s response there is no need
to rely on measurements since they do not add any new information. But in realistic
situations, where models are imperfect and system response is uncertain, proper use
of measurement information can greatly improve system performance. The roles of
uncertainty and measurement feedback are closely related and deserve to be addressed
from a single unified perspective. Stochastic control theory o↵ers such a perspective
by considering how control strategies should be designed to deal with uncertainty and
to benefit from observations [3].

Here we consider an approach to stochastic control that is especially useful for
real-time operation of complex spatially distributed systems with uncertain inputs.
Such systems are often encountered in geoscience applications, including management
of water and petroleum resources, contaminant remediation, and carbon sequestra-
tion. Our particular approach to stochastic control uses ensembles of possible inputs
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and states to represent uncertainty, to determine how to make best use of available
measurements, and to select control strategies that are likely to achieve particular
objectives.

Fig. 1.1. Basic components of an ensemble feedback control procedure, showing the role of
real-time characterization.

Fig. 1.1 illustrates one possible approach to ensemble real-time control. The
true system is subject to uncertain inputs that lead to uncertainties in the system
states. We suppose that controlled inputs are applied to this system at discrete times
defined over a specified control horizon. Each pass around the control loop in the
figure describes operations that take place between two successive control times. We
also suppose that noisy measurements of some of the system states are available at
the control times. Although these measurements are known up to and including the
current time, the states they depend upon are uncertain.

We suppose that the system uncertainties can be described by a prior ensemble
of system states composed of many replicates generated from di↵erent combinations
of possible inputs. In the diagram double lines indicate ensembles while single lines
indicate individual variables that may be specified or uncertain, depending on context.
The ensemble of possible system states is updated with new measurements whenever
they become available. At each control time the current updated ensemble serves as
an initial condition for a forecast to the next time and beyond, to the end of the
control horizon. Also at each time a single deterministic control is applied to the true
system. This control is chosen to minimize a cost-related measure of performance
that depends on the entire forecast ensemble so the control explicitly accounts for the
fact that the system response is uncertain. A stochastic approach typically leads to
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more conservative strategies than would be obtained with a controller that assumes
the system response is perfectly known.

The procedure outlined above is a ”closed-loop” ensemble controller in the sense
that there is feedback from the true system through the measurements and forecast
to the controller. This is in contrast to an ”open loop” ensemble controller in which
there is no feedback either because measurements are not collected or because they
have no impact on subsequent controls. Fig. 1.1 is reduced to open loop ensemble
control when the measurement update operation is omitted. We can expect closed-
loop control to work better than open-loop control when the true system behavior is
uncertain since the closed-loop controller can continually adjust as the true system
responds, sometimes in unexpected ways [13].

Candidate updating techniques suitable for ensemble real-time control include
various forms of the ensemble Kalman filter [7, 8] and the particle filter [9]. These
techniques are appropriate for many nonlinear problems and also o↵er considerable
flexibility for describing prior uncertainty. Here we compute the replicates needed
to derive real-time controls from an unbiased square root version of the ensemble
Kalman filter [11]. There are many methods for deriving the control strategy from
the forecast ensemble. We use sequential quadratic programming based on gradients
computed with an adjoint approach [12].

As indicated in Fig. 1.1, a system model is used to generate forecast ensembles
required by both the updating and optimization steps of the real-time control algo-
rithm. The number of model simulations required is on the order of the number of
ensemble replicates multiplied by the number of optimization search iterations, mul-
tiplied by the number of control times. Generally speaking, larger problems require
more replicates and more search iterations as well as more computation time for each
model simulation. The computational e↵ort associated with these simulations can be
substantial, to the point where it discourages use of an ensemble approach or at least
greatly reduces the size of the ensembles used to guide control decisions. It is di�cult
to properly describe uncertainty and to derive accurate updates when the ensemble
size becomes too small. In this paper we address the computational limitations of
ensemble control by using a low-dimensional reduced-order model to make forecasts
for both update and optimization operations. The reduced-order model is derived
from a higher-dimensional full order model that accurately solves the governing equa-
tion used to describe the true system. The model reduction process is designed to
preserve the key dynamical properties of the full order model and also to reproduce
the probabilistic characteristics of ensembles obtained from full order simulations.

The ensemble control and reduced-order modeling concepts introduced here are
tested on a numerical experiment inspired by a practical environmental control prob-
lem: cost-e↵ective removal of dissolved contaminants from a groundwater aquifer. The
controls of interest in this problem are well pumping rates and the primary sources
of uncertainty are poorly known geological properties. The uncertain aquifer proper-
ties make the system’s response control actions uncertain. Our numerical experiment
investigates, for this example, performance di↵erences between open and closed-loop
control, the feasibility of using a reduced-order model, and the merits of minimizing
mean cost vs. a weighted performance measure that also penalizes cost uncertainty.
Our discussion begins with a formulation of the problem based on a full order fore-
cast model and then considers a revised formulation that relies on a reduced-order
approximation. We then describe the numerical experiment and present some typical
results. We conclude with a consideration of limitations and possible enhancements
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of the approach.

2. Problem formulation and methodology.

2.1. Full order formulation. We formulate the real-time control problem by
following Fig. 1.1 from the true system through measurement collection and updating,
to forecasting and control, back to the true system. The spatially distributed system
to be controlled is described by a set of partial di↵erential equations discretized over
an appropriate spatial grid. The discretization produces the following set of nonlinear
state equations:

dx

dt

= F(x,↵,!,u), x (t
0

) = x
0

specified, (2.1)

G(x,↵,!,u) = 0. (2.2)

Here we have explicitly distinguished two types of spatially discretized equations, both
derived from the original partial di↵erential equations. These are a set of ordinary
di↵erential equations (2.1) derived from equations with both time and space deriva-
tives and a set of algebraic equations (2.2) derived from equations with only space
derivatives. The algebraic functions F(x,↵,!,u) and G(x,↵,!,u) are generated by
the discretization procedure and account for the e↵ects of known boundary conditions.
In the state equations we distinguish an N

x

dimensional vector of dynamic spatially
discretized dependent variables (or states) x. It is convenient for control purposes to
divide the system inputs into an N

↵

dimensional vector of time-invariant but spatially
variable model parameters ↵, an N

!

dimensional vector of time-varying uncontrolled
inputs !, and an N

u

dimensional vector u of time-varying control variables that are
adjusted to achieve a specified objective. In some cases, it is useful to include the
initial condition x

0

in the parameter vector.
In the applications of interest here we suppose that the parameter ↵ is the only

uncertain model input. The uncontrolled time-varying input ! is assumed to be
perfectly known and the control u is to be determined. The functions F and G
used to describe the system are also assumed to be perfectly known. This problem
formulation is sometimes called a perfect model scenario. In the real-time control
example considered here parameter errors dominate and the perfect model assumption
is a reasonable approximation. In other applications it may be necessary to explicitly
consider uncertainties in !. This extension is feasible within the conceptual framework
presented here, although it complicates the computations.

