
Decision Making in the Presence of Complex

Dynamics from Limited, Batch Data
by

Joshua Mason Joseph
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014
c© Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 22, 2014

Certified by. .
Nicholas Roy

Associate Professor of Aeronautics and Astronautics
Chairman, Thesis Committee

Certified by. .
Jonathan P. How

Richard C. Maclaurin Professor of Aeronautics and Astronautics
Member, Thesis Committee

Certified by. .
J. Andrew Bagnell

Associate Professor, Robotics Institute
Member, Thesis Committee

Certified by. .
Emilio Frazzoli

Professor of Aeronautics and Astronautics
Member, Thesis Committee

Accepted by .
Paulo C. Lozano

Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Decision Making in the Presence of Complex Dynamics from

Limited, Batch Data

by

Joshua Mason Joseph

Submitted to the Department of Aeronautics and Astronautics
on May 22, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Robot decision making in real-world domains can be extremely difficult when the
robot has to interact with a complex, poorly understood environment. In these envi-
ronments, a data-driven approach is commonly taken where a model is first learned
and then used for decision making since expert knowledge is rarely sufficient for
specifying the world’s dynamics. Unfortunately, learning a model for a complex en-
vironment often involves fitting a large number of parameters which can require an
unobtainable amount of data. In real-world domains we are also typically confronted
with fitting a model that is only an approximation of the true dynamics, causing
difficulties for standard learning approaches.

In this thesis we explore two core methodologies for learning a model for decision
making in the presence of complex dynamics: explicitly selecting the model which
achieves the highest estimated performance and allowing the model class to grow as
more data is seen. We show that our approach for explicitly selecting the model
with the highest estimated performance has desirable theoretical properties and out-
performs standard minimum error fitting techniques on benchmark and real-world
problems.

To grow the size of model class with the amount of data, we first show how this can
be accomplished by using Bayesian nonparametric statistics to model the dynamics,
which can then be used for planning. We then present an alternative approach which
grows the policy class using the principle of structural risk minimization, for which
the resulting algorithm has provable performance bounds with weak assumptions on
the true world’s dynamics.

3

4

Acknowledgments

I cannot imagine ever again being surrounded by a collection of such awe-inspiring

people as I have been during the past eight years at MIT, and there are a few that

I’d like to specifically thank.

First and foremost, my thanks go my advisor, Nick. While I could spend (at least)

a page of text listing the things I’ve learned from Nick – everything from how to tell

the story of a paper to the technical minutia of many planning algorithms – there is

one thing above all that I am most thankful for: our arguments. The hours we spent

arguing about research were the most challenging and educational times of my life.

It never once felt like it mattered if Nick or I were “right” (even though Nick usually

was1), it was always about the science, and the science alone.

I am also so gratetful to have spent these years with my RRG lab-mates, especially

the fantastic and inevitable push-back during group presentations. I’d like to thank a

few friends who have been incredibly influential on me over the years. Finale, I learned

so much about nonparametric (and parametric) statistics from you and without you

I’m fairly sure I never would have gotten my first couple papers published. Alborz,

I owe the vast majority of my RL knowledge to our model-based vs value-based

(among other) discussions. Stefanie, whenever we happen to be in a conversation

about AI, it didn’t just feel like the right conversation to have but the conversation

everyone should be having. Javier, who in the same week, had started (multi-hour)

conversations with “Look at what I found in an obscure Scandinavian math journal”

and “There shouldn’t be money”. No longer sitting ten feet apart is the thing I will

miss most from my time here. Mike, to providing much of the inspiration behind

my finally finishing up this document and the uncanny sense that when we attempt

insane things, the most likely outcome is that the insane thing will actually happen.

I also thank my committee: Jon How, Drew Bagnell, and Emilio Frazzoli. The

work contained in this document is much stronger thanks to your insightful input and

feedback. Last but not least, I also thank my thesis readers, Marek and Stefanie, as

1Remember the Emotiv headset?

5

well as Russ Tedrake and John Roberts from the Robot Locomotion Group for the

use of and help operating the hydrodynamic cartpole.

This research was sponsored by iRobot (with special thanks to Michael Rosen-

stein), the Army Research Office2, and the Office of Naval Research3. I would like to

extend an additional thanks to the Charles Stark Draper Laboratory for its support

through my Master’s studies.

2Under the Nostra project, STTR W911NF-08-C-0066
3Under Behzad Kamgar-Parsi, MURI N00014-11-1-0688

6

Contents

1 Introduction 15

1.1 Contributions and Document Outline 18

2 Background 21

2.1 Reinforcement Learning . 21

2.1.1 Policy Evaluation . 22

2.1.2 Minimum Error Reinforcement Learning 23

2.2 Dirichlet Processes . 25

2.3 Statistical Learning Theory . 30

2.3.1 Classification . 30

2.3.2 Empirical Risk Minimization 30

2.3.3 Bounding the Risk of a Classifier 31

2.3.4 Structural Risk Minimization 32

3 A Bayesian Nonparametric Approach to Modeling Motion Patterns 35

3.1 Mobility Model . 36

3.1.1 Dirichlet Process Gaussian Process Motion Model 36

3.2 Interception and Tracking with Full Information 47

3.2.1 Tracking Problem Formulation 48

3.2.2 Model Inference . 48

3.2.3 Results . 51

3.3 Interception and Tracking with Partial Information 56

3.3.1 Interception and Tracking Problem Formulation 57

7

3.3.2 Model Inference . 59

3.3.3 Results . 60

3.4 Related Work . 64

3.5 Conclusions and Discussion . 69

4 A Bayesian Nonparametric Approach to Modeling Battery Health 73

4.1 Battery Health Model . 73

4.1.1 Battery Data . 75

4.1.2 Battery Cooling Behavior Model 76

4.2 Empirical Results . 84

4.2.1 Absolute Prediction Error . 85

4.2.2 Guiding Replacement Decisions 86

4.3 Conclusions and Discussion . 88

4.3.1 Broken Exchangeability Assumption of DPs 89

5 Reward Based Model Search 91

5.1 Algorithm . 93

5.1.1 Off-Policy Policy Evaluation 95

5.1.2 Policy Improvement . 97

5.2 Theoretical Analysis . 98

5.2.1 Bound on Expected Performance 98

5.2.2 Probabilistic Bound on Performance for MFMC 101

5.3 Empirical Results . 102

5.3.1 Mountain Car . 103

5.3.2 Cart-Pole . 105

5.3.3 Hydrodynamic Cart-Pole . 107

5.4 Bayesian Nonparametric Reward Based Model Search 109

5.4.1 Algorithm . 109

5.4.2 Empirical Results . 110

5.5 Related Work . 112

5.5.1 Conclusions . 114

8

6 Structural Return Maximization 117

6.1 Bounding Return . 118

6.1.1 Bound on the Return of a Policy Chosen from a Policy Class . 118

6.1.2 Bound on the Return of Policy Classes Selection 122

6.2 Empirical Results . 124

6.2.1 1D Toy Domain . 124

6.2.2 Inverted Pendulum . 126

6.2.3 Intruder Monitoring . 126

6.3 Related Work . 127

6.4 Conclusions and Discussion . 127

7 Conclusions 129

7.1 Relationship Between Bayesian Nonparametric Modeling and SRM . 130

7.2 Future Work . 134

A Probability Distributions 135

A.1 Gamma . 135

A.2 Dirichlet . 135

9

10

List of Figures

2-1 A DP base distribution and three sample draws from it for varying α. 26

2-2 The graphical model of the CRP. 28

2-3 The graphical model of the GEM process. 29

3-1 A small set of the raw GPS data points. 37

3-2 An example of two trajectories that share a road segment. 39

3-3 Velocity fields learned by a GP and a Markov model. 42

3-4 The number of motion patterns in the taxi dataset. 45

3-5 Performance on 15 held-out test trajectories vs. model size for a variety

of finite models and the DPGP model. 46

3-6 Run time vs. number of paths for adaptive EM and our DPGP model. 47

3-7 Several trajectory samples from the Corridor scenario, where targets

roughly following a straight line . 51

3-8 Sliding window average of per-episode rewards achieved by different

models on the Corridor scenario 52

3-9 A planning episode for a single path in the Corridor scenario. . . . 53

3-10 Predictions given a partial path for the DPGP and two Markov models

for various amounts of training data. 55

3-11 Cumulative difference in reward from the pursuit approach for the

DPGP model, various Markov models, k-nearest neighbors, and a GP

fit to the current trajectory. 56

3-12 Search and tracking task in the synthetic Blocks scenario. 61

11

3-13 Sliding window average of per-episode rewards achieved by different

models on the Blocks scenario. 62

3-14 A planning episode in the Blocks scenario. 63

3-15 Number of discovered target motion patterns in the Blocks scenario. 64

3-16 Sliding window average of per-episode rewards achieved by different

models on the taxi multi-target interception and tracking task. 65

3-17 Results from the taxi multi-target interception and tracking task show-

ing cumulative reward achieved by different models on the Blocks

scenario. 66

3-18 Number of discovered motion patterns for the taxi dataset search and

tracking task. 67

3-19 A planning episode from the taxi data set. 68

4-1 Sample voltage and temperature trajectories from different parts of a

battery’s life-cycle showing different patterns of cooling. 75

4-2 Cooling behaviors learned from the sample voltage and temperature

trajectories in Figure 4-1. 77

4-3 Cooling behaviors for a single battery as it progresses through its life-

cycle. 83

4-4 Mean absolute prediction errors for the different types of batteries. . . 86

4-5 Mean absolute prediction errors across all batteries. 86

4-6 Risk of early and late battery replacement. 87

4-7 False positive rate (how often the battery was replaced too early) versus

true positive rate (how often the battery was replaced in time) for

various decision thresholds w. 88

5-1 The hydrodynamic cart-pole system with the pole pointing upstream

into the water current. 92

5-2 Phase space plots for pseudo on-policy episodes. 96

5-3 Performance versus misspecification and performance versus data size. 104

5-4 Performance versus misspecification and performance versus data size. 106

12

5-5 Time stabilized versus number of episodes. 108

5-6 The domain (a) and the episode of data produced by the policy from

the MAP model (b) and the RBMS model (c). 110

5-7 The GPs’ mean of the MAP model (a,b) and the MBRS model (c,d)

for both actions. 111

5-8 The GPs’ means and confidence intervals with x2 = 0.05. 112

6-1 Performance versus the amount of training data and class size versus

the amount of training data. 125

13

14

Chapter 1

Introduction

Real-world robots commonly have to act in complex, poorly understood environ-

ments where the true world dynamics are unknown. For example, consider the task

of intercepting and tracking a car driving around the greater Boston area with an

autonomous helicopter (described in detail in Section 3). The success of interception

and tracking tasks often hinges on the quality of the motion models our agent has for

predicting the target’s future locations. These predictions are especially important

when our agent’s sensor range is limited. Unfortunately, the motion patterns of tar-

gets are often difficult to specify from expert knowledge alone. For example, suppose

that our agent is a helicopter that must intercept and track a car or several cars in

a large region such as a city. The necessary model of traffic patterns may be hard

to specify. Even determining what parameters are important to model the target’s

behavior—and how they should interact—can be a challenging task.

A data-driven approach to learning the target’s motion patterns avoids the need

for an expert to fully specify the model. Instead, the agent simply uses previously

observed trajectories of the target to predict the target’s future locations, where these

predictions may depend on both the target’s current position and past position his-

tory. Using a data-driven approach also side-steps the need to understand the target’s

motivations, which may appear irrational to an outside observer. For example, drivers

rarely take the minimum-time route to a location [Letchner et al., 2006]; an expert

model that assumes that optimizing travel time is the driver’s primary objective will

15

likely make poor predictions about a car’s future locations. Our approach focuses on

the features our agent needs to make good predictions of the targets’ future locations.

While a data-driven approach reduces the need for expert knowledge, we still

need to specify the class of models to which we expect the target’s motion patterns

to belong. For example, we may choose to model the target’s motion as a series of

straight-line segments, higher-order splines, or even cylindrical trajectories. When

considering real-world data, the correct class of motion models is not always obvious.

One solution is to consider sophisticated model classes with parameters governing

the forms of all the motion patterns we expect to occur. While such a flexible model

class may be able to model any observable motion pattern, large amounts of data will

be needed to train the many parameters. Collecting sufficient data to train a large

number of parameters may be prohibitively expensive.

