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Abstract—We investigate the maximal achievable rate for a contrast to the situation where a long-term power condtigin

given blocklength and error probability over quasi-static single-
input multiple-output (SIMO) fading channels. Under mild
conditions on the channel gains, it is shown that the channel
dispersion is zero regardless of whether the fading realizions
are available at the transmitter and/or the receiver. The result
follows from computationally and analytically tractable converse
and achievability bounds. Through numerical evaluation, ve
verify that, in some scenarios, zero dispersion indeed ernita fast
convergence to outage capacity as the blocklength increaseln
the example of a particular 1 x 2 SIMO Rician channel, the
blocklength required to achieve90% of capacity is about an order
of magnitude smaller compared to the blocklength required 6ér
an AWGN channel with the same capacity.

|I. INTRODUCTION

We study the maximal achievable ra& (n, €) for a given
blocklengthn and block error probability over aquasi-static
single-input multiple-output (SIMO) fading channel, j.&

tion (CSI) is available at both the transmitter and the nesgi
i) neither the transmitter nor the receiver havgriori CSI.

For quasi-static fading channels, the Shannon capac

which is the limit of R*(n,e) for n — oo ande — 0,

is zero for many fading distributions of practical intere
(e.g., Rayleigh, Rician, and Nakagami fading). In this casé

the e-capacity [1] (also known asutagecapacity), which is
obtained by lettingn — oo in R*(n,¢) for a fixede > 0,
is a more appropriate performance metric. Theapacity of

guasi-static SIMO fading channels does not depend on whet
CSl is available at the receiver [2, p. 2632]. In fact, sinoe t
channel stays constant during the transmission of a codkw
it can be accurately estimated at the receiver through t

transmission of known training sequences with no rate pgn
asn — oo. Furthermore, in the limit, — oo the per-codeword
power constraint renders CSIT ineffectual [3, Prop. 3],
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IHereafter, we write CSIT and CSIR to denote the availabitifyperfect
CSlI at the transmitter and at the receiver, respectively déronym CSIRT
will be used to denote the availability of both CSIR and CSIT.

S

imposed [3], [4].

Building upon classical asymptotic results of Dobrushin
and Strassen, it was recently shown by Polyanskiy, Poor, and
Verdl [5] that for various channels with positive Shannon
capacity C, the maximal achievable rate can be tightly ap-
proximated by

R*(nye) = C — \/gQ_l(e) + 0(105”) .

Here,Q~*(-) denotes the inverse of the Gaussi@tfunction
andV is the channel dispersiofi5, Def. 1]. The approxima-
tion (1) implies that to sustain the desired error probgbdi
at a finite blocklengt, one pays a penalty on the rate (com-
pared to the channel capacity) that is proportional tg/n.
Contributions: We provide achievability and converse
bounds onR*(n,e€) for quasi-static SIMO fading channels.
The asymptotic analysis of these bounds shows that undédr mil

(1)

i Slechnical conditions on the distribution of the fadin in
of each codeword, subject to a per-codeword power constrali 95

We consider two scenarios: i) perfect channel-state inderm

n
)

This result implies that for the quasi-static fading case t
% \/n rate penalty is absent. In other words, thdispersion
ee [5, Def. 2] or (25) below) of quasi-static fading chdane
iP zero. This result turns out to hold regardless of whetlgr C
IS available at the transmitter and/or the receiver.
Numerical evidence suggests that, in some scenarios, the
absence of thd/\/n term in (2) implies fast convergence
to C. asn increases. For example, forlax 2 SIMO Rician-
ading channel withC, = 1 bit/channel use and= 10~3, the
Focklength required to achiew®% of C. is between 20 and
3r20' which is about an order of magnitude smaller compared
0 _the blocklength required for an AWGN channel with the
me capacity. In general, to estima® (n,¢) accurately
or moderaten, an asymptotic characterization more precise

itnhan (2) is required.

Our converse bound otR*(n,¢) is based on the meta-
converse theorem [5, Thm. 26]. Application of standard
achievability bounds for the case of no CSI encounters
formidable technical and numerical difficulties. To circusnt
them, we apply the:5 bound [5, Thm. 25] to a stochastically
degraded channel, whose choice is motivated by geometric
considerations. The main tool used to establish (2) is a Eram
Esseen-type central-limit theorem [6, Thm. VI.1].



