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Generating Informative Paths for Persistent Sensing
in Unknown Environments

Daniel E. Soltero Mac Schwager Daniela Rus

Abstract— We present an online algorithm for a robot to
shape its path to a locally optimal configuration for collecting
information in an unknown dynamic environment. As the robot
travels along its path, it identifies both where the environment
is changing, and how fast it is changing. The algorithm then
morphs the robot’s path online to concentrate on the dynamic
areas in the environment in proportion to their rate of change.
A Lyapunov-like stability proof is used to show that, under our
proposed path shaping algorithm, the path converges to a locally
optimal configuration according to a Voronoi-based coverage
criterion. The path shaping algorithm is then combined with a
previously introduced speed controller to produce guaranteed
persistent monitoring trajectories for a robot in an unknown
dynamic environment. Simulation and experimental results with
a quadrotor robot support the proposed approach.

I. INTRODUCTION

Robots operating in dynamic and unknown environments
are often faced with the problem of deciding where to go
to get the most relevant information for their current task.
Informative path planning addresses this problem. Given a
dynamic unknown environment, and a robot with a sensor to
measure the environment, we want to find a path for the robot
that will maximize information gathering. To achieve this, the
robot needs to do two things: 1) learn the structure of the
environment by identifying the areas within the environment
that are dynamic and the rate of change for these areas;
2) compute a path which allows it to sense the dynamic
areas. Such a path is referred to as an informative path.

In this paper we present a new online path shaping al-
gorithm for generating closed informative paths in unknown
dynamic environments. The key insight is to use a parameter
adaptation law inspired by [1] to learn a function representing
the rate of change of each point in the environment. The
robot moves along the path, marking the areas it observes
as dynamic or static, and learning the rate of change of
the dynamic areas. While learning the environment model,
the algorithm simultaneously modifies its path based on this
model by changing its waypoints to optimize a cost function
related to the informativeness of the path. The cost function
attempts to place the path waypoints at the centroids of their
Voronoi cells, while also making sure the waypoints are not
too far from one another. An example of the results of our
path shaping algorithm can be seen in Figure 1.
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Fig. 1: Simulated system during the path shaping phase. The path, shown as
the black line, connects all the waypoints, shown as blue circles. The points
of interest are shown as purple dots. The simulated robot and its sensor
footprint are shown as a green dot and green circle, respectively.

Many important applications call for robots to move along
informative paths in unknown dynamic environments. For
example, our algorithm could be used to provide surveillance
of a city by allowing a robot to learn the regions where
crime is frequently committed, and generate paths to visit
the crime-ridden areas more frequently. Our algorithm could
also be used for a robot vacuum cleaning task, where we want
the robot to visit locations that accumulate dust and avoid
locations that remain clean, or an estimation task, where we
want the robot to keep an updated mental model of reality
by visiting dynamic locations more frequently than static
locations.



In this paper we apply our path shaping algorithm in
combination with the speed control algorithm presented
in [2] in order to design an informative trajectory (by
which we mean the path and the speed along the path)
to provide persistent sensing of an environment. In this
application we wish for the robot, assumed to have a finite
sensor footprint, to gather information so as to guarantee a
bound on the difference between the robot’s current model
of the environment and the actual state of the environment
for all time and over all locations. Since its sensor has
a finite footprint, the robot cannot collect the data about
all of the environment at once. As data about a dynamic
region becomes outdated, the robot must return to that region
repeatedly to collect new data. More generally, if different
parts of the environment change at different rates, we wish
to have the robot visit these areas in proportion to their rates
of change to ensure a bounded uncertainty in the estimation.
The algorithm from [2] calculates the speed of the robot
at each point along a given path in order to perform a
persistent sensing task, i.e. to prevent the robot’s model of
the environment from becoming too outdated. We use the
path morphing algorithm in this paper as the input to the
speed controller from [2] to produce informative trajectories
online with provable performance guarantees.

More specifically, the persistent sensing problem is defined
in [2] as an optimization whose goal is to keep a time
changing environment, modeled as an accumulation function,
as low as possible everywhere. The accumulation function
grows where it is not covered by the robot’s sensor, indicating
a growing need to collect data at that location, and shrinks
where it is covered by the robot’s sensor, indicating a de-
creasing need for data collection. This accumulation function
can be thought of as the amount of dust in a cleaning task, as
the difference between the robot’s mental model and reality
in a mapping or estimation task, or as the chance of crime
in a surveillance task. The goal of a persistent sensing task
is to maintain this accumulation function bounded for the
entire environment and for all time. In this paper we describe
an algorithm for informative path planning that enables the
robot to identify where and when to collect information.

