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Abstract
With mobile devices becoming ubiquitous, collaborative

applications have become increasingly pervasive. In these
applications, there is a strong need to obtain a count of the
number of mobile devices present in an area, as it closely
approximates the size of the crowd. Ideally, a crowd count-
ing solution should be easy to deploy, scalable, energy effi-
cient, be minimally intrusive to the user and reasonably accu-
rate. Existing solutions using data communication or RFID
do not meet these criteria. In this paper, we propose a crowd
counting solution based on audio tones, leveraging the mi-
crophones and speaker phones that are commonly available
on most phones, tackling all the above criteria. We have im-
plemented our solution on 25 Android phones and run sev-
eral experiments at a bus stop, aboard a bus, within a cafete-
ria and a classroom. Experimental evaluations show that we
are able to achieve up to 90% accuracy and consume 81%
less energy than the WiFi interface in idle mode.

Categories and Subject Descriptors
K.8.0 [General]: Counting; I.4.3 [Audio processing]:

Counting; I.3.1 [Audio]: Speaker/Microphones

General Terms
Design, mobile audio system, experimentation

Keywords
Audio processing, tone counting, simple tones,

speakers/microphones

1 Introduction
In recent years, two major trends in mobile computing

have substantially changed its landscape. First, mobile de-
vices are increasingly becoming an integral part of personal
items carried by people. Second, there has been a pro-
liferation of collaborative, crowd-sourcing based applica-
tions. Such applications include public transportation plan-
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ning, real-time opinion survey, event planning and proximity
marketing (refer to Section 2 for more details). In these ap-
plications, there is a strong need for a count of the number of
mobile devices present in an area, as it closely approximates
the size of the crowd.

Ideally, a crowd counting solution should meet the fol-
lowing criteria: (1) Ease of deployment: A low cost solution
that leverages existing infrastructure, without requiring the
installation of new sensors makes crowd counting accessible
to a wider range of applications. (2) Scalability: The solution
should work across large geographically regions, indoors and
outdoors, and scale to large number of devices for counting
huge crowds. (3) Energy efficiency: Since mobile devices
are highly constrained by their battery lifetimes, good en-
ergy efficiency is needed. (4) Minimal intrusion: A solution
that can effectively count in the background, with minimal
involvement of the mobile device and user, will help to pre-
serve anonymity, privacy and security. (5) Accuracy: While
a very precise count is typically not required, a fairly good
estimate is necessary for most applications.

Existing approaches include the use of wireless data com-
munications (e.g. using 3G, WiFi) or RFID readers/tags.
With ubiquitous smartphones, the former approach would be
feasible and easily deployed. However, depending on the
network technology chosen, it may not satisfy one or more
of our criteria. For example, use of 3G requires infrastructure
access and is not energy efficient for the purpose of counting,
a very low bit-rate operation; WiFi is similarly not energy
efficient; the discovery and formation of piconet/scatter net
in Bluetooth is expensive and incurs substantial time delay
which limits the scalability of the solution; ZigBee support
on smartphones is not widespread, limiting large scale de-
ployment. In addition, all these counting approaches require
data communication which may compromise anonymity, pri-
vacy and security. These communication modes leave open
multiple entry points through which mobile devices could
be attacked ([9], [11]) or their privacy compromised ([8],
[2]). This is because even the lowest bandwidth offered by
these technologies is sufficient for intrusion and attack. Con-
cerns with such threats ([5]) and other considerations such
as power have severely limited the adoption of these ap-
proaches. Counting using RFID technology does not violate
anonymity, privacy and security. However, RFID communi-
cation range is very short and only single-hop communica-
tion is supported. RFID readers are also expensive.



In this paper, we propose a crowd counting solution based
on audio tones, leveraging the speakerphones that are com-
monly available in most phones. To the best of our knowl-
edge, this is the first use of audio tones as a networking
mechanism for multi-hop, large-scale counting.

We have implemented the tone-counting system in An-
droid based smartphones and demonstrated that the proposed
system effectively satisfies all the above criteria:
• Ease of deployment: Our solution requires just speaker-

phones which are widely available on most phone mod-
els, not limited to smartphones with sophisticated fea-
tures.

• Scalability: The maximum number of nodes that can be
counted increases exponentially with the number of fre-
quencies available for use. Our current implementation,
with 98 usable frequencies for counting, supports up to
891 devices. With the use of multi-hop communication,
the devices can cover a much larger geographical area
than the range of an audio transmission. Assuming an
audio transmission range of 5m, 891 devices forming a
28x28 grid pattern can cover an area of 19,600 m2 or
about the size of 3.5 football fields. We have experi-
mentally demonstrated counting in a network of up to 7
hops.

• Energy efficiency: Our power measurements show that
the counting app is highly energy efficient. When op-
erating at full capacity, our app consumes 88 mW, 82%
and 91% less than using the WiFi (480 mW) and 3G
(952 mW) interfaces respectively. When power saving
mechanisms are enabled, WiFi consumes 57 mW with
no activity, and our apps can easily be configured to op-
erate at a mode that consumes only 10.8 mW, a 81%
savings over WiFi with no activity.

• Minimal intrusion: By using audio tones which are
barely audible to humans, and not requiring any user
input, our solution has minimal intrusion to the mobile
user experience. It also preserves anonymity, privacy,
and security, since only (randomly generated) tones are
sent by the phones with no additional exchange of link
or MAC layer information.

• Accuracy: In our experiments using up to 25 smart-
phones in 3 different settings, we are able to achieve
accuracy of up to 90%.

The paper is organized as follows. Section 2 discusses
the motivation and Section 3 discusses the design of the sys-
tem and the protocols used for tone counting. Sections 4
and 5 present the implementation and evaluation. Section 6
discusses related work and Section 7 the limitations of our
work. Section 8 concludes the paper.

2 Motivation: Potential Crowd
Counting Applications

We motivate our work by pointing out several potential
applications where there is a need for counting:
• Public transport planning: Fast, low-cost estimations

of the number of passengers who board a bus or sub-
way can greatly aid public transport planning. Crowd

counts localized to specific subway cabins can be lever-
aged for crowd control. Counts of taxi queues can guide
better deployment of taxis towards high demand areas.
A counting solution can also be expanded to a mecha-
nism for binary yes/no answers such as survey questions
like: ”Are you a senior citizen?”, ”Do you get down
at this stop?” etc. An effective, low-cost solution like
ours can substantially expand the reach of transporta-
tion surveys, which in the past, can only be done rarely
to mitigate costs [3].

In this paper, we deployed two experiments counting
the crowd at a bus stop as well as aboard a moving bus.

• Event planning: Events such as receptions, confer-
ences and exhibitions will benefit from crowd counts
of specific areas. For instance, a current count of the
crowd at specific exhibition booths can help guide di-
rected marketing efforts, while a count of the people at
a reception can assist the event manager in ensuring suf-
ficient service personnel is on hand to handle the guests,
or arrange buffet tables to better improve service level
in ergonomics or comfort.