Notation: Upper case letters denote scalar random vaiihe maximal achievable rate for the CSIRT case is defined as
ables and lower case letters denote their realizations. e u N log M
boldface upper case letters to denote random vectors %.g., Ri(n,e) = SHP{T :3(n, M, €)csirr code} . (8
and boldface lower case letters for their realizations,, ezg
Upper case letters of two special fonts are used to denditdollows that R}, (n, €) < Ry (n,e).
deterministic m%tricei(e.gY,) and random matrices (e.q?).  Let G £ ||H||?, and define
The superscripts and™ stand for transposition and Hermitian 2
transposition, respectively. Furthermoféy (0, A) stands for Fo(&) = Pllog(l+pG) < ¢]. ©)
the distribution of a circularly-symmetric complex Gawassi For everye > 0, the e-capacityC. of the channel (3) is [1,
random vector with covariance matx The indicator func- Thm. 6]
tion is denoted byl{-}. Finally, log(-) indicates the natural . . . .
logarithm, andBetaE-}-) denotes t(he Beta distribution [7,06 = lim_ Rio(n,€) = lim_ Riy(n, €) = sup {§ : Fo(€) < e}
Ch. 25]. (10)

II. CHANNEL MODEL AND FUNDAMENTAL LIMITS II. MAIN RESULTS

We consider a quasi-static SIMO channel withreceive I Section IlI-A, we present a converse (upper) bound on

antennas. The channel input-output relation is given by ~ f%(n,€) and in Section Ill-B we present an achievability
(lower) bound onR (n,e). We show in Section IlI-C that

Y=xH +W (3) the two bounds match asymptotically up toClog(n)/n)
v Hy+Wino - o Hy + Wi, term, which allows us to establish (2).

= : : . (4) A. Converse Bound
TpH1+ Wi oo xpHy + Wy Theorem 1:Let

The vectorH = [H, --- H,]" contains the complex fading n 9
coefficients, which are random but remain constant fomall L» = n1log(1 + pG) + Z(l —|VpGZ;i —/1 + pG| )(11)
channel uses{W;,,} are independent and identically dis- =1

tributed (i.i.d.)CA/(0,1) random variablesy = [x; --- z,]7 . " VoG Z; — 1\2
contains the transmitted symbols. Sn = nlog(l +pG) + Z =7 oG (12)
We consider both the case when the transmitter and the =1

receiver do not know the realizations & (no CSI) and the with G = || H||? and{Z,}?, i.i.d. CN(0, 1)-distributed. For
case where the realizations @f are available to both the everyn and every0 < ¢ < 1, the maximal achievable rate
transmitter and the receiver (CSIRT). Next, we introduee tlon the quasi-static SIMO fading channel (3) with CSIRT is

notion of a channel code for these two settings. upper-bounded by
Definition 1: An (n, M, €)no-cs) COde consists of: 1 1
i) an encoderf: {1,..., M} — C" that maps the message Ri(n—1,€6) < — log P> o] (13)
Je{l,...,M} to a codewordt € {ci,...,cy}. The _ _ n = Mn
codewords satisfy the power constraint where-y, is the solution of[S,, < ny,] = e.
Proof: See Appendix A. [ ]
leill® <np, i=1,...,M. (5)

B. Achievability Bound

Let Z(Y): C"*" — {0,1} be a test betweeRy x_, and
. . an arbitrary distributionQy, whereZ = 0 indicates that the
J] < ¢, whereY is the channel output induced by thetest choose§)y. Let F C C™ be a set of permissible channel

transmitted codeword according to (3). . - . !
h imal achievabl for th is def d|n uts as specified by (5). We define the following measure
The maximal achievable rate for the no-CSl case Is define i performances. (F, Qy) for the composite hypothesis test

log M i .
R () & Sup{ M S M. s code} . ® betweenQy and the collection{ Py x— }zc 7:
n

Fr(F, LinfQy[Z(Y)=1 14

Definition 2: An (n, M, €)csirr code consists of: o d _QY) Orl _( _)_ ] ( )
i) an encoderf: {1,...,M} x C" s C" that maps the yvh.ere the infimum is over alleterministictestsZ(-) satisfy-

messageJ € {1,...,M} and the channelH to a "

codewordz € {c(H),...,cx(H)}. The codewords 1 Prix—[Z(Y) = 1] > 7, V& € F, and N

satisfy the power constraint i) Z(Y) = Z(Y) whenever the columns of andY span
) ) . the same subspace @f*.

lei(R)II” < mp, Vi=1,...M, VheC". (7) Note that,z,(F, Qy) in (14) coincides withx.(F, Qy) de-

We assume thaf is equiprobable od{1,...,M}. fined in [5, eq. (107)] if the additional constraint ii) is goed
i) A decoder g: C**" x C" ~ {1,...,M} satisfying and if the infimum in (14) is taken over randomized tests.