The contributions of this paper are:
• a provably stable adaptive controller for learning the

location of dynamic events in an environment, and
computing an informative path for these events,

• a provably stable extension to the adaptive controller for
computing informative paths to perform locally optimal
persistent sensing tasks,

• simulation and hardware implementation.

A. Relation to Previous Work

Most of the previous work in path planning focuses on
reaching a goal while avoiding collision with obstacles,
e.g. [3], or on computing an optimal path according to some
metric, e.g. [4]. Other works have focused on probabilistic
approaches to path planning, e.g. [5]. More relevant to our
work is the prior work in adaptive path planning, e.g. [6], [7],
which considers adapting the path to changes in the system’s

state. Even more relevant to our work is that of informative
sensing, where the goal is to calculate paths that provide the
most information for robots [8], provide the most information
while maintaining periodic connectivity in order for robots
to share information and synchronize [9], provide the most
information taking into account complex vehicle dynamics
and sensor limitations [10], and other variations. All of the
mentioned previous work in informative sensing, as with
most in path planning, treats the path planning problem as
a search and/or recursive problem, with running times that
can be very high for large systems, and some of them only
providing approximations of optimal solutions. In contrast,
in this paper we took another approach to path planning; we
treat the problem as a continuous-time dynamical systems
control problem and use adaptive control tools to create a
novel algorithm for computing informative paths.

The adaptive controller we use to solve the informative
path planning problem is based on Voronoi partitions. Re-
lated work in Voronoi coverage includes [11], where the
objective was to design a sampling trajectory that minimized
the uncertainty of an estimated random field at the end of
a time frame. A form of generalized Voronoi partitions was
used to solve this optimization problem. In our work, we
also use Voronoi partitions as the basis of our algorithms,
but the field, although unknown, is not random. Also, we
are not concerned with optimizing trajectories that minimize
the predictive variance, but rather we generate paths by
optimizing the location of waypoints defining the path, ac-
cording to a Voronoi-based coverage criterion in an unknown
environment. In that sense, this work builds upon [1], where
a group of agents were coordinated to place themselves
in static, locally optimal locations to sense an unknown
environment. Voronoi partitions were used to position the
robots, while a parameter adaptation law allowed the agents
to learn the environment model. We build upon this work by
letting the waypoints in a single robot’s path define a Voronoi
decomposition, and using a parameter adaptation law to learn
both where and how fast the environment is changing.

The persistent sensing concept motivating this work was
introduced in [2], where a linear program was designed to
calculate the robot’s speed at each point along a path in
order for it to perform a persistent sensing task, i.e. maintain
the accumulation function bounded. The robot was assumed
to have full knowledge of the environment, and was given
a pre-designed path. In this paper we alleviate these two
assumptions by having the robot estimate the static/dynamic
structure of the environment, and use these estimates to shape
its path into a useful path. These two alleviations provide
a significant step towards persistent sensing in dynamic
environments.

In Section II we set up the problem, present locational
optimization tools, and present a basis function approxima-
tion of the environment. Section III introduces the adaptive
controller and proves stability of the system under this
controller. In Section IV, we introduce the controller exten-
sion, designed to execute persistent sensing tasks. Finally, in
Section V we provide simulated and hardware results.



II. PROBLEM FORMULATION

We assume we are given a robot whose task is to sense
an unknown dynamic environment while traveling along a
closed path consisting of a finite number of waypoints. The
goal is for the robot to identify the areas within the environ-
ment that are dynamic and compute a path which allows
it to sense these dynamic areas. A formal mathematical
description of the problem follows.

Let there be a robot, with position pr, traveling along a
finite number n of waypoints in a convex, bounded area
Q ⊂ R2. An arbitrary point in Q is denoted q and the
position of the ith waypoint is denoted pi. Let {p1, . . . , pn}
be the configuration of the path and let {V1, . . . , Vn} be
the Voronoi partitions of Q, with waypoint positions as the
generator points, defined as

Vi = {q ∈ Q : ‖q− pi‖ ≤ ‖q− pj‖,∀j 6= i},

where ‖ · ‖ denotes the l2-norm. We assume that the robot is
able to compute the Voronoi partitions based on the waypoint
locations, as is common in the literature [12], [13].

