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SUMMARY

Diet-induced obesity (DIO) predisposes individuals
to insulin resistance, and adipose tissue has a major
role in the disease. Insulin resistance can be induced
in cultured adipocytes by a variety of treatments, but
what aspects of the in vivo responses are captured
by these models remains unknown. We use global
RNA sequencing to investigate changes induced by
TNF-a, hypoxia, dexamethasone, high insulin, and
a combination of TNF-a and hypoxia, comparing
the results to the changes in white adipose tissue
from DIO mice. We found that different in vitro
models capture distinct features of DIO adipose
insulin resistance, and a combined treatment of
TNF-a and hypoxia is most able to mimic the in vivo
changes. Using genome-wide DNase I hypersensitiv-
ity followed by sequencing, we further examined the
transcriptional regulation of TNF-a-induced insulin
resistance, and we found that C/EPBb is a potential
key regulator of adipose insulin resistance.
INTRODUCTION

Obesity has become a global epidemic and predisposes individ-

uals to insulin resistance, which in turn is a risk factor for many

metabolic diseases (e.g., type 2 diabetes, hypertension, athero-

sclerosis, and cardiovascular diseases) and cancer (Reaven,

2005). The 3T3-L1 cell line (Green and Meuth, 1974) has been

widely used to study insulin resistance in adipocytes (Knutson

and Balba, 1997). Many agents are used to induce insulin resis-

tance in differentiated 3T3-L1; these include tumor necrosis fac-

tor a (TNF-a) (Ruan et al., 2002), interleukin-1 (IL-1) (Jager et al.,
C

2007), IL-6 (Rotter et al., 2003), free fatty acids (Nguyen et al.,

2005), dexamethasone (Sakoda et al., 2000), high insulin (Thom-

son et al., 1997), glucosamine (Nelson et al., 2000), growth hor-

mone (Smith et al., 1997), and hypoxia (Regazzetti et al., 2009),

among others. It is unclear what features of in vivo adipose insu-

lin resistance are captured by each of the different in vitromodels

and whether a combination of treatments would be able to

capture the in vivo changes better than a single treatment.

In order to address these issues, we have examined the

changes in transcription and transcriptional regulation induced

by TNF-a, hypoxia, dexamethasone, high insulin, and a com-

bination of TNF-a and hypoxia in differentiated 3T3-L1 adipo-

cytes. TNF-a is a proinflammatory cytokine, which is secreted

by adipocytes and macrophages in adipose tissue. Since the

discoveryof its role in obesity-linked insulin resistance (Hotamisli-

gil et al., 1993), it has been widely used to induce insulin resis-

tance in cultured cells. Amore recently discovered way to induce

insulin resistance is hypoxia treatment. Obese adipose tissue is

hypoxic, which can lead to dysregulation of adipokine production

(Hosogai et al., 2007) and insulin signaling (Regazzetti et al.,

2009). Both TNF-a and hypoxia have been linked to inflammatory

responses. Interestingly, dexamethasone, a synthetic glucocorti-

coid frequently prescribed as an anti-inflammatory agent and

immunosuppressant, can also induce insulin resistance. Exces-

sive use of dexamethasone results in Cushing’s syndrome,

characterized by central obesity, insulin resistance. and other

metabolic abnormalities (Andrews and Walker, 1999). Elevated

endogenous glucocorticoid (e.g., the hormone cortisol in humans

and corticosterone in rodents) can also lead to visceral obesity

andaggravate high-fat, diet-induced insulin resistance (Masuzaki

et al., 2001;Wang, 2005). Finally, high levels of insulin can induce

insulin resistance, and hyperinsulinemia is postulated to be both

the result and the driver of insulin resistance (Shanik et al., 2008).

To understand the relationship of these models to each other

and to the in vivo setting, we have made use of high-throughput
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Figure 1. Setting Up Four Diverse In Vitro Insulin-Resistance Models in 3T3-L1

(A) Western blot analysis of pAkt Ser473 before and after 10 min of 20 nM insulin stimulation in 3T3-L1 for the control (untreated) model and the four insulin-

resistance models. Bottom view shows the average fold change of Akt phosphorylation level before and after insulin stimulation for each condition, each

normalized to total Akt protein level (n = 3). An asterisk (*) indicates p < 0.05 when compared with the control model by t test. Error bars represent ± SEM. Dex,

dexamethasone. High Ins, high insulin.

(B) 2-deoxyglucose uptake in the basal state (open bars) and after 30 min of 20 nM insulin stimulation (solid bars) for the control (untreated) model and the four

insulin-resistancemodels. Right view presents the average fold change of 2-deoxyglucose uptake by dividing insulin-mediated over basal uptake for eachmodel

(n = 5). An asterisk (*) indicates p < 0.05 when compared with the control model by t test. Error bars represent ± SEM.

(C) Expression of five adipocytemarker genes in the different models measured by qPCR. Relative expression is calculated by normalizing with the housekeeping

gene ribosomal protein S27 (Rps27). Data are presented as mean ± SEM (n = 3). Statistical significance is indicated (*p < 0.05, **p < 0.01).

(D) Same as (C) but measured by RNA-seq. Shown is the upper- and lower-bound expression values calculated by Cuffdiff in FPKM. Statistical significance is

indicated (*p < 0.05).

(E) Pearson correlation coefficient between the gene expression fold changes (log 2) from qPCR (C) and RNA-seq (D).