• Visitor Survey/Proximity marketing: Public spaces
may have information kiosks displaying advertise-
ments. The ability to estimate the number of visitors
or track the number of interested customers nearby [4]
can be used to manage and organize the information dis-
played.

3 System Design
In this section, we first present an overview of our tone

counting solution, followed by detailed description of the
tone counting algorithms.

Operationally, our design requires that each mobile de-
vice, e.g. a smartphone, is able to generate one or more sim-
ple tones, and then output these tones through a speaker. A
simple tone, or pure tone, refers to an audio signal with a
sinusoidal waveform that can be interpreted in the frequency
domain as consisting of just a single frequency.

Sampling of the signal is done at 44KHz and the fre-
quency range detected is from 0 to 22KHz. Most speak-
erphones support the frequency range between 20Hz to
20KHz. Depending on age and other factors like prolonged
exposure to loud noise, frequencies above 15KHz are gener-
ally not audible. In fact, MP3 supports only up to 16KHz in
one of its higher compression scheme.

While transmitting, the device can also receive audio sam-
ples through its microphone. These audio samples can be
processed using Fast Fourier Transform (FFT) to extract the
simple tones that are transmitted by other phones and/or it-
self. In other words, the operations are duplex, and based on
Frequency Division Multiplexing (FDM). With FDM, multi-
ple devices can transmit multiple frequencies simultaneously
without interference problems. In addition, since only sim-
ple tones are transmitted, even if the same frequency is being
transmitted by multiple phones, the tone can be received cor-
rectly.

The basic mechanism is as follow. Each device starts with
an initial bit pattern, and each bit corresponds to a simple



tone. In each cycle, a device broadcasts the simple tones in-
dicated by its stored bit pattern. At the same time, it records
the audio samples received and performs FFT computation
periodically to recover the simple tones transmitted by other
devices. These received tones correspond to the set of re-
ceived bit patterns. A new bit pattern is then obtained by per-
forming a bit-wise OR operation of the stored and received
bit patterns. The transmit/receive and compute/decode cycle
repeats until counting is done. Counting algorithms differ by
having different initial bit patterns and deriving the device
counts using different equations.

In this paper, we present two algorithms for tone count-
ing: a simple algorithm based on uniform hashing, and a
more complex algorithm based on geometric hashing. We
will simply call the former the uniform hashing approach
and the latter the geometric hashing approach.
3.1 Parameters

Both approaches have the following parameters in com-
mon:

1. Frequency set, F : A set of frequencies that provides
effective transmission. This set excludes those frequen-
cies which are affected by ambient noise in the en-
vironment, as well as specific frequencies that cannot
be transmitted due to specific speaker/microphone con-
straints.

2. Control frequency set, S and Counting frequency
set, C : A subset of frequencies in F are used for the
purpose of sending control signals such as initiating
the counting process, stopping the counting process etc.
They belong to S . The remaining frequencies can be
used for representing device counts, and belong to C .
In other words, C ⊂ F \S . This is because guard bands
(see below) are not included in C .

3. Guard band,G: When two frequencies that are adja-
cent to each other are transmitted, interference can re-
sult in ambiguity at the receiver. To avoid this, when de-
termining C , a gap is assumed between consecutive fre-
quencies. For instance, suppose 15KHz and 15.05KHz
are two consecutive frequencies in F , then G is 50Hz.

4. Tone width, W : Each frequency is transmitted for a
certain duration, called tone width, which affects the
detection accuracy and range of the frequency at the re-
ceiver(s).

5. Tone amplitude, A: This is the amplitude of the trans-
mitted frequency.

3.2 Uniform Hashing Approach
The flow of the protocol is as follows:

1. Initialization: Each device keeps a bit vector Vf of size
|C |. Each bit in Vf corresponds to a single frequency in
C . All bits in Vf are initialized to 0, except for a sin-
gle bit that corresponds to the device’s identifier. This
mapping is obtained by hashing the identifier to a bit
location in Vf .

2. Count initiation: One (or more) device initiates the
counting process by transmitting the control frequency
in S assigned for count initiation.

Phone 1’s initial value of Vf 

After 1 Round 

After 2 Rounds 

Phone 1 Phone 2 Phone 3 

0 0 0 1 0 0 0 0 0 0 
Phone 2’s initial value of Vf 

0 1 0 0 0 0 0 0 0 0 
Phone 3’s initial value of Vf 

0 0 0 0 0 0 0 0 1 0 

0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 

0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 

Phone 1’s final value of Vf Phone 2’s final value of Vf Phone 3’s final value of Vf 

Figure 1. Illustration of uniform hashing approach with
|C | = 10.

3. Transmission: A frequency is transmitted if its corre-
sponding bit location in Vf is set to 1. All such frequen-
cies can be transmitted simultaneously. Transmission
has a width of W and is transmitted with amplitude A .
Initially, only a single frequency corresponding to the
node’s identifier will be transmitted.

4. Reception: Reception and transmission are done in
parallel (full duplex) until counting terminates. Audio
samples received are stored and FFT is performed on
these audio samples periodically. For each frequency
detected by FFT, we set the corresponding bit in Vf
to 1. If the bit is already set to 1, the frequency has
already been detected. This can be thought of as a
bit-wise OR operation. There is thus a link between
transmission and reception. As new frequencies are de-
tected, the corresponding bits in Vf will be set. When Vf
is updated, these newly detected frequencies are trans-
mitted. As these additional frequencies are retransmit-
ted by neighbouring devices, information is propagated
over multi-hops providing information on device count
to all nodes.

5. Count Derivation: The number of bits in Vf that are set
to 1 corresponds to the number of (unique) frequencies
detected. This number is the estimated device count.

6. Stopping Rule: Counting stops (1) when a node hears
a control frequency in S assigned to stop the counting
process, (2) if the count stops increasing after a thresh-
old period or (3) after a maximum counting period. To
improve accuracy, we have adopted dynamic adjust-
ment for count stabilizaton duration. Starting with an
initial duration, we increase this duration if the cur-
rent count exceeds a threshold value. This is because
a larger stabilization duration is needed when there is a
larger number of nodes to be counted.

Figure 1 shows the evolution of Vf stored on 3 phones
with |C | = 10. Initially, each phone sets a single bit in its
own copy of Vf . Each phone then transmits the frequency
corresponding to the bit pattern of its Vf . After 1 round of
transmission, phone 2 detects the frequencies transmitted by



phones 1 and 3, while phones 1 and 3 only receive the fre-
quency transmitted by phone 2. The bit patterns of Vf s are
updated accordingly. After the second round of transmis-
sion, the bit patterns stored on all 3 phones are the same af-
ter additional frequencies are detected and Vf updated. The
estimated device count is the number of bits in Vf that are set
to 1, which is 3 in this example.