We first approach decision making in complex environments using Bayesian non-

parametric statistics to model the dynamics. Nonparametric approaches are well-

suited for poorly-understood environments because they let the data determine the

sophistication of the model. The Bayesian aspect helps the model generalize to unseen

data and make inferences from noisy data. These techniques are representationally

powerful and generalize well with relatively little training data due to their ability

to appropriately fit the complexity of the model [Rasmussen and Ghahramani, 2002].

We present two Bayesian nonparametric models and apply them to real-world data:

a model of mobile targets and a model of battery health. We use these models in

Chapters 3 and 4 for decision making with GPS data from taxis in the greater Boston

area and iRobot Roomba battery data, respectively.

Although Bayesian nonparametric models work well for some real-world problems,

it is sometimes not clear if the mathematical sophistication required to use these

models results in a performance gain compared to a parametric model which roughly

approximates the true dynamics. It is also often difficult to understand if enough

data is available to grow the model to sufficiently approximate the true dynamics.

To continue studying model learning for decision making in complex environments

we then turn to parametric modeling with the assumption that the model class is

16

misspecified, meaning it cannot represent true environment dynamics.

The key problem caused by misspecified parametric model classes is that choosing

a model using the standard metrics for “closeness” between the true model and a

model in our class can result in arbitrarily poor performance, even in the limit of

infinite data [Baxter and Bartlett, 2001]. These standard metrics are typically either

minimum squared error or maximum likelihood, both of which measure the error be-

tween the data and the models in the model class to determine which model is closest

to the truth. We develop an algorithm called Reward Based Model Search (RBMS),

a batch Reinforcement Learning (RL) technique that overcomes this problem. Our

approach improves upon the standard minimum error model selection techniques by

explicitly selecting the model which achieves the highest expected reward, rather than

the model which has lowest prediction error. An evaluation of RBMS compared to

standard minimum error techniques is shown on benchmark RL problems and the

real-world hydrodynamic cart-pole, a domain whose complex dynamics cannot be

known exactly. We then extend RBMS from parametric to Bayesian nonparametric

models to show how to overcome misspecification with these far more sophisticated

classes of models.

A motivation behind using misspecified models is that they will generally require

less data, on account of their being “small”. Unfortunately, RBMS with parametric

models can still over-fit the misspecified model class with limited data and Bayesian

nonparametric models cannot provide any performance guarantees with a misspeci-

fied model class. We introduce an algorithm called Structural Return Maximization

(SRM) which solves both of these difficulties. SRM was developed by mapping the

principle of structural risk minimization from the statistical learning theory literature

to RL. The resulting algorithm prevents over-fitting to an overly large policy class by

appropriately choosing the size of the policy class to the amount of data available.

SRM penalizes policy classes based on the Rademacher complexity, a measure of the

size of the class of policies. We present analysis which shows that the return of a

policy produced by SRM has provable bounds on performance with extremely weak

assumptions on the true underlying dynamics.

17

1.1 Contributions and Document Outline

Reinforcement Learning with Bayesian Nonparametric Models The con-

tribution of Chapter 3 is a Bayesian nonparametric model of driver behavior and

remaining battery health. We show how Bayesian nonparametric models are well-

suited for modeling complex, poorly understood environments and how these models

can then be used in decision making.

We first apply Bayesian nonparametric models to modeling motion patterns (Sec-

tion 3.1). We show that these models are well-suited for poorly understood en-

vironments because they let the training data determine the sophistication of the

model—we no longer need to specify which parameters are important. Moreover, the

Bayesian aspect allows the model generalize to unseen data and make inferences from

noisy data. Specifically, we model a target’s motion patterns with a Dirichlet process

mixture model over Gaussian process target trajectories (DPGP). Using this non-

parametric model boosts learning rates by generalizing quickly from small amounts

of data continuing to increase in sophistication as more trajectories are observed.

We applied this DPGP model to applications tracking a single target whose current

position was always observed (Section 3.2) on both synthetic and real GPS data.

We then no longer assume that the target’s position is directly available to the

agent (Section 3.3). Instead, we consider scenarios in which the agent can only observe

the target if it is nearby; now the agent’s goal is to first intercept and then track the

target. Adapting our approach to make predictions about unseen targets using only

partial information is one of the main contributions of Section 3.3. Second, we also

consider scenarios where multiple targets must be intercepted and tracked. Modeling

multiple targets fits seamlessly into our DPGP model, demonstrating both the quality

and versatility of our approach.

In Chapter 4, we turn our attention to battery health modeling and present a

Bayesian nonparametric model which we use to make battery replacement decisions.

We do this by considering how the trajectories of voltage and temperature change

as the battery cools after charging. The learned model allows us to predict time-to-

18

battery-death which we train and evaluate on iRobot Roomba data.

Reward Based Model Search In real-world systems, the model is often not fully

known and practitioners often rely on domain knowledge to choose a dynamics model

class that reasonably trades off sample complexity for expressive power. In these sys-

tems, this trade-off means the chosen representation will often be misspecified (i.e.,

the approximate representation cannot exactly capture the true dynamics). Such

models can introduce representational bias, the difference between the performances

of the true optimal policy and the best policy found based on the misspecified model

class. Furthermore the learning algorithm using such model classes can introduce

learning bias, which is the difference between the performances of the best possible

policy in the model class and the policy that is produced by the learner [Kalyanakr-

ishnan and Stone, 2011].

The focus of Chapter 5 is on identifying the cause of learning bias in Reinforcement

Learning (RL) and presenting an algorithm to overcome it. Our contribution, Reward

Based Model Search (RBMS), is a batch RL algorithm that estimates the performance

of models in the model class and explicitly searches for the model that achieves the

highest performance (Section 5.1). Additionally, we present a theoretical analysis of

RBMS (Section 5.2) as well as an empirical validation on benchmark problems and

the real-world hydrodynamic cart-pole system (Section 5.3). We conclude the chapter

by applying RBMS, to Bayesian nonparametric models (Section 5.4).

Structural Return Maximization The main contribution of Chapter 6 is the

Structural Return Maximization (SRM) algorithm. The algorithm was developed

by applying the principle of Structural Risk Minimization from Statistical Learning

Theory to RL. We first reframe RL as a classification problem (Section 6.1.1), allowing

us to transfer generalization bounds developed for classification. Our analysis, based

on Rademacher complexity [Bartlett and Mendelson, 2003], results in a bound on the

return of any policy from a policy class (Section 6.1.2). Given a structure of policy

classes, we then apply the principle of SRM to find the highest performing policy from

19

the family of policy classes (Section 6.1.2). Lastly, we present an empirical validation

of SRM on simulation domains in Section 6.2.

20

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is a framework for solving sequential decision making

problems under uncertainty. In RL, our problem is typically formulated as a Markov

decision process (MDP) Sutton and Barto [1998]. A finite horizon MDP is defined

by a tuple (S,A, sstart,m, ρ, T), where S is the set of states, A is the set of actions,

and sstart is the starting state. The dynamics model is defined as, m : S × A ×

S 7→ [0, 1], where m(s, a, s′) = p(s′|s, a), the probability of transitioning to state

s′ by taking action a in state s. The reward function1, ρ : S 7→ R, describes the

reward the agent receives for being in state s. An episode of data is a sequence

s0, a0, s1, a1, · · · , sT−1, aT−1, where T is the episode length, at is the action taken at

state st, and st+1 ∼ m(st, at, ·).

The solution to a finite time MDP is the time-varying policy, πt : S → A, where,

at each time step t, the policy maximizes return, such that

π∗0:T−1 = arg maxπ0:T−1
Vπ0:T−1

(s0) (2.1)

1The work contained in this thesis focuses on this simpler form of ρ due to ease of exposition but
can be straightforwardly extended to the more general ρ : S ×A× S 7→ R.

21

where

Vπ0:T−1
(s0) = Es1,...,sT

[
T−1∑
t=0

ρ(st)

∣∣∣∣sτ+1 ∼ m(sτ , πτ (sτ), ·), sstart = s0

]
(2.2)

and π0:T−1 = {π0, π1, . . . , πT−1}. In this thesis, we do not assume m is known, which

prevents us from explicitly calculating Vπ0:T−1
(s) using Equation 2.2. Instead, we

estimate Vπ0:T−1
(s) from data.

Section 2.1.1 introduces methods for computing the return of a policy (Equation

2.2) with unknown m. Section 2.1.2 then introduces methods of solving Equation 2.1

based on minimizing different measures of error.

2.1.1 Policy Evaluation

To compute the return of a policy (Equation 2.2) without knowing the true dynamics

model, m, we collect episodes of data from interactions with the world and use this

data to approximately compute Equation 2.2. Policy evaluation can be run in two

modes: on-policy and off-policy. In on-policy policy evaluation, data is collected only

using the policy we are attempting to evaluate, which is opposed to off-policy policy

evaluation, in which data may be collected under any policy.

A straightforward method for estimating Vπ0:T−1
(s0) from on-policy data is using

Monte Carlo (MC) policy evaluation Barto and Duff [1994], where π0:T−1 is executed

for N episodes starting from s0. The estimate is computed using

V emp
π0:T−1

(s0) =
1

N

N∑
n=1

T−1∑
t=0

ρ(snt), (2.3)

where snt is the agent’s state at time t of episode n. Off-policy policy evaluation, on

the other hand, is far more complex and is the subject of Section 5.1.1.

22

2.1.2 Minimum Error Reinforcement Learning

Methods for solving Equation 2.1 generally fall into one of three categories: policy

search, value-based, and model-based. In this section we review approaches which

learns policies by minimizing a measure of error.

Policy Search Given a method for evaluating Equation 2.2, policy search (PS)

methods parameterize the set of policies and search over the parameter space to solve

for the optimal policy in Equation 2.1 using

θ∗ = arg max
θ∈Θ

Vπθ0:T−1
(s0) (2.4)

where θ ∈ Θ is the policy’s parametrization Peshkin [2000]. A naive PS technique to

find θ∗ is to enumerate all parameter values θ1, ..., θ|Θ|, compute V̂
π
θ1
0:T−1

(s0), ..., V̂
π
θ|Θ|
0:T−1

(s0),

and select the parameter which achieves the highest return. However, this approach is

impractical for many real-world domains as the parameter space is often large or con-

tinuous, preventing Θ from being directly searched over or even enumerated. Large

policy spaces can be overcome using policy gradient Williams [1992], Sutton et al.

[2000], where the parameter estimate, θ̂, is found using a gradient step

θ̂i+1 = θ̂i + c
∂V

π
θ̂i
0:T−1

(s0)

∂θ̂i
, (2.5)

for iteration i where c > 0 and θ̂i is updated until convergence. Equation 2.5 allows

us to change θ̂ proportional to the gradient of return, which can be estimated using

Equation 2.3 with data generated from the policy we wish to evaluate (i.e., on-policy

data). Therefore each θ̂i must be simulated a sufficient number of times to accurately

estimate V
π
θ̂i
0:T−1

(s0).

Model-Based Model-based (MB) methods solve Equation 2.2 by explicitly learn-

ing a dynamics model, m(s, a, s′; θ) from data, which commonly results in a significant

23

amount of data efficiency by generalizing in the space of transitions2. Maximum like-

lihood (ML) is a common method for inferring the dynamics model which maximizes

the likelihood of the model conditioned on the data, where

θ̂ = arg max
θ∈Θ

N∏
n=1

T−1∏
t=0

m(snt , a
n
t , s

n
t+1; θ). (2.6)

A MB solver first uses Equation 2.6 to compute θ̂ and then uses Equations 2.2 and 2.1

to compute the policy optimal with respect to θ̂. The implicit assumption made by

selecting a representation “closest” to the true representation (using minimum error)

is that the policy which is optimal with respect to the minimum error representation

will perform well in the true world. If, however, the representation for the dynamics

model is not expressive enough to capture the true m, using Equation 2.6 can result

in a poorly performing policy [Baxter and Bartlett, 2001].

Value-Based A class of approaches which aim to reduce the sample complexity of

solving equation 2.4 are value-based (VB) methods. In VB we directly parametrize

the value function V θ
πt:T−1

(st) such that

V θ
πt+1:T−1

(st+1) = ρ(st) +
∑
s∈S

m(st, πt(st), s)Vπt:T−1
(s) (2.7)

and

θ∗ = arg max
θ
V θ
π0:T−1

(s0) (2.8)

Solving Equations 2.7 and 2.8 is most commonly used for infinite time, discounted

problems where either a generative model is known [Bellman, 1957, Howard, 1960] or

on-policy data is available [Watkins and Dayan, 1992, Sutton and Barto, 1998].