See also Figure S1, S2, and Table S1.
RNA sequencing (RNA-seq) technology (Trapnell et al., 2010)

and analyzed the in vitro data in parallel with adipose tissue tran-

scriptome data from three independent diet-induced obesity

(DIO) mouse models. We find that the different in vitro models

show diverse transcriptional responses, each of which captures

a different aspect of the in vivo data. The TNF-a and hypoxia

models capture the downregulation of many glucose, lipid, and

amino acid metabolic pathways observed in DIOmouse adipose

tissue that are not detected in the high-insulin and dexametha-

sone models. Conversely, the upregulation of the inflammatory

responses in DIO adipose tissue is mainly captured by the

TNF-a model. Interestingly, the combination of hypoxia and

TNF-a treatments resembles the actual in vivo condition more

than any individual treatment.

We further explored the differences in transcriptional regula-

tion among the in vitro models using DNase I hypersensitivity fol-

lowed by massively parallel sequencing (DNase-seq), identifying
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many condition-specific regulatory sites. Analysis of DNase-seq

data from TNF-a-induced insulin resistance revealed that in

addition to NF-kB, C/EBPb is a potential regulator of genes

induced by TNF-a, and loss of PPARg binding is likely to mediate

many of the gene repression changes upon TNF-a treatment.

RESULTS

Setting Up Diverse In Vitro Insulin-Resistance Models in
the 3T3-L1 Cell Line
We induced insulin-resistance models in mature 3T3-L1 cells

using TNF-a, hypoxia, dexamethasone, and high insulin

following established protocols (see Experimental Procedures;

Figure S1). All four models exhibited compromised insulin

responses as determined by phosphorylation of Akt at serine 473

(Figure 1A) and 2-deoxyglucose uptake (Figure 1B). Neverthe-

less, the expression of five adipocyte marker genes (Figure 1C)



varied dramatically among these models. For example, the insu-

lin-sensitizing adipokine adiponectin (Adipoq) decreases in all

models except the high-insulin model, and the insulin-sensitive

glucose transporter Glut4 decreases only in the TNF-a model.

The variation in these marker genes suggests that the transcrip-

tome shifts of the four insulin-resistance models are likely to be

diverse and distinct.

Diverse Transcriptional Changes Associated with
Models of Insulin Resistance
In order to obtain a genome-wide picture of the transcriptional

outcomes, we carried out RNA-seq. These data generally agreed

well with the qPCR-based results for the five adipocyte marker

genes (Figures 1D and 1E). The diverse effects of each method

of inducing insulin resistance can be seen by analyzing glycolysis

and triglyceride synthesis and degradation, key pathways of

adipose metabolism. The enzymes that catalyze the irreversible

steps of glycolysis, including hexokinase (Hk1and Hk2), phos-

phofructokinase (Pfkl and Pfkp), and pyruvate kinase (Pkm2),

are upregulated after the hypoxia, high-insulin, and TNF-a treat-

ments, but not the dexamethasone treatment (Figure S2A).

Regarding the triglyceride synthesis and degradation pathway

(Figure S2B), diacylglycerol O-acetyltransferases (Dgat1 and

Dgat2), which catalyze the reaction in which diacylglycerol is

covalently joined to form long-chain fatty acyl-CoAs, are

repressed in the hypoxia and TNF-amodels, but not the high-in-

sulin model. Hormone-sensitive lipase (Lipe), which hydrolyzes

stored triglyceride to free fatty acid, is downregulated after

TNF-a treatment, as previously reported by Ruan et al. (2002);

it is also repressed in the hypoxia model, but not in the high-in-

sulin and dexamethasone models. Gene Ontology (GO) analysis

(Table S1) confirms the diversity of the transcriptional responses

in each condition.

Antiadipogenesis Transcriptome Shift of DIO Mouse
Adipose Tissue Captured Mainly by Treatment with
TNF-a, Hypoxia, andaCombinationof TNF-aandHypoxia
To understand how the in vitro expression changes relate to

mouse insulin-resistance models, we analyzed three indepen-

dent microarray data sets comparing the gene expression of

adipose tissue from DIO mice and normal chow diet-fed mice

(Qi et al., 2009; Fitzgibbons et al., 2011; Fujisaka et al., 2011).

Although the DIO mouse expression studies used diverse condi-

tions (Table S2), the expression changes of DIO versus control

were highly correlated.

Because the in vivo data are likely to contain contributions

from multiple cell types, we chose to focus our analysis on a

set of genes that is most relevant to adipocytes. To this

end, we identified adipogenesis-induced and adipogenesis-

repressed genes that show consistent expression changes

between preadipocytes and adipocytes from three independent

data sets (Schupp et al., 2009; Mikkelsen et al., 2010; Sun et al.,

2013) (Table S3).

The in vivo and in vitro insulin-resistance models demonstrate

a striking expression pattern that is the opposite of that induced

by adipogenesis (Figure 2A): many adipogenesis-induced genes

are downregulated in the DIO mouse models, and conversely,

many adipogenesis-repressed genes are upregulated. This anti-
C

adipogenesis transcriptome shift is strongest in TNF-a and

hypoxia 3T3-L1 models, but it can also be detected clearly in

the high-insulin and dexamethasone models (Figure 2A).

Having observed that the TNF-a and hypoxia models appear

to recapitulate the antiadipogenesis transcriptome shift as

seen in the DIO mouse, we investigated if a combination of

TNF-a and hypoxia treatments (hereafter known as cotreatment)

would be better able to capture the in vivo changes. Hierarchical

clustering analysis shows that the cotreatment model, like the

TNF-a and hypoxia model, also exhibits the antiadipogenesis

transcriptome shift (Figure 2A). Of the 640 adipogenesis-induced

genes, 352 (55%) are repressed in at least one of the three DIO

mousemodels (Figure 2B). Conversely, 298 (44%) of the 679 adi-

pogenesis-repressed genes are induced in at least one of the

three DIO mouse models. Cotreatment with TNF-a and hypoxia

recapitulates the antiadipogenesis transcriptome shift more than

either the TNF-a or the hypoxia model (Figure 2B).