Since the path is closed, each waypoint i has a previous
waypoint i− 1 and next waypoint i+ 1 related to it, which
are referred to as the neighbor waypoints of i. Note that
i + 1 = 1 for i = n, and i − 1 = n for i = 1. Once the
robot reaches a waypoint, it continues to move to the next
waypoint, in a straight line interpolation.

A sensory function, defined as a map φ : Q 7→ R≥0
(where R≥0 refers to non-negative scalars) determines the
constant rate of change of the environment at point q ∈ Q.
The function φ(q) is not known by the robot, but the robot
is equipped with a sensor to make a point measurement of
φ(pr) at its position pr.
Remark II.1. The interpretation of the sensory function φ(q)
may be adjusted for a broad range of applications. It can
be any kind of weighting of importance for points q ∈ Q.
In this paper we treat it as a rate of change in a dynamic
environment.

A. Locational Optimization

Let pi,j = pi − pj . Notice that pi,j = −pj,i. Building
upon [1], we can formulate the cost incurred by the system
over the region Q as

H =

n∑
i=1

∫
Vi

Ws

2
‖q− pi‖2φ(q)dq +

n∑
i=1

Wn

2
‖pi,i+1‖2, (1)

where ‖q − pi‖ can be interpreted as the unreliability of
measuring the sensory function φ(q) when the robot is at
pi, and ‖pi,i+1‖ can be interpreted as the cost of a waypoint
being too far away from a neighboring waypoint. Ws and Wn

are constant positive scalar weights assigned to the sensing
task and neighbor distance, respectively. Note that unreliable
sensing and distance between neighboring waypoints are
expensive. A formal definition of informative path follows.
Definition II.2 (Informative Path). An informative path
corresponds to a set of waypoint locations that locally
minimize (1).

Next we define three properties analogous to mass-
moments of rigid bodies. The mass, first mass-moment,
and centroid of Vi are defined as MVi =

∫
Vi
Wsφ(q)dq,

LVi
=

∫
Vi
Wsqφ(q)dq and CVi

=
LVi

MVi
, respectively. Also,

let ei = CVi
− pi.

From locational optimization [14], and from differentiation
under the integral sign for Voronoi partitions [15] we have

∂H
∂pi

= −MViei −Wnpi+1,i −Wnpi−1,i. (2)

An equilibrium is reached when ∂H
∂pi

= 0. Assigning to each
waypoint dynamics of the form

ṗi = ui, (3)

where ui is the control input, we propose the following
control law for the waypoints to converge to an equilibrium
configuration:

ui =
Ki(MVi

ei + αi)

βi
, (4)

where αi = Wnpi+1,i + Wnpi−1,i, βi = MVi + 2Wn and
Ki is a uniformly positive definite matrix.
Remark II.3. βi > 0 has the nice effect of normalizing
the weight distribution between sensing and staying close to
neighboring waypoints. Also, Ki could potentially be time-
varying to improve performance.

B. Sensory Function Approximation
We assume that the sensory function φ(q) can be parame-

terized as an unknown linear combination of a set of known
basis functions. That is,
Assumption II.4 (Matching condition). ∃a ∈ Rm≥0 and
K : Q 7→ Rm≥0, where Rm≥0 is a vector of non-negative en-
tries, such that

φ(q) = K(q)
T
a, (5)

where the vector of basis functions K(q) is known by the
robot, but the parameter vector a is unknown.

Let â(t) be the robot’s approximation of the parameter
vector a. Then, φ̂(q) = K(q)

T
â is the robot’s approximation

of φ(q). Building on this, we define the mass-moment
approximations as

M̂Vi
=

∫
Vi

Wsφ̂(q)dq, L̂Vi
=

∫
Vi

Wsqφ̂(q)dq,

ĈVi
=

L̂Vi

M̂Vi

.

Additionally, we can define ã = â − a, and the sensory
function error, and mass-moment errors as

φ̃(q) = φ̂(q)− φ(q) = K(q)T ã, (6)

M̃Vi
= M̂Vi

−MVi
=

∫
Vi

WsK(q)T dq ã, (7)

L̃Vi
= L̂Vi

− LVi
=

∫
Vi

WsqK(q)T dq ã, (8)

C̃Vi
=

L̃Vi

M̃Vi

. (9)



Finally, in order to compress the notation, let Kr(t) and φr(t)
be the value of the basis function vector and the value of φ
at the robot’s position pr(t), respectively.

III. ADAPTIVE CONTROLLER

We design an adaptive control law and prove that it
causes the path to converge to a locally optimal configuration
according to (1), while causing the robot’s estimate of the
environment change rates to converge to the real description
by integrating its sensory measurements along its trajectory.