2We purposely use θ for both the policy and model parametrization to illustrate that a dynamics
model is an indirect policy representation.

24

2.2 Dirichlet Processes

In this section3 we review Dirichlet processes (DP) [Teh, 2010, Antoniak, 1974], the

mathematical object that is at the core of allowing the models to grow in Chapters

3 and 4. DPs define not just a measure over any measure but over measures that

have Dirichlet distributed (Section A.2) finite marginals. This is identical to how a

GP has Gaussian distributed finite marginals. Formally, for a random measure G

over space Θ, it is said that G ∼ DP (α,H) is Dirichlet process distributed with base

distribution H and concentration parameter α if

(G(A1), ..., G(Ar)) ∼ Dir(αH(A1), ..., αH(Ar))

for every finite partition A1, ..., Ar of Θ. A partition of Θ is a collection of disjoint

sets that contain all elements of Θ. A1 = [0, 0.4) and A2 = [0.4, 1] is an example of a

partition of Θ when Θ is the unit interval. To further clarify the notation, if H is a

uniform distribution over the unit interval, H(A1) =
∫ 0.4

0
dx = 0.4.

The base distribution, H, can be understood as the “mean” of the DP. The concen-

tration parameter, α, controls how closely a draw from this DP resembles its “mean.”

This is similar to the precision describing how closely a draw from a Gaussian dis-

tribution resembles its mean. In Figure 2-1 the top plot is the base distribution,

H = fG(2, 1/2) (Section A.1), and the three plots below are for α = {1, 10, 10000}.

Immediately, what may strike the reader is that the draws of this process are discrete

probability distributions even though the base measure is continuous. Something less

obvious from the picture is that, while it is true they are discrete, there is a prob-

ability mass associated with every point of Θ (in this example Θ = [0,∞)). These

plots show how the base measure can be thought of as the mean of a DP and α can

be thought of as precision. The higher α is, the more closely the draw resembles H.

While there are many related processes, there are two that are particularly useful

to this thesis: the Chinese restaurant process and the GEM process. Note that the

Pólya urn scheme, the original process used to prove the existence of the DP, is not

3The text of this section originally appeared in Joseph [2008]

25

Figure 2-1: Three sample draws (bottom three plots) from the base measure (top)
with α = 1 (second from the top), α = 10 (second from the bottom), α = 10000
(bottom).

covered here but an interested reader can refer to Blackwell and Macqueen [1973].

The Posterior Dirichlet Process

The Dirichlet distribution is the conjugate prior of the multinomial distribution. That

relation allows for the posterior distribution (the DP conditioned on previously ob-

served θ1, ..., θn) to itself be DP distributed when a DP is used as the prior. Formally,

conditioned on θ1, ..., θn drawn from G ∼ DP (α,H), for every finite partition,

(G(A1), ..., G(Ar))|θ1,, θn ∼ Dir(αH(A1) + n1, ..., αH(Ar) + nr)

where ni is the number of θ1, ..., θn that fall in the partition Ai. Therefore the posterior

DP can be written as

G|θ1, ..., θn ∼ DP

(
α + n,

α

α + n
H +

1

α + n

n∑
i=1

δθi

)

26

where δθi is a point mass centered at θi (i.e., the contribution of 1
α+n

is only added to

α
α+n

H at θi for i = 1, ..., n).

Chinese Restaurant Process

The Chinese restaurant process (CRP), initially named in Aldous [1985], comes from

that author’s observation that Chinese restaurants appear to have infinitely many

tables. The generative model for the CRP is as follows. Consider an empty restaurant

with countably infinite tables. The first customer walks in and sits at the first table

deterministically. The second customer sits at the first table with probability 1
1+α

and

the second table with probability α
1+α

. It then continues such that the nth customer

sits at a previously occupied table proportional to the number of customers already

seated at it and a new table proportional to α.

As described thus far, this process is a measure on partitions of the integers where

each customer is an integer and each table is a partition. This process can be extended

to produce a draw from a DP with base distribution H. When a customer sits at a

new table, a parameter for that table is drawn from the base measure H. A customer

sitting at an already occupied table inherits the parameter of that table. Looking back

at Figure 2-1, the bottom three plots show the next customer sitting at a table with

parameter θ proportional to the height of the bar at θ. Therefore, the distribution of

θ1 ∈ Θ as the first customer walks in is θ1|α,H ∼ H, and after n people have been

seated is

θn+1|θ1, ..., θn, α,H ∼
n∑
i=1

1

n+ α
δ(θn+1, θi) +

α

n+ α
H. (2.9)

where δ is the Kronecker-delta function (δ(a, b) = 1 if and only if a = b and zero

otherwise). The purpose of explaining this process is that n samples from the CRP

are equivalent to sampling from a draw from a DP n times. Figure 2-2 shows the

graphical model for n data points, xi for i = 1, ..., n, generated from this process.

It is important to note that it is very likely that many of the θi values are the same

(all people at the same table have the same θi) and while it is not obvious yet, this

formulation makes inference about these θis difficult.

27

Figure 2-2: The graphical model of the CRP.

The purpose of explaining processes that are related to DPs is to enable inference

procedures of the latent variables θi. These variables are referred to as latent since

they are not directly observable from the data. Instead, the variables must be inferred

from their relationship with variables that are observable. The next section describes

another process related to DPs that make inference significantly easier. As a final

remark on CRPs, if H is a continuous distribution it is impossible for two tables

to have the same parameter, but if H is a discrete distribution there is a non-zero

probability that two tables have the same parameter.

GEM Process

One of the simplest constructions of the DP was shown in Sethuraman [1994] by the

use of “stick breaking.” This construction is similar to that of the Chinese restaurant

if there are infinite customers. The result of stick breaking is a discrete probability

distribution over all natural numbers. These stick breaking weights, π = (πn)∞n=1 such

that
∑∞

n=1 πi = 1, are said to be drawn from a GEM process Pitman [2002], standing

28

Figure 2-3: The graphical model of the GEM process.

for Griffiths, Engen, and McCloskey. More concretely,

π′n|α ∼ Beta(1, α)

πn = π′n

n−1∑
i=1

(1− π′i).

For Dirichlet process distributed G ∼ DP (α,H), G =
∑∞

n=1 πnδθn where δθn = 1 at

θn ∼ H and zero otherwise. Figure 2-3 shows the graphical model for n data points

drawn from this process where cj indexes the θi from which xj was generated. Due

to its simplicity, this is the exact method that was used to generate Figure 2-1.

It was mentioned in Section 2.2 that this formulation, while slightly more difficult

to understand than the CRP, is far easier on which to perform inference. To make

this algorithm clear, it is going to be described using the same terms as the CRP

formulation (customers, tables, etc) but it is important to understand that this pro-

cedure was enabled by understanding a DP as Figure 2-3 and not as Figure 2-2. The

reason the CRP terminology is still used is that it is extremely intuitive.

29

2.3 Statistical Learning Theory

In this section we review the necessary background of Statistical Learning Theory to

build up to Structural Risk Minimization [Vapnik, 1995].

2.3.1 Classification

Classification is the problem of deciding on an output, y ∈ Y , for a given input,

x ∈ X . The performance of a decision rule f : X → Y is measured using risk, R,

defined as

R(f) =

∫
L(y, f(x))p(x, y)dx dy (2.10)

where L : Y × Y → R is a loss function and p(x, y) is distribution which generated

the data. For a class of decision rules, F , the objective of classification is to select

the decision rule which minimizes risk or, more formally,

f ∗ = arg min
f∈F
R(f). (2.11)

2.3.2 Empirical Risk Minimization

Commonly, the distribution p(x, y) in Equation 2.10 is unknown, and we there-

fore are unable solve Equation 2.11 using Equation 2.10. Given a dataset D =

{(x1, y1), (x2, y2), . . . , (xN , yN)} where (xn, yn) is drawn i.i.d. from p(x, y), Equation

2.10 can be approximated by empirical risk

Remp(f ;D) =
1

N

N∑
n=1

L(yn, f(xn)). (2.12)

Empirical risk gives us an estimate of risk and therefore we can attempt to solve

Equation 2.11 using the principle of Empirical Risk Minimization (ERM) [Vapnik,

1998] where

f̂ = arg min
f∈F

Remp(f ;D). (2.13)

30

2.3.3 Bounding the Risk of a Classifier

We can bound risk (Equation 2.10) using empirical risk (Equation 2.12) with a

straightforward application of Hoeffding’s inequality

R(f) ≤ Remp(f ;D) +

√
− ln δ

2N
(2.14)

which holds with probability 1− δ. Since Equation 2.13 is used to choose f ∈ F , we

need to ensure that R(f) is bounded for all f ∈ F (not just for a single f as Equation

2.14 guarantees). Bounds of this form (∀f ∈ F) can be written as

R(f) ≤ Remp(f ;D) + Ω(L ◦ F ,D, δ) (2.15)

where Ω can be thought of as a complexity penalty on the size of L◦F = {L(·, f(·)) :

f ∈ F} and the bound holds with probability 1− δ.

The remainder of this section describes two specific bounds on R(f) ∀f ∈ F ,

based on these two different measures of the size of L ◦ F . These measures are

Vapnik-Chervonenkis (VC) dimension and Rademacher complexity, although many

additional bounds exist in the literature using, e.g., maximum discrepancy [Bartlett

et al., 2002a], local Rademacher complexity [Bartlett et al., 2002b], Gaussian com-

plexity [Bartlett and Mendelson, 2003] and for loss sensitive bounds [Bartlett et al.,

2006, Ben-David et al., 2012, Avila Pires et al., 2013].

Vapnik-Chervonenkis Dimension

A well-studied bound from Vapnik [1995] that takes the form of Equation 2.15 uses

Ω(L ◦ F ,D, δ) =
B − A

2

√
4
h
(
ln
(

2N
h

)
+ 1
)
− ln(δ/4)

N
(2.16)

where A ≤ L ◦ F ≤ B and h is the Vapnik-Chervonenkis (VC) dimension of L ◦ F

(see Vapnik [1998] for a thorough description of VC dimension).

31

Rademacher Complexity

In contrast to the well-studied bound from Vapnik [1995] which depends on the

Vapnik-Chervonenkis (VC) dimension of L ◦ F , Bartlett and Mendelson [2003] pro-

vided a bound based on the Rademacher complexity of L◦F , a quantity that can be

straightforwardly estimated from the dataset. Their bound, which takes the form of

Equation 2.15, uses

Ω(L ◦ F ,D, δ) = RN(L ◦ F) +

√
−8 ln(2δ)

N
(2.17)

where 0 ≤ L ◦ F ≤ 1, and σn is a uniform random variable over {−1,+1}. RN(F),

the Rademacher complexity of F , can be estimated using

RN(F) = Eσ1:N ,x1:N

[
sup
f∈F

2

N

∣∣∣∣∣
N∑
n=1

σnf(xn)

∣∣∣∣∣
]
≈ Eσ1:N

[
sup
f∈F

2

N

∣∣∣∣∣
N∑
n=1

σnf(xn)

∣∣∣∣∣
∣∣∣∣∣x1:N

]
,

(2.18)

Bartlett and Mendelson [2003] also showed that the error from estimating Rademacher

complexity using the right hand side of Equation 2.18 is bounded with probability

1− δ by

RN(F) ≤ R̂N(F ;D) +

√
−8 ln δ

N
. (2.19)

2.3.4 Structural Risk Minimization

As discussed in Vapnik [1995], the principle of ERM is only intended to be used with

a large amount of data (relative to the size of F). With a small data set, a small

value of Remp(f ;D) does not guarantee that R(f) will be small and therefore solving

Equation 2.13 says little about the generalization of f . The principle of Structural

Risk Minimization (SRM) states that since we cannot guarantee the generalization of

ERM under limited data we should explicitly minimize the bound on generalization

(Equation 2.15) by using a structure of function classes.

A structure of function classes is defined as a collection of nested subsets of func-

tions S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ · · · where Sk = L◦Fk. For example, a structure of radial

32

basis functions created by placing increasing limits on the magnitude of the basis

functions. SRM then treats the capacity of L ◦ Fk as a controlling variable and

minimizes Equation 2.15 for each Sk such that

k̂ = arg min
k
Remp(f̂k;D) + Ω(L ◦ Fk,D, δ), f̂k = arg min

f∈Fk
Remp(f ;D). (2.20)

To solve Equation 2.20 we must solve both equations jointly. One can imagine enu-

merating k, finding f̂k for each k, and choosing the corresponding f̂k which minimizes

Remp(f̂k;D) + Ω(L ◦ Fk,D, δ).