We went on to explore the special features of the different

in vitro models. The 352 adipogenesis-induced DIO-repressed

genes are highly enriched in ones encoding proteins involved

in oxidation reduction (p = 6.3 3 10�17), fat cell differentiation

(p = 1.2 3 10�8), and various metabolic processes (p < 1 3

10�4). Of these genes, 88% are repressed by the TNF-a, hypox-

ia, or cotreatment model (Figure 2C): those that are repressed by

TNF-a are most enriched in fat cell differentiation processes,

whereas those repressed by hypoxia and cotreatment are

most enriched in oxidation-reduction reactions (Table 1). Of

these 352 genes, 13% are captured only by the cotreatment

model (Figure 2C). These are most enriched in the cellular

component mitochondria, suggesting that the cotreatment

model recapitulates the mitochondrial dysfunction during insulin

resistance.

The 298 adipogenesis-repressed DIO-induced genes are

enriched in cell-cycle-related categories such as M phase (p =

1.93 10�28) and DNA replication (p = 5.33 10�13) and inflamma-

tion-related processes such as cellular response to stress (p =

5.8 3 10�3) and chemotaxis (p = 0.03). Of these genes, 54%

are recapitulated in the TNF-a, hypoxia, or cotreatment models

(Figure 2D). The TNF-a model captures the upregulation of im-

mune response and chemotaxis genes, whereas the hypoxia

model captures the expression of genes related to cell-cycle

processes. Importantly, the cotreatment model captures the

main feature of both the TNF-a and the hypoxia models (Table 1).

Systemic Transcriptome Changes in Adipose Insulin
Resistance Revealed by Global Pathway Analysis
To better visualize the data and to identify groups of genes that

set the different models apart, we carried out principal compo-

nent analysis (PCA) of the adipogenesis-related genes across

the eight different models. PCA is a standard technique for

reducing the dimensionality of data sets involving a large number

of measurements while retaining as much variability as possible.

The first principal component (PC1) explains 35%of the variance

of the expression changes among the models. Projecting each

data set along this axis reveals that the mouse models are well

separated from the in vitro models (Figure 3A). Of the in vitro

models, cotreatment is the closest to the mouse models. Genes

making the most contribution to define PC1 are enriched in M
ell Reports 5, 259–270, October 17, 2013 ª2013 The Authors 261



Figure 2. Antiadipogenesis Transcriptome Shift of DIOMouse Adipocytes Captured Mainly by the TNF-a, Hypoxia, and Cotreatment Models

(A) Heatmaps show the 1,319 genes that are concordantly differentially expressed between preadipocytes and differentiated adipocytes in three publications:

Adipogenesis1 (Mikkelsen et al., 2010), Adipogenesis2 (Schupp et al., 2009), and Adipogenesis3 (Sun et al., 2013). The 1,319 genes consist of 640 that are

upregulated (red) and 679 that are downregulated (blue) by greater than 2-fold. Left view shows hierarchical clustering of the expression fold changes during

adipogenesis among the three adipogenesis data sets. Right view presents hierarchical clustering of expression changes of the same genes in three independent

mousemodels of DIO (WAT1, WAT2, andWAT3) and five 3T3-L1 insulin-resistance models (TNF-a, hypoxia, cotreatment, high insulin, and dexamethasone). The

expression fold changes were calculated as follows: for the mouse models, adipose tissue from DIO versus normal chow diet-fed mice; for the 3T3-L1 models,

treated 3T3-L1 versus untreated 3T3-L1. For both clustering analyses, expression ratios were converted to Z scores. Rows (genes) were preranked according to

the fold change of the Adipogenesis3 data set, whereas columns were clustered using the Pearson correlation similarity metric. The height of each arm of the

dendrogram represents the distance between the different data sets.

(B) The percentage of the concordantly differentially expressed genes from (A) that are altered in each data set is shown. Red bars represent the percentage of

upregulated genes, and blue bars represent the percentage of downregulated genes. Top panel shows the expression changes of the 640 adipogenesis-induced

genes, among which 352 are downregulated in at least one of the mouse data sets; bottom panel shows the 679 adipogenesis-repressed genes, among which

298 genes are upregulated in at least one of the mouse data sets. Up- or downregulation was defined as having a log2 fold change of >0.58 or <�0.58 when

compared to the control data set. p values (indicating whether the percentage is significantly larger than expected) were calculated using one-sample proportion

test (*p < 1 3 10�5, **p < 1 3 10�10).

(C) Left view contains Venn diagrams showing the overlap of genes that are downregulated in the TNF-a, hypoxia, or cotreatment model among the 352 adi-

pogenesis-induced DIO-repressed genes. The number of genes that fall into each category is indicated, and the letters next to the numbers refer to the particular

GO categories in Table 1. Right view shows the percent breakdown of the 352 adipogenesis-induced DIO-repressed genes according to their gene expression

changes in the different combinations of models. Highlighted in blue are the seven genes that are repressed in all the five in vitro models.

(D) Same as (C), except that the analysis was done on the 298 adipogenesis-repressed DIO-induced genes, showing the overlap of genes that are upregulated in

the TNF-a, hypoxia, or cotreatment model. Highlighted in red are the two genes that are induced in all the five in vitro models.

See also Figure S5 and Tables S2 and S3.
phase, chemokine activity, fat cell differentiation, and various

lipid metabolic processes (Table 2). The second principal

component (PC2) captures 18.5% of the data set variance,

with the TNF-a, dexamethasone, and high-insulin models being

closest to the mouse models; however, genes that contribute

most to define PC2 are not enriched in any particular categories.

We repeated the PCA at a genome-wide level by using all

13,043 genes with FPKM >0.1. PC1 from the genome-wide

PCA explains 21% of the data set variance. It separates the

mouse models from the cell line models, and once again, the

cotreatment model is closest to the mouse models (Figure 3A).

