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Improving the Performance of Multi-Robot Systems by Task Switching

Cynthia Sung, Nora Ayanian, Daniela Rus

Abstract— We consider the problem of task assignment for
a multi-robot system where each robot must attend to one or
more queues of tasks. We assume that individual robots have
no knowledge of tasks in the environment that are not in their
queue. Robots in communication with each other may share
information about active tasks and exchange queues to achieve
lower cost for the system. We show that allowing this kind of
task switching causes tasks to be completed more efficiently.
In addition, we present conditions under which queues can be
guaranteed to make progress, and we support these claims with
simulation and experimental results. This work has potential
applications in manufacturing, environmental exploration, and
pickup-delivery tasks.

I. INTRODUCTION

Efficient coordination is a requirement for success in many
applications of multi-robot systems. In general, a complex
task given to a multi-robot system consists of a sequence of
simpler subtasks that can be allocated to individual robots.
For example, a multi-robot system assembling a bookcase
must execute part and tool delivery subtasks (e.g. bring
shelves, screws, and screw drivers to the assembly location),
then perform grasping, manipulation, and assembly subtasks
(e.g. add the next shelf to the subassembly). To be robust
against failures, allocation of these tasks to robots in the
system must occur in a distributed way.

A large body of literature exists that addresses the problem
of decentralized task allocation. For instance, considerable
work in dynamic vehicle routing [1]-[3] is concerned with
determining least-cost assignments for multiple vehicles ser-
vicing stochastic demands. The most popular approach is
a divide-and-conquer [1] approach, in which the vehicles
partition the environment among themselves, and each ve-
hicle individually attends to the tasks in its own region.
This approach has the added benefit that since each vehicle
stays within its own region, the challenge of inter-vehicle
collision avoidance is averted. Although the divide-and-
conquer approach is decentralized in that no negotiation
about task assignment between vehicles is necessary once
the partitioning has been decided, it requires a vehicle to be
aware of every demand that appears within its region, which
is not always feasible.
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For example, consider a door-to-door mail delivery system
(e.g., [4]). Packages are left at various locations in an
environment, with their destinations specified. Robots in the
process of delivering a package (completing a task) may find
new packages awaiting delivery. The destinations of these
new packages correspond to new task locations, but those
locations may not be inside the region of the robot who
discovered the task. If the robot responsible for the region
containing the destination is not within communicating dis-
tance, the discovering robot has no way to inform the robot
responsible for the task or to hand over the package. In
this case, the divide-and-conquer approach cannot solve the
problem. Similar examples can be constructed for applica-
tions such as manufacturing, environmental monitoring, and
transportation.

The key challenge of coordination for complex multi-robot
tasks in these applications is that robots have only partial
knowledge of the tasks, which limits their ability to satisfy
the global objective. Market-based approaches [5], [6] have
recently gained attention as a method of dealing with this
challenge. As individual robots come into contact, they bid
for the privilege of performing a task and thereby reduce the
total system cost. For the most part, however, the cost of
performing a task can only be estimated, and the resulting
inaccurate bids may lead to situations where tasks cannot be
completed.

This paper presents an approach to distributed task assign-
ment in a perfectly known environment, where individual
robots with partial knowledge about the locations of tasks
can exchange tasks with other robots that they encounter.
A similar approach is used in [7], where tasks can be
exchanged among communicating robots in partially known
environments. While that work ensures that all tasks are
completed, the results are restricted to situations where every
robot has exactly one task. It does not allow robots to serve
queues or multiple tasks, which could result in some tasks
being ignored. This paper contributes the following:

o a decentralized task-switching algorithm that extends
the results in [7] to the case where robots have queues
of tasks (rather than single tasks), including infinite
queues,

« the introduction of an aging function for timelier task
completion,

« conditions for guarantees of forward progress in every
task queue, and

o experimental evaluation across various switching poli-
cies and discussion of the cost-computation tradeoff.

The outline of the paper is as follows. Section II formally



defines the problem and objectives. Section III summarizes
the general approach towards task assignment, our switching
policy, and control. In Sections IV and V, we provide
guarantees on task completion and forward progress in the
system. Finally, Section VI discusses simulation results of
various switching policies.