33

34

Chapter 3

A Bayesian Nonparametric

Approach to Modeling Motion

Patterns

In this section, we show that Bayesian nonparametric approaches to modeling motion

patterns are well-suited for poorly understood environments because they let the

data determine the sophistication of the model—we no longer need to specify which

parameters are important. Moreover, the Bayesian aspect helps the model generalize

to unseen data and make inferences from noisy data. Specifically, will we show we

can model a target’s motion patterns with a Dirichlet process mixture model over

Gaussian process target trajectories (DPGP). Using this nonparametric model boosts

learning rates by generalizing quickly from small amounts of data but continuing to

increase in sophistication as more trajectories are observed. We applied this DPGP

model to applications tracking a single target whose current position was always

observed (imagine having a GPS tracker on the target but not knowing where the

target will go).

35

3.1 Mobility Model

We represent a target’s trajectory ti as a set of xy-locations {(xi1, yi1), (xin, y
i
n), . . . ,

(xiLi , y
i
Li)}, where Li is the length of trajectory ti. Depending on how the trajectory

data is collected, these locations may come at irregular intervals: for example, the

distance between (xit, y
i
t) and (xit+1, y

i
t+1) may not be the same as the distance between

(xit+1, y
i
t+1) and (xit+2, y

i
t+2). Trajectories may also be of different lengths both because

some trajectories may be physically longer than others and because some trajectories

may have a larger number of observed locations along the route.

We use time-stamped GPS coordinates of greater Boston taxis from the CarTel

project as our motivating dataset.1 Figure 3-1 plots some of the trajectories (red

points) on a map of Boston2, emphasizing the discrete nature of our observations.

One sample trajectory is highlighted in green, showing how the discrete observations

are irregularly spaced along the trajectory. Working with these types of trajectories

is one of the challenges of this dataset, which we address by using Gaussian processes

to learn a trajectory model.

The technical details of our motion model are described in Section 3.1.1, but we

first outline the two key elements of our motion model and describe how they are

combined. Specifically, each motion model is a mixture of motion patterns. A motion

pattern represents a class of similar trajectories. A mixture model over different

motion patterns defines the probability of each particular motion pattern.

3.1.1 Dirichlet Process Gaussian Process Motion Model

Motion Patterns

Many ways exist to describe a class of trajectories: for example, one could use a set

of piecewise linear segments or a spline. We define a motion pattern as a mapping

from locations (x, y) to a distribution over trajectory derivatives (∆x
∆t
, ∆y

∆t
) indicating

1CarTel project, http://cartel.csail.mit.edu. The data was down-sampled to a rate of 1
reading per minute and pre-processed into trajectories. If the car stayed in the same place for five
minutes, this indicated the end of a trajectory.

2http://maps.google.com

36

http://cartel.csail.mit.edu
http://maps.google.com

Figure 3-1: A small set of the raw GPS data points (red) and a single trajectory
(green) used to learn our model.

the agent’s future motion.3 Thus, a motion pattern is a flow-field of trajectory deriva-

tives in x-y space. Modeling motion patterns as flow fields rather than single paths

allows us to group target trajectories sharing key characteristics: for example, a sin-

gle motion pattern can capture all the paths that a target might take from different

starting points to a single ending location. Using trajectory derivatives also makes

the representation blind to the lengths and discretizations of the trajectories.

We use a Gaussian process (GP) to model the mapping of positions to velocities.

The GP allows us to learn a distribution over trajectory derivatives (velocities) at

each location (details in Section 3.1.1). Given the target’s current position (xt, yt)

and a trajectory derivative (∆xt
∆t
, ∆yt

∆t
), its predicted next position (xt+1, yt+1) is given

by

xt+1 = xt +
∆xt
∆t

∆t, yt+1 = yt +
∆yt
∆t

∆t.

Thus, the trajectories are easily generated by integrating the trajectory derivatives.

3The choice of ∆t determines the scales we can expect to predict the target’s next position well,
making the trajectory derivative more useful than instantaneous velocity.

37

Mixtures of Motion Patterns

We expect to encounter trajectories with qualitatively different behaviors and using

trajectory-derivative flow fields as motion patterns helps group together trajecto-

ries with certain characteristics. For example, different trajectories may share some

segments but then branch off in different directions. Returning to the CarTel taxi

dataset, we see that scenarios with overlapping paths are common. Figure 3-2 shows

just one example of two routes that share a common corridor, but the red trajectory

travels east and the green trajectory travels north. These motion patterns are not

well modeled by traditional techniques such as Markov chain models that simply try

to predict a target’s future location based on its current position (and ignore its pre-

vious history), nor can they be modeled by a single trajectory-derivative flow field.

We address this issue by using mixture models over motion patterns.

Formally, a finite mixture model with M motion patterns {b1, b2, . . . , bM} first

assigns a prior probability for each pattern {p(b1), p(b2), . . . , p(bM)}. Given these

prior probabilities, the probability of the ith observed trajectory ti under the mixture

model4 is

p(ti) =
M∑
j

p(bj)p(t
i|θj) (3.1)

where θj contains the parameters for motion pattern bj.

The primary complication with a simple finite mixture model is that M is not

known in advance, and may need to grow as more data is observed. In Section 3.1.1,

we detail how we use a Dirichlet process (DP) (Section 2.2) mixture model to create

an infinite mixture of motion patterns. An important property of the DP model

is that it places a prior over an infinite number of motion patterns such that the

prior probabilities p(b1), p(b2), p(b3), . . . still sum to one, such that the probability of

a trajectory is

p(ti) =
∞∑
j

p(bj)p(t
i|θj). (3.2)

These probabilities, p(bj), and the number of different motion patterns in a given

4Note that throughout the section a t with a superscript, such as ti, refers to a trajectory and a
t without a superscript is a time value.

38

Figure 3-2: An example of two trajectories that share a road segment. The red
trajectory travels east and the green trajectory travels north. The Markov model
cannot distinguish the two trajectories once they cross, but the DP model classifies
them as two different paths.

dataset are determined during at inference time.

We define the motion model as a mixture of weighted motion patterns. Each

motion pattern is weighted by its probability (Section 3.1.1) and place a Dirichlet

process prior over mixture weights (Section 3.1.1).5

Under our DPGP model, the prior probability of motion pattern bj is given by

its DP mixture weight p(bj). The posterior probability of bj given a target trajectory

ti is proportional to p(bj) · l(bj; ti), where l(bj; t
i) describes the likelihood of motion

5This model is similar to models described by Rasmussen and Ghahramani [2002] and Meeds and
Osindero [2006]; however, unlike these previous works, our goal is to cluster trajectories of varying
lengths, not just partition single points.

39

pattern bj under trajectory ti:

l(bj; t
i) =

Li∏
t

p

(
∆xt
∆t

∣∣∣∣xi1:t, y
i
1:t, {tk : zk = j}, θGPx,j

)

·
Li∏
t

p

(
∆yt
∆t

∣∣∣∣xi1:t, y
i
1:t, {tk : zk = j}, θGPy,j

)
(3.3)

where zk indicates the motion pattern to which trajectory tk is assigned, and θGPx,j

and θGPy,j are the hyperparameters of the Gaussian process for motion pattern bj.

Equation 3.3 may be applied to trajectories with differing numbers of observations

or even trajectories that are only partially complete, which is particularly important

when we wish to determine a target’s motion pattern given only a few observations.

Gaussian Process Motion Patterns

Observations from a target’s trajectory represent a continuous path through space.

The Gaussian process places a distribution over functions [Rasmussen and Williams,

2005], serving as a non-parametric form of interpolation. Gaussian process models are

extremely robust to unaligned, noisy measurements and are well-suited for modeling

the continuous paths underlying our non-uniformly sampled time-series samples of

the target’s locations.

The Gaussian process for a motion pattern that models a trajectory’s derivative is

specified by a set of mean and covariance functions. Specifically, given an input (x, y)

location, the GP model for the motion pattern predicts the trajectory derivatives

(∆x
∆t,
, ∆y

∆t
) at that location. We describe the mean trajectory-derivative functions as

E[∆x
∆t

] = µx(x, y) and E[∆y
∆t

] = µy(x, y), and implicitly set both of them to initially be

zero everywhere (for all x and y) by our choice of parameterization of the covariance

function. This encodes the prior bias that, without any additional knowledge, we

expect the target to stay in the same place. Zero-mean GP priors also simplify

computations. The model assumes that trajectory derivatives in the x-direction and

y-direction are independent; while a more sophisticated model could be used to model

these trajectory derivatives jointly [Boyle and Frean, 2005], we found that our simple

40

approach had good empirical performance and scaled well to larger datasets.

We denote the covariance function in the x-direction as Kx(x, y, x
′, y′), which

describes the correlations between trajectory derivatives at two points (x, y) and

(x′, y′). Given locations (x1, .., xk, y1, .., yk), the corresponding trajectory derivatives

(∆x1

∆t
, .., ∆xk

∆t
) are jointly distributed according to a Gaussian with mean {µx(x1, y1), ...,

µx(xk, yk)} and covariance Σ, where the Σij = K(xi, yi, xj, yj). We use the standard

squared exponential covariance function

Kx(x, y, x
′, y′) = σ2

x exp

(
−(x− x′)2

2wx2
− (y − y′)2

2wy2

)
+ σ2

nδ(x, y, x
′, y′) (3.4)

where δ(x, y, x′, y′) = 1 if x = x′ and y = y′ and zero otherwise. The length-scale

parameters wx and wy normalize for the scale of the data. The σn-term represents

within-point variation (e.g., due to noisy measurements); the ratio of σn and σx

weights the relative effects of noise and influences from nearby points. We use θGPx,j

to refer to the set of hyperparameters σx, σn, wx, and wy associated with motion

pattern bj (each motion pattern has a separate set of hyperparameters).6 We chose

a covariance function of the form of Equation 3.4 due to its straightforward and

intuitive connection with driver trajectories and resulting high performance.

For a GP over trajectory derivatives trained with tuples (xk, yk,
∆xk
∆t

), the predic-

tive distribution over the trajectory derivative ∆x
∆t

∗
for a new point (x∗, y∗) is given

by

µ∆x
∆t

∗ = Kx(x
∗,y∗,X,Y)Kx(X,Y,X,Y)−1 ∆X

∆t
(3.5)

σ2
∆x
∆t

∗ = Kx(x
∗,y∗,X,Y)Kx(X,Y,X,Y)−1Kx(X,Y,x

∗,y∗)

where the expression Kx(X, Y,X, Y) is shorthand for the covariance matrix Σ with

terms Σij = Kx(xi, yi, xj, yj). The equations for ∆y
∆t

∗
are equivalent to those above,

using the covariance Ky.

6We described the kernel for two dimensions, but it can be easily generalized to more.

41

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Example Linear Trajectories

X Position

Y
 P

o
s
it

io
n

(a) Example Trajectories

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gaussian Process Model Mean Velocity Direction Field

X Position

Y
 P

o
s
it

io
n

(b) GP Mean Velocity Field

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Markov Model Mean Velocity Direction Field

X Position

Y
 P

o
s
it

io
n

(c) MM Mean Velocity Field

Figure 3-3: Velocity fields learned by a GP and a Markov model from three trajectories
of an approximately linear motion pattern. The GP generalizes quickly from the
irregularly observed trajectories, whereas the discretization in the Markov model slows
down generalization.

Estimating Future Trajectories

As summarized in Equation 3.5, our Gaussian process motion model places a Gaus-

sian distribution over trajectory derivatives (∆x
∆t
, ∆y

∆t
) for every location (x, y). If the

target’s location is always known, we only need to predict the target’s position one-

step into the future to track it: even if it goes in an unexpected direction, we will

know that a rare event has occurred and can plan accordingly. However, the target’s

position is not always known—for example, if it can only be observed within the

agent’s camera radius. In this case, the agent must be able to infer where the target

might be multiple steps into the future to intercept it again from knowledge about

where the target was located in the past.

In [Joseph et al., 2010] we used a simple approach to sample a target’s possible

trajectory multiple steps into the future: starting with the target’s current location

(x1, y1), we sampled a trajectory derivative (∆x1

∆t1
, ∆y1

∆t1
) to get a next location (x2, y2).