Interestingly, although we include ten times more genes in the

genome-wide PCA, the genes that contribute most to define

the genome-wide PC1 are enriched in similar GO categories as

those that define the adipogenesis-related PC1 (Table 2). This
262 Cell Reports 5, 259–270, October 17, 2013 ª2013 The Authors
suggests that the set of 1,319 adipogenesis-related genes is

able to capture many of the genome-wide differences of the

different models.

To systematically analyze pathway changes that occurred

during adipose insulin resistance, we searched for differences

in expression of pathways defined in the Reactome and KEGG

databases using gene set enrichment analysis (GSEA) of the

genome-wide expression data (Subramanian et al., 2005). For

a similar analysis based on the set of adipogenesis-related

genes, see Table S4. Plotting the enrichment scores for each

condition in a heatmap reveals pathways that are upregulated

or downregulated in the different insulin-resistance models (Fig-

ure 3B). Pathways that are consistently downregulated in vivo

include various glucose, lipid, and amino acid metabolic path-

ways as well as several cytochrome detoxification-related



Table 1. GO Analysis of Genes that Undergo Antiadipogenesis Transcriptome Shift in the Different In Vitro Models

Gene Repression Is Captured by Total (%) Enriched GO

Of the 352 Adipogenesis-Induced DIO-Repressed Genes

TNF-a (a+ab+ac+abc) 61 mitochondrion (3.6 3 10�15)

fat cell differentiation (8.4 3 10�6)

fatty acid metabolic process (3.1 3 10�5)

Hypoxia (b+ab+bc+abc) 38 mitochondrion (1.7 3 10�12)

oxidation reduction(2.0 3 10�4)

Cotreatment (c+ac+bc+abc) 74 mitochondrion (4.3 3 10�30)

oxidation reduction(5.7 3 10�11)

TNF-a+cotreatment (ac) 28 mitochondrion (4.1 3 10�8)

fat cell differentiation (6.1 3 10�3)

Hypoxia+cotreatment (bc) 6 mitochondrion (4.3 3 10�4)

TNF-a+hypoxia+cotreatment (abc) 25 mitochondrion (4.1 3 10�5)

propanoate metabolism (4.4 3 10�4)

Only cotreatment (c) 15 mitochondrion (1.8 3 10�10)

oxidation reduction(1.2 3 10�5)

None of TNF-a, hypoxia, or cotreatment (d) 13 mitochondrion (9.9 3 10�6)

oxidation reduction(7.1 3 10�3)

Of the 298 adipogenesis-repressed DIO-induced genes

TNF-a (a+ab+ac+abc) 36 immune response (6.8 3 10�3)

chemotaxis (3.2 3 10�2)

Hypoxia (b+ab+bc+abc) 19 M phase (2.7 3 10�5)

cell cycle (4.0 3 10�5)

Cotreatment (c+ac+bc+abc) 41 chemotaxis (1.4 3 10�3)

cell cycle (1.1 3 10�3)

TNF-a+cotreatment, but not hypoxia (ac) 31 chemotaxis (5.0 3 10�3)

Hypoxia+cotreatment (bc) 2 no enrichment

TNF-a+hypoxia+cotreatment (abc) 9 no enrichment

Only cotreatment (c) 8 no enrichment

None of TNF-a, hypoxia, or cotreatment 46 cell cycle (6.8 3 10�21)

M phase (3.3 3 10�20)

The different categories are indicated in Figures 2C and 2D. *p values were calculated by Fisher’s exact tests assessing the significance of overrep-

resentation. Representative top GOs for each category are shown. Multiple hypothesis testings were corrected by Benjamini-Hochberg correction.

Some combinations were not shown because there was no significant enrichment.
pathways. The in vivo downregulation of metabolic pathways is

largely captured by the TNF-a, hypoxia, and the cotreatment

models, but not the other two models (Figure 3B). It is noticeable

that whereas these models capture the direction of change (i.e.,

downregulation) of these pathways, the extent of downregula-

tion in the in vitro models is not as significant as that in the DIO

mouse models, an example of which is illustrated in the KEGG

valine, leucine, and isoleucine degradation pathway (Figure S3).

The heatmap also reveals some consistently upregulated

pathways in vivo, many of which relate to inflammatory

responses, which are mainly captured by the TNF-a and cotreat-

ment models and, to a lesser extent, by the hypoxia and high-in-

sulin models (Figure 3B), whereas dexamethasone treatment

downregulates many of these immune-related pathways. These

analyses suggest that the systematic pathway changes occur-

ring during insulin resistance vary in the different in vitro models,
C

with the TNF-a and cotreatmentmodels capturing many of these

key changes.

One of the most salient features of the TNF-a and cotreatment

models is that they appear to mimic the downregulation of key

metabolic pathways and the upregulation of immune-related

responses in vivo. Adipose tissue is a heterogeneous tissue

comprising multiple cell types. Upon high-fat feeding, there is

massive infiltration of activated macrophages into white adipose

tissue (Weisberg et al., 2003). Because our comparison was

made between multiple in vitro adipocyte models and in vivo

whole adipose tissue, it is uncertain if our in vitro models were

capturing the upregulation of the various inflammatory pro-

cesses in the adipocytes or the associated macrophage-

enriched stromal vascular fraction (SVF). In order to tease out

the contribution of the different cell types in adipose tissue, we

isolated adipocytes and SVFs from epididymal fat pads of
ell Reports 5, 259–270, October 17, 2013 ª2013 The Authors 263



Figure 3. Systemic Transcriptome Changes in Adipose Insulin Resistance Revealed by Global Pathway Analysis

(A) PCA of the eight models is illustrated. Each principal component (PC1 and PC2) represents a direction of maximal variation in the matrix of expression data.