Since the robot does not know φ(q), but has an estimate
φ̂(q), the control law from (4) becomes

ui =
Ki(M̂Vi êi + αi)

β̂i
, (10)

where

αi = Wnpi+1,i +Wnpi−1,i, β̂i = M̂Vi + 2Wn,

êi = ĈVi − pi.

The parameter â is adjusted according to an adaptation
law which is described next. Let

Λ =

∫ t

0

w(τ)Kr(τ)Kr(τ)
T
dτ, (11)

λ =

∫ t

0

w(τ)Kr(τ)φr(τ)dτ, (12)

where w(t) is a positive constant scalar if t < τw, and zero
otherwise, and τw is some positive time at which part of the
adaptation shuts down to maintain Λ and λ bounded. Let

b =

n∑
i=1

∫
Vi

WsK(q)(q− pi)T dq ṗi, (13)

˙̂apre = −b− γ(Λâ− λ), (14)

where γ > 0 is the adaptation gain scalar. Since a(j) ≥ 0, ∀j
(where a(j) denotes the jth element of a), we enforce
â(j) ≥ 0, ∀j. We do this by using a projection law [1],

˙̂a = Γ( ˙̂apre − Iproj ˙̂apre), (15)

where Γ ∈ Rm×m is a diagonal positive definite adaptation
gain matrix, and the diagonal matrix Iproj is defined element-
wise as

Iproj(j) =


0, if â(j) > 0,

0, if â(j) = 0 and ˙̂apre(j) ≥ 0,

1, otherwise,
(16)

where (j) denotes the jth element for a vector and the jth

diagonal element for a matrix.
Theorem III.1 (Convergence Theorem). Under Assump-
tion II.4, with waypoint dynamics specified by (3), control
law specified by (10) and adaptive law specified by (15), we
have

(i) limt→∞ ‖M̂Vi
(t)êi(t) + αi(t)‖ = 0 ∀i ∈ {1, . . . , n},

(ii) limt→∞ ‖φ̃r(τ)‖ = 0 ∀τ | w(τ) > 0.

Proof. We define a Lyapunov-like function based on the
robot’s path and environment estimate, and use Barbalat’s
lemma to prove asymptotic stability of the system to a locally
optimal equilibrium.

Let

V = H+
1

2
ãTΓ−1ã. (17)

Taking the time derivative of V , we obtain

V̇ =

n∑
i=1

∂H
∂pi

T

ṗi + ãTΓ−1 ˙̂a

=

n∑
i=1

−(MVi
ei + αr)

T ṗi + ãTΓ−1 ˙̂a. (18)

From (7), (8), (9), it is easy to check that

LVi
= MVi

CVi
= MVi

ĈVi
+ M̃Vi

(ĈVi
− C̃Vi

).

Plugging this into (18),

V̇ =

n∑
i=1

−(MVi êi + αi)
T ṗi + (L̃Vi

− M̃Vi
ĈVi

)T ṗi

+ãTΓ−1 ˙̂a.

Using (7), we have

V̇ =

n∑
i=1

−(M̂Vi
êi + αi)

T ṗi + (L̃Vi
− M̃Vi

pi)
T ṗi

+ãTΓ−1 ˙̂a.

Substituting the dynamics specified by (3) and control law
specified by (10), we obtain

V̇ =

n∑
i=1

− 1

β̂i
(M̂Vi

êi + αi)
T
Ki(M̂Vi

êi + αi)

+

n∑
i=1

(L̃Vi
− M̃Vi

pi)
T
ṗi + ãTΓ−1 ˙̂a.

Using (7) and (8),

V̇ =

n∑
i=1

− 1

β̂i
(M̂Vi êi + αi)

T
Ki(M̂Vi êi + αi)

+ãT
n∑
i=1

∫
Vi

WsK(q)(q− pi)T dq ṗi

+ãTΓ−1 ˙̂a.

Plugging in the adaptation law from (15), (11) and (12),

V̇ =

n∑
i=1

− 1

β̂i
(M̂Vi êi + αi)

T
Ki(M̂Vi êi + αi)

−γ
∫ t

0

w(τ)(φ̃r(τ))
2
dτ − ãT Iproj ˙̂apre. (19)

Denote the three terms in (19) as ξ1(t), ξ2(t) and ξ3(t), so
that V̇(t) = ξ1(t)+ξ2(t)+ξ3(t). Notice that ξ1(t) ≤ 0 since
Ki is uniformly positive definite and β̂i > 0, ξ2(t) ≤ 0
since it is the negative integral of a squared quantity, and
it was proven in [1] that ξ3(t) ≤ 0. Now consider the time



integral of each of these three terms,
∫ t
0
ξk(τ)dτ , k = 1, 2, 3.