It is often convenient to work with an N

y

= N

x

+ N

↵

dimensional augmented
state vector y that combines dynamic states and time-invariant parameters:

y =


x
↵

�

. This vector is described by the following augmented state equations:

dy

dt

=


F(x,↵,!,u)

0

�
= F

a

(y,!,u), y (t
0

) = y
0

specified, (2.3)

G
a

(y,!,u) = G(x,↵,!,u) = 0. (2.4)

Note that (2.3) relies on the assumption that ↵ is time-invariant.
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We define the control horizon to be the time interval that extends from the current
time t = k�t to a specified end time T = N

T

�t, where k = 0, . . . , N
T

� 1. For
simplicity, we suppose that this horizon is divided into N

T

� k control intervals of
equal duration �t. We seek a set of controls u

k:NT�1

= [u
k

,u
k+1

, . . . ,u
NT�1

] to
be applied over the N

T

� k remaining control intervals, where each u
l

is an N

u

dimensional vector of scalar controls. We use the colon notation (such as k : N
T

� 1
in u

k:NT�1

) as shorthand for a sequence of variables defined at di↵erent times. The
control sequence is constrained to be piecewise constant, with each control value held
constant within its respective control interval.

We suppose here that the measurements for closed-loop control are obtained at
the times t

1:NT�1

(i.e. at the beginning of each control period after the first). For
simplicity, we also suppose that these measurements are linearly related to the states
as follows:

z
k

= M
k

y
k

+ v
k

, (2.5)

where z
k

is an N

z

dimensional measurement vector, v
k

is a zero-mean temporally
uncorrelated N

z

dimensional random noise vector with a specified covariance matrix
R

k

and M
k

is a specified N

z

by N

y

dimensional measurement matrix.
A stochastic approach to real-time control accounts, at least in an approximate

way, for uncertainties about the system to be controlled. In order to do this we adopt
a Bayesian approach and suppose that the uncertain augmented state vector is char-
acterized by a randomly generated prior probability distribution or, alternatively, by
an ensemble of samples (or replicates) drawn from that distribution. This ensemble is
updated whenever measurements become available. As mentioned in the Introduction,
our updated ensemble is obtained from an unbiased square root version of the ensem-
ble Kalman filter [11] and our forecast ensemble is obtained from a simulation model
based on (2.3) and (2.4) and initialized with the updated ensemble. The net result
is an ensemble of conditional forecasts yj

k:NT |k, indexed by replicate j = 1, . . . , N
r

,

that describe the system’s response over the control horizon [k�t : N

T

�t], for a
specified control sequence u

k:NT�1

. Here the vertical bars indicate conditioning on
measurements (e.g. the replicate yj

k+1|k is a sample from a probability distribution

conditioned on measurements collected through k�t). The detailed computations
required to obtain these forecasts are described below.

In the version of real-time control described here the e↵ectiveness of a proposed
control strategy u

k:NT�1

is measured by the cost J
k

of operating the system from the
current time k�t to the end time N

T

�t (i.e. the cost-to-go), for k = 0, . . . , N
T

� 1.
Costs before the current time have already been incurred and are not considered in the
selection of current and future controls. We suppose that the cost-to-go is separable so
it can be written as the sum of the costs incurred over the remaining control intervals:

J

k

(u
k:NT�1

,y
k:NT |k) =

NT�1X

l=k

�

l|k(yl|k,yl+1|k,ul

), (2.6)

where �

l|k(yl|k,yl+1|k,ul

) is the cost incurred over control interval [l�t, (l + 1)�t],
conditioned on measurements collected through k�t. Note that �

l|k is uncertain,
for a given control sequence, by virtue of its dependence on the uncertain conditional
states y

k:NT |k. We can account for this uncertainty by constructing, for a given control

sequence, an ensemble of cost-to-go replicates Jj

k

(u
k:NT�1

,yj

k:NT |k) from an ensemble
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yj

k:NT |k of conditional states obtained, for example, from an ensemble Kalman filter:

J

j

k

(u
k:NT�1

,yj

k:NT |k) =
NT�1X

l=k

�

j

l|k(y
j

l|k,y
j

l+1|k,ul

). (2.7)

These replicates can be used to estimate the probability density of the cost-to-go
obtained for a particular control sequence.

Equation (2.7) reveals an assumption implicit in our definition of cost. In this
equation the ensemble �

j

l|k of costs incurred in control interval [l�t, (l+ 1)�t] is con-
ditioned only on measurements collected through k�t. However, when this cost is
actually incurred measurements will have been collected through l�t and the uncer-
tainty will be less than suggested by the �j

l|k ensemble of (2.7). Derivation of a control

based on (2.7) essentially ignores the value of information gained from updates with
measurements collected in the future. Although these measurements are unknown at
time k�t we do know that they will add information, as reflected in the measurement
equation of (2.5). We can contrast a stochastic control approach based on (2.7) to
stochastic dynamic programming, which accounts for the information obtained from
all measurements, past, present, and future, when deriving a real-time decision rule
[3]. Although a control algorithm based on (2.7) is suboptimal compared to stochas-
tic dynamic programming, it is much less computationally demanding, especially for
large distributed parameter problems.

With the cost-to-go ensemble specified we can consider how to select a single
control u

k

to apply to the true system at the current time. Although the current
state and the cost-to-go are random the current control must be deterministic. One
option for obtaining this control is to minimize the sample mean of the cost-to-go,
obtained by averaging over all replicates in the cost-to-go ensemble. A more general
approach is to minimize a weighted combination of the sample mean and variance,
which can be expressed as:

V

k

(u
k:NT�1

) = Ê

2

h
J

1:NR
k

(u
k:NT�1

,y1:NR

k:NT |k)
i
+ µ

dVar
h
J

1:NR
k

(u
k:NT�1

,y1:NR

k:NT |k)
i
,

(2.8)
where the coe�cient µ determines the relative weight given to the squared sample
mean Ê

2 and the sample variance dVar and the superscript 1 : N
R

emphasizes that the
sample moments depend on sums over all N

R

state and cost-to-go replicates. As µ

increases more emphasis is placed on reducing the spread of the cost-to-go replicates,
giving a more robust controller with more predictable results. Robust controllers
based on large µ values tend to have larger mean values. In such cases, robustness is
achieved at the expense of a higher average cost. Minimization of the deterministic
performance function V

k

at time k�t yields a set u⇤
k:NT�1|k of optimal controls for

the entire control horizon.
We can now combine the minimization of (2.8) at each time with the computation

of the required forecasts and updates in a real-time recursion that specifies all required
computations. This recursion is conveniently expressed as follows:

At each time t = k�t, for k = 0, . . . , N
T

� 1, carry out an iterative optimization
and forecast procedure and then an update, for each replicate j = 1, . . . , N

r

, as follows:
Optimization/Forecast: Perform an iterative search for the optimal control se-

quence u⇤
k:NT�1|k defined by:

u⇤
k:NT�1|k = argmin {V

k

(u
k:NT�1

)} , (2.9)
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subject to the following constraints:

uL  u
k:NT�1

 uU

,

where uL and uU are, respectively, lower and upper bounds on the control variables.
The conditional states yj

k:NT |k needed to evaluate Jj

k

(u
k:NT�1

,yj

k:NT |k) are related to

the proposed control u
k:NT�1

by a set of equality constraints (forecast equations):

dyj(t)

dt

= F
a

(yj

,!,u), yj(k�t) = yj

k|k from update at k�t, (2.10)