Themodels are projected onto the first two principal components, with the cell linemodels shown as yellow dots and themousemodels shown as green dots. The

distance between dots on each line corresponds to the distance between models along this projection. The numbers in parentheses represent the fraction of the

variance in the expression fold changematrix that is explained by that particular principal component. Left view shows PCA using the 1,319 adipogenesis-related

genes. Right view presents PCA using 13,043 genes with FPKM >0.1.

(B) Heatmap shows the results fromGSEA of genome-wide expression data.We computed the p value for the significance of enrichment for either upregulation or

downregulation of each pathway in the KEGG and Reactome databases. The log-transformed p values were taken as the enrichment significance scores:

upregulated pathways are represented as red (positive enrichment significance score) and downregulated pathways as blue (negative enrichment significance

score). The intensity of the color represents the significance of upregulation/downregulation: white represents no upregulation/downregulation, and gray

indicates that the number of genes was less than 15. Left view shows rows (pathways) that were ranked according to the sum of the enrichment significance

scores of the threemousemodels. The scale bar is indicated at the right-bottom corner of the figure and is the same for all panels. Top-right illustration shows the

top 15 pathways upregulated in vivo (ranked as in the left panel). Pathways from Reactome are labeled (R), and those from KEGG are labeled (K). Bottom-right

illustration shows the top 15 pathways downregulated in vivo.

(C) Expression of selected adipocyte and inflammatory response-related genes in isolated adipocytes or SVFs from normal chow-fed mice (ND) or high-fat diet-

fed mice (HFD) measured by qPCR. Relative expression is calculated by normalizing with the housekeeping gene ribosomal protein S27 (Rps27). Data are

presented as mean ± SEM (n = 3). Statistical significance is indicated (*p < 0.05, **p < 0.01).

See also Figure S3 and Tables S2, S3, and S4.
age-matched normal chow-fed and DIO mice. Although we

found, as expected, that the downregulation of Pparg, Glut4,

and Adipoq mainly occurs in adipocytes, the upregulation of

chemokines (Ccl9), metalloproteinases (Mmp2), and inflamma-

tory cytokines (Tnf) occurs in both adipocytes and SVFs

(Figure 3C).

Identifying Key Regulators of Insulin Resistance
The diverse transcriptional patterns of the in vitro models sug-

gest that different transcriptional regulators are active under

these conditions. In order to identify these transcription factors,

we used an unbiased strategy based on DNase I hypersensitivity
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followed by high-throughput sequencing (DNase-seq) (Hessel-

berth et al., 2009; Siersbæk et al., 2011) and computational anal-

ysis of the sequences of hypersensitive regions (Eguchi et al.,

2008; Ling et al., 2010). Our DNase-seq data are in good agree-

ment with the literature (Birney et al., 2007; Mikkelsen et al.,

2010; Siersbæk et al., 2011) at well-studied loci (Figure 4A).

Because our DNase-seq data for TNF-a-induced insulin resis-

tance were of particularly high quality, we examined it in the

greatest detail. MACS analysis (Zhang et al., 2008) identifies

regions that lose or gain DNase hypersensitivity after TNF-a

treatment (examples are shown in Figure 4B). Genes near

regions with altered DNase hypersensitivity are more likely to



Table 2. GO Analysis of Genes that Define PC1

Loading GO p Value

Representative GO Associated with Genes that Contribute the Most

to Define the Adipogenesis-Related PCA

Most negative fat cell differentiation 9.0 3 10�7

acylglycerol metabolic process 2.6 3 10�6

neutral lipid metabolic process 2.6 3 10�6

Most positive M phase 2.5 3 10�5

chemokine activity 2.0 3 10�3

Representative GO Associated with Genes that Contribute the Most

to Define the Genome-wide PCA

Most negative lysosome 4.9 3 10�7

immune response 3.4 3 10�3

chemotaxis 8.13 10�3

Most positive oxidation reduction 6.0 3 10�7

glucose metabolic process 3.1 3 10�5

fat cell differentiation 1.6 3 10�4

valine, leucine, and isoleucine

degradation

2.2 3 10�4

lipid metabolic process 3.2 3 10�3
be differentially expressed (p < 2.23 10�16) (Figures 4C and S4).

The observed correlation between changes in DNase hypersen-

sitivity and gene expression suggests that hypersensitive sites

may represent loci where there is a gain or loss of regulator

binding.Motif analysis of these regions (see Experimental Proce-

dures) identified a number of potential regulators in each

condition, including, as expected, NF-kB and AP-1 for TNF-a

treatment, glucocorticoid receptor (GR) for dexamethasone

treatment, and hypoxia-inducible factor (Hif) in hypoxia (Tables

S5 and S6).

Using both previously reported chromatin immunoprecipita-

tion (ChIP) data and new experiments, we were able to confirm

several hypotheses emerging from the motif analysis. To test

our hypothesis that PPARg regulates TNF-a-repressed genes,

we examined previously reported PPARg-binding data (Mikkel-

sen et al., 2010). Indeed, PPARg-bound sites lose hypersensitiv-

ity in the TNF-a-treated cells (p = 8.44 3 10�10) (Figure 4D). By

contrast, DNase hypersensitivity did not change at E2F4-bound

regions (p = 0.49) (Figure 4D) (MacIsaac et al., 2010). Thus, it

appears that PPARg may be an important regulator of TNF-

a-repressed genes.