Then starting from (x2, y2), we sampled a trajectory derivative (∆x2

∆t2
, ∆y2

∆t2
) to get a

next location (x3, y3). We repeated this process until we had sampled a trajectory

of length L. The entire sampling procedure was repeated from the current location

(x1, y1) multiple times to get samples of the target’s future trajectories.

While samples drawn from this procedure are an accurate representation of the

posterior over trajectories, sampling N trajectories of where the target may be L

steps in the future requires NL queries to the Gaussian process. It also does not take

42

advantage of the unimodal, Gaussian distributions being used to model the trajectory

derivatives. Key to efficiently predicting future trajectories is applying an approxima-

tion of Girard et al. [2003] and Deisenroth et al. [2009] that provides a fast, analytic

approach of approximating the output of a Gaussian process given a distribution over

the input distribution. In our case, our Gaussian process motion model over trajec-

tory derivatives gives us a Gaussian distribution over possible target next-locations at

each time step. The approximation of Girard et al. [2003] and Deisenroth et al. [2009]

allows us to string these distributions together: we input a distribution of where the

target may be at time t and a distribution of trajectory derivatives to get a distribu-

tion of where the target may be at time t+ 1. By being able to estimate the target’s

future trajectories analytically, we reduce the computations required—only L queries

to the Gaussian process are needed to predict the target’s location L steps into the

future—and avoid the variance introduced by sampling future trajectories.

Comparison with a Markov chain model Instead of using a Gaussian process—

which defines a distribution over velocities in a continuous state space—we could

imagine a model that discretizes the state and velocity space into bins and learns a

transition model between state-velocity bins. We call this alternative the “Markov

model” because predictions about the target’s next position depend only on the tar-

get’s current position and velocity, not its past history.

A key question when trying to train such a Markov model is the appropriate

level of discretization for the state space. In Figure 3-3, we consider modeling a

motion pattern that consists of approximately linear trajectories observed at irregular

intervals. By modeling the velocity field over the continuous space, the GP is able to

quickly generalize the velocity field over region, whereas the Markov model has gaps

induced by its discretization. These gaps could be filled by a coarser discretization;

however, the modeling would also be coarser. The GP automatically adjusts the

generalization as more data arrive.

43

Dirichlet Process Mixture Weights

Although a single Gaussian process can robustly model the variation within many

closely related trajectories, it is not able to capture differences resulting from targets

with different destinations or different preferred routes. To model qualitatively dif-

ferent motion patterns, we can represent the distribution over behaviors as a mixture

of Gaussian processes. However, we do not know ahead of time how many behaviors

are sufficient for the model. We use a Dirichlet process to allow for new behaviors to

be added as they are observed.

We place a Dirichlet process (Section 2.2) prior over the number of motion pat-

terns. If zi indicates the motion pattern to which trajectory ti is assigned, the prior

probability that target trajectory ti belongs to an existing motion pattern bj is

p(zi=j|z−i,α)=
nj

N−1+α
, (3.6)

where z−i refers to the motion pattern assignments for the remaining trajectories, α is

the concentration parameter of the Dirichlet process, nj is the number of trajectories

assigned to motion pattern bj, and N is the total number of observed trajectories.

The probability that trajectory ti exhibits a new motion pattern is

p(zi = M + 1|z−i, α) =
α

N − 1 + α
. (3.7)

where M is the number of observed motion patterns.

Equation 3.7 implies that the number of motion patterns can grow as more data is

obtained. This property is key to realistically modeling targets: the more interception

and tracking tasks we perform, the more varieties of target motion patterns we expect

to encounter. Figure 3-4 shows how the number of motion patterns grows (under our

model) as new trajectories are observed for the actual dataset of greater Boston taxi

routes (described in Section 3.2). We show in Section 3.2 that we can efficiently plan

even when the number of actively observed motion patterns is unknown; moreover,

this flexibility yields significantly improved results in the performance of the planner.

44

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

Number of Training Paths

N
u

m
b

e
r

o
f

M
o

b
il

it
y

 P
a

tt
e

rn
s

Figure 3-4: As expected, the number of motion patterns in the taxi dataset increases
as more trajectories are added.

DP Trajectory Classifying Example Just as the Gaussian process in Section

3.1.1 allows us to model motion patterns without specifying a discretization, the

Dirichlet process mixture model allows us to model mixtures of motion patterns

without specifying the number of motion patterns. One could, of course, simply

search over the number of motion patterns: we could train models with different

numbers of patterns, examine how well each mixture model explains the data, and

finally choose the best one. However, as we see below, this search requires much

more computation time than using a Dirichlet process to automatically determine

the number of patterns, with similar performance.

We compare the DPGP to a set of finite mixture models that also use Gaussian

processes to model motion patterns (that is, the finite mixture model first described

in Equation 3.2). We consider the helicopter-based tracking scenario for a data set

of taxi trajectories. Each model was trained on a batch of 200 trajectories using five

different initializations. We tested tracking performance on a set of 15 held-out test

45

0 10 20 30 40 50 60
8100

8150

8200

8250

8300

8350

8400

8450

8500

8550

8600

Number of Mobility Patterns

T
o

ta
l
R

e
w

a
rd

EM

DPGP

Figure 3-5: Performance on 15 held-out test trajectories vs. model size for a variety
of finite models (black) and the DPGP (blue) trained on 200 trajectories. The error
bars represent the standard deviation of the reward from five runs. Note the inferred
DPGP model has model size error bars also due to variation in the estimated model
size for each run.

trajectories. None of the models were updated during the testing phase.

The results in Figure 3-5 show that while the finite GP-based models perform well

overall, our DPGP model has nearly the best performance without having to perform

a search over the finite model space. This last point is important, not only because

a search over finite models would require more computation but also because the

search requires us to choose a regularization criterion to avoid over-fitting. Standard

criteria, such as the Bayesian information criterion [Raftery, 1986] cannot be applied

in this context because the GP contains an unbounded number of parameters; thus

we must choose from various cross-validation or bootstrap procedures. The DPGP

provides a principled, simple-to-use regularization criterion within its model.

46

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of Paths

R
u

n
 T

im
e
 (

s
)

Adaptive EM

DPGP

Figure 3-6: Run time vs. number of paths for adaptive EM and our DPGP model.

3.2 Interception and Tracking with Full Informa-

tion

Searching in the space of finite models is especially computationally expensive when

the data arrives online and the number of clusters are expected to grow with time.

(The DP can update the number of clusters incrementally.) To gain insight into the

extra computation cost of this search process we implemented EM where every 10

paths we search over models sizes that are within five clusters of the current model.

Figure 3-6 shows run time as the number of training paths increase for our DPGP

model and this adaptive EM technique. The running time grows exponentially longer

for EM with model search compared to the DPGP.

We first consider the case in which our agent has access to the target’s current

position but needs to be able to predict its future position to track it effectively.

We call this the “full information” case because this scenario implies that the agent

47

has access to sensors covering the environment such that the target’s current state

is always known (up to time discretization). For example, we may be given location

information from a dense sensor network. In this section, we formalize the tracking

problem and describe the process of training a motion model for this full-information

tracking task. We next provide results for our tracking problem applied to two targets

with completely different motion models, one synthetic and one built from a real-world

dataset. In Section 4, we will relax the assumption of a dense sensor network, and

show how to extend our approach to target interception given information from a

sparse sensor network.

3.2.1 Tracking Problem Formulation

Since the target’s current position is known at every time step, we can formalize

the scenario as a Markov decision process (MDP), a common tool for autonomous

decision making. An MDP is defined by a set of states, a set of actions, a transition

function, and a reward function. Here, the state is the joint position of our agent and

the target (xa, ya, xtarget, ytarget). Given an action and our agent’s current position

(xat , y
a
t), we assume that our agent’s next position (xat+1, y

a
t+1) is deterministic and

known. In contrast, the target’s transitions are stochastic over the continuous space;

we can only place a distribution over the target’s next position (xtargett+1 , ytargett+1) based

on our motion model. At each step, our agent incurs some small cost for moving, and

receives a large positive reward each time it shares a grid cell with the target. For

this type of interception and tracking scenario the policy is fairly insensitive to the

reward values. Given an MDP, we can find the optimal policy using standard forward

search techniques [Puterman, 1994].

3.2.2 Model Inference

Given a set of target trajectories, we can train the DPGP model from Section 3.1.1

and use it to make predictions about future trajectories. Since exact inference over

the space of DPs and GPs is intractable, we describe a process for drawing samples

48

from the posterior over motion models. These samples are then used by our agent for

planning.

Training the Model

Our model contains two sets of parameters—the DP mixture weights p(bj), the motion

pattern assignments zi, and the DP hyperparameter α—the GP hyperparameters

θGPx,j , θ
GP
y,j and the trajectories assigned to each motion pattern cluster. Following the

work of Rasmussen and Ghahramani [2002] and Rasmussen [2000], learning the model

involves Gibbs sampling the parameters (see Algorithm 1).

We first resample each zi in turn, using the exchangeability properties of the DP

and GP to model the target trajectory ti as the most recently observed target. The

probability that the trajectory ti will be assigned to an instantiated motion pattern

is

p(zi = j|ti, α, θGPx,j , θGPy,j) ∝ l(bj; t
i)

(
nj

N − 1 + α

)
(3.8)

where l(bj; t
i) is the likelihood of motion pattern bj from Equation 3.3 and nj is the

number of trajectories currently assigned to motion pattern bj. The probability that

the trajectory ti belongs to a new motion pattern is given by

p(zi = M + 1|ti, α) ∝
∫
l(bM+1; ti)dθGPx,M+1dθ

GP
y,M+1

(
α

N − 1 + α

)
, (3.9)

and we use Monte Carlo integration [Bishop, 2006] to approximate the integral. The

likelihood from Equation 3.8 also must be approximated for popular motion patterns,

as the computations in Equation 3.5 are cubic in the cluster size nj. Similar to Ras-

mussen and Williams [2005], we approximate the likelihood for these larger clusters

using the Nmax trajectories that are closest to the trajectory ti.7

The DP concentration hyperparameter α is resampled using standard Gibbs sam-

pling techniques [Rasmussen, 2000]. The GP length-scale and variance hyperparam-

eters are more difficult to resample, so we leverage the fact that their posteriors are

7We tested the validity of this approximation by comparing approximations in which only the
nearest points to the true likelihood were used and found no practical difference when discarding
75% of trajectories for large clusters.

49

Algorithm 1: Motion Model Inference

1: for sweep = 1 to # of sweeps do
2: for each motion pattern bj do
3: Draw the GP hyperparameters θGPx,j , θ

GP
y,j

4: end for
5: Draw the DP hyperparameter α
6: for each trajectory ti do
7: Draw zi using equations 3.8 and 3.9
8: end for
9: end for

extremely peaked and instead always set them to their maximum likelihood values

(using gradient ascent). In applications where the posteriors are less peaked, hybrid

Monte Carlo techniques may be used [Duane et al., 1987].

Classification and Prediction with New Trajectories

The motion model from Algorithm 1 can now be used to predict a target’s future

locations, given a partial trajectory ti. We first apply equations 3.8 and 3.9 to compute

the relative probability of it belonging to each motion pattern bj. Equation 3.3 is

used to compute the likelihoods. Just as in Section 3.2.2 where we trained the model

using complete target trajectories, the partial trajectory may contain any number

of points. We can use the same equations 3.8 and 3.9 to determine the most likely

motion patterns for the partial trajectory.

For each likely pattern bj, we first compute the expected trajectory derivatives

(∆x
∆t
, ∆y

∆t
)j conditioned on GP parameters (θGPx,j , θ

GP
y,j) (Equation 3.5). The expected

trajectory derivative is a weighted average over all the conditional derivatives8

∑
j

p(bj)

(
∆x

∆t
,
∆y

∆t

)
j

.

We apply this expected trajectory derivative to the target’s most recent location to

predict where it will be in the future.

8In practice, we found that the motion pattern likelihoods were highly peaked. In this situation,
it was sufficient to only consider the maximum likelihood motion pattern when predicting the future
locations in partial trajectories.

50

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
s
it

io
n

Figure 3-7: Several trajectory samples from the Corridor scenario, where targets
roughly following a straight line

3.2.3 Results

In this section we describe our results on two example scenarios. The first is a syn-

thetic single-trajectory scenario where the agent must intercept and track 50 targets,

one after the other. The second scenario is a (simulated) helicopter-based tracking

scenario in which the targets are cars whose paths from the CarTel dataset. In both

cases, we tested our models in an online fashion: initially our agent had no experience

with the target; after each episode, the target’s full trajectory was incorporated into

the motion model.