While simple, the uniform hashing approach clearly has
its limitations. In particular, since frequencies are locally
generated, multiple nodes may choose the same frequencies,
leading to an under-count. The inaccuracy caused by the fre-
quency duplication problem can be mitigated by perform-
ing a more detailed probabilistic analysis that takes into ac-
count collision probabilities [14]. However, the number of
frequencies that needs to be transmitted is still on the or-
der of the total number of devices, and its accuracy depends
strongly on the cardinality of C , thus limiting its scalability.

3.3 Geometric Hashing Approach
The basic flow of this approach is similar to the uniform

hashing approach, except for the following critical differ-
ences:

1. Initialization:
Similar to the uniform hashing case, each device starts
with a bit vector Vf of size |C | with all bits initialize to
0. Next, we divide the |C | bit vector into m segments,
each of |C |m bits.

Now consider the operation for a single segment i, mi.
First, apply a hash function on some unique identifier
to get a value xi that is uniformly distributed between 0

and 2
|C |
m − 1. Next, derive the corresponding hi where

hi is computed as the bit vector where the right-most
zero is changed to 1 and all other bits set to 0. For
example, if xi = 001001112, hi = 000010002, and if
xi = 001000012, hi = 000000102.

Finally, let R(hi) be the bit position of the right-most
zero in the bit pattern of hi. For example, if hi =
000010002, R(hi) = 3, and if hi = 000000102, R(hi) =
1.

Note that R(hi) is a geometric hash function. To see why
this is the case, note that if the numbers are uniformly

distributed over 0 and 2
|C |
m − 1, then 1

2 of the possible
outputs of R(hi) are 0, 1

4 are 1 and 1
2k are k-1, for k =

1,2,...,n.

The operations for all m segments are the same, except
that a different hash function is used to generate xi and
then hi used for each segment. After these operations
are applied to all segments, there is at most 1 bit set per
segment and up to m bits set in Vf .

If we consider the operation for a single segment, our
estimation approach based on generating geometrically
distributed identifiers is similar to [29]. However, as
discussed in [10], such an estimate is not robust and has
a large deviation in its output value. In order to improve
the accuracy, we are in fact performing m multiple esti-

mations in parallel by having m segments with indepen-
dently generated bit patterns.

2. Count initiation: Same as uniform hashing.

3. Transmission: Similar to uniform hashing except that
there are up to m frequencies initially.

4. Reception: Same as uniform hashing.

5. Count Derivation: Let si be the bit pattern of segment
i in Vf and R(si) be the bit position of the right-most
zero in the bit pattern of si. E(R) is the average value of
R(si) over all m segments, therefore E(R) = ∑i R(si)

m . Ini-
tuitively, as the number of devices increases, E(R) also
increases since it is more likely that bits in the lower
order positions will be set.

Device count, N, is calculated as :

N = 1.2897∗2E(R) (1)

Derivation of Equation 1 can be found in [10].

6. Stopping Rule: Same as uniform hashing.
Figure 2 shows the evolution of Vf on 3 phones, with |C |

= 100 and m = 10. On each phone, 10 segments are used
to perform 10 estimations in parallel. Take phone 1 for ex-
ample. It hashes its identifier h into 10 different numbers
h1 to h10, and set the corresponding bits in Vf . In the fig-
ure, h1 = 12, h2 = 12, h3 = 12, h4 = 102, h5 = 12, h6 = 12,
h7 = 102, h8 = 1002, h9 = 1, and h10 = 12.

The phones then exchange information stored in Vf by
transmitting the corresponding frequencies. After 2 rounds
of information exchange, the bit patterns converge. The bit
position of the right-most zero in each of the individual seg-
ments are 1, 1, 1, 2, 1, 1, 2, 1, 1, and 1. The average bit posi-
tion, E(R), is (1+1+1+2+1+1+2+1+1+1)

10 = 1.2. Using Equation
1, device count is (1.2897 * 21.2) = 2.963.

The geometric hashing approach has a number of useful
properties:

1. Scalability in device count: The largest number of
devices that can be represented using a k-bit segment is
2k− 1. Hence, if |C | = 100 and m = 10, k = 10. The
maximum device count is 1023. There is a trade-off in
terms of the maximum number of devices that can be
counted and the number of estimations that can be done
in parallel to improve accuracy. A larger k increases
the maximum number of devices that can be counted
but loses accuracy by having fewer estimates and vice
versa.

2. Reduction in frequencies transmitted: When the
number of devices is large, the geometric hashing ap-
proach requires substantially fewer frequencies to be
transmitted when compared to the uniform hashing ap-
proach. For example, let C = 100, number of devices
be 200 and m is set to 10. The number of frequencies
per estimate can be approximated as E(R) = log2

200
1.2897

= 7.277. Total number of frequencies needed for the
estimation is thus 7.277*10 = 72.77, much lower than
200.



Phone 1 Phone 2 Phone 3

Phone 1’s initial value of Vf

hi R(hi) hi R(hi) hi R(hi)

Phone 2’s initial value of Vf Phone 2’s initial value of Vf

1 0000000001 1
2 0000000001 1
3 0000000001 1

1 0000000000 0
2 0000000001 1
3 0000000001 1

1 0000001000 0
2 0000000001 1
3 0000000100 03 0000000001 1

4 0000000010 0
5 0000000001 1

3 0000000001 1
4 0000000001 1
5 0000000000 0

3 0000000100 0
4 0000000010 0
5 0000000001 15 0000000001 1

6 0000000001 1
7 0000000010 0

5 0000000000 0
6 0000000000 0
7 0000000001 1

5 0000000001 1
6 0000000001 1
7 0000000010 0

8 0000000100 0
9 0000000001 1

8 0000000001 1
9 0000000001 1

8 0000000001 1
9 0000000100 0

10 0000000001 1 10 0000000001 1 10 0000000001 1

Phone 1 Phone 2 Phone 3

Phone 1’s  value of Vf

hi R(hi) hi R(hi) hi R(hi)

Phone 2’s value of Vf Phone 2’s value of Vf

1 0000000001 1
2 0000000001 1
3 0000000001 1

1 0000001001 1
2 0000000001 1
3 0000000101 1

1 0000001000 0
2 0000000001 1
3 0000000101 13 0000000001 1

4 0000000011 2
5 0000000001 1

3 0000000101 1
4 0000000011 2
5 0000000001 1

3 0000000101 1
4 0000000011 2
5 0000000001 15 0000000001 1

6 0000000001 1
7 0000000011 2

5 0000000001 1
6 0000000001 1
7 0000000011 2

5 0000000001 1
6 0000000001 1
7 0000000011 27 0000000011 2

8 0000000101 1
9 0000000001 1

00000000
8 0000000101 1
9 0000000001 1

8 0000000001 1
9 0000000101 1

10 0000000001 1 10 0000000001 1 10 0000000001 1

Final value of Vf on all phones
hi R(hi)

1 0000001001 11 0000001001 1
2 0000000001 1
3 0000000101 1
4 0000000011 2
5 0000000001 1
6 0000000001 16 0000000001 1
7 0000000011 2
8 0000000101 1
9 0000000001 1
10 0000000001 1

a. Initial b. After round 1 c. After round 2
Figure 2. Illustration of geometric hashing approach (C = 100, m = 10)

3.3.1 Comparison
Conceptually, our solution is similar to how counting

can done in RFIDs [29] with some important differences.
Counting in RFID system is client-server based, requires a
powerful RFID reader and extends only for a single-hop.
Our approach uses a peer-to-peer approach and extends over
multiple hops. Another difference is that we use simple
tone/frequency to represent a single bit of information and is
able to transmit multiple bits/frequencies in parallel. RFID
system is TDM-based and has to avoid collision. The ap-
proach described in [10] is designed for database applica-
tions and is optimized to provide an estimate by reading a
large data set in a single pass.