II. DEFINITIONS AND PROBLEM STATEMENT

The problem formulation and notation used in this pa-
per builds on [7] and are illustrated in Fig. 1. Specifi-
cally, consider a bounded, connected workspace VW C R
The workspace contains a team of N agents (robots)
Va={a'li=1,...,N} with state

x=[xIx} - x4, xi=[ziyi 2z )T €R?
and dynamics
Xi = u;

We assume agents can accurately localize themselves
in the environment. The agents must collectively per-
form a collection of tasks Q in the form of N queues
Q={Q%k=1,...,N}

The communication graph on the team of agents is
a dynamic undirected graph Gy = (Va,En) where
En = {(a’,a’)|a’ and a’ can communicate}. As in [7], we
assume that the workspace YV has been tessellated into a
finite number of convex, non-overlapping polytopes p™ such
that any polytope and its neighbor intersect along exactly one
hyperplane. This allows us to represent the environment as a
graph GP = (VP, EP) where VP = {p',p?,...} are the poly-
topes and &P = {(p™,p™ )|p™ shares a facet with p™ }.
Each edge is associated with a positive weight. A pair of
agents in a pair of polytopes (p™, pm/) can communicate if
an agent at any position in p™ would be able to commu-
nicate with an agent at any position in p""/. Therefore, the
polytopes must be sufficiently small that agents in adjacent
polytopes are able to communicate; the polytopes can easily
be subdivided if this is not the case.

A set of agents form a group G C V4 if the subgraph of
G induced by G is connected. Agents must be in the same
group to share information about task locations. Finally, we
assume all agents are identical and, specifically, that they are
all equally able to perform any task.

A task  queue is a list of  positions
Q" ={qt,...,¢".}, n* >0, in W that must be visited in
order. We say task q{f is active if it is currently at the front
of the queue, and we let 0% € {1,...,n*} be the queue’s
state (i.e., the current position in the queue, or the current
value of b). An active task ql’f is completed if the agent
assigned to Q¥ enters the e-neighborhood of ql’f, for some
small characteristic € > 0 of the workspace, at which time
the next task gy,, becomes active. Each agent is aware
of only the currently active tasks in its group, and has
no knowledge of any tasks that appear later in the queue
or that belong to other agents outside of communication
range. Finally, agents who have completed their assigned
task queues remain at the site of the last task. This can

be achieved, for example, by causing the last task in the
queue to remain active forever despite being completed. For
succinctness, we say that the last task in a queue is final.

We define a task assignment as a bijective function
m : @ — V4 between the task queues and the agents.
We say agent a’ is assigned to Q" if 7 (Q¥) = o' and
correspondingly that Q¥ belongs to a*. Our goal is to find
a task assignment that minimizes the cost (time, distance
traveled, etc.) of completing the tasks.

In order to simplify our problem and decouple task assign-
ment from control, we use a cost function that is independent
of the equations of motion. Let P¥(gf) be the path in the
polytope graph GP that agent a’ has traveled during the
time it has been assigned task ¢f, and let w'(gf) be the
sum of weights of the edges traversed along that path. The
total distance that all agents assigned to ql’f have traveled is
wl =N wi(gl). For a task that is not yet active, wf = 0.
Then, we define a cost function

. N nP k
G total travel weight 3., 35, wy 0
number of tasks 22;1 nk
which is the eventual mean travel weight per task once
all tasks have been completed. Minimizing this value is
equivalent to minimizing the total travel weight for all agents
to complete all the tasks.
The problem addressed in this paper is as follows:
Problem 2.1 (Finite Queue): For a given initial state X,
find a task assignment 7, which may vary with time, such
that:

(a) all tasks are completed in finite time and

(b) the cost as defined in Eq. (1) is minimized.

Note that due to the task completion condition 2.1(a), this
optimization problem is only well-defined when all queues
are of finite length. For the case of an infinite queue, we
instead consider queues’ progress. We say a queue is making
progress if the currently active task in the queue is completed
in a finite amount of time. If this is not the case, we say the
queue has stalled.