Since each of the terms is non-positive,
∫ t
0
ξk(τ)dτ ≤ 0, ∀k,

and since V > 0, each integral is lower bounded by∫ t
0
ξk(τ)dτ ≥ −V0, where V0 is the initial value of V . There-

fore, these integrals are lower bounded and non-increasing,
and hence limt→∞

∫ t
0
ξk(τ)dτ exists and is finite for all k.

Furthermore, it was shown in [1] (Lemma 1) that ξ̇1(t) and
ξ̇2(t) are uniformly bounded, therefore ξ1(t) and ξ2(t) are
uniformly continuous. Hence, by Barbalat’s Lemma [16],
ξ1(t)→ 0 and ξ2(t)→ 0. This implies (i) and (ii).

Remark III.2. Property (i) from Theorem III.1 implies that
the path will reach a locally optimal configuration for sens-
ing, i.e. an informative path, where the waypoints reach a
stable balance between providing good sensing locations and
being close to their neighbor waypoints. Additionally, this
balance can be tuned to the desired behavior (short paths vs.
good coverage) by proper selection of Wn and Ws.
Remark III.3. Property (ii) from Theorem III.1 implies that
the sensory function estimate error, φ̃(q), will converge to
zero for all points on the robot’s trajectory with positive
weight w(t), but not necessarily for all the environment. This
means that the robot will learn the true sensory function for
the environment if its trajectory is rich enough while the
weight is positive. Since it is crucial for the sensory function
estimate to approach the true sensory function for all the
environment, the initial waypoint locations can be designed
so the robot initially travels most of the environment in
dynamic unknown environments (see Figure 2).

This adaptive controller is applicable to any sensing task
done by a robot without full knowledge of the environment
structure. In the next section we present an extension that is
specific to persistent sensing tasks.

IV. ADAPTIVE CONTROLLER FOR PERSISTENT SENSING

The main motivation behind this work is to generate an
informative path that can be used by a robot tasked with
persistent sensing. We now extend the adaptive controller
from Section III and prove that it enables a robot with a
finite sensor footprint to learn the environment dynamics, in
the form of growth rates of the environment’s accumulation
function, and to generate an informative path to follow and
sense the growing accumulation function in order to maintain
it bounded.

The robot is assumed to be equipped with a sensor with a
finite footprint. Examples of sensors with finite footprint are
a camera for a surveillance task and a vacuum cleaner for
a cleaning task. Although any footprint shape can be used,
we use a constant circular footprint for simplicity, defined
as F (pr) = {q ∈ Q : ‖q− pr‖ ≤ ρ}, when the robot is at
location pr, where ρ is a constant positive scalar.

We would like to use the stability criterion for a persistent
sensing task given the speed of the robot at each point
along the path, referred to as the speed profile, defined
in [2], and plug it into the adaptive controller, such that the
control action increases the stability margin of the persistent
sensing task through time. However, since the robot does not

know the environment, but has an estimate of it, it uses the
estimated version of this stability criterion, given by

φ̂(q, t)

c(q)
T (t)− τc(q, t) = ŝ(q, t) < 0,

∀q s.t. φ̂(q, t) > 0, (20)

where φ̂(q, t) (the estimated sensory function) is the esti-
mated rate at time t at which the environment’s accumulation
function grows at point q (referred to as growth rate), the
constant scalar c(q) is the rate at which the accumulation
function shrinks (is consumed) when the robot’s sensor is
covering point q, and c(q) > φ(q), ∀q is necessary for a
stable persistent task to be feasible. Also, T (t) is the time it
takes the robot to complete the path at time t, and τc(q, t)
is the time the robot’s sensor covers point q along the path
at time t. These last two quantities are calculated using the
speed profile for the path at time t and the robot’s sensor
footprint F (pr). The estimated stability margin of the system
is Ŝ(t) = −(maxq ŝ(q, t)). A stable persistent task is one
in which S (the true version of Ŝ) is positive, which means
the robot is able to maintain the environment’s accumulation
function bounded at all points q. Note that only points q
that satisfy φ̂(q, t) > 0 are considered in a persistent sensing
task since it is not necessary to persistently sense a point that
has no sensory interest. Points that satisfy this condition are
referred to as points of interest.