We compare our DPGP motion model to a Markov model that projects positions

and velocities to a discretized grid and uses the trajectory data to learn target tran-

sition probabilities between grid cells. The Markov model predicts a target’s next

grid cell using the transition probabilities stored at the grid cell closest to the target’s

current position and velocity. In contrast to the Markov model, which ignores trajec-

tory history, the DPGP model considers the entire observed portion of the trajectory

when predicting both the target’s motion pattern and future trajectory.

51

0 5 10 15 20 25 30 35 40 45 50
−100

−80

−60

−40

−20

0

20

40

60

80

100

Number of Episodes

R
e
w

a
rd

 A
v
e
ra

g
e
d

 O
v
e
r

5
 e

p
is

o
d

e
s

Pursuit

MM

DPGP

Figure 3-8: Sliding window average of per-episode rewards achieved by different mod-
els on the Corridor scenario. Error bars show the 95% confidence interval of the
mean from five repeated runs.

Results on a Simple Synthetic Example

We first apply our approach to a simple example involving a target following a straight

line with occasional deviations (for example, walking along a puddle-covered road).

The agent receives a reward of -10 for every time step until it intercepts the target,

whereupon it receives a reward of +100. The agent’s task involved intercepting and

tracking 50 targets one after the other. We call this the Corridor scenario. Figure

3-7 shows several trajectories from this example.

Figure 3-8 shows the results for five repetitions of this set of tasks. For comparison,

we plot the results of both the Markov model and a naive pursuit approach that moves

the agent to the target’s most recent position. Overall, we see that while the agent

planning with the Markov models with various initializations eventually reaches the

same level of performance as the agent using the Gaussian process, the Gaussian

process motion model learns faster from the data. Figure 3-9 shows an example

planning sequence derived using the Gaussian process motion model in which the

agent intercepts the target.

52

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
s
it

io
n

(a) t = 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
s
it

io
n

(b) t = 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
s
it

io
n

(c) t = 9

Figure 3-9: A planning episode for a single path in the Corridor scenario. Agent
positions are shown in blue and untagged target positions are shown in dashed red
(before they are tagged) and dashed green (after they are tagged). The small blue
circle around the agent signifies the tagging range.

While this is a simple and easy example, we note that the DPGP still outperforms

the other models. The DPGP learns the model almost instantaneously, but the

Markov model requires approximately 50 trials before matching the performance of

the DPGP.

Results on a Helicopter-based Tracking Scenario

Next, we tested our approach on a helicopter-based target-tracking scenario. To

model the helicopter and its rewards, we place a 20× 20 grid over a city (an area of

approximately 10 square miles) and represent the helicopter’s state with the closest

grid cell. At each time step, the helicopter can stay in place, move one cell, or

move two cells. These actions result in rewards of 0, -1, and -2, respectively. The

helicopter also receives a reward of 10 for each time step it shares a grid cell with

the target car. While a real “chase” scenario would have many more complexities,

this simplified tracking task allows us to show empirically that our model, initially

trained on likelihood-based criteria, also performs well on a planning problem based

on real data9.

We tested both our DPGP and the Markov model on 500 trajectories taken from

the CarTel dataset of time-stamped GPS coordinates of greater Boston area taxis.

9Likelihood-based methods try to explain the data well, while the goal of the planning problem
is to maximize rewards. A model that best explains the data is not guaranteed to be the best model
for planning.

53

Training trajectories were randomly drawn from this set of 500 without replacement

until all 500 trajectories were incorporated. The Markov model was initialized with

a uniform prior, and its transition probabilities were updated as new trajectories

arrived. To assess the effect of discretization granularity on the Markov model, we

evaluated Markov models with different position and velocity resolutions. The x and

y-positions were discretized on a 20× 20, 40× 40, or a 60× 60 grid (the helicopter’s

discretization never changed). Velocity was either discretized into four or eight states.

The models with finer discretizations were more expressive but require more data to

train effectively.

After each trajectory was completed, our DPGP driver model was updated using

Algorithm 1. Each update was initialized with the most recently sampled model.

Since a full update required significant computation, new trajectories were initially

clustered with their most likely motion pattern (which could have been a new pattern)

using equations 3.8 and 3.9.

Every 10 new trajectories, a complete set of 5 Gibbs sweeps (Algorithm 1) were run

to update the model parameters and trajectory assignments (we found that samples

generally stopped changing after the first 2 sweeps). The noise parameter σn in

Equation 3.4 was fit from the current trajectory set. While the DPGP model required

more computation than the Markov model (about 10 times slower), it could still

incorporate a new set of samples in minutes, an update rate fast enough for a real

scenario where the model may be updated several times a day. The planning time

was nearly instantaneous for both the DPGP and the Markov driver models.

We first carried out a series of experiments to evaluate the quality of our models.

Example predictions of the DPGP and Markov models are seen in Figure 3-10. The

solid circles show a partial trajectory; the open circles show the true continuation of

the trajectory. The cyan, red, and blue curves show the continuations predicted by

the DPGP model and two Markov models. With only 100 training trajectories, none

of the models predict the full path, but the DPGP is close while the other models

are completely lost. As more training data is added, the DPGP and the finer-grained

Markov model match the true trajectory, while the simpler Markov model is not

54

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
s
it

io
n

MM 20x20x4 Prediction

MM 40x40x8 Prediction

DPGP Prediction

Ground Truth Path

Path Observed So Far

(a) 100 paths

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
s
it

io
n

MM 20x20x4 Prediction

MM 40x40x8 Prediction

DPGP Prediction

Ground Truth Path

Path Observed So Far

(b) 300 paths

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
s
it

io
n

MM 20x20x4 Prediction

MM 40x40x8 Prediction

DPGP Prediction

Ground Truth Path

Path Observed So Far

(c) 500 paths

Figure 3-10: Predictions given a partial path for the DPGP and two Markov models
for various amounts of training data. Trajectories were drawn randomly from the full
dataset without replacement.

flexible enough to fit the data.

As the goal of our model is to predict the motion of mobile agents within a planner,

we compared the performance of planners using the DPGP and Markov models, as

well as a naive pursuit approach that simply assumed the vehicle’s position at time

t + 1 would be the same as its location at time t. We also evaluated a simple k-

nearest neighbor technique that, given an (x, y) point, simply searched the training

set of trajectories for nearby (x, y) points and interpolated the trajectory derivatives

∆x
∆t

and ∆y
∆t

from the trajectory derivatives of nearby training points.10 Finally, we

evaluated a GP model that was fit to only the current trajectory and ignored all

past training data. This single GP model ensured that the previous trajectories were

important for making predictions about the current trajectory, that is, the current

trajectory could not be well-predicted based on its own velocities.

Figure 3-11 shows the cumulative difference of total reward between all the ap-

proaches and naive pursuit method. The k-nearest neighbor and simple GP rarely

out-perform pursuit. The Markov models initially do worse than pursuit because

they have many parameters (making them vulnerable to over-fitting) and often make

incorrect predictions when the agent observes a trajectory in a sparse region of their

state space. In contrast, the DPGP starts out similar to pursuit, since the zero-mean

prior on trajectory derivatives naturally encodes the bias that, in the absence of other

10For reasonably dense data, Gaussian process and nearest neighbor approximations are very close;
thus, the k-nearest neighbor technique also served as a close approximation of a solution trained on
a single GP for the entire dataset.

55

0 100 200 300 400 500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Number of Training Paths

C
u

m
u

la
ti

v
e
 D

if
fe

re
n

c
e
 F

ro
m

 P
u

rs
u

it

Pursuit

MM 20x20x4

MM 20x20x8

MM 40x40x4

MM 40x40x8

MM 60x60x4

MM 60x60x8

KNN K=1

KNN K=25

KNN K=50

GP

DPGP

Figure 3-11: Cumulative difference in reward from the pursuit approach for the DPGP
model, various Markov models (MM), k-nearest neighbors (KNN), and a GP fit to
the current trajectory (GP) (higher values are better).

data, the car will likely stay still. The DPGP model quickly generalizes from a few

trajectories and thus attains the highest cumulative rewards of the other methods.

The Markov models eventually also exhibit similar performance, but they never make

up for the initial lost reward.

3.3 Interception and Tracking with Partial Infor-

mation

We now consider the case in which the agent does not always have access to the

target’s current location. Instead, we assume that the agent has a sensor that will

56

provide a perfect measurement of the target’s location if the target is within some

observation radius of the agent, and no measurement otherwise. The agent’s task is

to first intercept the target — maneuver to within some small interception radius of

the target for “inspection” — and then to keep the target within its larger observation

radius.

In many senses, this problem formulation is a more realistic scenario in that we

do not assume a sensor network will always provide the target’s location. However,

because the agent can only observe the target when it is near it, it no longer has

full trajectories to cluster into motion patterns. Thus, a key additional step in the

partially observable case is that the agent must now infer where the target when it

was not being observed. This information is needed both to determine which motion

pattern the target was exhibiting and to update the characteristics of a motion pattern

cluster from partial trajectories.

We first formalize the model and detail the inference procedure; we next show

how our motion model helps the agent intercept and track targets in a synthetic

domain (Section 3.3.3) and a helicopter-based search and tracking scenario using the

real-world taxi data (Section 3.3.3).

3.3.1 Interception and Tracking Problem Formulation

Since the target’s current position is now potentially unknown at every time step,

we formalize the interception and tracking scenario as a partially observable Markov

decision process (POMDP). In addition to the states, actions, transition function, and

reward function present in an MDP, a POMDP also includes a set of observations

and an observation function.

As in the fully observable MDP case (Section 3.2), the state consists of the joint

position of our agent and the target (xa, ya, xtarget, ytarget). Given an action and our

agent’s current position (xat , y
a
t), we assume that our agent’s next position (xat+1, y

a
t+1)

is deterministic and known. However, the target’s position (xtarget, ytarget) may no

longer be observed. Instead, our agent receives an (accurate) observation of the tar-

get’s position if the target is within an observation radius robs of our agent. Otherwise

57

Algorithm 2: Partially Observable Motion Model Inference

1: for sweep = 1 to # of sweeps do
2: for each trajectory ti do
3: for each time step n do
4: if (xtargett , ytargett) was not observed then
5: Draw (xtargett , ytargett) using Equation 3.5
6: if (xtargett , ytargett) was within robs of (xat , y

a
t) then

7: Reject sample, go to 5
8: end if
9: end if

10: end for
11: end for
12: for each motion pattern bj do
13: Draw the GP hyperparameters θGPx,j , θ

GP
x,j

14: end for
15: Draw the DP hyperparameter α
16: for each trajectory ti do
17: Draw zi using equations 3.8 and 3.9
18: end for
19: end for

our agent receives no information about the target’s position. Essentially, we are re-

laxing the assumption of the previous section that the target is tracked by a dense

sensor network.

Our agent gets target information at irregular intervals from a sparse sensor net-

work, and must model the target’s behavior and plan trajectories to intercept the

target given imperfect information about the current target’s location. As before, the

target’s transitions are stochastic over the continuous space; we can place a distribu-

tion over the target’s next position (xtargett+1 , ytargett+1) based on our motion model. The

agent receives a large one-time reward for being within a small interception radius

of the target (which is significantly smaller than the observation radius and a small

tracking reward for every target within its observation radius.

The inference procedure for learning the target motion models (Algorithm 2) is

described next in Section 3.3.2; given this model and the remaining problem param-

eters, the agent chooses actions using a standard forward search [Ross et al., 2008].

58

3.3.2 Model Inference

Since our agent sees a target’s location only when the target is within a given ob-

servation radius, the target trajectory that the agent observes will often be disjoint

sections of the target’s full trajectory. Fortunately, the Gaussian process does not re-

quire continuous trajectories to be trained, and the Dirichlet process mixture model

can be used to classify partial paths that contain gaps during which the vehicle was

not in sight. In this sense, the inference approach for the full information case (Section

3.2.2) also applies to the partial information case. However, using only the observed

locations ignores a key piece of information: whenever the agent does not see the

target, it knows that the target is not nearby. In this way, the lack of observations

actually provides (negative) information about the target’s location.