The cost function given in Eq. (1) also requires task
completion. In order to translate this function into the infinite
queues case, we define instead a running cost

N k
_ D ket Dt Wh

cost,(t) ~ 2
D k=1 0"
and define the infinite queues cost function to be
N ok k
_ _1w
cost= lim cost.(t) = lim % 3)
t—+o0 t——+o0 Zk:l O-k:

The modified problem statement is as follows:

Problem 2.2 (Infinite Queue): For a given initial state xg,
find a task assignment 7, which may vary with time, such
that

1) all queues make progress and
2) the cost as defined in Eq. (3) is minimized.
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Fig. 1. Relevant variables for an example problem case. (a) Agents al and a? (solid black) live in workspace WV and attend to queues Q' (blue) and Q2
(red). The agents individually complete the first task and continue to second when (b) they encounter each other and form a group. The cost of completing

a task is the total distance traveled by any agent assigned to that task; i.e., w

III. METHODS

Given the communication constraints, the existence of
decentralized, optimal solutions to Problems 2.1 and 2.2 is
unlikely. Agents must rendezvous to coordinate and share
information about task locations; but in order to know they
must coordinate, agents must already have some information
about the tasks they will exchange. Rather than optimizing
the global task assignment, then, we focus on cost improve-
ments that can be made during local interactions that occur
naturally as agents move towards their currently active tasks.

A. Algorithm

Each group of agents coordinates independently of other
groups to navigate to its active tasks, according to Algo-
rithm 1. The path planning step (line 4) is performed by
the group of agents as a whole, and may take advantage of
parallel speedup [8], [9].

Figure 1 shows an example of Algorithm 1 on a 2 agents,
2 queues system. At the beginning (Fig. 1(a)), agents a'
and a2 are not in communication, so each forms its own
group. Each agent independently plans to complete the tasks
in its task queue. In Fig. 1(b), the agents come within
communication range of each other and form a single group.
After exchanging position and task location data (line 3),
the agents determine that the least cost assignment is that in

Algorithm 1: Algorithm Run by Agent a’

1 COMMUNICATIONS: Determine a'’s group:
G + {a’|a’ and a’ can communicate};

2 while not all active tasks belonging to G completed do

3 COMMUNICATIONS: Share agent/task positions;

4 PATH PLANNING (Sec. III-B): Find the least-cost
in-group task assignment and corresponding path in
the group configuration space;

5 SWITCHING: Exchange queues according to line 4;
6 while G unchanged AND no tasks completed do

7 CONTROL: Calculate control inputs (Sec. III-C);
8 COMMUNICATIONS: Update G, agent positions;
9 end

10 end

3 = wh(q}) + w?(q3).

which they exchange queues (line 4). In Fig. 1(c), the agents
move towards their new task assignments (lines 6-9). They
break communication and again form individual groups. The
agents retain information only about the new task queue that
they have been assigned.

B. Switching and Path Planning

The decision to switch task queues and the least-cost path
to achieve the new task assignment is determined using an
A* search over the group task configuration space for the
least-cost path between the group’s starting positions and
task locations [10]. A* is used, as opposed to the bipartite
matching of [11], since the cost of an agent-goal assignment
depends on the other assignments and whether an agent must
coordinate with others to avoid collision. For each group G,
we construct a space consisting of all transformations of the
agents in the group such that no agents in the group collide
with each other. For groups that are a single agent, this space
is equivalent to the workspace WV itself. For larger groups, it
is a subset of the Cartesian power of W (points correspond-
ing to inter-agent collisions are removed). The tessellation
of W induces a tessellation on the group task configuration
space, allowing us to define a discrete representation of the
group task configuration space as a graph, G = (V' £F),
where vertices VI = {P', P% ...} are polytopes in this
Cartesian product space and edges in £ connect pairs of
polytopes that share a supporting hyperplane. Each edge
is weighted with a heuristic distance designed so that the
optimal path through this group polytope graph is truly
the optimal path with respect to our defined cost function
(refer [7] for more details). Applying A* to the resulting
graph yields a discrete path on the polytopes between the
group’s current configuration and its goal. The final positions
of the agents give the least cost task assignment for the given
starting and task locations.

C. Control Policy

Once the path on the polytopes is found, local navigation
functions, described in [10], on each pair of sequential
polytopes drive the system toward the goal. A navigation
function on a polytope P is a twice differentiable Morse
function ¢ : P — [0,1] with a unique minimum of 0O at
the goal point in P and that evaluates uniformly to 1 on the



boundary. Using the control law u = —V(x), we can drive
the system to successive intermediate goals inside polytopes
along the computed path. Note that while theoretically the
state’s descent along the gradient to the goal is infinite
in time, the time to enter within an e-ball of it is finite.
Practically, it is impossible to attain an exact position for a
real system, and getting within a small distance of a goal is
acceptable. Therefore, this control law will allow the system
to reach a goal in finite time.

