
MIT Open Access Articles

MDCC: multi-data center consistency

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Kraska, Tim, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
“MDCC: multi-data center consistency.” Proceedings of the 8th ACM European Conference on
Computer Systems - EuroSys’13 (2013), April 15-17, 2013, Prague, Czech Republic. ACM, New
York, NY, USA, p.113-126.

As Published: http://dx.doi.org/10.1145/2465351.2465363

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/90567

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90567
http://creativecommons.org/licenses/by-nc-sa/4.0/

MDCC: Multi-Data Center Consistency

Tim Kraska Gene Pang Michael J. Franklin Samuel Madden♠ Alan Fekete†

University of California, Berkeley ♠MIT †University of Sydney
{kraska, gpang, franklin}@cs.berkeley.edu madden@csail.mit.edu alan.fekete@sydney.edu.au

Abstract
Replicating data across multiple data centers allows using
data closer to the client, reducing latency for applications,
and increases the availability in the event of a data cen-
ter failure. MDCC (Multi-Data Center Consistency) is an
optimistic commit protocol for geo-replicated transactions,
that does not require a master or static partitioning, and is
strongly consistent at a cost similar to eventually consis-
tent protocols. MDCC takes advantage of Generalized Paxos
for transaction processing and exploits commutative updates
with value constraints in a quorum-based system. Our exper-
iments show that MDCC outperforms existing synchronous
transactional replication protocols, such as Megastore, by re-
quiring only a single message round-trip in the normal oper-
ational case independent of the master-location and by scal-
ing linearly with the number of machines as long as transac-
tion conflict rates permit.

1. Introduction
Tolerance to the outage of a single data center is now consid-
ered essential for many online services. Achieving this for a
database-backed application requires replicating data across
multiple data centers, and making efforts to keep those repli-
cas reasonably synchronized and consistent. For example,
Google’s e-mail service Gmail is reported to use Megastore
[2], synchronously replicating across five data centers to tol-
erate two data center outages: one planned, one unplanned.

Replication across geographically diverse data centers
(called geo-replication) is qualitatively different from repli-
cation within a cluster, data center or region, because inter-
data center network delays are in the hundreds of millisec-
onds and vary significantly (differing between pairs of lo-
cations, and also over time). These delays are close enough
to the limit on total latency that users will tolerate, so it be-
comes crucial to reduce the number of message round-trips

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

taken between data centers, and desirable to avoid waiting
for the slowest data center to respond.

For database-backed applications, it is a very valuable
feature when the system supports transactions: multiple op-
erations (such as individual reads and writes) grouped to-
gether, with the system ensuring at least atomicity so that all
changes made within the transaction are eventually persisted
or none. The traditional mechanism for transactions that are
distributed across databases is two-phase commit (2PC), but
this has serious drawbacks in a geo-replicated system. 2PC
depends on a reliable coordinator to determine the outcome
of a transaction, so it will block for the duration of a coordi-
nator failure, and (even worse) the blocked transaction will
be holding locks that prevent other transactions from making
progress until the recovery is completed.1

In deployed highly-available databases, asynchronous
replication is often used where all update transactions must
be sent to a single master site, and then the updates are prop-
agated asynchronously to other sites which can be used for
reading (somewhat stale) data. Other common approaches
give up some of the usual guarantees or generality of trans-
actions. Some systems achieve only eventual consistency by
allowing updates to be run first at any site (preferably local
to the client) and then propagate asynchronously with some
form of conflict resolution so replicas will converge later to
a common state. Others restrict each transaction so it can be
decided at one site, by only allowing updates to co-located
data such as a single record or partition. In the event of a
failure, these diverse approaches may lose committed trans-
actions, become unavailable, or violate consistency.

Various projects [2, 8, 11, 18] proposed to coordinate
transaction outcome based on Paxos [14]. The oldest de-
sign, Consensus on Transaction Commit [11], shows how
to use Paxos to reliably store the abort or commit deci-
sion of a resource manager for recovery. However, it treats
data replication as an orthogonal issue. Newer proposals
focus on using Paxos to agree on a log-position similar
to state-machine replication. For example, Google’s Mega-
store [2] uses Paxos to agree on a log-position for every

1 We are referring to the standard 2PC algorithm for transaction processing,
which requires a durable abort/commit log entry stored at the coordinator.
Of course, this log entry could be replicated at the cost of an additional
message round-trip (as in 3-phase commit).

commit in a data shard called entity group imposing a to-
tal order of transactions per shard. Unfortunately, this de-
sign makes the system inherently unscalable as it only al-
lows executing one transaction at a time per shard; this was
observed [13] in Google’s App Engine, which uses Mega-
store. Google’s new system Spanner [8] enhances the Mega-
store approach, automatically resharding the data and adding
snapshot isolation, but does not remove the scalability bottle-
neck as Paxos is still used to agree on a commit log position
per shard (i.e., tablet). Paxos-CP [20] improves Megastore’s
replication protocol by combining non-conflicting transac-
tions into one log-position, significantly increasing the frac-
tion of committed transactions. However, the same system
bottleneck remains, and the paper’s experimental evaluation
is not encouraging with only four transactions per second.

Surprisingly, all these new protocols still rely on two-
phase commit, with all its disadvantages, to coordinate any
transactions that access data across shards. They also all rely
on a single master, requiring two round-trips from any client
that is not local to the master, which can often result in sev-
eral hundred milliseconds of additional latency. Such addi-
tional latency can negatively impact the usability of web-
sites; for example, an additional 200 milliseconds of latency,
the typical time of one message round-trip between geo-
graphically remote locations, can result in a significant drop
in user satisfaction and “abandonment” of websites [23].

In this paper, we describe MDCC (short for “Multi-Data
Center Consistency”), an optimistic commit protocol for
transactions with a cost similar to eventually consistent pro-
tocols. MDCC requires only a single wide-area message
round-trip to commit a transaction in the common case, and
is “master-bypassing”, meaning it can read or update from
any node in any data center. Like 2PC, the MDCC commit
protocol can be combined with different isolation levels that
ensure varying properties for the recency and mutual consis-
tency of read operations. In its default configuration, it guar-
antees “read-committed isolation” without lost updates [4]
by detecting all write-write conflicts. That is, either all up-
dates inside a transaction eventually persist or none (we refer
to this property as atomic durability), updates from uncom-
mitted transactions are never visible to other transactions
(read-committed), concurrent updates to the same record
are either resolved if commutative or prevented (no lost up-
dates), but some updates from successful committed trans-
actions might be visible before all updates become visible
(no atomic visibility). It should be noted, that this isolation
level is stronger than the default, read-committed isolation,
in most commercial and open-source database platforms. On
the TPC-W benchmark deployed across five Amazon data
centers, MDCC reduces per transaction latencies by at least
50% (to 234 ms) as compared to 2PC or Megastore, with or-
ders of magnitude higher transaction throughput compared
to Megastore.

MDCC is not the only system that addresses wide-area
replication, but it is the only one that provides the combina-
tion of low latency (through one round-trip commits) and
strong consistency (up to serializability) for transactions,
without requiring a master or a significant limit on the ap-
plication design (e.g., static data partitions with minimiza-
tion of cross-partition transactions). MDCC is the first pro-
tocol to use Generalized Paxos [15] as a commit protocol
on a per record basis, combining it with techniques from
the database community (escrow transactions [19] and de-
marcation [3]). The key idea is to achieve single round-trip
commits by 1) executing parallel Generalized Paxos on each
record, 2) ensuring every prepare has been received by a
fast quorum of replicas, 3) disallowing aborts for success-
fully prepared records, and 4) piggybacking notification of
commit state on subsequent transactions. A number of sub-
tleties need to be addressed to create a “master-bypassing”
approach, including support for commutative updates with
value constraints, and for handling conflicts that occur be-
tween concurrent transactions.

In summary, the key contributions of MDCC are:
• A new optimistic commit protocol, which achieves wide-

area transactional consistency while requiring only one
network round trip in the common case.
• A new approach to ensure value constraints with quorum

protocols.
• Performance results of the TPC-W benchmark showing

that MDCC provides strong consistency with costs simi-
lar to eventually consistent protocols, and lower than other
strongly-consistent designs. We also explore the contribu-
tion of MDCC’s various optimizations, the sensitivity of
performance to workload characteristics, and the perfor-
mance impact during a simulated data center failure.
In section 2 we show the overall architecture of MDCC.

Section 3 presents MDCC’s new optimistic commit protocol
for the wide area network. Section 4 discusses the MDCC’s
read consistency guarantees. Our experiments using MDCC
across 5 data centers are in section 5. In section 6 we relate
MDCC to other work.