In [2], a linear program was given which can calculate the
speed profile for the path at time t that maximizes Ŝ(t) (or
S(t) for ground-truth). With the speed profiles obtained with
this linear program, and using (20), we can formulate a new
controller to drive the robot’s path in a direction to perform
stable persistent sensing tasks. Hence, from this point on,
we assume that this maximizing speed profile is known and
used to obtain ŝ(q, t), ∀q, ∀t.

Let the waypoints have new dynamics of the form

ṗi = Iiui, (21)

where ui is defined in (10),

Ii =

{
0, if ∂Ŝ

∂pi

T
ui < 0 and t− tiu > τdwell,

1, otherwise,
(22)

τdwell is a design parameter, and tiu is the most recent time at
which Ii switched from zero to one (switched “up”). Equa-
tions (21) and (22) look at how each waypoint movement
affects the stability margin through time, and ensure that this
quantity does not decreases.
Remark IV.1. For positive ε → 0, ∂Ŝ

∂pi
(t) is not always

defined when arg maxq ŝ(q, t − ε) 6= arg maxq ŝ(q, t + ε).
In such cases ∂Ŝ

∂pi
(t) refers to ∂Ŝ

∂pi
(t+ ε).

Theorem IV.2 (Convergence Theorem for Persistent Sensing).
Under Assumption II.4, with waypoint dynamics specified by
(21), control law specified by (10), and adaptive law specified
by (15), we have

(i) limt→∞ Ii(t)‖M̂Vi
(t)êi(t) + αi(t)‖ = 0,

∀i ∈ {1, . . . , n},



(ii) limt→∞ ‖φ̃r(τ)‖ = 0, ∀τ | w(τ) > 0.

Proof. We define a Lyapunov-like function based on the
robot’s path and environment-rates estimate, and prove
asymptotic stability of the system to a locally optimal
equilibrium. However, contrary to the previous section, a
bit more work is needed to prove property (i) due to the
piecewise differentiability of the new Lyapunov-like function
caused by the new waypoint dynamics.

Let Vf be the new Lyapunov-like function, and let Vf = V
from (17). Then, following the procedure from Section III,
but with ṗi defined by (21), we get

V̇f =

n∑
i=1

− 1

β̂i
(M̂Vi

êi + αi)
T
IiKi(M̂Vi

êi + αi)

−γ
∫ t

0

w(τ)(φ̃r(τ))
2
dτ − ãT Iproj ˙̂apre. (23)

Using a similar analysis as in Section III, denote the
three terms in (23) as −ξ1(t), −ξ2(t) and −ξ3(t), so
that V̇f (t) = −ξ1(t)− ξ2(t)− ξ3(t). In Section III we
showed that ξ1(t) ≥ 0, ξ2(t) ≥ 0, and ξ3(t) ≥ 0. Addi-
tionally, the time integral of each of these three terms,
limt→∞

∫ t
0
ξk(τ)dτ , exists and is finite for all k. It was

shown in [1] (Lemma 1) that ξ̇2(t) is uniformly bounded,
therefore ξ2(t) is uniformly continuous. Hence, by Barbalat’s
Lemma, ξ2(t)→ 0. This implies (ii).

Now, as proven before,
∫∞
0
ξ1(τ)dτ exists and is finite,

and we want to show that limt→∞ ξ1(t) = 0. Let ξi1
be defined such that ξ1 =

∑n
i=1 ξ

i
1. Let us assume that

limt→∞ ξi1(t) 6= 0, that is, ∀t ∃tj ≥ t, ε > 0, such that
ξi1(tj) ≥ ε. Let {tj}∞j=1 be the infinite sequence of tj’s
separated by more than 2τdwell such that ξi1(tj) ≥ ε. That
is, |tj − tj′ | > 2τdwell, ∀j 6= j′ and tj , tj′ ∈ {tj}∞j=1. Since,
from [1] (Lemma 1), ξ̇i1(t) is uniformly bounded by some
value B when Ii = 1 (i.e. |ξ̇i1(t)| ≤ B), and whenever Ii = 1,
it remains with this value for at least τdwell, then we have that
∀tj ∈ {tj}∞j=1,∫ tj+τdwell

tj−τdwell

ξi1(τ)dτ ≥ εδ > 0, (24)

where

δ = min{ ε

2B
,
τdwell

2
} > 0. (25)

Then∫ ∞
0

ξi1(τ)dτ ≥
∑

tj∈{tj}∞j=1

∫ tj+τdwell

tj−τdwell

ξi1(τ)dτ

≥
∑

tj∈{tj}∞j=1

εδ, (26)

which is infinite, and contradicts the already proven fact that∫∞
0
ξ1(τ)dτ =

∑n
i=1

∫∞
0
ξi1(τ)dτ exists and is finite. There-

fore, by contradiction, limt→∞ ξi1(t) = 0, hence property (i)
holds.