3.4 Design space exploration through simula-
tion

We first evaluate the two algorithms through simulation to
better understand their performance and explore the design
space. We simulate the exchange of tones governed by the
two algorithms as described previously.

It should be noted that the simulation results presented are
optimistic. In reality, (1) not all tones generated will be re-
ceived, (2) there is a limit to the number of tones that a phone
can transmit simultaneously due to speakerphone limitations.
In the next section, we address these practical issues.

The metric chosen for evaluating the algorithms is Error
Percentage: Error percentage, ε is given by:

ε =
|Estimatedcount−Actualcount| ∗100.0

Actualcount
(2)

In the simulation, we vary the following parameters. First,
we vary the number of nodes/devices to be counted to un-
derstand the scalability of the algorithms from 10 to 2000.
Second, we vary the total number of bits/frequencies used
(|C |) from 13 to 1664. |C | frequencies are used by both ap-
proaches. For the geometric hashing approach, we fix the
number of bits in a segment to be 13. Hence, as |C | changes,
we also change the number of segments or estimates used.
For example, when |C | = 208, number of segments is 208/13
= 16. Each data point was computed by running the simula-
tion 15 times. Each run was executed with a different seed.

Table 1. Error percentage of uniform and geometric
hashing with different number of bits and estimates

The results are summarized in Table 1.

As expected, the uniform hashing approach performs bet-
ter when the ratio of number of nodes to number of bits used
is small. For example, when the number of devices is 10,
the error is less than 3% for |C | ≥ 104. However, in order
to achieve high accuracy, the number of bits has to scale lin-
early with number of devices.

On the other hand, we can make the following obser-
vations for the geometric approach. First, this approach is
much more scalable. A relatively small number of bits (e.g.
104) can be used to estimate count of up to 1000 devices with
80% accuracy. Further, increasing the number of estimates
drastically does not significantly increase the accuracy. For
example, when the number of estimates increases from 8 to
128, a 16 times increase in overhead, estimation accuracy in-
creases merely from 84% to 87%. Based on this observation,
we keep the number of estimates/segments in our implemen-
tation to 10.
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Figure 3. Components of the System

4 Implementation and Baseline Measure-
ments

4.1 Application architecture
The system consists of mobile devices which are

equipped with microphone/speaker sensors. Each mobile de-
vice runs the tone counting application. The application is
organized into the following components (shown in Figure
3):

1. FFT Analyzer: This module samples the raw audio
signals from the microphone, and runs the FFT algo-
rithm to determine the exact frequency spectrum from
0KHz to 22KHz. We use the open source Android ap-
plication called Audalyzer1 for this purpose.

2. Peak Finder: This module is responsible for detecting
peaks in the frequency spectrum. Such peaks indicate
frequencies transmitted by other nodes. The mechanism
of peak detection is described in Section 4.2.

3. Counter: The counter module runs the algorithms dis-
cussed in Section 3. This module also chooses the fre-
quencies to be transmitted.

4. Tone Generator: This module produces the frequency
tones indicated by the counter module, and then trans-
mits them through the speaker. For simultaneous trans-
mission of multiple frequencies, we use SoundPool, a
system API provided in Android 1.5.

4.2 Peak Finding Method
The detection of peak frequencies is a crucial first step in

crowd counting. Specifically, we apply the following steps
to the raw audio samples obtained from the microphone at a
rate of 44KHz:

1. Fast Fourier Transform is used to obtain the frequency
spectrum (discretized into 4096 frequency divisions) of
the raw sample. The number of bins used determines
the granularity of the frequencies detected.

2. An amplitude threshold is applied to all frequency sam-
ples (obtained from the FFT) above 15KHz. The am-

1Retrieved August 26, 2012, http://code.google.com/p/

moonblink/wiki/Audalyzer
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Figure 4. Peak finding methodology

plitude threshold is determined based on the maximum
ambient noise amplitude levels of higher frequencies.
This value is set to 44dB (which is greater than the am-
plitude levels observed in Table 2) so that the frequency
peaks could be detected with greater confidence.

3. The samples obtained from the previous step are then
clustered such that successive frequency indices de-
tected (not frequency values) are in the same group.
For instance, as shown in Figure 4, if there are five
frequency peaks detected, namely: 3000, 3001, 3002,
3803 and 3804, two groups are formed. One group con-
tains {3000,3001,3002} and the other {3803,3804}.
The frequency corresponding to the maximum ampli-
tude value of each group determines the peak frequency
for that group. In this example, they are 3001 and 3803.
Note that not all peak frequencies detected will be used
as input to the counting process. Only frequencies that
are deemed valid (depends on the algorithm) are used.

An important advantage of the above peak finding method is
that multiple peaks can be identified at the same time. These
peaks can be generated by a single mobile phone or multiple
mobile phones.

4.3 Measurements
We conducted measurements in three representative en-

vironments to examine the impact of the various system pa-
rameters on the detection range, and use the result to guide
our selection of the final parameters in the actual deploy-
ment. All measurements were done using the Google Nexus
S phones.

We selected three environments for our measurements, 2
indoors and 1 outdoor. The first is a quiet indoor environ-
ment in an empty air-conditioned classroom. The second in-
door environment is a cafeteria. We conducted our measure-
ments between 11AM to 12PM, during the peak lunch hour.
The outdoor environment chosen is a bus-stop. Cars, campus
buses and public buses pass by the bus stop. We conducted
our measurements between 3PM to 6PM when the vehicle
traffic volume is above average. Finally, as the measurement
for each set of experiments took substantial amount of time
to complete, only data from the same figure are taken on the
same day. As a result, even for the same configuration, the



Table 2. Maximum noise levels in various environments

measurement result may differ slightly from figure to figure
since the data may have been collected on different days.

4.3.1 Measurement of Ambient noise
First, we would like to have an indication of the ambient

noise present in the various environments selected. Using
the FFT Analyzer tool and Sound Meter app2, we measured
the maximum amplitude of ambient noise present in the en-
vironment since the noise level has significant impact on the
values of the system parameters: F ,S ,C and G we should
use. For this measurement, we have also included a fourth
environment – inside a campus bus.