To test the hypothesis that changes in hypersensitivity can be

used to predict an increase in regulator binding, we carried out

a p65 ChIP-seq experiment on the TNF-a-treated cells. We

found that close to 60% of the high-confidence p65-bound sites

(p < 1 3 10�10; 260 out of 437) overlap with the TNF-a-induced

DNase-hypersensitivity regions. Examples of p65-bound genes

include Ccl2, Ccl7, Saa3, Hp, Lcn2, etc.; many of which are

well-known targets of NF-kB. The average DNase-hypersensitiv-

ity profile around p65-bound sites increases in the TNF-

a-treated cells (p = 1.3 3 10�7) compared to the control

(Figure 4D). It is noteworthy that the C/EBP motif is highly en-

riched at p65-bound sites (Figure 4E; Table S7). This observation

suggests that one or more members of the C/EBP transcription
C

factor family are not only potential regulators of TNF-a-induced

insulin resistance but use some of the same regulatory sites

as p65.

C/EBPb in TNF-a-Induced Insulin Resistance
Having shown that the C/EBP motif is enriched in regions with

increased DNase hypersensitivity near the TNF-a-induced

genes, we focused our analysis on Cebpb, which increased in

expression to a relatively high level after TNF-a treatment (Fig-

ure 5A). We confirmed the increased expression using qPCR

(data not shown) and western blots (Figure 5B). C/EBPb protein

expression is also higher in white adipose tissue harvested from

mice fed a high-fat diet compared tomice fed a normal chow diet

(Figure 5C). To assess if C/EBPb binds to the regulatory regions

of TNF-a-induced genes, we carried out C/EBPb ChIP experi-

ments on selected loci with increased DNase hypersensitivity

near TNF-a-induced genes. We observed a significant increase

in binding of C/EBPb in the TNF-a-treated cells over control at

the regulatory regions of Lcn2, Socs3, Glut1, and Il15, but not

at the control region (Alb) (Figure 5D). To assess whether knock-

ing down Cebpb would affect the gene induction of the above-

mentioned genes after TNF-a treatment, we used two different

siRNA constructs to knock down induction of this protein

(Figure 5E). Upon Cebpb knockdown, there was a significant

reduction in TNF-a-mediated induction of Lcn2, Irf2, and Il15

(Figure 5E), indicating that Cebpb indeed is required for induc-

tion of genes following TNF-a treatment.

DISCUSSION

We have presented a detailed global transcriptome analysis of

five different in vitro insulin-resistance models and compared

them with three independent DIO mouse models. Our results

show that different models capture distinct aspects of the in vivo

changes. We find specific pathways that are altered in vivo and

are captured by the individual models, andwe are able to identify

several transcriptional regulators that are likely to drive these

changes.

It is not surprising that no single in vitro model captures all the

features of DIO adipose insulin resistance, which are compli-

cated phenotypes depending on multiple factors (e.g., mouse

strain, high-fat diet formulation, and duration of high-fat feeding).

Nevertheless, the TNF-a and hypoxia models, and even more so

the cotreatment model, are able to recapitulate a wide range of

the DIO transcriptional changes associated with metabolism.

The impairment of metabolic pathways is not limited to the

relatively well-studied glucose and lipid metabolic pathways.

For example, the cytochrome P450 metabolic pathways are

downregulated in vivo and in the TNF-a, hypoxia, and cotreat-

ment models. White fat was suggested to have a prominent

detoxification function (Forner et al., 2009), and our analysis sug-

gests that this function may be impaired in DIO mouse adipose

tissue and also in these in vitro models. Moreover, we observed

downregulation of branched-chain amino acid catabolic path-

ways in vivo and in the TNF-a, hypoxia, and cotreatment

in vitro models, but not in the high-insulin or dexamethasone

models. Levels of branched-chain amino acids (valine, leucine,

and isoleucine) are elevated in obese (Newgard et al., 2009)
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Figure 4. Identifying Key Regulators of TNF-a-Induced Insulin Resistance

(A) UCSC genome browser tracks show the Pparg locus. Control track represents untreated mature 3T3-L1 cells. +TNF-a, +Hypoxia, +Dex, and +High Ins

represents 3T3-L1 cells treated with 24 hr of TNF-a, hypoxia, dexamethasone, and high insulin, respectively. An asterisk (*) indicates DNase-hypersensitive

regions identified by the current study overlap with those in day 6 differentiated 3T3-L1 (Siersbæk et al., 2011) and mouse fat pad (Birney et al., 2007), as well as

PPARg-bound sites identified from PPARgChIP-seq in 3T3-L1 (Mikkelsen et al., 2010). Arrows indicate the direction of transcription. y axis represents the height

of the mapped sequenced reads and is the same for all tracks.

(B) UCSC genome browser tracks show representative examples of genomic regions with altered DNase hypersensitivity after TNF-a treatment. Gain in DNase

hypersensitivity, Lcn2 (top left) and Serpine1 (bottom left). Loss in DNase hypersensitivity, Cfd (top right) and Scd1 (bottom right). Genomic regions with a gain or

loss of DNase hypersensitivity are underlined in red. +TNF-a represents DNase-seq after 24 hr of TNF-a treatment; �TNF-a represents DNase-seq from

unstimulated cells. Arrows indicate the direction of transcription.

(C) Genes within 10 kb of regions with altered DNase hypersensitivity are more likely to be differentially expressed. An increase in DNase hypersensitivity is

associated with an increase in expression and vice versa.

(D) Changes of DNase hypersensitivity at the PPARg- and p65-binding sites are presented. Plots show the average number of tag counts from DNase-seq

experiments in a 2 kb window around experimentally determined binding sites for PPARg (left), E2F4 (middle), and p65 (right). p values were calculated based on

the tag counts from the DNase-hypersensitivity experiments using Wilcoxon rank sum tests.

(E) The top-two DNA sequence motifs from the p65 ChIP-seq experiment as determined by THEME are shown. Cv error represents cross-validation errors.

p values were calculated as described in Experimental Procedures.

See also Figure S4 and Tables S5, S6, and S7.
and diabetes-prone (Wang et al., 2011) humans. In addition,

oxidation enzymes for branched-chain amino acids are downre-

gulated in adipose tissue of obese and insulin-resistant humans

(Pietiläinen et al., 2008). Our study highlights the downregulation

of these pathways in DIO mice and shows that the TNF-a, hyp-

oxia, and cotreatment models capture downregulation of these

pathways.