2. Architecture Overview
MDCC uses a library-centric approach similar to the ar-
chitectures of DBS3 [5], Megastore [2] or Spanner [8] (as
shown in Figure 1). This architecture separates the stateful
component of a database system as a distributed record man-
ager. All higher-level functionality (such as query processing
and transaction management) is provided through a stateless
DB library, which can be deployed at the application server.

As a result, the only stateful component of the architec-
ture, the storage node, is significantly simplified and scal-
able through standard techniques such as range partitioning,
whereas all higher layers of the database can be replicated
freely with the application tier because they are stateless.
MDCC places storage nodes in geographically distributed
data centers, with every node being responsible for one or

Data center IV

Data center III

Data center I

Data center IIApplication Servers
Storage Servers
Master Server

Figure 1. MDCC architecture

more horizontal partitions. Although not required, we as-
sume for the remainder of the paper that every data center
contains a full replica of the data, and the data within a sin-
gle data center is partitioned across machines.

The DB library provides a programming model for trans-
actions and is mainly responsible for coordinating the repli-
cation and consistency of the data using MDCC’s commit
protocol. The DB library also acts as a transaction manager
and is responsible to determine the outcome of a transaction.
In contrast to many other systems, MDCC supports an indi-
vidual master per record, which can either be storage nodes
or app-server and is responsible to coordinate the updates
to a record. This allows the transaction manager to either
take over the mastership for a single record and to coordi-
nate the update directly, or to choose a storage node (e.g.,
the current master) to act on its behalf (black arrows in Fig-
ure 1). Furthermore, often it is possible to avoid the master
all together, allowing the transaction manager to coordinate
the update, without acquiring any mastership (red arrows in
Figure 1). This leads to a very flexible architecture in which
storage nodes or application servers can act as coordinators,
depending on the situation.

In the remaining sections, we concentrate on the MDCC
protocol. Other parts of the system, such as load balancing
or storage node design are beyond the scope of this paper.

3. The MDCC Protocol
In this section, we describe our new optimistic commit pro-
tocol for transactions operating on cross-partition replicated
data in the wide-area network. Intra-data center latencies are
largely ignored because they are only a few milliseconds
compared to hundreds of milliseconds for inter-data cen-
ter latencies. Our target is a fault-tolerant atomic commit
protocol with reduced latency from fewer message rounds
by avoiding contacting a master, and high parallelism. We
trade-off reducing latency by using more CPU cycles to
make sophisticated decisions at each site. We exploit a key
observation of real workloads; either conflicts are rare, or
many updates commute up to a limit (e.g., add/subtract with
a value constraint that the stock should be at least 0).

At its core, the protocol is based on known extensions of
Paxos, such as Multi-Paxos [14] and Generalized Paxos [15].
Innovations we introduce enhance these consensus algo-

rithms in order to support transactions on multiple data items
without requiring partitioning. In this section, we present a
sequence of optimizations, refining from an initial design
to the full MDCC protocol. Subsection 3.2 allows multi-
record transactions with read committed isolation and no
lost updates (see Section 4.1) using Multi-Paxos, with two
round-trips of messaging except when the masters for all
items are local. Section 3.3 incorporates Fast Paxos, so one
round-trip is often possible even without a local master. Then
Section 3.4 uses Generalized Paxos to combine commit de-
cisions for transactions that are known to be commutative,
and this relies on database techniques that determine state-
based commutativity for operations like decrement-subject-
to-a-limit. While the component ideas for consensus and
for deciding transaction commutativity were known, how
we use them for transaction and the combination of them is
novel.

3.1 Background: Paxos

In the following we provide some background on the princi-
ples of Paxos and how we use it to update a single record.

3.1.1 Classic Paxos

Paxos is a family of quorum-based protocols for achieving
consensus on a single value among a group of replicas. It
tolerates a variety of failures including lost, duplicated or re-
ordered messages, as well as failure and recovery of nodes.
Paxos distinguishes between clients, proposers, acceptors
and learners. These can be directly mapped to our scenario,
where clients are app-servers, proposers are masters, accep-
tors are storage nodes and all nodes are learners. In the re-
mainder of this paper we use the database terminology of
clients, masters and storage nodes. In our implementation,
we place masters on storage nodes, but that is not required.

The basic idea in Classic Paxos [14], as applied for repli-
cating a transaction’s updates to data, is as follows: Every
record has a master responsible for coordinating updates to
the record. At the end of a transaction, the app-server sends
the update requests to the masters of each the record, as
shown by the solid lines in Figure 1. The master informs all
storage nodes responsible for the record that it is the master
for the next update. It is possible that multiple masters ex-
ist for a record, but to make progress, eventually only one
master is allowed. The master processes the client request
by attempting to convince the storage nodes to agree on it.
A storage node accepts an update if and only if it comes
from the most recent master the node knows of, and it has
not already accepted a more recent update for the record.

In more detail, the Classic Paxos algorithm operates in
two phases. Phase 1 tries to establish the mastership for
an update for a specific record r. A master P , selects a
proposal number m, also referred to as a ballot number or
round, higher than any known proposal number and sends
a Phase1a request with m, to at least a majority of stor-
age nodes responsible for r. The proposal numbers must be

unique for each master because they are used to determine
the latest request.2 If a storage node receives a Phase1a re-
quest greater than any proposal number it has already re-
sponded to, it responds with a Phase1b message containing
m, the highest-numbered update (if any) including its pro-
posal number n, and promises not to accept any future re-
quests less than or equal to m. If P receives responses con-
taining its proposal numberm from a majorityQC of storage
nodes, it has been chosen as a master. Now, only P will be
able to commit a value for proposal number m.

Phase 2 tries to write a value. P sends an accept request
Phase2a to all the storage nodes of Phase 1 with the ballot
number m and value v. v is either the update of the highest-
numbered proposal among the Phase1b responses, or the
requested update from the client if no Phase1b responses
contained a value. P must re-send the previously accepted
update to avoid losing the possibly saved value. If a storage
node receives a Phase2a request for a proposal numberedm,
it accepts the proposal, unless it has already responded to a
Phase1a request having a number greater than m, and sends
a Phase2b message containing m and the value back to P .
If the master receives a Phase2b message from the majority
QC of storage nodes for the same ballot number, consensus
is reached and the value is learned. Afterwards, the master
informs all other components, app-servers and responsible
storage nodes, about the success of the update 3.

Note, that Classic Paxos is only able to learn a single
value per single instance, which may consist of multiple bal-
lots or rounds. Thus we use one separate Paxos instance per
version of the record with the requirement that the previous
version has already been chosen successfully.
3.1.2 Multi-Paxos
The Classic Paxos algorithm requires two message rounds
to agree on a value, one in Phase 1 and one in Phase 2. If
the master is reasonably stable, using Multi-Paxos (multi-
decree Synod protocol) makes it possible to avoid Phase 1
by reserving the mastership for several instances [14]. Multi-
Paxos is an optimization for Classic Paxos, and in practice,
Multi-Paxos is implemented instead of Classic Paxos, to take
advantage of fewer message rounds.

We explore this by allowing the proposers to suggest the
following meta-data [StartInstance, EndInstance, Ballot]. Thus,
the storage nodes can vote on the mastership for all instances
from StartInstance to EndInstance with a single ballot num-
ber at once. The meta-data also allows for different masters
for different instances. This supports custom master policies
like round-robin, where serverA is the master for instance
1, serverB is the master for instance 2, and so on. Storage
nodes react to these requests by applying the same seman-
tics for each individual instance as defined in Phase1b, but

2 To ensure uniqueness we concatenate the requester’s ip-address.
3 It is possible to avoid this delay by sending Phase2b messages directly to
all involved nodes. As this significantly increases the number of messages,
we do not use this optimization.

they answer in a single message. The database stores this
meta-data including the current version number as part of the
record, which enables a separate Paxos instance per record.
To support meta-data for inserts, each table stores a default
meta-data value for any non-existent records.

Therefore, the default configuration assigns a single mas-
ter per table to coordinate inserts of new records. Although a
potential bottleneck, the master is normally not in the critical
path and is bypassed, as explained in section 3.3.

3.2 Transaction Support
The first contribution of MDCC is the extension of Multi-
Paxos to support multi-record transactions with read-commit-
ted isolation and without the lost-update problem. That is,
we ensure atomic durability (all or no updates will persist),
detect all write-write conflicts (if two transactions try to up-
date the same record concurrently at most one will succeed),
and guarantee that updates only from successful transactions
are visible. Guaranteeing higher read consistencies, such as
atomic visibility and snapshot isolation, is an orthogonal
issue and discussed in Section 4.

We guarantee this consistency level by using a Paxos in-
stance per record to accept an option to execute the update,
instead of writing the value directly. After the app-server
learns the options for all the records in a transaction, it com-
mits the transaction and asynchronously notifies the storage
nodes to execute the options. If an option is not yet executed,
it is called an outstanding option.