Plots showing the maximum amplitude of the various fre-
quencies detected are shown in Figure 5. As expected, the
noise level detected in a quiet room is the lowest. The cafe-
teria environment turns out to be a particularly harsh envi-
ronment in terms of ambient noise because of the high fre-
quency noise generated by the clanking of cutlery/utensils
and the background noise of human conversations. For the
other 2 environments, the interior of the bus is relatively
quiet compared to the cafeteria or bus stop for higher fre-
quencies. However, the engine noise creates much more low
frequency noise. In all measurements, noise at lower fre-
quencies tends to be higher than those at higher frequencies.

4.3.2 Frequency Vs Detection Range
It is well known that transmission range is a function of

the frequency used. In this section, we measure the rela-
tionship between range and audio frequency with the phones
used. In the measurement, we transmit one frequency at
a time with tone width W = 400ms at maximum phone
speaker amplitude. The tests are conducted in the three en-
vironments mentioned for frequencies between 12KHz to
22KHz.

The results are shown in Figure 6. The general trend
is that detection range decreases with increasing frequency.
Further, ambient noise plays an important role in determin-
ing the range as well. While the detection range for the in-
door quiet environment reaches 8m or more for frequencies
up to 20.5KHz, the range drops to 5m in the canteen and

2Retrieved August 26, 2012, https://market.android.com/

details?id=kr.sira.sound&hl=en

Figure 6. Plot of frequency vs. detection range

bus stop environments. Overall, the indoor-quiet environ-
ment has a detection range from 8 to 12 meters, the bus stop
environment has a range of 5 to 10m and the cafeteria envi-
ronment 5 to 8m. It can also be observed that detection range
drops rapidly after 20.5KHz, most likely due to properties of
speaker and microphones which do not support higher fre-
quencies.These measurements highlighted and motivated our
push towards designing a multi-hop system, in order to scale
audio counting to large geographical areas, overcoming its
limited range.

Based on the measurements in the last 2 sections, it is
clear that we should restrict the frequency used to the range
15KHz to 20KHz. As summarized in Table 2, the maximum
ambient noise in all the environments measured for frequen-
cies between 15KHz and 22KHz ranges from 22dB (quiet
room) to 35dB (canteen). On the other hand, for frequen-
cies between 0 and 14.9KHz, the noise ranges from 42dB to
63dB. 15-22KHz comes with an additional benefit at the sys-
tem level given that this is a range that is inaudible to most
people, making our system less intrusive.
4.3.3 Tone Amplitude Vs Detection Range

In this experiment, we use the same tone width of 400ms
and fix the transmitted frequency to a constant value. We var-
ied the tone amplitude, A (speaker volume) and measured
the detection range of the tone. As the tone amplitude de-
creases, the detection range decrease. We can make use of
tone amplitude to restrict the neighbourhood of a particular
node (see Section 7 for a further discussion). We repeat this
experiment with a set of frequencies to see if the relation dif-
fers with change in frequency. The trend remains the same
with a different set of frequencies. The plot for 18KHz fre-
quency is as shown in Figure 7.
4.3.4 Tone Width Vs Detection Range

Tone width is an important parameter to consider, since
tone detection depends on the sampling rate of the phone’s
microphone. With a smaller tone width, the likelihood of
detecting the frequency decreases. We conducted the experi-
ment with maximum amplitude and a fixed transmission fre-
quency. We varied the tone width and measure the detection
range. The measurement for 18KHz frequency is shown in
Figure 8. As expected, increases in tone width translate to
increases in detection range. However, using a larger tone
width also stretches the time needed for counting since less



a. Indoor-Lab Environment b. Indoor - Canteen c. Outdoor - Bus Stop d. Inside Campus Bus
Figure 5. Ambient noise in various environments

Figure 7. Plot of amplitude vs detection range (18KHz)

Figure 8. Plot of tone width vs detection range

frequencies can be transmitted per unit time. The measure-
ments show that detection range can be increased up to 15m
in a quiet room and 9m for the other 2 environments if a tone
width of 1s is used.

4.3.5 Multi-Frequency Transmission
In this experiment, we measure the performance when

multiple frequencies are transmitted by 2 phones simultane-
ously. We measure the number of frequencies detected by
2 receivers which are placed 2 meters away from the trans-
mitting phones and compute the percentage of tones that are
correctly detected (averaged over 2 receivers).

Figure 9 shows the percentage of correctly detected tones
as the number of frequency transmitted simultaneously in-
creases, for both indoor and outdoor environments. The
percentage falls consistently with increase in number of fre-
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Figure 9. Percentage of correct tones received vs. number
of multiple tones

quency. This implies that count accuracy worsens with more
simultaneous multiple frequencies transmission.

With tone reception rate as low as 60% in a noisy environ-
ment, it would seem that the accuracy of the counting algo-
rithms would be limited. However, such a low reception rate
is not as bad as it seems because of two reasons. First, there
are multiple receivers. As long as one of the receivers hears
the tone, the frequency is recorded. Second, our algorithm
ensures that a phone transmits the same frequency multiple
times.
4.4 Implementation issues

A number of practical issues affect the performance of
our crowd counting solution. These issues and how they are
addressed are discussed below.
4.4.1 Limitations on Speaker and Microphone Qual-

ity
The biggest challenge in the implementation is how to

deal with limitations on the speaker and microphone on the
smartphones. These limitations come in different forms.

First, speakers on some mobile phones (e.g. HTC De-
sire) introduce noise in the transmitted frequency. This noise
could contribute to false peaks in the peak finder compo-
nent hence affecting the accuracy of the algorithm. Certain
mobile phones (e.g. Nexus One) are unable to sample fre-
quencies above 10KHz. Such phones cannot be used for
our crowd counting app. Finally, note that our transmission
scheme attempts to transmit one or more simple tones at the



maximum amplitude. When too many simple tones are trans-
mitted simultaneously, in particular, when the frequencies of
these tones are close together, there may be some saturation
issue in DAC, resulting in substantial noise in both transmis-
sion and reception.

For transmission, in order to reduce the noise level, we
limit the number of simultaneous transmissions since when
there is simultaneous transmission of multiple tones, there is
a reduction in transmission range as well as increase in the
noise level. However, limiting the number of simultaneous
tone transmissions has a drawback; we now have to transmit
the same number of tones over more rounds, which leads
to the trade-off between tone width and convergence time.
When tone width increases, the number of frequencies that
can be transmitted per unit time decreases. Hence, we are
also trading off convergence time for range and lower noise
level. It is important to note that this only limits the number
of tones transmitted per node per unit time. The number of
tones received per unit time can be much larger if there are
many neighbouring nodes transmitting.