Furthermore, our studies identify features captured by the five

in vitro models uniquely or jointly. For example, the TNF-a and

the cotreatment models capture the dedifferentiation-, chemo-

taxis-, and inflammation-related features that are observed

in vivo. In particular, we found that the two TNF-a-related
266 Cell Reports 5, 259–270, October 17, 2013 ª2013 The Authors
models are the only models among the five that can mimic

the upregulation of genes related to chemotaxis. Indeed, three

chemotaxis genes upregulated by TNF-a (Ccl2, Ccl7, and

Ccl9) are among the six chemotactic factors that are consis-

tently upregulated in adipose tissue, and predominantly

adipocytes, of ob/ob and DIO mice (Jiao et al., 2009). The

chemotactic nature of DIO adipocytes is suggested to

contribute to macrophage infiltration and the ensuing chronic in-

flammatory responses (Weisberg et al., 2003). As for the inflam-

matory responses associated with insulin resistance, the TNF-a

and cotreatment models are also largely able to replicate these.

Conversely, hypoxia, high insulin, and dexamethasone are not



Figure 5. C/EBPb in TNF-a-Induced Insulin Resistance

(A) mRNA expression values in FPKM of the six C/EBP isoforms from untreated (�TNF-a, control) and treated (+TNF-a) 3T3-L1measured by RNA-seq are shown.

FC, log2 fold change of expression values (+TNF-a/�TNF-a). qval is determined by Cuffdiff.

(B) Western blot analysis of C/EBPb protein expression from untreated (�TNF-a, control) and treated (+TNF-a) 3T3-L1 is presented. Bottom panel shows

quantification of protein level normalized to total Akt loading control. Scale bars are mean ± SEM (n = 4). An asterisk (*) indicates p < 0.05 by t test.

(C) Western blot analysis of C/EBPb protein expression from white adipose tissues from ND mice and HFD mice (n = 6) is presented. Bottom panel shows

quantification of protein level normalized to actin loading control. Scale bars are mean ± SEM (n = 6). An asterisk (*) indicates p < 0.01 by t test.

(D) ChIP-PCR analysis of control (open bars) and TNF-a-treated (close bars) 3T3-L1 shows C/EBPb occupancy on selected loci. C/EBPb binding to negative

control region (Alb) is shown for comparison. Percentage (%) of input on selected loci fromChIP experiment with C/EBPb antibody or nonspecific IgG is indicated.

Error bars indicate mean ± SEM (n = 3). An asterisk (*) indicates p < 0.05 by t test.

(E) Cebpb expression was suppressed in fully differentiated 3T3-L1 cells using siRNA, and the effect of Cebpb repression on TNF-a-induced transcriptional

changes was analyzed. Gene expression was measured by qPCR using TaqMan probes specific for Cebpb Il15, Lcn2, and Irf2. The data obtained were

normalized to the amount of 18S rRNA detected in each sample. The data are presented as the mean ± SD (n = 3). Statistically significant differences

between�TNF-a and +TNF-a in the control knockdown (nontargeting siRNA) are shown. In addition, statistically significant differences between +TNF-a control

and +TNF-a siRNA#1 and +TNF-a siRNA#2 (two separate siRNAs against Cebpb) are indicated (*p < 0.05; **p < 0.01; ***p < 0.001).
good models to capture the inflammation-related aspect of

adipose insulin resistance. Given that dexamethasone is anti-in-

flammatory in nature, this is not surprising. However, it is rather

unexpected that hypoxia could not model the DIO-induced

inflammatory responses well because adipose hypoxia has

been associated with an increase in expression of many inflam-

matory genes and the activation of NF-kB and TNF-a (Ye et al.,

2007). We are confident that our hypoxic treatment was working

because various hypoxia-responsive genes (e.g., Glut1, heme

oxygenase 1 [Hmox1], pyruvate dehydrogenase kinase 1

[Pdk1], and vascular endothelial growth factor A [Vegfa]) were
C

markedly upregulated in the hypoxia-treated cells; however,

we cannot rule out that a longer duration of hypoxic treatment

(>24 hr) is required to trigger the inflammatory responses

in vitro.

Although the TNF-a and the cotreatment models capture the

various immune response-related features, the high-insulin

model and, to a lesser extent, the hypoxia model capture the up-

regulation of genes related to cell-cycle processes and mitosis.

This is in agreement with a recent study comparing gene expres-

sion of adipose tissue from insulin-resistant and insulin-sensitive

subjects with matched BMI (Elbein et al., 2011), in which many
ell Reports 5, 259–270, October 17, 2013 ª2013 The Authors 267



genes related to cell-cycle progression and cell adhesion were

differentially expressed.

In our analysis, dexamethasone appears to be the model that

is the least relevant to DIO adipose insulin resistance at the

transcriptional level. However, we cannot exclude the possibility

that dexamethasone induces proteomic changes that are similar

to those in vivo. It is also plausible that the dexamethasone

model is a better model for capturing features of insulin resis-

tance of a different origin, such as insulin resistance associated

with Cushing’s syndrome.

One important in vitro model of insulin resistance that we did

not investigate in detail is fatty acid-induced insulin resistance

(Van Epps-Fung et al., 1997). The conditions that we tested

(800 mM of palmitate for 24–48 hr) induce only a minor impair-

ment of insulin stimulation of glucose uptake and AKT phos-

phorylation, expression changes in �100 genes (Figure S5),

and enrichment in a limited number of gene sets (Table S4).