3.2.1 The Protocol
As in all optimistic concurrency control techniques, we as-
sume that transactions collect a write-set of records at the
end of the transaction, which the protocol then tries to com-
mit. Updates to records create new versions, and are rep-
resented in the form vread → vwrite, where vread is the
version of the record read by the transaction and vwrite is
the new version of the record. This allows MDCC to detect
write-write conflicts by comparing the current version of a
record with vread. If they are not equal, the record was mod-
ified between the read and write and a write-write conflict
was encountered. For inserts, the update has a missing vread,
indicating that an insert should only succeed if the record
doesn’t already exist. Deletes work by marking the item as
deleted and are handled as normal updates. We further allow
there to be only one outstanding option per record and that
the update is not visible until the option is executed.

The app-server coordinates the transaction by trying to
get the options accepted for all updates. It proposes the op-
tions to the Paxos instances running for each record, with the
participants being the replicas of the record. Every storage
node responds to the app-server with an accept or reject of
the option, depending on if vread is valid, similar to validated
Byzantine agreement [6]. Hence, the storage nodes make an
active decision to accept or reject the option. This is fun-
damentally different than existing uses of Paxos (e.g., Con-
sensus on Transaction Commit [11] or Megastore), which re-

quire to send a fixed value (e.g., the “final” accept or commit
decision) and only decide based on the ballot number if the
value should be accepted. The reason why this change does
not violate the Paxos assumptions is that we defined at the
end of Section 3.1.1 that a new record version can only be
chosen if the previous version was successfully determined.
Thus, all storage nodes will always make the same abort or
commit decision. This prevents concurrent updates, but only
per record and not for the entire shard as in Megastore. We
will relax this requirement in Section 3.4.

Just as in 2PC, the app-server commits a transaction when
it learns all options as accepted, and aborts a transaction
when it learns any option as rejected. The app-server learns
an option if and only if a majority of storage nodes agrees
on the option. In contrast to 2PC we made another impor-
tant change: MDCC does not allow clients or app-servers
to abort a transaction once it has been proposed. Decisions
are determined and stored by the distributed storage nodes
with MDCC, instead of being decided by a single coordi-
nator with 2PC. This ensures that the commit status of a
transaction depends only on the status of the learned options
and hence is always deterministic even with failures. Other-
wise, the decision of the app-server/client after the prepare
has to be reliably stored, which either influences the avail-
ability (the reason why 2PC is blocking) or requires an ad-
ditional round as done by three-phase commit or Consensus
on Transaction Commit [11].

If the app-server determines that the transaction is aborted
or committed, it informs involved storage nodes through a
Learned message about the decision. The storage nodes in
turn execute the option (make visible) or mark it as rejected.
Learning an option is the result of each Paxos instance and
thus generates new version-id of the record, whether the
option is learned as accepted or rejected. Note, that so far
only one option per record can be outstanding at a time as
we require the previous instance (version) to be decided.

As a result, it is possible to commit the transaction (com-
mit or abort) in a single round-trip across the data centers
if all record masters are local. This is possible because the
commit/abort decision of a transaction depends entirely on
the learned values and the application server is not allowed
to prematurely abort a transaction (in contrast to 2PC or
Consensus on Transaction Commit). The Learned message
to notify the storage nodes about the commit/abort can be
asynchronous, but does not influence the correctness, and
only affects the possibility of aborts caused by stale reads.
By adding transaction support, this design is able to achieve
1 round-trip commits if the master is local, but when the
master is not local it requires 2 round-trips, due to the ad-
ditional communication with the remote master. Commu-
nication with a local master is ignored because the latency
is negligible (few milliseconds) compared to geographically
remote master communication (hundreds of milliseconds).

3.2.2 Avoiding Deadlocks
The described protocol is able to atomically commit multi-
record transactions. Without further effort, transactions might
cause a deadlock by waiting on each other’s options. For ex-
ample, if two transactions t1 and t2 try to learn an option
for the same two records r1 and r2, t1 might successfully
learn the option for r1, and t2 for r2. Since transactions
do not abort without learning at least one of the options as
aborted, both transactions are now deadlocked because each
transaction waits for the other to finish. We apply a simple
pessimistic strategy to avoid deadlocks. The core idea is to
relax the requirement that we can only learn a new version if
the previous instance is committed. For example, if t1 learns
the option v0 → v1 for record r1 in one instance as accepted,
and t2 tries to acquire an option v0 → v2 for r1, t1 learns
the option v0 → v1 as accepted and t2 learns the option
v0 → v2 as rejected in the next Paxos instance. This simple
trick causes transaction t1 to commit and t2 to abort or in the
case of the deadlock as described before, both transactions to
abort. The Paxos safety property is still maintained because
all storage nodes will make the same decision based on the
policy, and the master totally orders the record versions.
3.2.3 Failure Scenarios
Multi-Paxos allows our commit protocol to recover from
various failures. For example, a failure of a storage node can
be masked by the use of quorums. A master failure can be re-
covered from by selecting a new master (after some timeout)
and triggering Phase 1 and 2 as described previously. Han-
dling app-server failures is trickier, because an app-server
failure can cause a transaction to be pending forever as a
“dangling transaction”. We avoid dangling transactions by
including in all of its options a unique transaction-id (e.g.,
UUIDs) as well as all primary keys of the write-set, and by
additionally keeping a log of all learned options at the stor-
age node. Therefore, every option includes all necessary in-
formation to reconstruct the state of the corresponding trans-
actions. Whenever an app-server failure is detected by sim-
ple timeouts, the state is reconstructed by reading from a
quorum of storage nodes for every key in the transaction, so
any node can recover the transaction. A quorum is required
to determine what was decided by the Paxos instance. Fi-
nally, a data center failure is treated simply as each of the
nodes in the data center failing. In the future, we might adapt
bulk-copy techniques to bring the data up-to-date more effi-
ciently without involving the Paxos protocol (also see [2]).
3.3 Transactions Bypassing the Master
The previous subsection showed how we achieve transac-
tions with multiple updates in one single round-trip, if the
masters for all transaction records are in the same data center
as the app-server. However, 2 round-trips are required when
the masters are remote, or mastership needs to be acquired.
3.3.1 Protocol
Fast Paxos [16] avoids the master by distinguishing between
classic and fast ballots. Classic ballots operate like the clas-

sic Paxos algorithm described above and are always the fall-
back option. Fast ballots normally use a bigger quorum than
classic ballots, but allow bypassing the master. This saves
one message round to the master, which may be in a differ-
ent data center. However, since updates are not serialized by
the master, collisions may occur, which can only be resolved
by a master using classic ballots.

We use this approach of fast ballots for MDCC. All ver-
sions start as an implicitly fast ballot number, unless a master
changed the ballot number through a Phase1a message. This
default ballot number informs the storage nodes to accept the
next options from any proposer.

Afterwards, any app-server can propose an option di-
rectly to the storage nodes, which in turn promise only to
accept the first proposed option. Simple majority quorums,
however, are no longer sufficient to learn a value and ensure
safeness of the protocol. Instead, learning an option without
the master requires a fast quorum [16]. Fast and classic quo-
rums, are defined by the following requirements: (i) any two
quorums must have a non-empty intersection, and (ii) there
is non-empty intersection of any three quorums consisting of
two fast quorums Q1

F and Q2
F and a classic quorum QC . A

typical setting for a replication factor of 5 is a classic quorum
size of 3 and a fast quorum size of 4. If a proposer receives
an acknowledgment from a fast quorum, the value is safe and
guaranteed to be committed. However, if a fast quorum can-
not be achieved, collision recovery is necessary. Note, that a
Paxos collision is different from a transaction conflict; colli-
sions occur when nodes cannot agree on an option, conflicts
are caused by conflicting updates.

To resolve the collision, a new classic ballot must be
started with Phase 1. After receiving responses from a clas-
sic quorum, all potential intersections with a fast quorum
must be computed from the responses. If the intersection
consists of all the members having the highest ballot number,
and all agree with some option v, then v must be proposed
next. Otherwise, no option was previously agreed upon, so
any new option can be proposed. For example, assume the
following messages were received as part of a collision res-
olution from 4 out of 5 servers with the previously men-
tioned quorums (notation: (server-id, ballot number, update)):
(1,3,v0→v1), (2,4,v1→v2), (3,4,v1→v3), (5,4, v1→v2). Here,
the intersection size is 2 and the highest ballot number is
4, so the protocol compares the following intersections:

[(2, 4, v1 → v2), (3, 4, v1 → v3)]

[(3, 4, v1 → v3), (5, 4, v1 → v2)]

[(2, 4, v1 → v2), (5, 4, v1 → v2)]

Only the last intersection has an option in common and
all other intersections are empty. Hence, the option v1→v2
has to be proposed next. More details and the correctness
proofs of Fast Paxos can be found in [16].