G
a

(yj

k

,!,u) = 0. (2.11)

The one-step ahead forecast yj

k+1|k obtained from (2.10) is used in the subsequent

measurement update at (k + 1)�t. The optimization problem may be solved with a
variety of techniques. If a gradient-based method is used it is convenient to derive
the gradients from an adjoint procedure, by using Lagrange multipliers to augment
V

k

(u
k:NT�1

) with (2.10) and (2.11).
Update: After the optimization procedure has converged to an optimal u⇤

k|k for

the current control interval and the corresponding one-step ahead forecast yj

k+1|k
has been computed, update the ensemble average and then the deviations from the
average with new measurements taken at the next time, as follows:

ȳ
k+1|k+1

= ȳ
k+1|k +K

k+1

[z
k+1

�M
k+1

ȳ
k+1|k], (2.12)

Y
k+1|k+1

= Y
k+1|kTk+1

, (2.13)

yj

k+1|k+1

= ȳ
k+1|k+1

+ ỹj

k+1|k+1

. (2.14)

Here ȳ
k+1|k and ȳ

k+1|k+1

are the arithmetic averages of the forecast and updated

augmented state replicates yj

k+1|k and yj

k+1|k+1

. The yj

k+1|k are obtained from
the previous forecast step. The columns of the N

y

by N

rep

matrices Y
k+1|k and

Y
k+1|k+1

are composed of the ensemble perturbations ỹj

k+1|k = yj

k+1|k � ȳ
k+1|k and

ỹj

k+1|k+1

= yj

k+1|k+1

� ȳ
k+1|k+1

, for j = 1, . . . , N
r

. The N

y

by N

rep

dimensional
matrix K

k+1

is the Kalman gain and the N

rep

by N

rep

matrix T
k+1

is a weighting
matrix that transforms forecast ensemble perturbations into updated ensemble per-
turbations. Both of these matrices are computed from Y

k+1|k and the measurement
error covariance matrix R

k+1

[11].
The recursion given in (2.9) through (2.14) must be initialized at t = k = 0 with a

set of augmented state replicates yj

0|0 and with an initial control sequence to start the
iterative optimization algorithm. Note that there is no measurement and no update
at the initial time (the first measurement and update are at k = 1, t = �t). The initial
time (or prior) replicates divide into parameters ↵

j

0|0 sampled from a specified prior

parameter distribution and dependent variables xj

0|0 sampled from a specified prior
distribution of initial states. The prior replicates need to be carefully generated so
that they are consistent with the spatial structure likely to be encountered in a given
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application. For this reason, the replicate generation process should be application-
specific rather than generic. An example is illustrated in the subsurface transport
example discussed in Section 3.

Although the optimization problem of (2.9) provides a sequence u⇤
k:NT�1|k of

optimal control values for the entire control horizon, these values are only conditioned
on measurements taken through the current time. Also, only the first value u⇤

k|k in
the sequence is actually needed at the current time. Consequently, we can discard
the future controls u⇤

k+1:NT�1|k derived from (2.9) and apply uopt

k

= u⇤
k|k to the true

system at k�t. The discarded controls for the later times (k+1)�t, . . . , (N
T

�1)�t will
eventually be replaced by new optimization solutions derived from new information
obtained at these times. This approach is a version of Model Predictive Control
(MPC), which is widely used because it performs well, is easy to implement, and is
computationally e�cient.

The expressions given in this section define all of the operations in the real-time
stochastic control loop of Fig. 1.1. In the next section we consider an approximate
but computationally e�cient reduced-order formulation of this real-time control pro-
cedure.

2.2. Reduced-order formulation. The stochastic real-time control algorithm
described above requires multiple evaluations of the system equations given in (2.6)
through (2.11): approximately one evaluation for each ensemble replicate for each
iteration of the optimization search algorithm at each control/measurement time.
In most distributed parameter applications, including the solute transport problem
examined in this paper, the most computationally demanding part of these evaluations
is the solution of the forward model equations given in (2.1) and (2.2). The high cost
of model solutions has the practical e↵ect of limiting the ensemble size that can be
used in such applications. This, in turn, limits the e↵ectiveness of the approach by
compromising the accuracy of the measurement update operation, which relies on
sample moments of the augmented state vector, and by compromising the accuracy
of the optimization procedure, which relies on sample moments of the cost-to-go.

There is clearly a tradeo↵ between the accuracy obtained by using a high-dimensional
computationally demanding system model with a small ensemble vs. using a lower-
dimensional less computationally demanding model with a large ensemble. In order to
investigate this tradeo↵ we examine real-time control performance with the reduced-
order system model described in Lin and McLaughlin [unpublished manuscript].

Linear model reduction techniques such as principle orthogonal decomposition
(POD) have been widely applied to the deterministic control of spatially distributed
systems. Examples include [4] and [17]. Several recent studies have proposed more
advanced model reduction methods that may be suitable for nonlinear stochastic op-
timization applications. These include adaptive procedures that improve the model
reduction process by successively updating linear approximations [14] and trust-region
methods [2]. Most of these model reduction methods require computationally expen-
sive on-line modifications of the reduced-order model. By contrast, our method is
implemented entirely o↵-line. We derive a set of basis vectors for model reduction
from full-order model snapshot simulations performed outside the real-time control
loop. Linear expansions in these basis vectors are inserted in a second-order approx-
imation to the full-order model to give a robust nonlinear reduced-order model that
captures key dynamic properties of the true system. This approach makes it possible
to move expensive computations o↵-line so the real-time control operation can use en-
sembles of reasonable size. The basic form of the reduced-order model is summarized
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below. Further details are provided in Lin and McLaughlin [unpublished manuscript].
Our model reduction approach replaces the uncertain model parameter vector

↵ and the state vector x appearing in (2.1) and (2.2) with linear combinations of
specified basis functions [16], as follows:

↵ ⇡ ⇥↵̂, (2.15)

x ⇡ �x̂, (2.16)

where ⇥ is an orthonormal N
↵

by N

↵̂

<< N

↵

matrix whose columns are a selected
set of discrete cosine transform (DCT) basis vectors and � is an orthonormal N

x

by N

ˆx

<< N

x

matrix whose columns are principle orthogonal decomposition (POD)
basis vectors. These expressions may be combined to give a concise approximation
for the augmented state vector:

y ⇡  ŷ, (2.17)

where:

ŷ =


x̂
↵̂

�
,  =


� 0
0 ⇥

�
.

The DCT basis vectors are standard functions frequently used for image compression.
The POD basis vectors are the leading N

ˆx

singular vectors of a so-called snapshot
matrix. The columns of this matrix are N

x

dimensional state vectors and sensitivity
derivatives obtained from a set of typical full-order model simulations. These vectors
are snapshots of the system state taken at selected times and run with selected pa-
rameter values and control sequences. Lin and McLaughlin [unpublished manuscript]
provide further details on the process of constructing a snapshot matrix and deriving
associated POD basis functions.