The subtle changes associated with palmitate treatment could

represent early stages in development of insulin resistance

and warrant further study. Besides analyzing the transcriptional

profiles of the diverse models of adipose insulin resistance,

we explored in detail the transcriptional regulation of TNF-

a-induced insulin resistance by combining genome-wide RNA-

seq with DNase-seq analysis. In addition to known regulators

such as PPARg and NF-kB, we found that C/EBPb is also a

potential mediator of TNF-a-induced insulin resistance.

Whole-body C/EBPb deletion protects against obesity and insu-

lin resistance upon high-fat diet treatment (Millward et al., 2007)

and reduces adiposity and hepatic steatosis in db/db mice

(Schroeder-Gloeckler et al., 2007). C/EBPb has been exten-

sively studied in the context of adipogenesis (Steger et al.,

2010; Siersbæk et al., 2011); however, its role in TNF-a-induced

insulin resistance has not been explored. We show that C/EBPb

protein expression increases upon TNF-a treatment and high-

fat diet feeding and that it binds to the regulatory regions of

several induced genes in TNF-a-treated 3T3-L1 cells. Impor-

tantly, induction of several TNF-a-responsive genes is dimin-

ished upon Cebpb knockdown. Furthermore, DNA motif

analysis suggests that AP-1-related motifs are enriched in re-

gions with increased hypersensitivity after TNF-a, dexametha-

sone, and hypoxia treatments. Activation of the transcription

factor AP-1 is downstream of the activation of JNK, giving rise

to the possibility that JNK activation is a common feature of

multiple forms of insulin resistance.

We have shown that analysis of the mouse adipocyte DNase-

seq data enables identification of known and novel regulators of

gene expression. See the Extended Discussion for more infor-

mation. In order to make this resource more broadly available,

we have launched a web-based software: AdipoSight (http://

fraenkel.mit.edu/adipo_sight/). Based on a list of user-supplied

genes, the software will identify enriched DNA sequence motifs

in the DNase-hypersensitive regions in the proximity of the genes

(see Experimental Procedures).

In conclusion, our study highlights the particular features that

the five in vitro models capture. This comprehensive and

accurate description of the transcriptome changes of the five

3T3-L1 insulin-resistance models will be a rich resource for

future studies.
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EXPERIMENTAL PROCEDURES

In Vitro Cellular Insulin-Resistance Models

Cells were washed with PBS and changed to serum-free, low-glucose (1 g/l)

DMEM with 0.5% BSA. Insulin resistance was induced with one of the

following: 2.5 nM of TNF-a (R&D Systems) for 24 hr; incubation in a 1% oxygen

chamber (Powers et al., 2010) for 24 hr; treatment with both 2.5 nM TNF-a and

1% oxygen for 24 hr; 1 mM dexamethasone (Sigma-Aldrich) for 24 hr; 100 nM

insulin (Sigma-Aldrich) in high-glucose (4.5 g/l) medium for 24 hr; or 800 mM of

palmitate (dissolved in 70% ethanol) for 48 hr in DMEM containing 1% serum

and 2% BSA.

RNA-Seq Library Preparation, Sequencing, and Analysis

RNA-seq experiments were performed on biological triplicates. A total of 10 mg

of total RNA was used for each RNA-seq library preparation according to the

manufacturer’s instructions (Illumina). Quality of RNA was verified using Bio-

analyzer (Agilent); only RNAwith a RIN of >9was used. Libraries were prepared

and sequenced (Illumina; GAII) in a pair-end, 36 bp format, except for the

cotreatment samples that were sequenced by Hi-seq in a single-end, 50 bp

format. Reads from each sample were aligned to the mouse genome (mm9

build) using TopHat (version 1.1.0). Differential expression was quantified

using Cuffdiff (Trapnell et al., 2010) (version 1.0.3). Differentially expressed

genes are those that have a log2 fold change of >0.58 or <�0.58 and a q value

of <0.05 when compared to the control condition. We also required that the

differentially expressed genes used for downstream analysis have a FPKM

greater than 0.1 in the control condition. Primers to verified RNA-seq results

are listed in Table S8.

DNase-Seq

Intact nuclei were isolated fromdifferentiated 3T3-L1 using a nuclei isolation kit

(Sigma-Aldrich; NUC201) and prepared as described by Sabo et al. (2006). At

least 30 million nuclei were used for each experiment; 50 U/ml of DNase I

(Promega RQ1 RNase-free DNase; lot number: 25308616) was used for

digesting 10 M cells at 37�C for 2 min followed by a SDS- and EDTA-based

stop buffer. Digested nuclei were incubated at 55�C overnight with Proteinase

K, extracted using phenol chloroform, and the ‘‘2-hit’’ DNA fragments were

isolated using a sucrose gradient. Isolated DNA fragments were purified,

subjected to the standard Illumina library preparation, and sequenced using

Illumina GAII. Thirty-six-base pair-sequenced reads were mapped to the

reference genome mm9 using Bowtie. Differential DNase-hypersensitive

regions were identified using MACS (Zhang et al., 2008) using a p value

threshold of 1 3 10�10: treatment-induced DNase-hypersensitivity regions

were called with the treated cells as foreground and the untreated control as

background. Conversely, treatment-repressed DNase-hypersensitivity re-

gions were called with the untreated control as foreground and the treated

cells as background. For the TNF-a-, dexamethasone-, and hypoxia-treated

samples, control DNase-seq data set 1 (control 1) was used. For high-insulin

treatment, control DNase-seq data set 2 (control 2) was used. See the

Extended Experimental Procedures for more information.

ACCESSION NUMBERS

The raw data for the RNA-seq, ChIP-seq, and DNase-seq experiments were

deposited in Gene Expression Omnibus with the accession number

GSE35724.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Discussion, Extended Experi-

mental Procedures, five figures, and eight tables and can be found with this

article online at http://dx.doi.org/10.1016/j.celrep.2013.08.039.
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