IV. ANALYSIS

The switching policy functions entirely online and requires
no centralized entity, making a globally optimal task as-
signment impossible. It is simple to construct a set of task
queues for which this approach will perform arbitrarily badly
when compared to an optimal centralized policy with full
knowledge of the queue contents. Despite this, our switching
policy does guarantee a decrease in global cost for every
exchange of tasks that occurs, and that progress is made on
the global level. Of greater interest, however, is that all task
queues make progress.

A. Finite-Length Queues

In the case that all task queues are of finite length, the
system is stable and all tasks will complete. This result is a
straightforward extension of the proofs in [7].

Theorem 4.1: If all task queues are of finite length, every
task in @ will be completed.

Proof: Partition time into intervals {e; = (to,t1),
es = (t1,t2),...}, which we call epochs, during which the
set of active tasks remains constant. An epoch ends when a
task is completed and the next task becomes active. The last
epoch extends until ¢ — +o0.

Now consider an epoch e;. During this time interval, the
active tasks in the system are constant, so the proof in [7]
holds, and the system will converge asymptotically to the
task locations. Because we require agents to get within only
e distance of a task, some task will be completed after only
a finite amount of time. This task can be one of two types:

I) The task is not final. A new task will become active,
and the epoch will end. At least one queue will make
progress.

IT) The task is final. Since no new task will become active,
the epoch will continue and the system will continue to
converge to the given task locations. If tasks remain that
are not yet completed, the next task to be completed
will again fall into one of these two types. If all tasks in
the epoch are completed, then they all are the final tasks
in their queues, or else the epoch will have ended before
this time. In that case, all tasks in Q are complete.

Therefore, any epoch containing active tasks that are not
final will end after some finite amount of time. The only
epoch that can last forever, i.e., the last epoch, is one in
which all tasks are final. Since the system will converge to
these tasks, every task in Q will be completed.

|

(a) Initial Assignment (b) Switch (c) Task Completed

(d) New Task (e) Switch (f) Task Completed

Fig. 2. Example of a 2 agent, 2 queues situation where the red queue will
not make progress. Agents are shown as a solid black square and circle.
They are always in communication with each other. The active tasks to
which they are assigned are the empty square and circle respectively. The
colors indicate the queue for each task. The blue queue alternates between
a task in the bottom left and in the bottom right. Repeated changes of task
assignment for the two agents cause the red queue to stall.

B. Infinite-Length Queues

When task queues are infinite-length, the switching policy
in Section III-B cannot guarantee completion of all tasks in
a finite amount of time. Figure 2 shows a simple example
of a task queue that is unable to progress. The blue queue
alternates task locations between the bottom left and bottom
right locations, while the red queue (stalled) has an active
task at the top. Every time a new task in the blue queue
becomes active, the agents exchange tasks to achieve a better
assignment, and all previous progress towards the red task is
lost. Since the blue queue is infinite in length, neither agent
will ever complete the red task. Therefore, for infinite-length
queues, using the switching policy described in Section III-B
only guarantees that some queue will make progress.

Theorem 4.2: At least one queue in Q will make forward
progress.

Proof: The proof for this is identical to that of Theo-
rem 4.1. In particular, we partition time into (an infinite num-
ber of) epochs. During each epoch, the set of active tasks is
constant, so by [7], the system will converge asymptotically
to the task locations. Some task will be completed in a finite
amount of time, and the queue to which that task belongs
will make forward progress. [ ]

While making progress along some queue is beneficial, we
would like to guarantee that all queues will make progress.
To do so, we borrow ideas from job scheduling literature,
specifically in aging [12], [13] to force stalled queues to
progress. Aging techniques are heuristics that monitor how
long a task has been waiting (active) and force execution of
the task when the waiting time becomes too long.

We modify the cost objective to

lele Zgzl Ct(w{f)

cost = ZN iy
k=1

4)



in the case of finite queues and

N ok k
> k=1 2p—1 Ci(wy)
> o*
k=17
for infinite queues, where C} is an aging function.

Theorem 4.3: If the aging function C} is an increasing
function with strictly increasing first derivative that satisfies
. dCy(t
lim ﬁ

(&)

cost = lim
t—+o0

then every queue in the system will make progress.