Remark IV.3. The stability margin can theoretically worsen
while Ii, for some i, cannot switch from one to zero because

(a) Learning iteration: 0

(b) Learning iteration: 75

(c) Learning iteration: 210

Fig. 2: Simulated system during the learning phase. Left: 1) the path, shown
as the black line, connects all the waypoints, shown as blue circles; 2)
the points of interest in the environment are shown as purple dots; 3)
the simulated robot and its sensor footprint are shown as a green dot and
green circle, respectively. Right: the environment growth rates, where the
translucent data represents the true environment growth rates and the solid-
colored data represents the estimated growth rates.
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Fig. 3: Integral parameter error
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Fig. 4: Lyapunov-like function

it is waiting for t − tiu > τdwell. However, τdwell can be
selected arbitrarily small and, in practice, any computer will
enforce a τdwell due to discrete time steps. Therefore, it is
not a practical restriction. As a result, intuitively, (i) from
Theorem IV.2 means that limt→∞ ‖M̂Vi

(t)êi(t)+αi(t)‖ = 0
only if this helps the persistent sensing task. Otherwise
limt→∞ Ii(t) = 0, meaning that the persistent task will not
benefit if waypoint i moves.
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Fig. 5: Mean waypoint position error
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Fig. 7: Stability margin for persistent sensing task

V. SIMULATION, IMPLEMENTATION AND RESULTS

A. Numerical Simulation

The adaptive controller for persistent tasks was simulated
in a MATLAB environment for many test cases. Here we
present a case for n = 71 waypoints. A fixed-time step
numerical solver was used with a time step of 0.01 seconds,
and τdwell = 0.009. The region Q was taken to be the
unit square. The sensory function φ(q) was parametrized
as a Gaussian network with 25 truncated Gaussians, i.e.
K = [K(1) · · · K(25)]T , where

G(j) =
1

σ
√

2π
exp

{
− (q− µj)2

2σ2

}
,

Gtrunc =
1

σ
√

2π
exp

{
− ρtrunc

2

2σ2

}
,

K(j) =

{
G(j)−Gtrunc, if ‖q− µj‖ < ρtrunc,

0, otherwise,
(27)

σ = 0.18 and ρtrunc = 0.1. The unit square was divided
into an even 5 × 5 grid and each µj was chosen so
that each of the 25 Gaussians was centered at its cor-
responding grid square. The parameters were chosen as
a(6) = 20, a(7) = 10, a(8) = 16, a(14) = 10, a(17) = 16,
and a(j) = 0 otherwise. The environment growth rates cre-
ated with these parameters can be seen in Figure 2c. The
estimated parameter â was initialized element-wise to 5,
and Λ and λ were initialized to zero. The parameters for
the controller were Ki = 30, ∀i, Γ = identity, γ = 500,
Wn = 3, Ws = 50, w = 10, and ρ = 0.05. The spatial
integrals were approximated by discretizing each Voronoi
region into a 7 × 7 grid and summing contributions of the
integrand over the grid. Voronoi regions were computed
using a decentralized algorithm similar to the one in [12].
The environment was discretized into a 12×12 grid and only
points in this grid that satisfied φ̂(q) > 0 were used as points
of interest in (20) . This discretization is only used in (20),
and by using this discretized version of the environment, the
running time for experiments is greatly reduced. For more
sensitive systems, this grid can be refined.

The initial path was designed to “zig-zag” across the
environment (see Figure 2) to provide a rich initial trajectory
for the robot to sample the environment. We first allowed
the robot to go through the initial path without reshaping it
so that it could sample the space and learn the distribution
of sensory information in the environment. Therefore, we
present results in two separate phases: 1) learning phase, and

2) path shaping phase. The learning phase corresponds to the
robot traveling through its full path once, without reshaping
it, in order to learn the environment rates of change. The path
shaping phase corresponds to when (21) is used to reshape
the path into an informative path, and starts when the learning
phase is done. In the path shaping phase, w = 0.