The accuracy of the reduced-order model depends largely on how well the trun-
cated DCT and POD basis vectors can capture dominant sources of variability in
the parameters and states. The truncation process for the pre-specified set of DCT
basis vectors is relatively straightforward [10]. However, the choice of the simulated
states and sensitivity derivatives included in POD snapshot matrix is less obvious.
The reduced-order model will perform well only if the o↵-line snapshot simulations
reflect the full range of parameter and control values encountered during real-time
operation.

Our method for achieving good reduced model performance is to generate a large
number of snapshot simulations for di↵erent parameter and control combinations.
It is reasonable to choose the snapshot parameter values to be a subset of the prior
parameter ensemble, which describes our prior understanding of parameter variability.
The choice of appropriate control sequences is less obvious since we don’t have a prior
description of possible controls. In the example considered in Section 3 we generate
a representative range of snapshot control sequences by optimizing the deterministic
cost-to-go J

j

k

for the each of the replicates included in the snapshot parameter set.
Regardless of the particular approach used, we can expect the actual characterization
and optimization procedures to yield conditional parameters and optimal controls
that are di↵erent from those selected for the snapshot simulations. However, we
have found that snapshots generated as described above span the range of actual
conditions reasonably well, giving acceptable reduced model performance. In practice,
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the performance of the reduced-order model should be tested for each application to
make sure that its various approximations and assumptions are justified.

Once appropriate DCT and POD basis vectors are specified (2.15) and (2.16)
can be used to replace each element of y with linear combinations of ŷ elements.
The ŷ elements can be derived by inserting the expansions of (2.15) and (2.16) into
a second-order approximation of the full-order augmented state equations in (2.3)
and (2.4). The resulting expressions can be manipulated to give a set of quadratic
reduced-order equations for ŷ, expressed in terms of the perturbation �ŷ = ŷ� ŷ

nom

about a specified nominal ŷ
nom

[Lin and McLaughlin, unpublished manuscript]:

d�ŷ

dt

⇡ F̂
ˆy

�ŷ +
1

2
F̂

ˆyˆy

(�ŷ ⌦ �ŷ), �ŷ(t
0

) = 0, (2.18)

Ĝ
ˆy

�ŷ +
1

2
Ĝ

ˆyˆy

(�ŷ ⌦ �ŷ) ⇡ 0, (2.19)

where:

ŷ
nom

=


�Tx

nom

⇥T

↵

nom

�
.

Here ↵

nom

is a specified nominal parameter vector and x
nom

is the nominal state
obtained by solving (2.1) and (2.2) with ↵ = ↵

nom

. These are the state equations for
the reduced-order model.

The elements of the N
ˆy

by N

ˆy

dimensional coe�cient matrices F̂
ˆy

and Ĝ
ˆy

depend

on the first derivatives of F
a

while the N

ˆy

by N

2

ˆy

dimensional matrices F̂
ˆyˆy

and

Ĝ
ˆyˆy

depend on the second derivatives, all evaluated at the specified nominal value
ŷ
nom

. All of these derivatives depend in turn on the basis vector matrices ⇥ and �.
The Kronecker product �ŷ ⌦ �ŷ generates an N

2

ˆy

dimensional vector of products of
augmented state vector elements. Equations (2.18) and (2.19) form a reduced-order
model for the N

ˆy

<< N

y

unknowns in the vector ŷ. In the solute transport example

considered later in this paper the elements of F̂
ˆy

and Ĝ
ˆy

depend linearly on the

elements of the nominal state and the elements of F̂
ˆyˆy

and Ĝ
ˆyˆy

are constants. All of
these coe�cient matrices can be computed o↵-line, outside the real-time control loop.

We can now formulate a reduced-order approximation of the full-order real-time
control algorithm by writing the control equations developed in Section 2.1 in terms
of the low-dimensional augmented state vector ŷ, as described below.

At each time t = k�t, for k = 0, . . . , N
T

�1, carry out a forecast, an optimization
and then an update, for each replicate j = 1, . . . , N

r

, as follows:
Optimization/Forecast: Perform an iterative search for the optimal control se-

quence u⇤
k:NT�1|k defined by:

u⇤
k:NT�1|k = argmin {V

k

(u
k:NT�1

)} , (2.20)

subject to the following constraints:

uL  u
k:NT�1

 uU

.

The reduced-order conditional states ŷj

k:NT |k needed to evaluate the objective function

are related to the proposed control u
k:NT�1

by a set of equality constraints (reduced-
order forecast equations):

d�ŷj

dt

⇡ F̂
ˆy

�ŷj +
1

2
F̂

ˆyˆy

(�ŷj ⌦ �ŷj), �ŷj(k�t) = �ŷj

k|k from update, (2.21)
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Ĝ
ˆy

�ŷj +
1

2
Ĝ

ˆyˆy

(�ŷj ⌦ �ŷj) ⇡ 0, (2.22)

ŷj = �ŷj + ŷ
nom

. (2.23)

The one-step ahead forecast ŷj

k+1|k obtained from (2.21) for the optimal control is

used in the subsequent measurement update at (k + 1)�t. The objective in (2.20) is
defined in terms of reduced-order variables as follows:

V

k

(u
k:NT�1

) = Ê

2

h
J

1:NR
k

(u
k:NT�1

, ŷ1:NR

k:NT |k)
i
+ µ

dVar
h
J

1:NR
k

(u
k:NT�1

, ŷ1:NR

k:NT |k)
i
.

(2.24)
Update: After the optimization procedure has converged to an optimal u⇤

k|k for

the current control interval and the corresponding one-step ahead forecast ŷj

k+1|k has
been computed, update the ensemble average and then deviations from the average,
as follows:

¯̂y
k+1|k+1

= ¯̂y
k+1|k +K

k+1

[z
k+1

�M
k+1

 ¯̂y
k+1|k], (2.25)

Ŷ
k+1|k+1

= Ŷ
k+1|kT̂k+1

, (2.26)

ŷj

k+1|k+1

= ¯̂y
k+1|k+1

+ ¯̂yj

k+1|k+1

, (2.27)

where all reduced-order variables (with hats) are defined in the same ways as their
counterparts in Section 2.1.

This recursion is initialized at t = k = 0 with an ensemble of reduced-order state
replicates ŷj

0|0 =  Tyj

0|0 and with an initial control sequence to start the iterative op-

timization algorithm. Also, a model predictive control approach is used so uopt

k

= u⇤
k|k

and u⇤
k+1:NT�1|k. The reduced-order optimization, forecasting, and update constraint

equations are formulated in terms in terms of the low-dimensional vector ŷ rather than
the high-dimensional vector y. This provides an important computational advantage
that becomes even more significant for as the system dimension increases.