Proof: Tt suffices to show that no task will take infinitely
long to complete. Consider any active task qg «. If no queue
permutations involving Q¥ ever occur, this is true by virtue
of the path planning and control policy, and of the discussion
in [10]. Therefore, we need only consider what happens if
a task permutation occurs. Let the agent that used to be
assigned to Q* be a°?, and the new agent be a™". One
of two cases will occur: (In the following analysis, the terms
closer and farther are in terms of cost, rather than shortest
distance)

I) a™e® is closer to q¥, than a°'®. If permutations of only
this type occur, then the cost of completing q(’jk can
only decrease. The time until completion of qsk will
be less than that if there were no permutation, and it
will therefore be finite as well.

1) a™" is farther from q%, than a°'®. In this case, the
cost of completing Q§k increases, and some previous
progress towards ql’jk is lost. For a finite completion
time, the number of permutations of this type must
itself be finite.

In order for a permutation to occur, the total cost to
completion within a group must decrease, even though
the cost to completion of q(’jk increases. However,
due to assumption (6), eventually the increase in cost
associated with further stalling completion of qﬁk will
dominate any potential decrease in cost to other group
tasks, and it will be impossible to decrease the group
cost without decreasing the cost associated with the
stalling queue. At this point, any future task permuta-
tions will be of type I, and task q’;,c will complete in
finite time.

|

Intuitively, using an aging function that grows faster
than w(’f_k causes groups of agents to gradually shift from
minimizing total cost to minimizing maximum cost when

considering possible task permutations.

V. MULTIPLE QUEUES PER AGENT

The assumptions in the previous section are restrictive in
that there must be exactly as many task queues as agents.
In a manufacturing or exploration setting, it is possible for
the number of task queues to be greater than the number of
agents and for agents to simultaneously perform several task
queues. Even when the number of task queues is specifically
designed to equal the number of agents, events such as agent

0 O 0.0
@) 0
" O " O

(a) Initial Assignment (b) Without Switching (c) With Switching

Fig. 3. Example of a 2 agent, 3 queues situation where switching to the
locally optimal task assignment increases the global cost. Agents are shown
as a solid black square and circle. They are initially in communication with
each other. The tasks to which they are assigned are the empty squares
and circles respectively. Tasks are colored according to queue. Faded tasks
are inactive. (b) and (c) show the paths that the agents would take given
two different task assignments. The path resulting from the initial task
assignment (b) covers less distance than the path after switching (c), even
though the assignment in (c) yields a lower local cost.

failure may force individual agents to pick up more task
queues than originally intended. In this section, we extend
previous analysis to the case of multiple queues per agent.

A. Problem Definition

Similarly to Section II, N agents live in a bounded,
connected workspace. Now, however, Q is a collection of
M > N queues. Our aim is still to minimize the mean
distance traveled per task, and the problem definitions remain
the same.

Since M # N, the task assignment 7 is no longer
bijective, and multiple task queues may be assigned to the
same agent. Since an agent can only make progress in one
queue at a time, we call the queue that is currently making
progress the active queue and the other queues inactive.

B. Switching Policy

Assigning queues to an agent now requires additional
consideration of the order in which those queues will be
completed. Thus, the decision of whether to exchange queues
becomes more complex than can be solved by simply running
A*. This problem of finding the locally optimal task assign-
ment amounts to solving a Multiple Depot Hamiltonian Path
Problem (MDHPP) with collision constraints every time a
new group forms. Even if this is done, we cannot guarantee
that the cost incurred by the switching system will be no
greater than that incurred by the non-switching system using
the initial assignment. Unlike the case of a single queue
per agent, lack of knowledge about future tasks in this
case can hurt. Figure 3 shows a situation where a switch
that optimizes local cost (given the currently known task
locations) increases the final global cost.

On the other hand, the guarantees on queue progress from
Section IV still hold. In particular:

Corollary 5.1: If all task queues are finite-length, then
every task in Q will be completed in finite time. If more than
one task queue is infinite-length, then we guarantee that at
least one queue will make progress. If aging techniques are
used, then all queues will make progress.

The proofs are similar to those in Section IV. Note that for
this case of Problems 2.1 and 2.2, in addition to dealing with



the possibility of a queue stalling (i.e., the queue is active
but does not make progress), we must also deal with the
possibility of starvation, when a queue is always inactive.
This can occur if whenever a new task becomes active,
the agent plans to perform it first (before other waiting
tasks). Similarly to the stalling problem, an aging function
satisfying (6) will prevent the occurrence of starvation.