For reception, we observe that when a tone is transmit-
ted, the local microphone can pick up false peaks that are
not received by any of the surrounding receivers. Such false
peaks that are only detected by the sender are likely to be
caused by transmission from the local speaker. The sender
is unable to differentiate these false peaks with actual fre-
quencies transmitted by neighbouring devices. Our measure-
ments have shown that the frequencies of these false peaks
detected by a sender are usually close to the transmitted fre-
quency. Hence, we add the constraint that if a device is send-
ing at a frequency f Hz, it will not accept any tone that is in
the transmission frequency guard band. For example, if this
guard band is 100 Hz, any frequency in the range { f -100 Hz,
f +100 Hz} will not be accepted by the sender.

Note that while it is true that a receiver will reject fre-
quencies detected in the guard band even if they are actual
frequencies transmitted by the neighboring nodes, it does
not mean that these ”rejected” frequencies will never be re-
ceived. This is because the guard bands change over time
with different frequencies transmitted. Hence, the frequen-
cies that are ”rejected” in one transmission cycle may be ac-
cepted in the next cycle.

4.4.2 Priority of Frequency Transmission
Due to limitation on the number of simultaneous frequen-

cies transmitted, the order in which the frequencies are trans-
mitted becomes important. For example, if the frequencies
are transmitted from the lowest to the highest, lower frequen-
cies will tend to be transmitted much more frequently inde-
pendent of how ”useful” they are.

The ideas behind our transmission scheme are as follow.
First, locally generated frequencies are always transmitted
first. Second, frequencies that have not been transmitted
should be transmitted earlier. Third, all frequencies should
be transmitted similar number of times. Finally, in order to
suppress false peaks, frequencies received from neighbours
are only transmitted if they have been detected at least 3
times. Once a frequency is eligible for transmission, it will
be transmitted up to 5 times. Among eligible frequencies,

frequencies that have been transmitted less have higher pri-
orities.
4.4.3 Energy Savings

While the power consumption of the speaker and micro-
phone are low, the power consumption of FFT is substan-
tially higher. As it is unnecessary for FFT to be executed
continuously, we can implement power savings mechanisms
in two ways.

First, the interval between FFT executions can be ex-
tended. Therefore, we can collect and accumulate audio
samples for a longer period before running FFT to extract
the frequencies.

Next, when counting is not in progress, there is no need to
execute FFT. A much more power-efficient algorithm based
the Goertzel algorithm [12] can be used. While FFT detects
and outputs frequencies across the bandwidth of the incom-
ing signal, the Goertzel algorithm can scan for specific fre-
quencies. In our case, it will be looking for the presence of a
small number of control frequencies. When the appropriate
control frequencies are detected and counting is in progress,
FFT will then be executed.

Finally, there is also no need to execute tone detection
continuously but only periodically. Assuming the existence
of an initiator node that broadcasts the control tone for a du-
ration longer than the tone detection interval, the tone de-
tection algorithm detects the control tone when counting is
initiated and then starts the tone counting algorithm on de-
mand, resulting in substantial savings. Section 5.3 presents
our power measurements vs. alternative approaches.
4.5 Parameter Summary

Parameters Value
F [15KHz - 20KHz]
G 50Hz
S {15KHz, 15.05KHz}
C 98 Frequencies from F
W 400ms
A 100%

Tones per transmission 2
Transmission guard band 150Hz
Count stabilization time 5s to 8s

Number of Estimates 10
Table 3. Parameters used for evaluation

Table 3 lists the final parameter values chosen based on
the measurement done. F is chosen based on the ambient
noise (Figure 5) and frequency vs detection range measure-
ments (Figure 6). The value of W is chosen based on mea-
surements of tone width vs detection range (Figure 8).

The maximum number of simultaneous simple tone trans-
mission is set to 2 because larger values introduce significant
noise due to limitations of device speaker. During transmis-
sion, a node will not accept frequencies within +/- 150 Hz
of the frequencies currently under transmission. Our mea-
surements show that about 90% of the false peaks caused by
speaker feedback fall into this range. We adopt multi-level
stabilization based on the count value. This is because as
count increases, it indicates more nodes might be potentially



available for discovery. For our scenario of 25 nodes, if the
count is less than 8, then we use 5s as count stabilization
time. If the count exceeds this value, we increase the sta-
bilization to 6s. If the count exceeds 16 nodes, we accept
the count if it does not change for 8s. Using a tone width of
400ms and two frequencies per transmission, each node can
transmit up to 20 different frequencies in this period.

5 Evaluation
We evaluated the counting algorithms in three environ-

ments, namely: indoor-quiet (inside a air-conditioned room),
outdoor-busstop and outdoor-moving-bus (inside a campus
shuttle bus as described in Section 4.3).

In the indoor-quiet environment, the mobile phones were
placed on desks and chairs as shown in Figure 10(a). At the
bus-stop, volunteers were provided with mobile phones run-
ning our application and were asked to move around within
the vicinity of the bus stop. This deployment is shown in
Figure 10(b). Volunteers were asked to board a campus shut-
tle bus and the counting evaluation was conducted inside the
bus. This is shown in Figure 10(c). As there are more phones
than volunteers, some volunteers carried multiple devices.

We used 20 Google Nexus S, 5 Samsung Galaxy Nexus,
1 HTC Desire, 1 HTC Desire HD, 1 Samsung Galaxy S for
our experiments. For the counting experiments, Nexus S and
Samsung Galaxy Nexus phones were used. The total number
of these mobile devices is 25. We used Samsung Galaxy S
phone was used as initiator of the counting process. The set
of phones selected for the measurement is driven by avail-
ability and not by choice.

In the evaluation, we measure the error percentage, con-
vergence time and power consumption. Each data point is
computed by taking an average of at least 3 evaluation runs.
For all experiments, unless stated otherwise, the values in
Table 3 are used.

5.1 Accuracy
For experiments in all 3 scenarios, we vary the number of

nodes from 10 to 25. Figures 11, 12 and 13 show the results
for the indoor-quiet, bus-stop and moving bus environments
respectively.

As expected, the uniform hashing approach tends to per-
forms better when the number of devices is small (e.g. 10).
Over all 9 configurations (3 scenarios and 3 different counts),
the errors vary from 10% to 56%. One observation from the
result is that the uniform hashing approach has an inconsis-
tent error profile with respect to the number of nodes. When
the number of nodes increases, the error can increase or de-
crease with different environments. We believe that this is
due to the fact that this approach relies directly on the ac-
curacy of the peak finder component which is susceptible to
errors introduced by the ambient noise. In the case of the
quiet environment, even a small amount of ambient noise
can introduce substantial error to the counting.

Overall, the geometric hashing approach performs better.
Over all 9 configurations, errors vary from 3% to 35%. More
importantly, the accuracy is fairly consistent over different
ambient environments and tends to be better when the num-
ber of devices increases. We believe this is due to two fac-
tors. First, the use of geometric hashing makes the compu-

Figure 11. Evaluation results in indoor environment

Figure 12. Evaluation results in outdoor bus-stop envi-
ronment

tation less sensitive to errors introduced by the peak finding
module and thus ambient noise. Second, the use of averaging
which tends to reduce random errors.