Plg(Y,H) # J] <. Hence,x.(F, Qy) < i (F, Qy).

We assume thaf is equiprobable o{1,...,M}.
i) A decoderg: C"*" — {1,..., M} satisfyingP[g(Y) #




To state our lower bound oR} (n,¢), we will need the C. Asymptotic Analysis
following definition. Following [5, Def. 2], we define the-dispersion of the

Definition 3: Let a be a nonzero vector and 1& be an  -pannel (3) viaR:, (n, ¢) (resp.R%,(n, ¢)) as
I-dimensional { < n) subspace ifC". The angled(a,B) € e '
(C’€ — R (n,e)

[0,7/2] betweena and B is defined by V" 2 fim supn

2 1
) ec (0,1)\{5} (25)

1
cosf(a,B)= max |a"'b|/|al. (15) neree @7 (e)
beB, b =1 A Ce — Ri(n,e)\° VA
With a slight abuse of notation, for a matr& € C"*! we < TP Q~1(e) e€ O )\{5}' (26)

used(a, B) to indicate the angle betweenand the subspad® pg rationale behind the definition of the channel dispersio
spanned by the columns & In particular, if the columns of i that—for ergodic channels—the probability of erroand

B are an orthonormal basis fdt, then the optimal rateR*(n, ¢) roughly satisfy

Theorem 2:Let 7 C C™ be a measurable set of chan- ) ) )
nel inputs satisfying (5). For every < ¢ < 1, every WhereC' and V are the channel capacity and dispersion,

0 <7 < ¢, and every probability distributiofpy, there exists r€Spectively, and is a zero-mean unit-variance real Gaussian
an (n, M, €)no-csi code satisfying random variable. The gquasi-static fading channel is caodit

- ally ergodic givenH, which suggests that
Rr(F,Qy) y e19edie 8 99

= Supper Qv[Zo(Y) = 1] e~ P[O(H) + V) /nZ < R*(n,¢) (28)

whereC(H) andV(H) are the capacity and the dispersion
Z(Y) = L{cos®0(z,Y) > 1 — v,(x)} (18) of the conditional channels. Assume ttiatis independent of
H. Then, givenH = h, the probabilityP[Z < (R*(n,€) —
C(h))/y/V(h)/n] is close to one in the “outage” case
Pyix—2[Z2(Y)=1]>1—€e+T. (19) C(h) < R*(n,e), and close to zero otherwise. Hence, we
expect that (28) be well-approximated by

(17)

where

with ~,,(z) € [0, 1] chosen so that

Proof: The bound (17) follows by applying thes
bound [5, Thm. 25] to a stochastically degraded version pf (3 e~P[C(H) < R*(n,¢)]. (29)

whose output is the subspace spanned by the columis of__ . L . . .
P P P 4 This observation is formalized in the following lemma.

Lemma 4:Let A be a random variable with zero mean,
it variance, and finite third moment. L&t be independent
of A with twice continuously differentiable probability detysi
Then, there existé; < oo such that

The geometric intuition behind the choice of the test (18) is
thatx in (3) belongs to the subspace spanned by the colu
of Y if the additive noiseéW is neglected. .

In Corollary 3 below, we present a further lower bounfinction (pdf) fx.

on M that is obtained from Theorem 2 by choosing lim 32 P[A < \aB] - P[B > 0] + fj;(o) < k. (30)
n n—r00 n
Qv = HCN(O’ 1) (20) From (28) and (29), and recalling (10) we may expect that

i=1

. for a quasi-static fading channé&l* (n, ) satisfies
and by requiring that the codewords belong to the set

1
Fo2{zeC: |af? =np} (21) R*(n,e) =Ce +0- 7 + smaller-order terms  (31)
" : . ~
The resulting bound allows for numerical evaluation. This intuitive reasoning turns out to be correct as the