To leverage this information, we use Gibbs sampling to sample the unobserved

target locations as well as the trajectory clusterings. Once the partially observed

trajectories are completed, inference proceeds exactly as in the full information case.

Specifically, we alternate resampling the cluster parameters (Section 3.2.2) with re-

sampling the unobserved parts of each target’s trajectory. Given all of the other

trajectories in an incomplete trajectory’s cluster, we can sample the missing sections

using the prediction approach in Section 3.2.2; this approach also ensures that the

filled in trajectories connect to observed segments smoothly. If the sampled trajectory

crosses a region where the agent could have observed it—but did not—then that sam-

ple is rejected, and we sample a new trajectory completion. This rejection-sampling

approach ensures that we draw motion patterns consistent with all of the available

information (see Algorithm 2).

To predict future target positions, several of the sampled trajectory completions

are retained and averaged to produce a final prediction. Each trajectory completion

suggests a different Gaussian process motion model, and is weighted using Bayesian

model-averaging. Using the final velocity prediction, computed as the weighted aver-

age of individual model predictions, we can then apply the prediction and classification

approach in Section 3.2.2 for intercepting and tracking new targets.

59

3.3.3 Results

In this section, we apply our DPGP model to two partially observable interception

and tracking problems. The first is a synthetic example designed to show the basic

qualities of the DPGP in the partially observable case. In the second problem, we

return to a more challenging, partially observable version of the taxi tracking scenario

from Section 3.2. As in the fully observable case, we tested each model in an online

fashion: initially the agent had no experience with the target; after each episode,

any information it received about the target was incorporated into the motion model.

Specifically, if the agent only observed the target at certain times, only those locations

were used to update the motion model. The agent does not receive any additional

information about the missed observations of a target’s trajectory after an episode.

In all of the scenarios, we compared our DPGP algorithm to a pursuit forward

search algorithm and a Markov model. The pursuit algorithm goes to the target’s

last observed location but uses forward search to plan about how best to intercept

and track all three targets. The Markov models use a position discretization equal

to the interception region with x and y velocity each discretized into two bins. The

transition matrix is initialized with a small probability mass on self transitions to

encode the bias that in the absence of data the target will tend to stay in the same

location. Without this bias the model performs extremely poorly initially and would

be an unfair comparison to our model which has a similar prior bias (Section 3.1.1).

The Markov model also uses forward search to plan for the helicopter. While we

could have used other Markov models with more bins, the results from Section 3.2.3

show us that these Markov models may perform better in the limit of infinite data

but with the small data set here a Markov model with a small number of bins will

perform the best.

Results on a Synthetic Multi-Target Scenario

We first illustrate our approach on a synthetic interception and tracking problem

based on Roy and Earnest [2006]. In this problem, illustrated in Figure 3-12, the

60

Figure 3-12: Search and tracking task in the synthetic Blocks scenario.

agent starts near the opening on the far right and must track three targets which

start from the right side of the region and simultaneously move to three different

target locations on the left wall. Targets have 0.75 probability of going above the

central obstacle and 0.25 probability of going below it. The agent receives a reward

of -10 for every time step until it intercepts the target, whereupon it receives a reward

of +100. Additionally, it receives a reward of +1 for every target within its observation

radius. We call this the Blocks scenario.

Figure 3-13 shows the performance of each approach over five runs, where each

run consists of 100 episodes. The error bars show the 95% confidence interval of the

mean from the five runs. In the figure, not only are the means of the DPGP approach

higher than the other approaches, but in practice it scores significantly better on each

individual run. The Markov models, despite requiring a fair amount of data to start

making relatively good predictions, do outperform the simpler strategy. Figure 3-14

shows parts of a single planning episode, where the helicopter initially intercepts one

target going below the obstacle before pursuing the last two above the obstacle.

Since this is a synthetic example, we can also compare the motion patterns found

to the true underlying patterns in the model. The model has six patterns: the target

can go either above or below the obstacle to reach one of the three final locations

61

0 10 20 30 40 50 60 70 80 90 100
−300

−250

−200

−150

−100

−50

0

50

100

150

200

Number of Episodes

R
e
w

a
rd

 A
v
e
ra

g
e
d

 O
v
e
r

2
0
 e

p
is

o
d

e
s

Pursuit

MM

DPGP

Figure 3-13: Sliding window average of per-episode rewards achieved by different
models on the Blocks scenario. Error bars show the 95% confidence interval of the
mean from five repeated runs.

on the left wall. The number of clusters found by our DPGP approach as a function

of training paths is shown in Figure 3-15. In the beginning, when the agent has

seen relatively little data, it maintains a smaller number of motion patterns. As the

agent observes more trajectories, we see that the number of motion patterns settles

around the true number (the error bars show 95% confidence intervals of the mean).

By the end of the 100 trials, if two trajectories belonged to the same true cluster,

then our DPGP model placed them in different clusters with probability 0.2625; if

two trajectories actually belonged to separate clusters, then our DPGP model placed

them in the same cluster with probability 0.1567. Some of this clustering error is

due to our agent being out of range of the target resulting in some trajectories not

containing the full location history. In fact, approximately 20% of the data points

were not observed during the trails. These statistics, consistent over five runs of

the 100 episodes, strongly suggest that our DPGP model was learning key clustering

characteristics of the target motion patterns.

62

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
s
it

io
n

(a) t = 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
s
it

io
n

(b) t = 6

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X Position

Y
 P

o
s
it

io
n

(c) t = 9

Figure 3-14: A planning episode in the Blocks scenario. Agent positions are shown
in blue and target positions are shown in red before they are intercepted and green
after. The small blue circle and the large cyan circle around the agent signify the
interception region and observation radius, respectively. Target locations that were
within the agent’s sensor range are marked by × symbols, and target locations beyond
the agent’s sensor range are marked with ◦ symbols.

Results on a Helicopter-based Multi-Target Scenario

We next applied our approach to a helicopter-based search and tracking scenario that

used the same taxi dataset described in Section 3.2.3. We assume that the agent

was given the targets’ true initial locations and velocities from a ground-based alert

network. After being given this initial piece of information about the targets, the

target states are no longer directly accessible, and the helicopter receives information

about a target’s location only if the target is within about 1.5 miles (a quarter the

map area) of the helicopter. The interception radius is 0.25 miles (a twenty-fifth the

map area). The reward function is identical to the one described in Section 3.3.3.

The results comparing our DPGP approach to the same control strategies from

Section 3.3.3 are shown in Figure 3-16 and Figure 3-17, with the error bars showing the

95% confidence interval of the mean for the five runs of 150 tasks. Using our DPGP

approach for modeling the targets results in much better interception and tracking

performance from the start. Unlike the simpler Blocks scenario, the Markov models

do no better than simple pursuit after 150 episodes. Figure 3-18 shows the number of

clusters found by the DPGP approach as a function of training paths. As expected

from a real-world dataset, the number of motion patterns grows with the number of

episodes as new motion patterns observed in new trajectories. Finally, Figure 3-19

shows an example episode where the helicopter first intercepts each target and then

63

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Number of Episodes

N
u

m
b

e
r

o
f

M
o

ti
o

n
 P

a
tt

e
rn

s

Number of Motion Patterns with Increasing Episodes

Inferred Motion Patterns

True Number of Motion Patterns

Figure 3-15: Number of discovered target motion patterns in the Blocks scenario.

finds a location where it can observe multiple targets to keep them localized.

3.4 Related Work

Much of the past work in modeling mobile agents has focused on two problems: expert

systems (which require specialized data) and modeling a single agent (requiring data

generated by the single agent). Letchner et al. [2006] built a model that predicted

trajectories based on the optimal path between two locations (given factors such as

the time of day) and the amount of “wasted time” a driver was willing to accept.

Dia [2002] used a survey to classify drivers into different profiles to enable better

prediction. Both of these works note that it is difficult to specify a model for human

motion patterns based on logical reasoning. For example, Letchner et al. [2006] noted

only 34.5% of drivers choose the fastest route between two locations.

Whether these statistics are a result of driver ignorance or another factor (e.g.,

avoiding a stressful route) is highly debatable and difficult to incorporate into expert

64

0 50 100 150
80

90

100

110

120

130

140

150

Number of Episodes

R
e
w

a
rd

 A
v
e
ra

g
e
d

 O
v
e
r

5
0
 e

p
is

o
d

e
s

Pursuit

MM

DPGP

Figure 3-16: Sliding window average of per-episode rewards achieved by different
models on the taxi multi-target interception and tracking task. Error bars show the
95% confidence interval of the mean from five repeated runs.

models of human motion patterns. Without access to similar data for the greater

Boston area or having similar time-stamped GPS data for their models, we were

unable to compare them to our approach; however, it would be interesting to see

if incorporating expert features related to human psychology into the priors of our

model could improve predictions.

Another body of literature has trained Markov models (generally using data from

only one person) in which each road segment is a state and transition probabilities

encode the probabilities of moving from one segment to another. For example, Pat-

terson et al. [2003] treated the true driver state as hidden by GPS sensor noise and a

hidden driver mode. Ashbrook and Starner [2003] modeled the end position and tran-

sition probabilities explicitly, but doing so prevented the method from updating the

probabilities based on a partially observed trajectory. Using a hierarchy of Markov

models, Liao et al. [2007] were able to make both local and destination predictions

but still had difficulty in regions of sparse training data. Ziebart et al. [2008] take an

inverse reinforcement learning approach to predicting the future locations of a target

65

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Episodes

C
u

m
u

la
ti

v
e
 R

e
w

a
rd

Pursuit

MM

DPGP

Figure 3-17: Results from the taxi multi-target interception and tracking task showing
cumulative reward achieved by different models on the Blocks scenario. Error bars
show the 95% confidence interval of the mean from five repeated runs.

of interest. In their work, they learn the reward function of drivers and use a known

dynamics model (either designer provided or learned from a sufficient amount of data)

to make their predictions. This is in contrast to the work presented in this chapter

where we assume a known reward function and our focus is on learning a dynamics

model from limited data.

Recently, Gaussian processes have been successfully applied to modeling and pre-

diction in robotics tasks. Tay and Laugier [2007] used a finite mixture of Gaussian

processes to model multiple moving targets in a small simulation environment. In the

context of controlling a single vehicle, Ko and Fox [2009] demonstrated that Gaussian

processes improved the model of a vehicle’s dynamics.

Fox et al. [2007] took a related approach to ours and modeled the number of

motion patterns with a Dirichlet process prior, with each motion pattern governed

by a linear-Gaussian state space model. Unlike our approach, agents could switch

between motion patterns using an underlying hidden Markov model. In our specific

66

0 50 100 150
5

10

15

20

25

30

35

40

45

50

Number of Episodes

N
u

m
b

e
r

o
f

C
o

m
p

o
n

e
n

ts

Figure 3-18: Number of discovered motion patterns for the taxi dataset search and
tracking task.

dataset and application, the agents usually know their start and end destinations from

the very beginning; not allowing motion pattern changes helped predict a car’s path

on roadways that were common to many motion patterns. However, our framework

could certainly be extended to allow agents to change motion patterns.

The target-tracking problem under partial observability conditions has a natu-

ral formulation as a POMDP, since the agent must make decisions with incomplete

knowledge of the targets. Pineau et al. [2003] first applied the PBVI point-based

solver to a small target-tracking problem, and more recent approximate point-based

techniques, for example by Hsu et al. [2008] and Kurniawati et al. [2009], have ex-

panded the applicability of general POMDP solvers to the target-tracking domain by

rapidly exploring the reachable and high-value regions of the belief space.

Despite these advances, point-based POMDP methods still have limited utility in

this domain. These methods typically discretize the agent and target state spaces to

obtain a finite-dimensional belief space, and are unable to adapt to changing motion

patterns due to substantial offline requirements.

One approach to avoiding state space discretization is to represent beliefs using

67

(a) t = 3 (b) t = 7

(c) t = 11 (d) t = 13

Figure 3-19: A planning episode from the taxi data set. Helicopter positions are
shown in blue. Car positions are shown in red before interception and green after.
The small blue circle and the large cyan circle around the helicopter signify the tagging
and observation range, respectively. Car locations are marked with a × symbol when
observed by the helicopter, and a ◦ symbol when beyond the helicopter’s sensor range.

68

Gaussian distributions, as applied by Miller et al. [2009] to target tracking, or by He

et al. [2010] with Gaussian mixture models. An advantage of these representations is

the ability to analytically and exactly manipulate the belief state. However, these ap-

proaches focus on planning with accurate models, and do not address model learning

or acquisition.