As an illustration on how the individual estimates vary
on the phone, Figures 14 and 15 show the cumulative dis-
tribution functions of the cases when the number of devices
is 25 for the indoor-quiet and moving bus scenarios respec-
tively. With 3 runs and 25 phones, there are a total of 75 data
points. We can clearly see that while the geometric hash-
ing approach produces estimates that are closely clustered
around the actual value of 25, the uniform hashing approach
tends to overestimate in the indoor-quiet scenario and under-
estimate in the moving bus scenario.

No. of Nodes 2 4 6 8 10 12 15
Latency (s) 0.43 6.1 7.4 8.0 7.8 8.1 7.5

Table 4. Counting latency (single hop)

5.2 Latency
Due to the much better scalability of the geometric hash-

ing approach, we will only present latency measurement re-
sults for this approach. We record the moment that the count-
ing process has stabilized by taking note of the time when the
count has not changed for between 5s to 8s depending on the



a. Indoor-Quiet b. Outdoor - Bus-stop c. Outdoor - Moving Bus
Figure 10. Evaluation in various scenarios

Figure 13. Evaluation results in bus environment

Figure 14. CDF of estimated count for indoor scenario
(N=25)

device count. We then compute the latency based on the in-
stance at which the count is first reached. For example, if
the count first reaches 10 at t=20s and stays at 10 till t=26s,
latency is recorded as 20s.

We divide the latency measurements into two sets. In the
first set, all nodes are within audio transmission range of one
another. We increase the number of nodes from 2 to 15. The
results are shown in Table 4. With only 2 nodes, there is little
information that needs to be exchanged and the count con-

No. of Nodes 2x2 2x3 2x4 2x5 2x6
No. of Hops 1 2 3 4 5
Latency (s) 6.1 11.0 17.0 19.7 20.2

Table 5. Counting latency (multiple hops)

Figure 15. CDF of estimated count for bus scenario
(N=25)

Figure 16. Evaluation setup for multi-hop latency mea-
surements

verges after the first audio exchange at 400ms. With more
nodes, latency increases rapidly. However, the latency in-
creases very slowly beyond 6 nodes and stabilizes at around
7s to 8s. This is because transmission and reception are per-
formed by each node in parallel. The time for one node to
transmit all the frequencies locally generated is independent
of the number of nodes in total. Additional nodes do not add
to the latency since all nodes can hear one another.

In the second set, we arrange nodes in a linear topology,
with 2 phones per group as shown in Figure 16 . Each group
forms a single cluster and can only communicate with at
most two other groups in the linear topology. We increase
the number of groups from 2 to 6, forming a chain topology
of 1-hop to 5-hops. Table 5 shows the results. We observe
that latency increases rapidly from 1-hop to 3-hops. Beyond
that, the increase is more gradual. This can be explained as
follow. While the increase in hop count increases the end-to-
end latency, the number of additional frequencies needed for



Figure 17. Counting process with 50% idle and 50% ac-
tive
count stabilization increases very slowly (logarithmically) as
the number of nodes increases. As a result, it may not be nec-
essary to receive information from nodes that are far away
for the count to become stable.

In summary, the results from the latency measurement
validate two key points. First, the counting algorithm scales
well with number of nodes. Second, simultaneous transmis-
sion by multiple nodes and over multiple hops work, en-
abling the system to cover a much bigger area beyond the
range of a single node.
5.3 Power Consumption

Settings mW
3G (ping every 10ms) 952
WiFi (ping every 10ms) 480
WiFi (ping every 100ms) 422
WiFi (ping every 1s) 65
WiFi (no activity) 57
Tone counting (FFT, continuously) 88
Tone counting (FFT, every 350ms) 73
Tone counting (FFT, every 600ms) 40
Tone detection (Goertzel, every 1s) 12
Tone detection (Goertzel, every 5s) 1.1

Table 6. Power consumption (network interface, proces-
sor and audio) for different activities

We measured the power consumed by various activities
on the HTC Desire phone. For the measurement, we used the
Power Tutor application3 that measures the power consumed
by the various components of the mobile device (CPU, Dis-
play, WiFi, 3G, Audio) over a period of time in Joules. The
measurement results are summarized in Table 6. The power
consumption shown in the table includes the network inter-
face, processor and audio components. Power consumed by
the display is not included.

We use the ping operation to emulate a counting program
that reports its presence to a server through the 3G/WiFi in-
terface. A node can periodically send its identifier to a count-
ing server. Such an approach requires infrastructure (net-
work access and counting server). In addition, there are pro-
tocol overheads such as association to the base station, exe-

3Retrieved August 26, 2012, https://play.google.com/store/

apps/details?id=edu.umich.PowerTutor&hl=en

cution of DHCP to acquire IP address and possibly execution
of DNS to obtain the IP address of the counting server if the
IP address is not a fixed global IP address. Nevertheless, it is
useful to measure and compare the energy consumptions.

When ping is performed at the very high rate of every
10ms, the 3G/WiFi interface is kept busy most of the time.
Our measurements show that a counting app that runs the
tone counting operations continuously consumed 88 mW as
opposed to the WiFi interface and 3G interface which con-
sume 480 mW and 952 mW respectively. This indicates that
a microphone/speaker based solution can be very energy ef-
ficient, with power savings of 82% to 91% when operating
at very high frequency.

Next, we measure counting operation running at a slower
rate or with duty cycling including. In this measurement,
we compare our approach only with WiFi. Using 802.11 in-
frastructure mode, we observe that the Android phone used
performs aggressive power saving to reduce power consump-
tion. When a ping program on the phone sends packets at in-
terval of 1s, power consumption decreases to 65 mW, which
is almost the same power consumption needed to keep the
WiFi interface up but with no activity (57mW).

For tone counting, we observe that with FFT executing
every 350ms, power consumption is 73 mW. Much higher
energy savings can be achieved by operating in a duty cy-
cle mode where a lower power tone detection operation is
performed using the Goertzel algorithm. Only when the ap-
propriate control frequency is detected will the actual tone
counting operations be initiated.

As an example, let the Goertzel algorithm executes ev-
ery 5s on the most recently collected audio samples accumu-
lated. Counting is performed every minute, and runs for 30s.
In the example shown in Figure 17, the Goertzel algorithm
executes every 5s. In the first 30s, no control frequency is
detected and the system goes into idle mode in between exe-
cution of tone detection. After 30s, the control frequency is
detected and tone counting runs for the next 30s.

With a 50% duty cycle, power consumption is 0.5*1.1
+ 0.5*73 = 37.1 mW, a reduction of 35% over WiFi idle
power. If the counting interval is every 2 minutes and lasts
for 30s, FFT executes every 600ms, and tone detection per-
forms every 5s, energy consumption is (0.25*40 + 0.75*1.1)
= 10.8mW. Savings over WiFi idle power is 81%.

The results show that the proposed tone counting ap-
proach can be very power efficient when combining with
a tone detection mechanism such that counting is only per-
formed on demand.