MDCC uses Fast Paxos to bypass the master for accept-
ing an option, which reduces the number of required mes-
sage rounds. Per fast ballot, only one option can be learned.

However, by combining the idea of Fast Paxos with Multi-
Paxos and using the following adjusted ballot-range defini-
tions from Section 3.1.2, [StartInstance, EndInstance, Fast, Bal-
lot], it is possible to pre-set several instances as fast. When-
ever a collision is detected, the instance is changed to clas-
sic, the collision is resolved and the protocol moves on to
the next instance, which can start as either classic or fast.
It is important that classic ballot numbers are always higher
ranked than fast ballot numbers to resolve collisions and save
the correct value. Combined with our earlier observation that
a new Paxos instance is started only if the previous instance
is stable and learned, this allows the protocol to execute sev-
eral consecutive fast instances without involving a master.

Without the option concept of Section 3.2 fast ballots
would be impossible to use. Without options it would be im-
possible to make an abort/commit decision without requiring
a lock first in a separate message round on the storage servers
or some master (e.g., as done by Spanner). This is also the
main reason why other existing Paxos commit protocols can-
not leverage fast ballots. It can be shown that the correctness
of Paxos with options and the deadlock avoidance policy still
holds with fast instances, as long as every outstanding ver-
sion is checked in order. That is because fast instances still
determine a total order of operations. Finally, whenever a
fast quorum of nodes are unavailable, classic ballots can be
used, ensuring the same availability as before.

3.3.2 Fast-Policy
There exists a non-trivial trade-off between fast and classic
instances. With fast instances, two concurrent updates might
cause a collision requiring another two message rounds for
the resolution, whereas classic instances usually require two
message rounds, one to either contact the master or acquire
the mastership, and one for Phase 2. Hence, fast instances
should only be used if conflicts and collisions are rare.

Currently, we use a very simple strategy. The default
meta-data for all instances and all records are pre-set to fast
with [0,∞,fast=true,ballot=0]. As the default meta-data for all
records is the same, it does not need to be stored per record.
A record’s meta-data is managed separately, only when col-
lision resolution is triggered. If we detect a collision, we set
the next γ instances (default 100) to classic. After γ transac-
tions, fast instances are automatically tried again.

This simple strategy stays in fast if possible (recall, fast
has no upper instance-limit) and in classic when necessary,
while probing to go back to fast every γ instances. More
advanced models could explicitly calculate the conflict rate
and remain as future work.

3.4 Commutative Updates
The design based on Fast Paxos allows many transactions
to commit with a single round-trip between data centers.
However, whenever there are concurrent updates to a given
data item, conflicts will arise and extra messages are needed.
MDCC efficiently exploits cases where the updates are com-
mutative, to avoid extra messages by using Generalized

Paxos [15], which is an extension of Fast Paxos. In this
section, we show how our novel option concept and the idea
to use Paxos on a record instead of a database log-level as
described in the previous sections enable us to use Gen-
eralized Paxos. Furthermore, in order to support the quite
common case of operations on data that are subject to value
constraints (e.g., stock should be at least 0), we developed a
new demarcation technique for quorums.

3.4.1 The Protocol
Generalized Paxos [15] uses the same ideas as Fast Paxos
but relaxes the constraint that every acceptor must agree on
the same exact sequence of values/commands. Since some
commands may commute with each other, the acceptors only
need to agree on sets of commands which are compatible
with each other. MDCC utilizes the notion of compatibility
to support commutative updates.

Fast commutative ballots are always started by a mes-
sage from the master. The master sets the record base value,
which is the latest committed value. Afterwards, any client
can propose commutative updates to all storage nodes di-
rectly using the same option model as before. In contrast to
the previous section, an option now contains commutative
updates, which consist of one or more attributes and their re-
spective delta changes (e.g., decrement(stock, 1)). If a fast
quorum QF out of N storage nodes accepts the option, the
update is committed. When the updates involved commute,
the acceptors can accept multiple proposals in the same bal-
lot and the orderings do not have to be identical on all stor-
age nodes. This allows MDCC to stay in the fast ballot for
longer periods of time, bypassing the master and allowing
the commit to happen in one message round. More details
on Generalized Paxos are given in [15].

3.4.2 Global Constraints
Generalized Paxos is based on commutative operations like
increment and decrement. However, many database applica-
tions must enforce integrity constraints, e.g., that the stock
of an item must be greater than zero. Under a constraint like
this, decrements do not commute in general. However, they
do have state-based commutativity when the system con-
tains sufficient stock. Thus we allow concurrent processing
of decrements while ensuring domain integrity constraints,
by requiring storage nodes to only accept an option if the op-
tion would not violate the constraint under all permutations
of commit/abort outcomes for pending options. For example,
given 5 transactions t1...5 (arriving in order), each generat-
ing an option [stock = stock − 1] with the constraint that
stock ≥ 0 and current stock level of 4, a storage node s
will reject t5 even though the first four options may abort.
This definition is analogous to Escrow [19] and guarantees
correctness even in the presence of aborts and failures.

Unfortunately, this still does not guarantee integrity con-
straints, as storage nodes base decisions on local, not global,
knowledge. Figure 2 shows a possible message ordering for
the above example with 5 storage nodes. Here, clients wait

Storage Node 1

Storage Node 2

Storage Node 3

Storage Node 4

Storage Node 5

value: 4

value: 4

value: 4 T1

T1

T1

T1

T1 T2

T2

T2

T2

T2

T3

T3

T3

T3

T3

T4

T4

T4

T4

T4

T5

T5

T5

T5

T5

3.8T1....T5 = Option[-1]

value: 4

value: 4

Figure 2. Message order

for QF responses (4), and each storage node makes a de-
cision based on its local state. Through different message
arrival orders it is possible for all 5 transactions to commit,
even though committing them all violates the constraint.

We therefore developed a new demarcation based strat-
egy for quorum systems. Our demarcation technique is sim-
ilar to the earlier technique [3] in that they both use local
limits, but is used in different scenarios. Original demarca-
tion uses limits to safely update distributed values, where
MDCC uses limits for quorum replicated values.

Without loss of generality, we assume a constraint of
value at least 0 and that all updates are decrements. Let
N be the replication factor (number storage nodes), X be
the base value for some attribute and δi be the decrement
amount of transaction ti for the attribute. If we consider
every replicated base valueX as a resource, the total number
of resources in the system is N · X . In order to commit an
update, QF storage nodes must accept the update, so every
successful transaction ti reduces the resources in the system
by at least QF · δi. If we assume m successful transactions
where

∑m
i=1 δi = X , this means the attribute value reached

0, and the total amount of resources would reduce by at
least QF ·

∑m
i=1 δi = QF · X . Even though the integrity

constraint forbids any more transactions, it is still possible
that the system still has (N −QF) ·X resources remaining
due to failures, lost, or out-of-order messages.

The worst case is where the remaining resources are
equally distributed across all the storage nodes (otherwise,
at least one of the storage nodes would start to reject options
earlier). The remaining resources (N −QF) ·X are divided
evenly among the N storage nodes to derive a lower limit to
guarantee the value constraint. Storage nodes must reject an
option if it would cause the value to fall below:

L =
N −QF

N
·X

This limit L is calculated with every new base value.
When options in fast ballots are rejected because of this
limit, the protocol handles it as a collision, resolves it by
switching to classic ballots, and writes a new base value and
limit L.
3.4.3 MDCC Pseudocode
The complete MDCC protocol as pseudocode is listed in
algorithms 1, 2, and 3, while table 1 defines the used symbols

Symbols Definitions
a an acceptor
l a leader
up an update
ω(up, _) an option for an update, with 3or 7
3/ 7 acceptance / rejection
m ballot number
vala[i] cstruct at ballot i at acceptor a
bala max{k | vala[k] 6= none}
vala cstruct at bala at acceptor a
mbala current ballot number at acceptor a
ldrBall ballot number at leader l
maxTriedl cstructs proposed by leader l
Q a quorum of acceptors
Quorum(k) all possible quorums for ballot k
learned cstruct learned by a learner
u greatest lower bound operator
t least upper bound operator
v partial order operator for cstructs
val• ω(up, _) appends option ω(up, _) to cstruct val

Table 1. Definition of symbols for MDCC pseudocode.

Algorithm 1 Pseudocode for MDCC
1: procedure TRANSACTIONSTART . Client
2: for all up ∈ tx do
3: run SENDPROPOSAL(up)

4: wait to learn all update options
5: if ∀up ∈ tx : learned ω(up,3) then
6: send V isibility[up,3] to Acceptors
7: else
8: send V isibility[up, 7] to Acceptors
9: procedure SENDPROPOSAL(up) . Proposer

10: if classic ballot then
11: send Propose[up] to Leader
12: else
13: send Propose[up] to Acceptors
14: procedure LEARN(up) . Learner
15: collect Phase2b[m, vala] messages from Q
16: if ∀a ∈ Q : v v vala then
17: learned← learned t v
18: if ω(up, _) /∈ learned then
19: send StartRecovery[] to Leader
20: return
21: if classic ballot then
22: move on to next instance
23: else
24: isComm← up is CommutativeUpdate[delta]
25: if ω(up, 7) ∈ learned ∧ isComm then
26: send StartRecovery[] to Leader

and variables. For simplicity, we do not show how liveness
is guaranteed. The remainder of this section sketches the
algorithm by focusing on how the different pieces from the
previous subsections work together.