3. Numerical experiment. The purpose of our numerical experiment is to test
the performance of a stochastic real-time control algorithm under controlled condi-
tions. We adopt an approach that accounts for uncertainty in system parameters
and measurements but assumes that the equations used to describe the system and
uncontrolled system inputs are perfectly known (i.e. we adopt a perfect model as-
sumption). The numerical experiment described here documents performance for a
virtual true system obtained by using a typical set of spatially variable parameters.
The control strategy is based on a series of virtual measurements that are derived by
adding random noise to the true states. In additional experiments not presented here
we have looked at other true systems having the same basic structure as our example
and have obtained similar results.

In the discussion that follows we are particularly interested in 1) the merits of
using closed-loop control (with measurement updates) vs. open loop control (without
measurement updates), 2) the performance of controllers based on full vs. reduced-
order models of the true system, and 3) the tradeo↵ between mean performance and
performance uncertainty. Our investigation relies on a subsurface solute transport
(groundwater remediation) problem that illustrates many of the key issues encoun-
tered in spatially distributed real-time control applications.
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3.1. Experimental setup. Our experiment considers control of subsurface flow
and transport in a thin isotropic confined aquifer with a constant layer thickness,
contained in the rectangular horizontal domain shown in Fig. 3.1. In the absence of
control a solute originating along the bottom boundary travels upward towards the
water supply well at P4. Controlled pumping at wells P1, P2, P3 pulls the solute away
from P4 and out of the system, incurring both pumping and treatment costs. The
best control satisfies water quality requirements at the supply well while minimizing
the cost of remediation.

Fig. 3.1. Numerical experiment simulation domain with 9 measurement locations (blue dia-
monds) and four pumping well locations indicated as P1, P2, P3, and P4.

We suppose that measurements of the system response are from fully screened
wells and that a two-dimensional vertically-averaged description is appropriate. The
corresponding flow and transport model can be written as

s

@h(r, t)

@t

= �r · q �
NwX

i=1

Q

i

�(r � r

i

), (3.1)

q(r, t) = �K(r)drh(r, t), (3.2)

✓

@c(r, t)

@t

= �r · (qc) + ✓Dr2

c�
NwX

i=1

Q

i

c�(r � r

i

). (3.3)

Here h(r, t) is the piezomeric head, q(r, t) is the two-dimensional Darcy velocity,
c(r, t) is the solute concentration. s is the specific storage, Q

i

(t) is the volumetric
flux pumped from the aquifer at well i, �(r � r

i

) is a two-dimensional spatial Dirac
delta function, K(r) is the isotropic hydraulic conductivity, d is the constant aquifer
thickness, and ✓ is the porosity. To simplify the transport equation we assume the
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dispersion coe�cient D is constant and isotropic in all directions. The head and
concentration equations are accompanied by initial and boundary conditions that are
discussed in more detail below. Note that the only nonlinearities in these equations are
products of the unknown dependent variables h, q

x

, q
y

, and c, the unknown parameter
K, and their respective spatial gradients. That is, these equations are bi-linear.

If we discretize the above model equations over space as described in Lin and
McLaughlin [unpublished manuscript] the result is:

s

@h(t)

@t

�Bq(t) = R
1

(t), (3.4)

BTh(t) +A(⌘)q(t) = R
2

(t), (3.5)

✓

@c(t)

@t

+E(q)c(t) + Lc(t) = R
3

(t), (3.6)

where h is an N

h

dimensional column vector containing the unknown grid cell pressure
heads, q is an N

q

= N

qx

+ N

qy

dimensional column vector containing the x and y

components of the unknown grid cell Darcy velocities, and c is an N

c

dimensional
vector containing unknown grid cell solute concentrations.

The components of the N
h

by N

q

matrix B are constant while the components of
the N

q

by N

q

matrix A(⌘) depend linearly on the components of the N
↵

dimensional
hydraulic resistivity vector ⌘, which is defined by ⌘

i

= 1/K
i

for each grid cell i. In
this application the resistivity is the only parameter included in the generic parameter
vector ↵. Although our model and Kalman filtering algorithms are formulated in terms
of resistivity we report results in terms of the more familiar log hydraulic conductivity.
The N

h

and N

q

dimensional right-hand-side vectors R
1

and R
2

depend on the flow
boundary conditions, including those imposed at the pumping wells. The matrix
E(q) in (3.6) depends nonlinearly on the velocity vector q when upwinding is used to
mitigate numerical dispersion. The matrix L is constant if the dispersion coe�cients
are assumed to be constants that do not depend on velocity. If the solute is assumed
to exit primarily through the wells and the flow rates at the wells are prescribed the
pumping term in (3.6) can be incorporated into the matrix E and R

3

= 0.
The discretized flow equation system given in (3.4) and (3.5) can be further sim-

plified if we suppose that the pumping rates are constant between control times and
that the specific storage is small enough for the flow system to reach an approximate
steady state between these times. In this case we only need to solve a steady state
version of (3.4) for constant h and q over each interval. Then (3.4) through (3.6) can
be put in the generic form given in (2.3) and (2.4), with the augmented state vector
y constructed from h, q, c, and ⌘ [Lin and McLaughlin, unpublished manuscript].

For our numerical example a 320⇥ 320⇥ 1m. computational domain of Fig. 3.1
is discretized into a 32 ⇥ 32 ⇥ 1 uniform computational grid of 10 ⇥ 10 ⇥ 1m. cells.
The spatially uniform porosity has a known value of 0.2. The dispersion coe�cient
is assumed to be an isotropic flow-independent constant over the whole domain. The
flow boundary conditions are zero water flux on the east and west sides and constant
head boundaries of 10m and 0m on the south and north sides. These conditions
impose a regional flow from south to north with local fluctuations induced by well
pumping and log hydraulic conductivity variations.

The transport boundary conditions are zero solute flux on the east and west
sides and zero solute concentration on the south side, except during injection at the
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solute source located in the middle of the southern boundary. Solute is injected on this
boundary at a constant rate of 5m3

/day and constant concentration of 50mg/L for the
first 200 days. Outward solute transport is permitted across the northern boundary
but the simulation time is limited to keep the solute boundary flux small. The initial
concentration is zero everywhere in the domain. These boundary conditions generate
a plume of finite extent that travels south to north, gradually moving past the wells
but staying largely in the computational domain during the 400-day simulation period.
This period is divided into 4 control intervals of 100 days each. In this experiment
only wells P1, P2, and P3 are controlled, while well P4 is used for drinking water
supply and has a constant pumping rate of 10m3

/day. Since the dispersion tensor
is isotropic and constant and the flow system is at steady-state over each control
interval the transport equation is linear, with coe�cients that change instantly when
the pumping rates change. This simplification facilitates the reduced-order modeling
process.

In the full order control algorithm the controlled pumping rates are adjusted to
minimize the objective function given in (2.8), which is constructed from the cost-to-
go function in (2.7), with the current cost function for replicate j defined as:

�

j

l

(yj

l|k,y
j

l+1|k,ul

) =
3X

i=1

u

2

l,i

+ w · cj
l,4|k, (3.7)

where u

l,i

is the pumping rate at Well i = 1, 2, 3 at time l�t and c

j

l,4|k is the concen-
tration forecast at time l�t, conditioned on measurements taken through k�t. This
concentration forecast is one of the elements in the full order augmented state vector
y

l|k. The current cost is a weighted combination of the sum of squared pumping rates
at the remediation well, which serves as a surrogate for the remediation pumping cost,
and the solute concentration at P4. Ideally, both if these quantities should be as small
as possible. The lower and upper bounds for the controlled pumping rates (negative
values indicate pumping out of system) are:

�50m3

/day  u

l,i

 0, i = 1, 2, 3.