6 Related Work
Our solution leverages microphones and speakers for

crowd counting. Here, we classify prior related works into
those that use only the microphone to capture ambient sound
and process it to retrieve information (passive listening), and
those that not only listens, but also uses the speaker to trans-
mit beacons/sound beeps (active transmission).
6.1 Passive listening with microphones

Environment or Traffic monitoring. The NoiseTube
[22] project uses mobile phone microphones as sound sen-
sors to accumulate noise data at various locations in urban



areas, creating a map of noise pollution in cities. Ear-phone
[32] proposes noise pollution monitoring, using compressive
sensing to fill in missing audio samples. Open issues and
limitations of noise pollution monitoring using mobile de-
vices are discussed in [33]. NeriCell [26] uses audio samples
to detect horns produced by vehicles.

Social context. CenceMe [24] uses microphones to cap-
ture conversation snippets which helps infer social context
such as parties. SurroundSence [6] proposes to use various
mobile phone sensors such as microphone, accelerometer,
camera and WiFi to identify ambient fingerprints of respec-
tive sensor data, then use them to identify the mobile user
location. Neary [27] uses the intensity of perceived sound to
categorize conversation fields of people.

Activity and location tracking/inference. SoundSense
[18], JigSaw [19] and the framework proposed in [36] use
microphone sensors for activity detection. In addition to ac-
tivity detection, localization of the event source has been pro-
posed [13], while emotions like laughter, sadness in voice
can also be automatically detected [31]. Ambient noise can
be used for indoor localization [35], or, along with other sen-
sor inputs, used to modify the mobile phone profile such
as the mode of operation, say, from normal mode to silent
mode [34]. Darwin phones [23] and SpeakerSense [17] use
mobile phone collaboration to identify the speaker using the
voice data captured by the microphone. TagSense [30] uses
multi-modal sensors on mobile phones to identify the envi-
ronment so that pictures captured by the mobile phone could
be tagged. For instance, the microphone captures voice sam-
ples which could identify whether a person in the picture is
talking or laughing.

All the above proposals are passive methods which uses
the microphone just for listening, instead of the two-way
receive-transmit of our solution. Also, some of these pro-
posals use customized sensor devices [16] which can limit
deploy-ability.

6.2 Active transmission with microphones
and speakers

Social context. In PeopleTones [15], ring tones are used
as audio cues to alert an user to the proximity of his social
peers. A programming interface for Symbian OS [25] can
be used for ring tone based alerts or microphone sound sam-
pling. MoVi [7] uses a ring tone (3500 Hz) produced by
mobile phones to identify very small social gathering such
as people sitting around a table. The proximity of the mo-
bile phones is inferred by the similarity of the intensity of
perceived sound. A central server groups all phones hearing
this ring tone as belonging to the same group. The use of
ring tones is very limited (use only one frequency) and not
for data communication purposes.

Data transmission. Naratte, Inc.[1] proposes a sin-
gle hop pairwise information exchange using micro-
phone/speaker sensors. The communication range is 1 foot.
In [20, 21], similar data transmission is proposed with a
range of 2cm. However, the paper quotes a transmission ex-
periment which achieves 8 bits/second with a range of 3.4
meters and 20 bits/second at a range of 3 meters with 0.006%
loss in indoor room environment.

Ranging. BeepBeep [28] is an acoustic-based ranging
system that can operate in an ad-hoc, device-to-device con-
text and uses COTS mobile devices. It uses the speaker and
microphone as well as device-to-device communication for
information exchange.

All of the above proposals are limited to interaction be-
tween a single pair of devices. None of them attempts a
multi-hop communication between mobile devices which is
necessary for scalable crowd counting. Scaling to large num-
ber of devices and multi-hop also brings about challenges in
frequency allocation that is not addressed in any of the above
proposals.

7 Discussion
Range Limitation and Phone Placement: An important

aspect that can significantly affects tone reception range is
that phones may be placed in pockets when counting is in
progress. We have tried to estimate the impact of clothing
on detection range and found that the detection range can
decrease by as much as 50%.

We can address the range issue from the following an-
gles. First, due to the emerging popularity of smart phone
as an entertainment device, more and more users would hold
the phone in their hands rather than in their pockets. Next,
our system can also be adapted to run on wearable devices,
like watches, smart-glasses (e.g. Google glass) that will see
less obstruction. Finally, the range can be improved by using
audible tones which will also increase our usable frequency
range significantly. For example, there is a recent product
that uses audible melodies to communicate data 4. Use of
audible tones brings about additional issues like user toler-
ance and robustness to ambient noise. These are interesting
future directions for our work.

Scalability: We can look at the scalability of our count-
ing approach in different ways. The main practical limitation
to scalability is the size of C (counting frequency set). While
it is necessary to perform multiple estimations to achieve
reasonable counting accuracy, it is not practical to perform
multiple sequential estimates because it will take too long to
complete. There is also the need to have some form of syn-
chronization to synchronize the start of individual counting
cycle. If at least N estimations are needed, in terms of node

scalability, 2
|C |
N is the maximum number of nodes we can

count. Using the parameters chosen in our implementation,
this number is 2

98
10 = 891.

In terms of geographical coverage, 891 devices can form
a grid pattern of 28x28. If the grid length (tone transmission
range) is 5m, the area covered is 19,600 m2 or about the size
of 3.5 football fields. If grid length is 2m, the area is 3,136
m2, large enough to cover most subway platform.

Another parameter of interest is the time it takes for
counting to converge. The network with the largest diam-
eter possible is a linear topology where 2C/N nodes form a
line of 2C/N - 1 hops. Consider the device at one end. If X
frequencies can be transmitted using tone width of W sec,
then the maximum rate of receiving new frequencies is X

W .

4Retrieved August 26, 2012, http://www.bbc.com/news/

technology-18927928



Consider the node at one end of the topology where it can
receive frequencies from only one other node. The shortest
time for counting to converge in this network of |C |N nodes is
|C |∗W

X . Using the parameters chosen in our evaluation, this
time is 98∗0.4

2 = 19.6s.
User Mobility: The tone counting algorithm works in the

presence of mobility as the underlying algorithm is based on
information aggregation. However, if there is a large number
of nodes joining or leaving the system while counting is in
progress, substantial error can be introduced. Device count-
ing in a highly dynamic environment is not addressed in this
paper and will be left for future work.

Extending to multiple counting applications: By re-
serving some frequencies for control purposes, one could ex-
tend the system to support multiple counting instances simul-
taneous or to answer simple multiple choice queries beyond
those that require only simple binary response.

8 Conclusion
We have presented a counting technique based on audio

tones and its evaluation in three different environments. We
have also demonstrated the portability of the system by im-
plementing the application on several models of mobile de-
vices. Evaluation results show that it is sufficiently accu-
rate and energy efficient. In our future work, we plan to ex-
plore how the proposed counting app can be incorporated
into more complex user applications, in particular, those in-
volving public transportation.
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