The app-server or client starts the transaction by send-
ing proposals for every update on line 3. After learning the
status of options of all the updates (lines 14-26), the app-
server sends visibility messages to “execute” the options on
lines 5-8, as described in Section 3.2.1. While attempting to
learn options, if the app-server does not learn the status of
an option (line 18), it will initiate a recovery. Also, if the
app-server learns a commutative option as rejected during a
fast ballot (line 25), it will notify the master to start recovery.

Algorithm 2 Pseudocode for MDCC - Leader l
27: procedure RECEIVELEADERMESSAGE(msg)
28: switch msg do
29: case Propose[up] :
30: run PHASE2ACLASSIC(up)

31: case Phase1b[m, bal, val] :
32: if received messages from Q then
33: run PHASE2START(m,Q)

34: case StartRecovery[] :
35: m← new unique ballot number greater than m
36: run PHASE1A(m)

37: procedure PHASE1A(m)
38: if m > ldrBall then
39: ldrBall ← m
40: maxTriedl ← none
41: send Phase1a[m] to Acceptors
42: procedure PHASE2START(m,Q)
43: maxTriedl ← PROVEDSAFE(Q,m)
44: if new update to propose exists then
45: run PHASE2ACLASSIC(up)

46: procedure PHASE2ACLASSIC(up)
47: maxTriedl ← maxTriedl• ω(up, _)
48: send Phase2a[ldrBall,maxTriedl] to Acceptors
49: procedure PROVEDSAFE(Q,m)
50: k ≡ max{i | (i < m) ∧ (∃a ∈ Q : vala[i] 6= none)}
51: R ≡ {R ∈ Quorum(k) |

∀a ∈ Q ∩R : vala[k] 6= none}
52: γ(R) ≡ u{vala[k] | a ∈ Q ∩R}, for all R ∈ R
53: Γ ≡ {γ(R) | R ∈ R}
54: if R = ∅ then
55: return {vala[k] | (a ∈ Q) ∧ (vala]k 6= none)}
56: else
57: return {tΓ}

Learning a rejected option for commutative updates during
fast ballots is an indicator of violating the quorum demarca-
tion limit, so a classic ballot is required to update the limit.

When accepting new options, the storage nodes must
evaluate the compatibility of the options and then accept or
reject it. The compatibility validation is shown in lines 83-
99. If the new update is not commutative, the storage node
compares the read version of the update to the current value
to determine the compatibility, as shown in lines 86-92. For
new commutative updates, the storage node computes the
quorum demarcation limits as described in section 3.4.2, and
determines if any combination of the pending commutative
options violate the limits (lines 93-99). When a storage node
receives a visibility message for an option, it executes the
option in order to make the update visible, on line 103.

4. Consistency Guarantees
MDCC ensures atomicity (i.e., either all updates in a transac-
tion persist or none) and that two concurrent write-conflicting
update transactions do not both commit. By combining the
protocol with different read-strategies it is possible to guar-
antee various degrees of consistency.

4.1 Read Committed without Lost Updates
MDCC’s default consistency level is read committed, but
without the lost update problem [4]. Read committed iso-
lation prevents dirty reads, so no transactions will read any

Algorithm 3 Pseudocode for MDCC - Acceptor a
58: procedure RECEIVEACCEPTORMESSAGE(msg)
59: switch msg do
60: case Phase1a[m] :
61: run PHASE1B(m)

62: case Phase2a[m, v] :
63: run PHASE2BCLASSIC(m, v)

64: case Propose[up] :
65: run PHASE2BFAST(up)

66: case V isibility[up, status] :
67: run APPLYVISIBILITY(up, status)

68: procedure PHASE1B(m)
69: if mbala < m then
70: mbala ← m
71: send Phase1b[m, bala, vala] to Leader
72: procedure PHASE2BCLASSIC(m, v)
73: if bala ≤ m then
74: bala ← m
75: vala ← v
76: SETCOMPATIBLE(vala)
77: send Phase2b[m, vala] to Learners
78: procedure PHASE2BFAST(up)
79: if bala = mbala then
80: vala ← vala• ω(up, _)
81: SETCOMPATIBLE(vala)
82: send Phase2b[m, vala] to Learners
83: procedure SETCOMPATIBLE(v)
84: for all new options ω(up, _) in v do
85: switch up do
86: case PhysicalUpdate[vread, vwrite] :
87: validRead← vread matches current value
88: validSingle← no other pending options exist
89: if validRead ∧ validSingle then
90: set option to ω(up,3)
91: else
92: set option to ω(up, 7)

93: case CommutativeUpdate[delta] :
94: U ← upper quorum demarcation limit
95: L ← lower quorum demarcation limit
96: if any option combinations violate U or L then
97: set option to ω(up, 7)
98: else
99: set option to ω(up,3)

100: procedure APPLYVISIBILITY(up, status)
101: update ω(up, _) in vala to ω(up, status)
102: if status = 3 then
103: apply up to make update visible

other transaction’s uncommitted changes. The lost update
problem occurs when transaction t1 first reads a data item
X , then one or more other transactions write to the same
data item X , and finally t1 writes to data item X . The up-
dates between the read and write of item X by t1 are “lost”
because the write by t1 overwrites the value and loses the
previous updates. MDCC guarantees read committed isola-
tion by only reading committed values and not returning the
value of uncommitted options. Lost updates are prevented
by detecting every write-write conflict between transactions.

Currently, Microsoft SQL Server, Oracle Database, IBM
DB2 and PostgreSQL all use read committed isolation by de-
fault. We therefore believe that MDCC’s default consistency
level is sufficient for a wide range of applications.

4.2 Staleness & Monotonicity

Reads can be done from any storage node and are guaran-
teed to return only committed data. However, by just read-
ing from a single node, the read might be stale. For example,
if a storage node missed updates due to a network problem,
reads might return older data. Reading the latest value re-
quires reading a majority of storage nodes to determine the
latest stable version, making it an expensive operation.

In order to allow up-to-date reads with classic rounds,
we can leverage techniques from Megastore [2]. A simple
strategy for up-to-date reads with fast rounds is to ensure that
a special pseudo-master storage node is always part of the
quorum of Phases 1 and 2 and to switch to classic whenever
the pseudo-master cannot be contacted. The techniques from
Megastore can apply for the pseudo-master to guarantee
up-to-date reads in all data centers. The same strategy can
guarantee monotonic reads such as repeatable reads or read
your writes, but can be further relaxed by requiring only the
local storage node to always participate in the quorum.

4.3 Atomic Visibility

MDCC provides atomic durability, meaning either all or
none of the operations of the transaction are durable, but
it does not support atomic visibility. That is, some of the
updates of a committed transaction might be visible whereas
other are not. Two-phase commit also only provides atomic
durability, not visibility unless it is combined with other
techniques such as two-phase locking or snapshot isolation.
The same is true for MDCC. For example, MDCC could
use a read/write locking service per data center or snapshot
isolation as done in Spanner [8] to achieve atomic visibility.

4.4 Other Isolation Levels

Finally, MDCC can support higher levels of isolation. In
particular, Non-monotonic Snapshot Isolation (NMSI) [22]
or Spanner’s [8] snapshot isolation through synchronized
clocks are natural fits for MDCC. Both would still allow
fast commits while providing consistent snapshots. Further-
more, as we already check the write-set for transactions, the
protocol could easily be extended to also consider read-sets,
allowing us to leverage optimistic concurrency control tech-
niques and ultimately provide full serializability.

5. Evaluation
We implemented a prototype of MDCC on top of a dis-
tributed key/value store across five different data centers us-
ing the Amazon EC2 cloud. To demonstrate the benefits of
MDCC, we use TPC-W and micro-benchmarks to compare
the performance characteristics of MDCC to other transac-
tional and other non-transactional, eventually consistent pro-
tocols. This section describes the benchmarks, experimental
setup, and our findings.
5.1 Experimental Setup
We implemented the MDCC protocol in Scala, on top of
a distributed key/value store, which used Oracle BDB Java

Edition as a persistent storage engine. We deployed the sys-
tem across five geographically diverse data centers on Ama-
zon EC2: US West (N. California), US East (Virginia), EU
(Ireland), Asia Pacific (Singapore), and Asia Pacific (Tokyo).
Each data center has a full replica of the data, and within a
data center, each table is range partitioned by key, and dis-
tributed across several storage nodes as m1.large instances
(4 cores, 7.5GB memory). Therefore, every horizontal par-
tition, or shard, of the data is replicated five times, with one
copy in each data center. Unless noted otherwise, all clients
issuing transactions are evenly distributed across all five data
centers, on separate m1.large instances.