While MDHPPs with collision constraints solve the multi-
ple queues problem, they are computationally expensive [14].
To our knowledge, few solutions exist in the literature,
and even then only heuristics [15]. Therefore, in order to
address the multiple queues problem, we decouple task
assignment and path planning. We underestimate the distance
between agents and tasks using the shortest path without
considering collisions. Using these distances, we solve for
a task assignment and an order of execution for the tasks
assigned to an agent. Finally, we calculate the collision-free
paths for each agent in the group to its next task using A*.

Since this heuristic is based on estimates of cost and
does not reflect the true distances-to-goal as determined by
A* in the joint space, we cannot make any guarantees on
queue progress. Instead, we present experimental results for
a variety of switching heuristics in the following section.

VI. EXPERIMENTAL RESULTS
A. Simulations

We simulated the system in MATLAB, using the MultiPara-
metric Toolbox [16] for polytope computations. We used two
two-dimensional environments, shown in Fig. 4: (Plant) an
area with large open spaces punctuated by obstacles of
varying size and shape, as is characteristic of a manufacturing
plant; and (Street) a grid of long narrow corridors, similar
to the streets that a delivery vehicle would use. Although
these environments were designed to be consistent with our
motivating examples in Section I, we can use the results to
draw general conclusions about our algorithm.

We placed six agents in each of the two environments
and generated 18 infinite-length queues with tasks uniformly
randomly distributed throughout the free space. The initial
task assignment was random, with each agent assigned three
queues. We used an aging function of C(t) = t2.

We tested the following five switching policies. In all
five, once the task assignment has been determined, agents
individually solve the HPP for their assigned tasks, then
perform A* within their groups to find collision-free paths
to their next task.

1) NoSwitch. The task assignment does not change.

2) MDHPP. Agents in the group collectively solve the
MDHPP on the graph of agents and task locations, using
the length of the shortest path as the edge weights,
ignoring collision constraints. The computational com-
plexity of this policy is exponential in the number of
agents and tasks in a group, but it will give the lowest
cost task assignment out of all the policies tested.

3) DivideAndConquer. The agents in the group equitably
partition the workspace among themselves, assuming

700}
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Fig. 4. Environments used in simulations, partitioned into polytopes.

a uniform distribution of tasks. Each agent assumes
responsibility of one region of the workspace and is
assigned all tasks that lie within it. In the case of infinite
communication range, where a group of agents will
consist of the entire team, this policy reduces to the
multi-vehicle Divide & Conquer policy, which has been
proven to perform within a factor IV of optimal for the
dynamic vehicle routing problem [1].

4) Greedy. Agents take turns choosing the next closest
active task to their current location.

5) A*First. Given the initial task assignment, all queues as-
signed to an agent are treated as a single set. Each agent
orders its set of queues individually and determines the
first task to complete. Agents in the group then share
their first tasks and use A* search to determine the
least cost permutation of these sets of task queues. With
this policy, we test whether regrouping of task queues
actually improves performance. When M = N, this
policy reduces to that described in Section III.

Figures 5 and 6 show the results for 10 trial runs of each
switching policy. At the beginning, the cost of completing a
task is high since the initial allocation is random. As agents
move around the environment, they encounter each other
and exchange tasks, so that the per-task distance traveled
quickly reaches some steady state. In both environments,
solving an MDHPP yields the lowest cost of all the policies,
and NoSwitch yields the highest cost, as expected. As
for the other three policies, relative cost varies with the
environment; the DivideAndConquer approach performs best
out of the three in the Plant environment and the Greedy
policy performs best in the Street environment.

Given the structure of the environments tested, this can
be expected. The Plant environment has large open spaces
relative to the holes, and agents can choose from a larger
variety of similar-length paths to get from one point to
another. Here, a Voronoi decomposition of the space makes
sense, since the length of the shortest path between any
two points in the cell will be approximately equal to the
Euclidean distance between them. On the other hand, the
Street environment consists of narrow corridors, and the
lengths of the shortest path between two points will be
relatively long compared to the straight line path. Moving
always to the closest active task (Greedy) in this case will
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Fig. 5. Results for 10 simulation runs/policy in the Plant environment.
(a) Average distance/task for the system over time. Mean cost over the 10
runs are shown as a solid line, and the shaded areas indicate the standard
deviation. (b) Switching frequency and computation time per switch. Entries
take the form ’mean (std. dev.)’.

perform better than repeatedly traversing the same corridors
to reach tasks.