Corollary 3: For every0 <e<1 and every) <t <e there following result demonstrates.
exists an(n, M, €)nocsi code with codewords in the séf,  Theorem 5:Assume that the channel gaih= || H||? has a

satisfying twice continuously differentiable pdf and th@t is a point of
M T 22) growth of the capacity-outage function (9), i.€%(Ce) > 0.
F(yn;n—mr,1) Then, the maximal achievable rates satisfy
where F(;n — r,r) is the cumulative distribution function (Riy(n,€), Ri(n,€)} = Cc + O(log(n)/n) . (32)
(cdf) of a Beta(n — r,r)-distributed random variable and ok Tt
n € [0,1] is chosen so that Hence, thee-dispersion is zero for both the no-CSI and the
CSIRT case:
PY\X:J:Q [Z:co (Y) = 1] 2 1—¢ + 7 (23) .
with V=V =0, €€ (Oa 1)\{1/2}- (33)
A T Proof: The proof is outlined in Appendix C. [ |
zo = [VoVe - V) 24 The assumptions on the channel gain are satisfied by the

Proof: See Appendix B. B probability distributions commonly used to model fadinggls



 Outage capacityd) The blocklength required to achie9e% of the e-capacity of
********** the quasi-static fading channel is in the rafig2, 320] for the
CSIRT case and in the rang&20, 480] for the no-CSlI case.

[y

3 o4 Achievability (CSIR)(EggeR?)e For the AWGN channel, this number. is a_pproximate‘lwo.. _
£ o4 \ Achiévability (no CSI) | Hence, for the parameters chosen in Fig. 1, the pred|c_tlon
g R*(n, ¢) over AWGN (based on zero dispersion) of fast convergence to capacity i
& validated.
§ 0.4
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APPENDIXA

Fig. 1. Bounds for the quasi-static SIMO Rician-fading ahelinwith For the channel (3) with CSIRT. the input is the pair
K-fact | t020 dB, twi i It , SNR —1.55 dB, and . .
E:icogrglequa ° 0 fecene antennas an (X, H), and the output is the paifY, H). Note that the

as Rayleigh, Rician, and Nakagami. However, the standdfgcoder induces a distributidfy | on X and is necessarily
AWGN channel, which can be seen as a quasi-static fadiFfH‘d‘:m'ZEd’ sincéd is independent of the messageDenote
channel with fading distribution equal to a step functioRY £ (n€) the maximal achievable rate under the constraint

centered at one, does not meet these assumptions and in 2% each codeword;(h) satisfies the power constraint (7)

has positive dispersion [5, Thm. 54]. with equality, namely, ¢;(h) € 7, for j =1,...,M and
Note that, as the fading distribution approaches a stéyy all h € C". Then by [5, Lem. 39],

function, the higher-order terms in the expansion (32) bexo N noo_,

more dominant, and zero dispersion does not necessarily imp Ryi(n—1,¢) < n—1 Re(n,e). (35)

fast convergence to capacity. Consider for example a sin
input single-output Rician fading with Rician factdf. For
e < 1/2, one can refine (32) and show that

Hfe next establish an upper bound d@f(n,e) using the
meta-converse theorem [5, Thm. 26]. Asxiliary channel
Qvw | xH, We take a channel that passik unchanged and
generate&’ according to the following distribution

. — logn L avVK +co n o(l) < R.(n.0)
) ' ' v f[ N(0,1, + phh') (36)
1 civVK +¢ 1 QY\H:h,X:m = CN(0,l.+p .
< Ri(ne) < Cor B0 IS ED o<5> (34) =

wherec, ¢y, & andé, are finite constants wita; < 0 and Iq particular,Y and X are conditiorlallyindependentgiveﬂi.
& < 0. As K increases and the fading distribution convergednce H and the messagé are independenty and J are
to a step function, the third term in both the upper and |0Wg?dependent_qnd/erthe auxiliagy-channel. Hence, the average
bounds in (34) becomes increasingly large in absolute valugfor probabilitye” under the auxiliany)-channel is bounded
ase¢ >1—1/M. Then, [5, Thm. 26]

D. Numerical Results

Fig. 1 shows the achievability bound (22) and the conversgr’(n,¢) < sup 1og( 1 )(37)
bound (13) for a quasi-static SIMO fading channel with two Px|u Pi-e(Pxvh, PuPx | uQv 1)

receive antennas. The channel between the transmit ante\%@reﬁl_ (-,-) is defined in [5, Eq. (100)], and the supremum

and each of the two receive antennas is Rician-distributéd Wis over all conditional distribution®x T supported onF, .