5.2 Comparison with other Protocols
To compare the overall performance of MDCC with alter-
native designs we used TPC-W, a transactional benchmark
that simulates the workload experienced by an e-commerce
web server. TPC-W defines a total of 14 web interactions
(WI), each of which are web page requests that issue several
database queries. In TPC-W, the only transaction which is
able to benefit from commutative operations is the product-
buy request, which decreases the stock for each item in the
shopping cart while ensuring that the stock never drops be-
low 0 (otherwise, the transaction should abort). We imple-
mented all the web interactions using our own SQL-like lan-
guage but forego the HTML rendering part of the benchmark
to focus on the database part. TPC-W defines that these WI
are requested by emulated browsers, or clients, with a wait-
time between requests and varying browse-to-buy ratios. In
our experiments, we forego the wait-time between requests
and only use the most write-heavy profile to stress the sys-
tem. It should also be noted that read-committed is sufficient
for TPC-W to never violate its data consistency.

In these experiments, the MDCC prototype uses fast bal-
lots with commutativity where possible (reverting to classic
after too many collisions have occurred as described in Sec-
tion 3.3.2). For comparison, we also implemented forms of
some other replica management protocols in Scala, using the
same distributed store, and accessed by the same clients.

Quorum Writes (QW). The quorum writes protocol
(QW) is the standard for most eventually consistent sys-
tems and is implemented by simply sending all updates to
all involved storage nodes then waiting for responses from
quorum nodes. We used two different configurations for the
write quorum: quorum of size 3 out of 5 replicas for each
record (we call this QW-3), and quorum of size 4 out of 5
(QW-4). We use a read-quorum of 1 to access only the lo-
cal replica (the fastest read configuration). It is important to
note that the quorum writes protocol provides no isolation,
atomicity, or transactional guarantees.

Two-Phase Commit (2PC). Two-phase commit (2PC) is
still considered the standard protocol for distributed transac-
tions. 2PC operates in two phases. In the first phase, a trans-
action manager tries to prepare all involved storage nodes
to commit the updates. If all relevant nodes prepare success-

fully, then in the second phase the transaction manager sends
a commit to all storage nodes involved; otherwise it sends an
abort. Note, that 2PC requires all involved storage nodes to
respond and is not resilient to single node failures.

Megastore*. We were not able to compare MDCC di-
rectly against the Megastore system because it was not pub-
licly available. Google App Engine uses Megastore, but the
data centers and configuration are unknown and out of our
control. Instead, we simulated the underlying protocol as
described in [2] to compare it with MDCC; we do this as
a special configuration of our system, referred to as Mega-
store*. In [2], the protocol is described mainly for transac-
tions within a partition. The paper states that 2PC is used
across partitions with looser consistency semantics but omits
details on the implementation and the authors discourage
of using the feature because of its high latency. Therefore,
for experiments with Megastore*, we placed all data into a
single entity group to avoid transactions which span multi-
ple entity groups. Furthermore, Megastore only allows that
one write transaction is executed at any time (all other com-
peting transactions will abort). As this results in unusable
throughput for TPC-W, we include an improvement from
[20] and allow non-conflicting transactions to commit using
a subsequent Paxos instance. We also relaxed the read con-
sistency to read-committed enabling a fair comparison be-
tween Megastore* and MDCC. Finally, we play in favor of
Megastore* placing all clients and masters in one data center
(US-West), to allow all transactions to commit with a single
round-trip.

5.2.1 TPC-W Write Response Times
To evaluate MDCC’s main goal, reducing the latency, we ran
the TPC-W workload with each protocol. We used a TPC-W
scale factor of 10,000 items, with the data being evenly
ranged partitioned and replicated to four storage nodes per
data center. 100 evenly geo-distributed clients (on separate
machines) each ran the TPC-W benchmark for 2 minutes,
after a 1 minute warm-up period.4

Figure 3 shows the cumulative distribution functions
(CDF) of the response times of committed write transac-
tions for the different protocols. Note that the horizontal
(time) axis is a log-scale. We only report the response times
for write transactions as read transactions were always local
for all configurations and protocols. The two dashed lines
(QW-3, QW-4) are non-transactional, eventually consistent
protocols, and the three solid lines (MDCC, 2PC, Mega-
store*) are transactional, strongly consistent protocols.

Figure 3 shows that the non-transactional protocol QW-3
has the fastest response times, followed by QW-4, then the
transactional systems, of which MDCC is fastest, then 2PC,

4 In a separate experiment, we studied for each protocol the effect of using
different numbers of clients and storage nodes, and found that 4 storage
nodes per data center for 100 clients has the best utilization before the
latency starts increasing because of queuing/network effects. For brevity
we omit this experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 400 1000 2000 4000 10000 20000 40000

Pe
rc

en
ta

ge
 o

f T
ra

ns
ac

tio
ns

Write Transaction Response Times, log-scale (ms)

QW-3
QW-4

MDCC
2PC

Megastore*

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

50 100 200

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Concurrent Clients

QW-3
QW-4

MDCC
2PC

Megastore*

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

Pe
rc

en
ta

ge
 o

f T
ra

ns
ac

tio
ns

Write Transaction Response Times (ms)

MDCC
Fast
Multi
2PC

Figure 3. TPC-W write transaction re-
sponse times CDF

Figure 4. TPC-W transactions per sec-
ond scalability

Figure 5. Micro-benchmark response
times CDF

and finally Megastore* with slowest times. The median re-
sponse times are: 188ms for QW-3, 260ms for QW-4, 278ms
for MDCC, 668ms for 2PC, and 17,810ms for Megastore*.

Since MDCC uses fast ballots whenever possible, MDCC
often commits transactions from any data center with a sin-
gle round-trip to a quorum size of 4. This explains why
the performance of MDCC is similar to QW-4. The differ-
ence between QW-3 and QW-4 arises from the need to wait
longer for the 4th response, instead of returning after the 3rd
response. There is an impact from the non-uniform laten-
cies between different data centers, so the 4th is on average
farther away than the 3rd, and there is more variance when
waiting for more responses. Hence, an administrator might
choose to configure a MDCC-like system to use classic in-
stances with a local master, if it is known that the workload
has most requests being issued from the same data center
(see Section 5.3.3 for an evaluation).

MDCC reduces per transaction latencies by 50% com-
pared to 2PC because it commits in one round-trip instead of
two. Most surprisingly, however, is the orders of magnitude
improvement over Megastore*. This can be explained since
Megastore* must serialize all transactions with Paxos (it ex-
ecutes one transaction at a time) and heavy queuing effects
occur. This queuing effect happens because of the moderate
load, but it is possible to avoid the effect by reducing the load
or allowing multiple transactions to commit for one commit
log record. If so, performance would be similar to our clas-
sical Paxos configuration discussed in Section 5.3.1. Even
without queuing effects, Megastore* would require an ad-
ditional round-trip to the master for non-local transactions.
Since Google’s Spanner [8] uses 2PC across Paxos groups,
and each Paxos group requires a master, we expect Spanner
to behave similarly to the 2PC data in figure 3.

We conclude from this experiment that MDCC achieves
our main goal: it supports strongly consistent transactions
with latencies similar to non-transactional protocols which
provide weaker consistency, and is significantly faster than
other strongly consistent protocols (2PC, Megastore*).

5.2.2 TPC-W Throughput and Transaction Scalability
One of the intended advantages of cloud-based storage sys-
tems is the ability to scale out without affecting performance.
We performed a scale-out experiment using the same setting
as in the previous section, except that we varied the scale
to (50 clients, 5,000 items), (100 clients, 10,000 items), and

(200 clients, 20,000 items). For each configuration, we fixed
the amount of data per storage node to a TPC-W scale-factor
of 2,500 items and scaled the number of nodes accordingly
(keeping the ratio of clients to storage nodes constant). For
the same arguments as before, we used a single partition for
Megastore* to avoid cross-partition transactions.

Figure 4 shows the results of the throughput measure-
ments of the various protocols. We see that the QW proto-
cols have the lowest message and CPU overhead and there-
fore the highest throughput, with the MDCC throughput not
far behind. For 200 concurrent clients, the MDCC through-
put was within 10% of the throughput of QW-4. The exper-
iments also demonstrate that MDCC has higher throughput
compared to the other strongly consistent protocols, 2PC and
Megastore*. The throughput for 2PC is significantly lower,
mainly due to the additional waiting for the second round.