An alternative formulation that gives similar results is to impose solute concentra-
tion requirements as inequality constraints and to include only pumping cost in the
objective (e.g. by setting w = 0). The expressions given here also apply to the
reduced-order version of the objective function, with the equation numbers and vari-
ables replaced with their reduced-order counterparts wherever applicable.

An ensemble approach to real-time characterization and control relies on prior
parameter and initial state ensembles that describe our imperfect knowledge of sys-
tem properties before measurements are collected. In a subsurface application these
prior ensembles should be geologically realistic and appropriate for the site under
investigation while also properly conveying, through replicate-to-replicate variability,
uncertainty about the true parameters. One flexible option for generating realistic
prior replicates is to use multipoint geostatistical techniques based on training images
[6]. Training images can be obtained from local experts or constructed from field
data. In any case, they are intended to provide useful qualitative information on
spatial structures likely to be found in the true system.

The 50 prior resistivity replicates used in our example are generated from a suit-
able training image with the multi-point algorithm FILTERSIM [18]. We use this
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algorithm to define categorical replicates that delineate boundaries between perme-
able and less permeable geological facies. Resistivity values are assigned to each of
the two facies and the resulting binary resistivity images are approximated with a
truncated DCT expansion that uses 100 DCT coe�cients, about 10% of the number
of pixels. The same expansion is used to obtain the basis functions (⇥ columns) for
the reduced-order hydraulic resistivity approximation. Since the DCT expansion is
approximate the replicates obtained from the retained coe�cients are no longer binary
but exhibit gradual transitions between higher and lower resistivity areas.

Fig. 3.2. Some typical log hydraulic conductivity samples. (a) The true log conductivity field;
(b) The categorical training image used for generating a prior ensemble in FILTERSIM; (c) Sample
prior (unconditional) log conductivity replicates constructed from a truncated DCT approximation
to categorical FILTERSIM facies replicates.

Fig. 3.2(a) shows the single replicate designated as the true field, plotted in log
hydraulic conductivity units. Fig. 3.2(b) shows the categorical training image used
to generate the true replicate as well as the 50 replicates in the prior ensemble. Some
typical members of this ensemble are shown in Fig. 3.2(c). The training image is
characterized by a single high-conductivity diagonal channel with a kink in the middle
of the domain. This diagonal feature appears, in various degrees, in the true field and
in most of the prior replicates. Note that the true replicate is not included in the
prior ensemble.

An ensemble Kalman filter is used to update the augmented state replicates with
point measurements of head and concentration. These measurements are collected
at the nine locations indicated by the blue diamonds in Fig. 3.1. The measurement
locations include the four pumping wells. All measurements are taken at the end of
the four control steps so there are four updates during the 400-day simulation.

The reduced-order model is constructed from standard DCT basis functions for
the model’s parameters (resistivities) and customized POD basis functions for the
model’s dynamic states (heads, velocities, and concentrations). The POD basis func-
tions for each dynamic state (head, two velocity components, and concentration) are
obtained from a snapshot matrix composed of full order simulation results for di↵er-
ent combinations of possible parameter values and control sequences. Each control
sequence minimizes the deterministic costs-to-go for a particular parameter replicate.
The head and velocity snapshot outputs include the relevant state as well as deriva-
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tives of the state with respect to the 1024 hydraulic resistivities. Each of the resulting
head and velocity snapshot matrices has 82320 columns, of which 400 (4 control steps
for 100 combinations of 10 replicates and 10 controls) are state vectors and 81920 (4
control steps for 1024 resistivities for 20 combinations of 2 replicates and 10 controls)
are derivative vectors. The number of columns in the concentration snapshot matrix
is 4000 (40 time steps for 100 combinations of 10 replicates and 10 controls). No
derivatives are included in this matrix.

The POD bases are truncated to insure that the retained snapshot matrix singular
vectors account for 99%, 93%, 93%, and 99% of the energy in the head, x velocity,
y velocity and concentration, respectively. This gives reduced-order dimensions of
56, 103, 97, and 194, for these four variables, each of which originally has a full-
order dimension of about 1024. The specific snapshot simulation specifications and
POD truncation criteria used here provide a comprehensive picture of full-order model
response but could easily be modified, if desired.

3.2. Experimental results. The results for our numerical experiment are or-
ganized around several test cases defined as follows:

– Deterministic control: Perfect knowledge of hydraulic conductivity, best pos-
sible control performance with no uncertainty,

– Full-order ensemble closed-loop control: Uncertain parameters, measurement
updates included,

– Reduced-order ensemble closed-loop control: Uncertain parameters, measure-
ment updates included,

– Full-order ensemble open-loop control: Uncertain parameters, no measure-
ment updates,

– Reduced-order ensemble open-loop control: Uncertain parameters, no mea-
surement updates,

– No control: Reference case with no pumping at control Wells P1, P2, P3.
Constant pumping for water supply only at Well P4.

These cases cover a range of control options, varying from a best case with control
based on perfect information about the true system to a worst case with no control.
The remaining cases represent intermediate options that all account for uncertainty
but use di↵erent amounts of information and make di↵erent approximations. We first
examine performance of these cases for µ = 0 in (2.8). This gives a control strategy
that minimizes the mean cost-to-go. Then we consider the impact of penalizing the
cost-to-go variance by setting µ > 0.

Fig. 3.3 shows the optimal well control sequences and corresponding true cost for
each of the controlled cases defined above. Here the true cost is defined as:
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(3.8)
where the state c

l,4

is the P4 water supply well concentration obtained at time l�t

with the true hydraulic resistivity and the actual sequence of optimal controls uopt

0:NT�1

generated by the real-time algorithm. Fig. 3.4 shows spatial plots of the true solute
concentrations obtained by applying the above six control sequences to the true system
(simulated with full-order model using the true hydraulic resistivity). Fig. 3.5 shows
the true concentration time series at the P4 water supply well for all six sequences.
The behavior of the various control options is best understood by examining all three
figures.
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Fig. 3.3. Comparison of six control strategies: (a) Pumping rates at Wells P1, P2, and P3 in
four control intervals; (b) Corresponding true total costs.

The deterministic control case indicated with dark blue in Fig. 3.3 is characterized
by minimal pumping at P1 but significant pumping at P2 and P3 during the second
and third control steps. In this case the control strategy allows the natural flow field to
move the solute plume to the diagonal permeable channel in the first control interval.
Then the solute is extracted through pumping from P2 and P3 during the second and
third control intervals. Pumping at these wells is reduced during the fourth control
interval since the savings in pumping cost outweighs the penalty incurred from the
small concentration at P4.