K -factor equal t20 dB. The two channels are assumed to b\% :
: t note that, by th h I t d
independent. We set= 10—3 and choose = —1.55 dB so e next note that, by the spherical symmetry & an

. f (36), the functionB, (Py| x—». HH—h, Qv|H=r) dOes not
that C. = 1 bit/channel use. For reference, we also pIottedo | g Y| H-=
lower bound o/nRjt(n, €) obtained by using thes bound [5, d”‘epend one € 7. By [5, Lem. 29], this implies

Thm. 25] and assuming CSKRFig. 1 shows also the approx- Ba(Pxy|H=h: Px | H=nQy | H=h)

imation (1) for R*(n, ¢) corresponding to an AWGN channel — B (P 0 ) (38)
with C' = 1 bit/channel use. Note that we replaced the term oY | X=wzo,H=h) XY | H=h

O(log(n)/n) in (1) with log(n)/(2n) (see [5, Eq. (296)]}. (with z, defined in (24)) for everyx | 5, Supported orF,,
everyh € C", and everya. Following similar steps as in the
proof of [5, Lem. 29] and using (38), we conclude that

2gpecifically, we tookF = F,, with F, defined in (21), andQyy =
Py Qy | g with Qy | gy defined in (36).
3The validity of the approximation [5, Eq. (296)] is numetigaverified

in [5] for a real AWGN channel. Since a complex AWGN channeh ¢ Pr—e(PxvH, PHPx | HQYIH)
treated as two real AWGN channels with gh+e25a.me SNR, the zjppation [5, = B1_(PuPy | X—wo,H PuQy | &) (39)
Eqg. (296)] withC = log(1+p) andV = 8+—p)’; is accurate for the complex

case [8, Thm. 78]. for every Px | g supported onF,.



In the following, to shorten notation, we define APPENDIXC

Po2 PuPy|x—uyr, Qo2 PuQy . (40) To establish (32), we study the converse bound (13) and
) ) ) the achievability bound (22) in the largelimit. Due to space
Using this notation, (37) becomes limitations, we shall only provide a sketch of the proof of
nR:(n,e) < —log B1_c(Po, Qo). (41) Theorem 5. We refer the reader to [11] for the missing steps.

Applying [5, Eq. (102)] to the RHS of (41) yields
Let r(zo; YH) £ log(dPy/dQo). By the Neyman-Pearson pplying [5, Eq. (102)] (41)yi

lemma (see for example [9, p. 23)]), Ri(n—1,6) < —" (7 n 10gn) (50)
T b) — _ 1 n
Br—e(Po, Qo) = Qo[r(wo; YH) > nv, (42) o " "
. . where~,, satisfies
where v, is the solution of Py[r(zo; YH) < nv,| = e
We conclude the proof by noting that, und@g, the random P[S, < ny,] =€+ 1/n. (51)

variabler(xzo; YH) has the same distribution ds, in (11), To computey,,, note that—giverG—the random variablé
A

and underP,, it has the same distribution &%, in (12). is the sum ofn ii.d. random variables with mean(G) &

APPENDIXB log(1 + pG) and variancer?(G) £ pG(pG + 2)(1 + pG) 2

Due to spherical symmetry and to the assumption that application of a Cramer-Esseen-type central-limit tieeo
x € F,, the termPWX::,J[cos2 6(x,Y) > 1—~,] onthe LHS [6, Thm. VI.1] allows us to establish that [11]
of (18), does not depend an. Hence, we can set = xg. _

\SVe )next evaluateugmefn Qv[Z.(Y) = 1] for the Gaussian P[Sn < mn] = P[Z < VAU (1a)] + O(n™*2)  (52)
distribution Qy in (20). UnderQy, the random subspacewhere Z ~ A(0,1) and U(yn) £ (yn — u(G))/o(G) are
spanned by the columns &fis r-dimensional with probability independent. Then, by Lemma 4,
one, and is uniformly distributed on the Grassmann manifold

of r-planes inC" [10, Sec. 6]. If we taked ~ Qa —  PISn < 19m] = Plu(G) < ya] +4(va)/n + O(n=?/?) (53)
CN(0,1,) to be independent off ~ Qy, then for every —Fe ()

e F,, and everyY € C™*" with full column rank o .
v w where ¢(7y,) £ f{](%)(o). Substituting (53) into (51), and

Qv[Z2(Y) = 1] = Qv,a[Za(Y) = 1] (43) applying Taylor’s theorem td"-(v,), we get
=QalZa(Y) =1]. (44) g(C) +2 1
In (43) we used tha)y[Z,(Y) = 1] does not depend om; Yo =Cet on FL(C.) +o(1/n). (54)

(44) holds becaus@ 4 is isotropic. Since F,(Ce) > 0 by assumption, we conclude that, =

To compute the RHS of (44), we will choose for simplicnyc +0(/n).
Y — L, 45 The analysis of the achievability bound follows similar
= : (45)
O(n—ryxr steps [11].
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