As expected, the QW protocols scale almost linearly; we
see similar scaling for MDCC and 2PC. The Megastore*
throughput is very low and does not scale out well, because
all transactions are serialized for the single partition. This
low throughput and poor scaling matches the results in [13]
for Google App Engine, a public service using Megastore.
In summary, figure 4 shows that MDCC provides strongly
consistent cross data center transactions with throughput and
scalability similar to eventually consistent protocols.
5.3 Exploring the Design Space
We use our own micro-benchmark to independently study
the different optimizations within the MDCC protocol, and
how it is sensitive to workload features. The data for the
micro-benchmark is a single table of items, with randomly
chosen stock values and a constraint on the stock attribute
that it has to be at least 0. The benchmark defines a simple
buy transaction, that chooses 3 random items uniformly, and
for each item, decrements the stock value by an amount
between 1 and 3 (a commutative operation). Unless stated
otherwise, we use 100 geo-distributed clients, and a pre-
populated product table with 10,000 items sharded on 2
storage nodes per data center.
5.3.1 Response Times
To study the effects of the different design choices in
MDCC, we ran the micro-benchmark with 2PC and various
MDCC configurations: MDCC: our full featured protocol,
Fast: without the commutative update support, and Multi:
all instances being Multi-Paxos (a stable master can skip

 0

 10

 20

 30

 40

 50

 60

 70

 80

2PC
Multi
Fast
MDCC

2PC
Multi
Fast
MDCC

2PC
Multi
Fast
MDCC

2PC
Multi
Fast
MDCC

2PC
Multi
Fast
MDCC

2PC
Multi
Fast
MDCC

C
om

m
its

/A
bo

rts
 (i

n
th

ou
sa

nd
s)

Hotspot Size

Commits
Aborts

 2% 5% 10% 20% 50% 90%

 0

 200

 400

 600

 800

 1000

Multi
MDCC

Multi
MDCC

Multi
MDCC

Multi
MDCC

Multi
MDCC

R
es

po
ns

e
Ti

m
es

 (m
s)

Probability of Local Master
100% 80% 60% 40% 20%

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250

R
es

po
ns

e
Ti

m
e

(m
s)

Elapsed Time (s)

Failed data center

Figure 6. Commits/aborts for varying
conflict rates

Figure 7. Response times for varying
master locality

Figure 8. Time-series of response
times during failure

Phase 1). The experiment ran for 3 minutes after a 1 minute
warm-up. Figure 5 shows the cumulative distribution func-
tions (CDF) of response times of the successful transactions.

The median response times are: 245ms for MDCC,
276ms for Fast, 388ms for Multi, and 543ms for 2PC. 2PC is
the slowest because it must use two round-trips across data
centers and has to wait for responses from all 5 data cen-
ters. For Multi, with the masters being uniformly distributed
across all the data centers, most of the transactions (about
4/5 of them) require a message round-trip to contact the
master, so two round-trips across data centers are required,
similar to 2PC. In contrast to 2PC, Multi needs responses
from only 3 of 5 data centers, so the response times are
improved. The response times for Multi would also be ob-
served for Megastore* if no queuing effects are experienced.
Megastore* experiences heavier queuing effects because all
transactions in the single entity group are serialized, but with
Multi, only updates per record are serialized.

The main reason for the low latencies for MDCC is the
use of fast ballots. Both MDCC and Fast return earlier than
the other protocols, because they often require one round-
trip across data centers and do not need to contact a master,
like Multi. The improvement from Fast to MDCC is because
commutative updates reduce conflicts and thus collisions, so
MDCC can continue to use fast ballots and avoid resolving
collisions as described in Section 3.3.2.

5.3.2 Varying Conflict Rates
MDCC attempts to take advantage of situations when con-
flicts are rare, so we study how the MDCC commit perfor-
mance is affected by different conflict rates. We therefore de-
fined a hot-spot area and modified the micro-benchmark to
access items in the hot-spot area with 90% probability, and
accesses the cold-spot portion of the data with the remaining
10% probability. By adjusting the size of the hot-spot as a
percentage of the data, we alter the conflict rates in the ac-
cess patterns. For example, when the hot-spot is 90% of the
data, the access pattern is essentially uniformly at random,
since 90% of the accesses will go to 90% of the data.

The Multi system uses masters to serialize transactions,
so Paxos conflicts occur when there are multiple potential
masters, which should be rare. Multi will simply abort trans-
actions when the read version is not the same as the version
in the storage node (indicating a write-write transaction con-
flict), to keep the data consistent, making Paxos collisions

independent of transaction conflicts. On the other hand, for
Fast Paxos, collisions are related to transaction conflicts, as
a collision/conflict occurs whenever a quorum size of 4 does
not agree on the same decision. When this happens, colli-
sion resolution must be triggered, which eventually switches
to a classic ballot, which will take at least 2 more message
rounds. MDCC is able to improve on it by exploring com-
mutativity, but still might cause an expensive collision reso-
lution whenever the quorum demarcation integrity constraint
is reached, as described in Section 3.4.2.

Figure 6 shows the number of commits and aborts for dif-
ferent designs, for various hot-spot sizes. When the hot-spot
size is large, the conflict rate is low, so all configurations
do not experience many aborts. MDCC commits the most
transactions because it does not abort any transactions. Fast
commits slightly fewer, because it has to resolve the colli-
sions which occur when different storage nodes see updates
in different orders. Multi commits far fewer transactions be-
cause most updates have to be sent to a remote master, which
increases the response times and decreases the throughput.

As the hot-spot decreases in size, the conflict rate in-
creases because more of the transactions access smaller por-
tions of the data. Therefore, more transactions abort as the
hot-spot size decreases. When the hot-spot is at 5%, the
Fast commits fewer transactions than Multi. This can be ex-
plained by the fact that Fast needs 3 round-trips to ultimately
resolve conflicting transactions, whereas Multi usually uses
2 rounds. When the hot-spot is at 2%, the conflict rate is very
high, so both Fast and MDCC perform very poorly com-
pared to Multi. The costly collision resolution for fast ballots
is triggered so often, that many transactions are not able to
commit. We conclude that fast ballots can take advantage of
master-less operation as long as the conflict rate is not very
high. When the conflict rate is too high, a master-based ap-
proach is more beneficial and MDCC should be configured
as Multi. Exploring policies to automatically determine the
best strategy remains as future work.

5.3.3 Data access locality
Classic ballots can save message trips in the situation when
the client requests have affinity for data with a local mas-
ter. To explore the tradeoff between fast and classic ballots,
we modified the benchmark to vary the choice of data items
within each transaction, so a given percentage will access
records with local masters. At one extreme, 100% of trans-

actions choose their items only from those with a local mas-
ter; at the other, 20% of the transactions choose items with a
local master (items are chosen uniformly at random).

Figure 7 shows the boxplots of the latencies of Multi and
MDCC for different master localities. When all the mas-
ters are local to the clients, then Multi will have lower re-
sponse times than MDCC, as shown in the graph for 100%.
However, as updates access more remote masters, response
times for Multi get slower and also increase in variance, but
MDCC still maintains the same profile. Even when 80%
of the updates are local, the median Multi response time
(242ms) is slower than the median MDCC response time
(231ms). Our MDCC design is targeted at situations with-
out particular access locality, and Multi only out-performs
MDCC when the locality is near 100%. Interesting to note is,
that the max latency of the Multi configuration is higher than
for full MDCC. This can be explained by the fact that some
transactions have to queue until the previous transaction fin-
ishes, whereas MDCC normally operates in fast ballots and
everything is done in parallel.

5.3.4 Data Center Fault Tolerance

We also experimented with various failure scenarios. Here,
we only report on a simulated full data center outage while
running the micro-benchmark, as other failures, such as
a failure of a transaction coordinator mainly depend on
set time-outs. We started 100 clients issuing write transac-
tions from the US-West data center. About two minutes into
the experiment, we simulated a failed US-East data center,
which is the data center closest to US-West. We simulated
the failed data center by preventing the data center from re-
ceiving any messages. Since US-East is closest to US-West,
“killing” US-East forces the protocol to tolerate the failure.
We recorded all the committed transaction response times
and plotted the time series graph, in figure 8.

Figure 8 shows the transaction response times before and
after failing the data center, which occurred at around 125
seconds into the experiment (solid vertical line). The average
response time of transactions before the data center failure
was 173.5 ms and the average response time of transactions
after the data center failure was 211.7 ms (dashed horizon-
tal lines). The MDCC system clearly continues to commit
transactions seamlessly across the data center failure. The
average transaction latencies increase after the data center
failure, but that is expected behavior, since the MDCC com-
mit protocol uses quorums and must wait for responses from
another data center, potentially farther away. The same argu-
ment also explains the increase in variance. If the data cen-
ter comes up again (not shown in the figure), only records
which have been updated during the failure, would still be
impacted by the increased latency until the next update or a
background process brought them up-to-date. These results
show MDCC’s resilience against data center failures.