The full and reduced-order closed loop controllers shown in cyan and green, re-
spectively, pump mostly at P2 and P3 in the third control interval, lagging somewhat
behind the deterministic controller. The most distinctive di↵erence between the full
and reduced-order strategies is more pumping from P1 in the third control interval
for the reduced-order case. This probably occurs because the reduced-order model
ensemble locates the permeable channel somewhat closer to P1. The combination of
slightly higher concentration at water supply well P4 and more pumping at P1 gives
a reduced-order cost that is somewhat higher than the corresponding full-order cost.
It is interesting to note that the deterministic control gives lower total cost but higher
late-time concentration at P4 than either of the closed loop controls. The lower cost
reflects the fact that the peak deterministic pumping rates are lower than those used
in the two closed-loop cases.

The full and reduced-order open loop controllers shown in orange and brown,
respectively, do not benefit from measurements and distribute pumping more evenly
over time. This increases the actual cost since concentrations at water supply well
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Fig. 3.4. Spatial distributions of true solute concentration at times 0, 100, 200, 300, 400 days
for six control strategies with well locations indicated by black (Well P1), red (Well P2), cyan (Well
P3), and magenta (Well P4) crosses.

P4 are significantly higher. The open loop controls tend to pump earlier than the
corresponding closed-loop controls, suggesting that they predict that the plume will
arrive at the permeable channel earlier. The reduced-order control again pumps more
at P1 but the overall impact on cost is minor compared to the corresponding full-order
case.

Fig. 3.4 reveals that the five controlled solute plumes have similar shapes, How-
ever, Fig. 3.5 shows that the closed- and open loop controllers give significantly dif-
ferent concentrations at P4. Overall, the closed-loop controllers work very well, com-
pensating for uncertainty that is not present in the deterministic case. In fact, the
performance of the deterministic and closed-loop controllers is quite similar. The cost
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Fig. 3.5. True concentration time series at Well P4 for six control strategies.

for the closed-loop cases is about 10% higher than for the deterministic case. This
can be viewed as the penalty paid for the moderate level of uncertainty encountered
in this particular problem. The discussion below focuses on some of the properties of
the closed-loop controllers.

Fig. 3.6 compares the true log hydraulic conductivity to the ensemble means ob-
tained from the full and reduced-order closed loop control algorithms. The mean log
conductivity at time 0 is nearly uniform since it averages over many prior replicates
with channels placed in di↵erent locations (see Fig. 3.2(c)). This scattered repre-
sentation of geological structure is the one used by the open loop controllers and is
the reason these controllers do not perform as well as their closed-loop counterparts,
which have access to better geological information as early as the beginning of the
second control interval. The well-defined channel apparent in the closed-loop mean
log conductivity plots indicates that this channel is in the right location in most of
the conditional replicates. Fig. 3.6 also shows that the reduced-order controller gives
an ensemble mean log conductivity that is comparable in quality to the full order
version.

The control decisions obtained from the closed-loop ensemble algorithms rely
on forecasts of solute plume movement. Fig. 3.7 compares the true concentration
contours for the two closed-loop controllers to the corresponding ensemble means at
various times. Note that the true plumes are di↵erent for the full and reduced-order
cases because di↵erent controls are applied to the true system in these two cases. The
figure suggests that the full and reduced-order models give roughly comparable mean
characterizations of the corresponding true plumes.

Further insight is provided by Fig. 3.8, which shows time series of the true con-
centrations and ensembles for each of the four ensemble controllers. The benefits of
measurement updating are apparent from a comparison of the open and closed-loop
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Fig. 3.6. Spatial distributions of log-hydraulic conductivity: (a) true log-conductivity; (b) log
of ensemble mean conductivity for full and reduced-order models.

concentrations. The closed-loop ensemble means (dashed blue curves) derived from
the ensemble (gray curves) closely track the true concentration (red curves) in P2
and P3 and gradually converge to the true in P4. The ensemble spread reflects the
EnKF’s assessment of uncertainty, which should properly represent the true system
uncertainty. When the ensemble collapses the filter ignores new measurement informa-
tion and its updates can diverge from the true values if the ensemble has not properly
captured the true uncertainty. The e↵ects of measurement updating are revealed in
Fig. 3.8 by abrupt changes in individual concentration replicates at update times. The
measurement updates usually, but not always, bring the replicates closer to the true
concentration. The closed-loop full order model gives an ensemble that is somewhat
more centered on the true value, with fewer outliers, but the reduced-order model
does well overall. The full and reduced-order open-loop results are almost identical,
indicating that the reduced-order model is able to capture the system’s dynamical
behavior and uncertainty over the range of prior resistivity values.

Fig. 3.9 shows the e↵ect of measurement updating on the location and shape of
the permeable channel and solute plume. Parts (c) and (d) compare the scattered
prior log conductivity replicates to the more clustered conditional replicates obtained
after updating. Parts (e) and (f) show a similar comparison for the solute plume.
In both cases there is much less variability across the ensemble after updating. The
smaller variability that remains reflects the residual uncertainty in log conductivity
and concentration.

The results shown in Fig. 3.3 through Fig. 3.9 are all obtained by minimizing
the ensemble mean of the cost-to-go. If we also penalize the cost-to-go variance by
setting µ > 0 we obtain di↵erent control strategies and di↵erent system responses for
the various ensemble control options. Generally speaking, strategies with µ > 0 are
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Fig. 3.7. Spatial distribution of solute concentrations at times 0, 100, 200, 300, and 400 days
with well locations indicated by black (Well P1), red (Well P2), cyan (Well P3), and magenta
(Well P4) crosses: (a) true concentration for ensemble closed-loop control with full and reduced-
order models with well locations indicated by black (Well P1), red (Well P2), cyan (Well P3), and
magenta (Well P4) crosses; (b) ensemble mean concentration for ensemble closed-loop control with
full and reduced-order models.

more conservative, favoring controls that give similar results for di↵erent replicates
even if the resulting costs are higher than in the µ = 0 case. Fig. 3.10 summarizes the
e↵ects of imposing a variance penalty for each of the ensemble control alternatives.
The plots in Fig. 3.10(a) and 3.10(c) show probability density functions (PDFs) of the
total cost over the entire control horizon, derived from the actual applied open loop
control sequence and the prior ensemble of augmented states. This PDF describes
our uncertainty about the cost of remediation at the end of the control horizon, after
all controls have been derived and applied, with no measurement updating. Each cost
replicate used in the PDF computation is defined as:
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The plots in Fig. 3.10(b) and 3.10(d) show the PDFs of the total cost over the entire
control horizon, derived from the actual applied closed-loop control sequence but
using the posterior ensemble of augmented states, conditioned on all measurements
collected through the final time. This PDF describes our uncertainty about the cost



22 BINGHUAI LIN AND DENNIS MCLAUGHLIN

Fig. 3.8. Concentration time series at the four well locations showing concentration for di↵er-
ent log conductivity replicates (gray), concentration obtained with true log conductivity (red), and
ensemble mean concentration (blue lines) for: (a) ensemble open loop with full order model; (b)
ensemble open loop with reduced-order model; (c) ensemble closed-loop with full order model; (d)
ensemble closed-loop with reduced-order model.

of remediation at the end of the control horizon, after all controls have been derived
and applied, with measurement updating. Each cost replicate is defined as:
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In this case the dynamic states at all times are derived by solving (2.10) and (2.11) for-
ward from the initial time, using the conditional resistivity replicates obtained at the
final time. The di↵erences between corresponding open and closed-loop PDFs illus-
trate the additional information provided by the measurements. Note that Fig. 3.10
shows the distribution of the uncertain cost expended, as derived from known controls
and uncertain states. The cost actually billed for the remediation may lie within or
outside the range indicated by the PDF since it may be based on other criteria.