1) Learning Phase: The robot travels its entire path
once, measuring the environment growth rates as it travels
and using the adaptation law from (15) to estimate these
rates. This process can be seen in Figure 2. As the robot
travels its path, the adaptation law causes φ̃(q) → 0,
∀q ∈ Q, as can be seen from Figures 2a, 2b, 2c, where
the robot’s estimate of the environment growth rates (φ̂(q),
solid-colored data) converges to the real environment growth
rates (φ(q), translucent data) for all of the space. This
means that the robot’s trajectory was rich enough to generate
accurate estimates of the environment structure. Figure 3
shows that limt→∞

∫ t
0
w(τ)(φ̃r(τ))2dτ = 0, in accordance

with (ii) from Theorem IV.2. Finally, for this learning phase,
we see in Figure 4 that the Lyapunov-like function Vf is
monotonically non-increasing, which supports our theory.

2) Path Shaping Phase: Once the robot travels through
its path once (and learns the environment growth rates),
the controller from Section IV is activated. We can see
how the path evolves under this controller in Figure 1.
The robot learns the location of the points of interest (with
positive growth rate) in the learning phase and, consequently,
shapes its path to cover these points while improving the
stability margin of the persistent sensing task. After 65
iterations (Figure 1c), the path already tends to go through
all points of interest, while avoiding all other points. At 255
iterations (Figure 1f), the path clearly only goes through
points of interest, enabling the robot to perform a locally
optimal persistent sensing task. The path at 800 iterations is
approximately the same to the one at 255 iterations.

Figure 5 shows the true and estimated mean way-
point position errors, where the estimated error refers
to the quantity Ii(t)‖M̂Vi(t)êi(t) + αi(t)‖. As shown,
limt→∞ Ii(t)‖M̂Vi(t)êi(t) + αi(t)‖ = 0, in accordance to
(i) from Theorem IV.2. Figure 6 shows the Lyapunov-like
function Vf monotonically non-increasing during this path
morphing phase and settling to a local minimum, meaning
that the path is driven to a locally optimal configuration that
is helpful for the persistent sensing task. The initial value of
this function in the path morphing phase is the final value
of the function in the learning phase.



(a) Iteration 0 (b) Iteration 50 (c) Iteration 375

Fig. 8: Hardware implementation of the system using a quadrotor robot. Three snapshots of the path shaping phase at different iteration values are shown.
The path, shown as the black line, connects all the waypoints. The points of interest in the environment are shown as purple dots. The robot is the green-lit
quadrotor, and its sensor footprint is represented by the green circle under the robot’s position.

Finally, Figure 7 shows the persistent sensing task’s sta-
bility margin evolving through time, using the speed profiles
from [2]. The estimated stability margins is shown, as well
as the true value for ground-truth. The stability margin
starts off with a negative value, indicating that the persistent
sensing task is initially unstable, and increases through time,
indicating that the path is morphing to make the persistent
sensing task “more stable”. By the end of the simulation, the
persistent sensing task is stable, i.e. the stability margin is
positive, and the robot achieves an informative trajectory. The
discrete jumps in the stability margin are due to the discrete
time steps, and can be minimized by shortening these steps.

B. Implementation
The adaptive controller for persistent tasks was imple-

mented with a quadrotor robot for the same simulated
environment as described earlier and for a path consisting of
71 waypoints. The accompanying video submission presents
the results of this implementation. The path shaping phase
was run for 375 iterations. Results for the implementation
were practically identical to simulated results and are omit-
ted to avoid redundancy. Figure 8 shows snapshots of the
implementation at different iteration values. Figure 8c shows
the final informative path, which is approximately the same
to that in Figure 1f from the simulations.

VI. CONCLUSION

This paper uses a Voronoi-based coverage approach, build-
ing upon previous work in [1], to generate an adaptive
controller for a robot to learn the rates at which the environ-
ment changes, through parameter estimation, and shape its
path into an informative path, i.e. a locally optimal path for
sensing dynamic regions in the environment. A Lyapunov-
like proof showed that the controller will shape the path
to a locally optimal configuration, and drive the estimated
parameter error to zero, assuming the robot’s trajectory is
rich enough. An extension of the adaptive controller was
designed and proven to drive the path to a locally optimal
configuration that is beneficial to a persistent sensing task.
The adaptive control law was simulated and implemented
for a robot moving through 71 waypoints, generating results
that support the theory, and producing stable persistent tasks
based only on the robot’s estimate of the environment.
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