6. Related Work

There has been recent interest in scalable geo-replicated
datastores. Several recent proposals use Paxos to agree on
log-positions similar to state-machine replication. For ex-
ample, Megastore [2] uses Multi-Paxos to agree on log-
positions to synchronously replicate data across multiple
data centers (typically five data centers). Google Spanner [8]
is similar, but uses synchronized timestamps to provide
snapshot isolation. Furthermore, other state-machine tech-
niques for WANs such as Mencius [18] or HP/CoreFP [10]
could also be used for wide-area database log replication. All
these systems have in common that they significantly limit
the throughput by serializing all commit log records and
thus, implicitly executing only one transaction at a time. As
a consequence, they must partition the data in small shards
to get reasonable performance. Furthermore, these protocols
rely on an additional protocol (usually 2PC, with all its dis-
advantages) to coordinate any transactions that access data
across shards. Spanner and Megastore are both master-based
approaches, and introduce an additional message delay for
remote clients. Mencius [18] uses a clever token passing
scheme to not rely on a single static master. This scheme
however is only useful on large partitions and is not easy ap-
plicable on finer grained replication (i.e., on a record level).
Like MDCC, HP/CoreFP avoids a master, and improves on
the cost of Paxos collisions by executing classic and fast
rounds concurrently. Their hybrid approach could easily be
integrated into MDCC but requires significant more mes-
sages, which is worrisome for real world applications. In
summary, MDCC improves over these approaches, by not
requiring partitioning, natively supporting transactions as a
single protocol, and/or avoiding a master when possible.

Paxos-CP [20] improves Megastore’s replication proto-
col by allowing non-conflicting transactions to move on to
subsequent commit log-positions and combining commits
into one log-position, significantly increasing the fraction of
committed transactions. The ideas are very interesting but
their performance evaluation does not show that it removes
the log-position bottleneck (they only execute 4 transactions
per second). Compared to MDCC, they require an additional
master-based single node transaction conflict detection, but
are able to provide stronger serializability guarantees.

A more fine-grained use of Paxos was explored in Con-
sensus on Commit [11], to reliably store the resource man-
ager decision (commit/abort) to make it resilient to failures.
In theory, there could be a resource manager per record.
However, they treat data replication as an orthogonal issue
and require that a single resource manager makes the deci-
sion (commit/abort), whereas MDCC assumes this decision
is made by a quorum of storage nodes. Scalaris [24] applied
consensus on commit to DHTs, but cannot leverage Fast
Paxos as MDCC does. Our use of record versioning with
Paxos has some commonalities with multi-OHS [1], a pro-
tocol to construct Byzantine fault-tolerant services, which

also supports atomic updates to objects. However, multi-
OHS only guarantees atomic durability for a single server
(not across shards) and it is not obvious how to use the
protocol for distributed transactions or commutative opera-
tions. The authors of Spanner describe that they tried a more
fine-grained use of Paxos by running multiple instances per
shard, but that they eventually gave up because of the com-
plexity. In this paper, we showed it is possible and presented
a system that uses multiple Paxos instances to execute trans-
actions without requiring partitioning.

Other geo-replicated datastores include PNUTS [7], Ama-
zon’s Dynamo [9], Walter [25] and COPS [17]. These use
asynchronous replication, with the risk of violating consis-
tency and losing data in the event of major data center fail-
ures. Walter [25] also supports a second mode with stronger
consistency guarantees between data centers, but this relies
on 2PC and always requires two round-trip times.

Use of optimistic atomic broadcast protocols for transac-
tion commit were proposed in [12, 21]. That technique does
not explore commutativity and often has considerably longer
response-times in the wide-area network because of the wait-
time for a second verify message before the commit is final.

Finally, our demarcation strategy for quorums was in-
spired by [3], which proposed for the first time to use extra
limits to ensure value constraints.
7. Conclusion
The long and fluctuating latencies between data centers
make it hard to support highly available applications that
can survive data center failures. Reducing the latency for
transactional commit protocols is the goal of this paper.

We proposed MDCC as a new approach for synchronous
replication in the wide-area network. MDCC’s commit pro-
tocol is able to tolerate data center failures without compro-
mising consistency, at a similar cost to eventually consis-
tent protocols. It requires only one message round-trip across
data centers in the common case. In contrast to 2PC, MDCC
is an optimistic commit protocol and takes advantage of sit-
uations when conflicts are rare and/or when updates com-
mute. It is the first protocol applying the ideas of General-
ized Paxos to transactions that may access records spanning
partitions. We also presented the first technique to guarantee
domain integrity constraints in a quorum-based system.

In the future, we plan to explore more optimizations of
the protocol, such as determining the best strategy (fast or
classic) based on client locality, or batching techniques that
reduce the message overhead. Supporting other levels of
read isolation, like PSI, is an interesting future avenue.

MDCC provides a transactional commit protocol for the
wide-area network which achieves strong consistency at a
similar cost to eventually consistent protocols.

8. Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd, Robbert van Renesse, for all the helpful comments
and suggestions. This research is supported in part by NSF

CISE Expeditions award CCF-1139158 and DARPA XData
Award FA8750-12-2-0331, and gifts from Amazon Web
Services, Google, SAP, Blue Goji, Cisco, Clearstory Data,
Cloudera, Ericsson, Facebook, General Electric, Horton-
works, Huawei, Intel, Microsoft, NetApp, Oracle, Quanta,
Samsung, Splunk, VMware and Yahoo!.

References
[1] M. Abd-El-Malek et al. Fault-Scalable Byzantine Fault-Tolerant Ser-

vices. In Proc. of SOSP, 2005.
[2] J. Baker et al. Megastore: Providing Scalable, Highly Available Stor-

age for Interactive Services. In CIDR, 2011.
[3] D. Barbará and H. Garcia-Molina. The Demarcation Protocol: A Tech-

nique for Maintaining Constraints in Distributed Database Systems.
VLDB J., 3(3), 1994.

[4] H. Berenson et al. A Critique of ANSI SQL Isolation Levels. In Proc.
of SIGMOD, 1995.

[5] M. Brantner et al. Building a database on S3. In Proc. of SIGMOD,
2008.

[6] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and Effi-
cient Asynchronous Broadcast Protocols. In Advances in Cryptology-
Crypto 2001, 2001.

[7] B. F. Cooper et al. PNUTS: Yahoo!’s Hosted Data Serving Platform.
Proc. VLDB Endow., 1, 2008.

[8] J. C. Corbett et al. Spanner: Google’s Globally-Distributed Database.
In Proc. of OSDI, 2012.

[9] G. DeCandia et al. Dynamo: Amazon’s Highly Available Key-Value
Store. In Proc. of SOSP, 2007.

[10] D. Dobre, M. Majuntke, M. Serafini, and N. Suri. HP: Hybrid paxos
for WANs. In Dependable Computing Conference, 2010.

[11] J. Gray and L. Lamport. Consensus on Transaction Commit. TODS,
31, 2006.

[12] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Transac-
tions over Optimistic Atomic Broadcast Protocols. In Proc. of ICDCS,
1999.

[13] D. Kossmann, T. Kraska, and S. Loesing. An Evaluation of Alternative
Architectures for Transaction Processing in the Cloud. In Proc. of
SIGMOD, 2010.

[14] L. Lamport. The Part-Time Parliament. TOCS, 16(2), 1998.
[15] L. Lamport. Generalized Consensus and Paxos. Technical Report

MSR-TR-2005-33, Microsoft Research, 2005.
[16] L. Lamport. Fast Paxos. Distributed Computing, 19, 2006.
[17] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t

Settle for Eventual: Scalable Causal Consistency for Wide-Area Stor-
age with COPS. In Proc. of SOSP, 2011.

[18] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building Efficient
Replicated State Machines for WANs. In Proc. of OSDI, 2008.

[19] P. E. O’Neil. The Escrow Transactional Method. TODS, 11, 1986.
[20] S. Patterson et al. Serializability, not Serial: Concurrency Control

and Availability in Multi-Datacenter Datastores. Proc. VLDB Endow.,
5(11), 2012.

[21] F. Pedone. Boosting System Performance with Optimistic Distributed
Protocols. IEEE Computer, 34(12), 2001.

[22] M. Saeida Ardekani, P. Sutra, N. Preguiça, and M. Shapiro. Non-
Monotonic Snapshot Isolation. Research Report RR-7805, INRIA,
2011.

[23] E. Schurman and J. Brutlag. Performance Related Changes and their
User Impact. Presented at Velocity Web Performance and Operations
Conference, 2009.

[24] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: Reliable Transac-
tional P2P Key/Value Store. In Erlang Workshop, 2008.

[25] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In Proc. of SOSP, 2011.