The blue curves in Fig. 3.10 show the densities obtained when only the mean
is minimized (µ = 0) while the narrower red curves show the densities obtained
when the variance is included in the minimization (µ = 100). For reference, the
dashed vertical lines show the true cost-to-go for each alternative. It is apparent that
the variance penalty significantly reduces the range of costs obtained with di↵erent
replicates, increasing confidence in the actual cost obtained once the control is applied.
The red variance penalty distributions are centered on the corresponding true cost
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Fig. 3.9. Spatial distributions for ensemble closed-loop control with reduced-order model: (a)
true log-conductivity field; (b) true concentration on day 400; (c) five typical prior log-conductivity
replicates; (d) five corresponding updated log-conductivity replicates on day 400; (e) concentration
on day 400 for the five prior log-conductivity replicates; (f) corresponding concentration for the five
updated log-conductivity replicates.

values. These true costs are somewhat lower than the true costs obtained without
the variance penalty for open loop control but are slightly higher for closed-loop
control. The reduced-order model is able to accurately capture the e↵ect of the
variance penalty for the open loop case but gives more outliers for the closed-loop
case. This probably reflects the fact that the reduced-order POD basis functions
are derived from the broader set of prior head and concentration replicates used in
open-loop control rather than the narrower set of replicates used in the closed-loop
case. Nevertheless, the reduced-order model captures the overall e↵ect of the variance
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Fig. 3.10. Probability densities of the total cost for: (a) full order open loop control; (b) full
order closed-loop control; (c) open loop reduced-order control; (d) closed-loop reduced-order control.
Blue lines indicate µ = 0 (without variance penalty), while red lines are for µ = 100 (with variance
penalty). Vertical dashed lines indicate the cost obtained with the true resistivity.

penalty on the cost-to-go probability densities for both open and closed loop cases.
These results suggest that the variance penalty provides significantly more confidence
in control performance for a minimal increase in actual cost, at least for the example
considered here.

Overall, the results of our numerical experiment clearly demonstrate the bene-
fits of closed-loop control, which significantly improves performance by correcting for
the e↵ects of parameter uncertainty. The results also show that the reduced-order
model proposed here is an acceptable substitute for a much more expensive full or-
der model. In our example the reduced-order model achieves control performance
comparable to the full order case while requiring only 20% of the computation time.
The computational benefit of a reduced-order model will probably be much greater
for larger problems. We have restricted our attention here to a full order problem
with about 4000 unknowns because of the substantial computational requirements
needed to obtain full order results for a performance comparison. The primary cost of
reduced-order control is the o↵-line derivation of the reduced-order coe�cient matri-
ces. On-line (real-time) computational costs are a small fraction of the o↵-line costs.
This implies that reduced-order ensemble control is particularly attractive when the
time available for on-line computation is limited and it is feasible to move substantial
amounts of computation o↵-line.

4. Discussion and conclusions. The numerical experiment described in this
paper demonstrates the feasibility of ensemble closed-loop control with a reduced-
order model for a particular solute transport problem. The general concepts pre-
sented in Section 2 and applied to the example in Section 3 are broadly applicable. In
particular, it is possible to use in many di↵erent contexts i) an ensemble of possible
states to describe uncertainty, ii) a Kalman filter to update the ensemble with mea-
surements, iii) a reduced-order model to make ensemble forecasts, and iv) a stochastic
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model predictive control procedure. The key question is how well these concepts will
work in any particular application. Ultimately, this question needs to be answered
with problem-specific experiments. However, we have observed in our solute transport
example some outcomes that have broad significance.

The basic advantages of closed-loop deterministic control are well known. The
advantages of stochastic control are less extensively documented but it seems appar-
ent from our experiments that a stochastic approach provides considerable flexibility
to chose controls that account for uncertainty in a systematic way. The tests summa-
rized in Fig. 3.10 indicate that closed-loop controls can be adjusted to provide more
predictable results (less uncertainty in cost) with little or no sacrifice in average per-
formance. This general result probably applies in many fields, although the specific
nature of the tradeo↵ between average performance and performance uncertainty is
di�cult to determine without application-specific tests.

It is more di�cult to assess the general feasibility and benefit of using a reduced-
order model for ensemble real-time control. The importance of computational issues
is related to the control and system response time scales. In general, it is desirable to
change controls over time scales comparable to the time it takes for the system to re-
spond to typical changes in uncertain inputs. If the system states change significantly
over a control interval it is more di�cult to monitor and control performance. On
the other hand, if measurements and control decisions are made frequently there is
less time to carry out the extensive computations required by an ensemble real-time
control algorithm. So the need for reduced-order modeling depends on the system
response and control time scales as well as the computational time required to run a
full order model. In problems involving relatively slowly responding geological sys-
tems, such as the one considered here, the time required to carry out ensemble control
computations with a full order model may be significantly less than the time avail-
able to make a decision. On the other hand, in problems involving faster-responding
atmospheric systems a reduced-order model may be essential. The type of model
reduction used here transfers computational e↵ort from on-line to o↵-line operations.
When such a transfer is needed to make the ensemble approach feasible reduced-order
modeling should be seriously considered. Otherwise, it may not be necessary.

The decision to use reduced-order modeling also depends on the feasibility of
adequately reproducing the dynamic behavior of the true system with a simplified
approximation. The reduced-order model used in our example performs well for a
particular true system with a dominant high permeability channel but cannot be
expected to perform as well over a wider range of conditions unless it is re-derived
from a new set of snapshot matrices. The success of this process depends on the
conditions selected for the snapshot simulations. If these conditions cover too narrow
a range of possibilities the reduced-order model will perform well only in certain
limited situations. If the range of snapshot simulations is too wide the reduced-order
model may not work particularly well for any condition, even one falling within this
range.

The approach to reduced-order modeling described here is only one of many pos-
sibilities. We selected it largely because it is well suited for our example problem. For
this example the quadratic expansion used in the derivation of Section 2.2 is exact
and the resulting reduced model does not depend on the specified nominal state. In
other applications it may be preferable to use alternative model reduction techniques
such as the Discrete Empirical Interpolation Method (DEIM) or methods that require
on-line adjustments to the reduced-order approximation [1, 5, 15]. Although there is
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still much room for experimentation, our research suggests that the basic concept
of combining ensemble measurement updating, forecasting, and optimization with
reduced-order modeling has much merit and can lead to e↵ective control strategies
that are able to deal with uncertainty.
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