In addition to total cost, we investigated the switching
frequency for each policy and the computation time required
for a switch. Similarly to cost, the switching frequency for all
policies is high at the beginning of the simulation but quickly
stabilizes around some constant value. Tables 5(b) and 6(b)
show the number of switches per task in the steady state,
as well as the mean computation time required every time a
new group forms. For all policies, the number of switches
per task is approximately the same (2-3 switches/task). How-
ever, MDHPP and DivideAndConquer show higher standard
deviations. This seems to indicate that these two policies are
more sensitive to the actual task locations in the environment.

Group computation time is “wasted time”: no progress
towards tasks can be made since agents do not know which
tasks they will shortly be assigned. Despite the fact that the
agents do not travel during group computations and therefore
no additional cost is incurred, practically we would like
to minimize this downtime. Based on the results, we can
see that MDHPP requires the greatest amount of time to
determine if a switch should be made, as expected, although
because of high variance, the average travel distance obtained
from this policy is not actually significantly different from
any of the other policies.

Finally, the results show evidence that progress on some

(b)

Fig. 6. Results for 10 simulation runs/policy in the Street environment.
(a) Average distance/task for the system over time. Mean cost over the 10
runs are shown as a solid line, and the shaded areas indicate the standard
deviation. (b) Switching frequency and computation time per switch. Entries
take the form ’mean (std. dev.)’.

queues was being made. As discussed in Section IV, we
would also like to ensure that no queues are stalled. We can
check this condition by consulting the total aging function
Cy over all currently active tasks. If all tasks are completed
in finite time (no queue stalls), then the aging function will
remain bounded. As shown in Fig. 7, the switching policies
that do not allow redistribution of queues are not able to keep
the aging function from steadily increasing towards infinity.
On the other hand, the policies that allow redistribution and
reordering of task queues keep the aging function relatively
small and thus prevent stalling. The MDHPP policy yields
the smallest total aging for the system.

B. Experiment

We implemented the system for two KUKA youBots,
using a VICON motion capture for tracking the vehicles and
real-time MATLAB computation of the control inputs. The
youBots collectively served four queues, each consisting of
tasks alternating between two locations. Figure 8(a) shows
an overhead shot of the experimental setup with the robots’
trajectories during part of a test using the DivideAndConquer
policy overlaid. The effects of the aging function can clearly
be seen in the trajectory of robot 2. Without aging, robot 2
would serve only the green tasks in the upper part of the
environment; with aging in effect, the turquoise task on the
right becomes sufficiently critical that it is also performed.



Fig. 7. Aging function summed over active tasks over time for the Plant
environment. Means over 10 simulation runs are shown as solid lines, while
the shading indicates the standard deviation.

(b)

Fig. 8. (a) Overhead view of experimental setup using KUKA youBots (b).
Two youBots serve four queues consisting of tasks in alternating locations.
Task locations are colored according to queue. Partial trajectories of the
robots are overlaid in red (robot 1) and blue (robot 2). The effect of the
aging function can be seen where robot 2 moves to perform the waiting
turquoise task rather than serve the green queue exclusively.

VII. DISCUSSION

In this paper, we present algorithms for decentralized task
assignment for a team of agents that perform task queues
in a perfectly known environment. By allowing agents in
communication to share and exchange tasks, we are able to
reduce the total cost, as a measure of distance traveled, to
satisfy all tasks. We show not only that task switching can
result in a stable system, but that queues are guaranteed to
make progress if the local cost can be lowered by the switch.

For infinite-length queues, we introduce the idea of an
aging function, borrowed from the literature in job schedul-

ing, which enables guarantees of progress in all task queues.
Finally, we present and discuss simulation and experimental
results for multiple task switching policies in the case where
there are more task queues than agents; this can occur when
robots fail and other robots must complete the failed robots’
queues. Our work has potential applications for any system
where agents must collectively perform series of tasks in
order, such as manufacturing or pickup-delivery systems.
Future work includes further optimizing performance by
considering patterns in the task queue. For example, in
manufacturing, we can expect task queues, which may corre-
spond to assembly instructions, to follow some structure. By
learning these patterns, agents can not only exchange task
queues but also predict whether it will be beneficial to pass
queues to other agents in the future. In this way, encounters
between robots will not be restricted to those that happen by
chance while agents are moving towards tasks, but can occur
at preplanned locations arranged by the agents themselves.
In this case, we expect that the prediction power of agents
will allow them to further decrease task execution costs.
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