3.5 Conclusions and Discussion

Using our Bayesian nonparametric DPGP approach for modeling target motion pat-

terns improved our agent’s ability to predict a target’s future locations from relatively

few examples. A key advantage of the DPGP model is that it provides a way of scal-

ing the sophistication of its predictions given the complexity of the observed target

trajectories: we could model motion patterns directly over a continuous space without

needing to specify discretization levels or expected curves. In contrast, the Markov

models suffered because even at a “reasonable” discretization, these models needed

to train the motion model for every grid cell—which required observing many more

trajectories.

One way to think about the DPGP is as a type of hidden Markov model (HMM),

where the future trajectories of the agent are Markov conditioned on some hidden

(instead of observed) state. Indeed, introducing a hidden variable to describe a tra-

jectory type or movement mode is a standard way to avoid issues such as the Markov

model’s confusion over crossing paths (Figure 3-2). However, standard HMM-based

approaches would still typically need to define the number of trajectory types a priori

and commit to a level of discretization. The DPGP can be viewed as an HMM model

in a continuous space with an unknown number of trajectory types.

While we focused on the motion patterns of taxis in the Boston area, as seen

in our synthetic example, the DPGP approach is not limited to modeling motion

patterns of cars. It is meant as a far more general mobile agent model, which models

a wide variety of trajectories over a continuous space as long as the targets motions

obey local smoothness and continuity constraints—as seen in Section 3.3.3, paths and

69

trajectory types can be inferred from even sparsely observed targets if the smoothness

assumptions imposed by the GP model are true. We would expect the DPGP model

to have difficulty modeling trajectories where smoothness assumptions about the

trajectory derivatives could not be characterized by the single distance parameter

in the GP covariance kernel: for example, if trajectories tended to have tight curves

or kinks. Nonstationary GPs could be used in these situations [Meiring et al., 1997,

Paciorek and Schervish, 2000]. In environments where movement in x and y directions

are tightly coupled, GP models with multiple outputs may be more appropriate [Boyle

and Frean, 2005].

The stationary, single-valued aspects of the GP motion model also make it inap-

propriate for modeling trajectories that loop onto themselves—that is, do different

things at the same location based on some other context—and for adversarial situ-

ations. In these cases, additional information, such as the agent’s location relative

to the target, would need to be incorporated into the GP inputs. Thus, the DPGP

model is best suited for situations where complex, non-overlapping dynamics and

clusterings must be learned from relatively little data—as we saw in the results sec-

tions, the Markov models do catch up in performance once sufficient data is available;

however, the DPGP makes significantly better predictions from only a few trajecto-

ries. In situations where the number of trajectory types is known and large batches

of data exist, the DPGP will likely add little over a finite HMM-based model trained

on the same large dataset. The Bayesian nature of our approach does allow available

expert knowledge about target motion patterns to be given in the form of additional

example trajectories without any need to adjust the rest of the inference process.

Finally, it is well-known that standard GPs require O(N3) computation to perform

inference, where N is the number of data points. We were still able to process all

of the data using the approximations described in Section 3.2.2; for larger datasets,

there are fairly standard approximation algorithms with O(N) running times [Csat

and Opper, 2001, Snelson and Ghahramani, 2006].

Accurate agent modeling in large domains often breaks down from over-fitting

or under-fitting the training data. We used a Bayesian nonparametric approach to

70

motion-pattern modeling to circumvent these issues. This approach allows us to build

flexible models that generalize sensibly with sparse data and add structure as more

data is added. The reward models, the dynamics model of the agent, and the form

of the agent’s planner can all be adapted to the task at hand with few adjustments

to the DPGP model or inference procedure.

We demonstrated our motion model on a set of helicopter-based interception and

tracking tasks trained and tested on a real dataset of complex car trajectories. The

results suggest that our approach will be useful in a variety of agent-modeling situ-

ations. Since the underlying structure of our model is based on a Gaussian process

framework, our approach could easily be applied to beyond car domains to generic

metric spaces. Finally, although we focused our approach on a set of interception

and tracking tasks, we note that the DPGP motion model can be applied to any task

where predictions about a target’s future location are needed.

In the next chapter we apply a similar idea of growing the model to modeling the

health of a battery. The same conceptual approach is taken where we use a Dirichlet

process prior to learn the number of “behaviors” which, for a battery, are voltage

and temperature traces. The intuition from this chapter of driver mobility patterns

directly translates into battery behaviors.

71

72

Chapter 4

A Bayesian Nonparametric

Approach to Modeling Battery

Health

4.1 Battery Health Model

Batteries are often both the first point of failure and a significant fraction of a prod-

uct’s cost. Understanding battery failure is particularly important in robotics: at

best, battery death at an inopportune time will require significant personnel inter-

vention to rescue the robot; at worst, the robot may be lost. In robotic applications

where battery death poses a large safety or financial hazard, batteries are usually

replaced long before expected failure. However, this procedure introduces significant

operational costs. Models to accurately predict the cycles left in a battery can help

alleviate these costs.

Unfortunately, modeling battery dynamics is far from simple. Previous efforts

have generally relied on a significant amount of domain knowledge [Chen and Rincon-

Mora, 2006, Gomadam, 2002, Dougal, 2002]; these methods cannot be used without

a detailed understanding of the internal battery structure and chemical composition.

In contrast, our model can be applied to any type of battery as long as we can collect

73

empirical measurements from a representative set of similar batteries.

We take a data-driven, non-parametric approach to predicting time until a battery

can no longer hold a charge, or what we call battery death. Specifically, we consider

how the trajectories of voltage and temperature change as the battery cools after

charging. As seen in Figure 4-1, batteries exhibit different voltage and temperature

trajectory patterns while cooling. We see that these trajectory patterns vary both

inside and across different points in their life-cycles. Our model first clusters together

similar trajectories into cooling behaviors. Next, we learn a particular time-to-death

for each cooling behavior. Given voltage and temperature trajectories from a new

battery, we first map those trajectories to a cooling behavior learned from our training

set of batteries that have already been cycled to death. We predict the new battery’s

remaining life based on the life that remained in the training batteries when they

exhibited the same cooling behavior. Each cluster of our approach is associated with

both a simple model of voltage trajectories and temperature trajectories. This is in

contrast to data-driven, parametric methods, such as Saha et al. [2009], Wen et al.

[2004], which learn a single complex model that can have more difficulty capturing

the distinct trajectory patterns shown in Figure 4-1.

One of the key difficulties with predicting the time to battery death is that even

“identical” batteries can have widely varying lifetimes. We focus on NiMH battery

packs as commonly used with consumer electronics devices, including robots like the

iRobot Roomba vacuum cleaning robot. For this project, iRobot Corporation1 pro-

vided 13 Roomba batteries as research samples that did not meet iRobot’s standards2.

We used a custom-built charging station to cycle the batteries until death, a process

that involves months of data collection per battery. The number of charge cycles in

these batteries varied from 269 to 697 cycles, yet at the beginning of operations, all

batteries behaved nearly identically and thus were difficult to differentiate. However,

as each battery neared death, no matter how long it had been in operation, it tended

to exhibit certain cooling behaviors after charging. A data-driven approach allows us

1Bedford, MA, USA
2We also tested production battery packs that ship with Roomba, but these packs were longer-

lasting, and we were unable to kill them in the time frame of this study.

74

−40 −30 −20 −10 0 10 20 30 40
−500

0

500

1000

1500

2000

2500

Time

V
o

lt
a

g
e

Early Life Behavior

Early Life Behavior

Late Life Behavior

−40 −30 −20 −10 0 10 20 30 40
−8

−6

−4

−2

0

2

4

6

8

Time

T
e

m
p

e
ra

tu
re

Early Life Behavior

Early Life Behavior

Late Life Behavior

Figure 4-1: Sample voltage and temperature trajectories from different parts of a
battery’s life-cycle showing different patterns of cooling.

to learn the patterns that are strongly indicative of nearing battery death.

Finally, our nonparametric Bayesian approach allows us to make predictions given

relatively little data, which is important since collecting data by cycling a fresh battery

to death can take several months on a test stand. We can discover the number of

cooling behaviors supported by the data automatically, without having to specify how

many patterns may be present in advance.

4.1.1 Battery Data

We used data from 4683 charge cycles collected from 13 NiMH battery packs. Each

pack was attached to a test stand which automatically cycled the battery through

charging, cooling, and discharging. (Batteries heat up during charging; the charger

automatically adds a cooling phase to prevent the batteries from overheating during

the constant cycling.) The batteries started out new and were cycled until they could

no longer hold charge, which we defined as battery death. Battery temperature and

voltage were measured during each phase of each cycle.

To predict battery health, we focused on modelling the cooling phase of each

cycle for two reasons. First, as seen in figure 4-1, batteries do exhibit a variety of

distinct cooling behaviors over their lifetimes—thus, these data do contain informa-

tion about battery health. Second, the cooling phase is a part of the cycle that can

be most consistently measured in actual operation. Unlike on test stands, real-world

75

discharge trajectories strongly depend on the robot’s operations; charge trajectories,

while somewhat more consistent, depend on the initial charge. Cooling trajectories

are easily measured at the charging station and largely depend on the battery’s final,

fully charged state.

4.1.2 Battery Cooling Behavior Model

To model cooling trajectories, such as those in Figure 4-1, we assume that each volt-

age and temperature trajectory belongs to a particular cooling behavior. A cooling

behavior is defined by a distribution over voltage and temperature trajectories. Let

θjv be the set of parameters that define the characteristic voltage trajectory for cool-

ing behavior j, and let θje be the set of parameters that define the characteristic

temperature trajectory for cooling behavior j.3

Suppose we are given a pair of voltage and temperature trajectories v0, v1, ..., vN

and e0, e1, ..., eN measured at times t0, t1, ..., tN . Our mixture model defines the prob-

ability of these data as

p(v0:N , e0:N |t0:N) =
M∑
j=1

p(v0:N |t0:N , θ
j
v)p(e0:N |t0:N , θ

j
e)p(j) (4.1)

where M is the total number of cooling behaviors. Factoring the probabilities of a

voltage trajectory p(v0:N |t0:N , θ
j
v) and temperature trajectory p(e0:N |t0:N , θ

j
e) encodes

our assumption that the voltage and temperature trajectories are independent given

the mixture component j (which represents the battery’s health state). Using a

Bayesian approach, that is, placing a distribution over every parameter setting θj,

helps avoid overfitting–a serious issue when the amount of data is limited.

Our goal is to learn the parameters θj for the characteristic curves and the proba-

bilities p(j) from the training data, and then learn a model of time-to-death for each

behavior. (Note that only the temperature and voltage patterns for a cycle are used

3We also considered using the number of elapsed cycles as a feature, but we found this feature
actually reduced prediction accuracy by splitting clusters with different numbers of elapsed cycles
but similar remaining battery life — an acute issue given the bimodal nature of battery life.

76

−40 −30 −20 −10 0 10 20 30 40
−1000

−500

0

500

1000

1500

2000

2500

Time

V
o

lt
a
g

e

Sample Voltage Trajectories During Cooling

Nominal

Failed

Nominal Component

Failed Component

−40 −30 −20 −10 0 10 20 30 40
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time

T
e
m

p
e
ra

tu
re

Sample Temperature Trajectories During Cooling

Nominal

Failed

Nominal Component

Failed Component

Figure 4-2: Cooling behaviors learned from the sample voltage and temperature tra-
jectories in Figure 4-1.

as input for the initial clustering, since in testing, we will not know the number of

cycles remaining.) We can then use this model to predict the time-to-death by infer-

ring the type of cooling behavior exhibited by a new battery. We describe the model

we use for the cooling behaviors below; in Section 4.1.2, we describe the clustering

process used to define cooling behaviors out of measured trajectories.

Examples of cooling behaviors derived from the raw trajectory measurements in

Figure 4-1 are shown in figure 4-2. The solid line shows the characteristic curve

which defines the mean voltage and temperature trajectory for a particular cooling

behavior, while the dashed line provides one standard-deviation range in which we

expect most of the measured trajectories belonging to that behavior to lie. We model

a measurement trajectory p(v0:N , e0:N |t0:N , θ
j) as characteristic curves with additive

Gaussian noise.

Voltage Trajectory Model The physics of electrical charge in batteries make an

exponential curve a natural choice for the characteristic way in which we expect the

voltage to change during the cooling cycle (see Figure 4-1 for sample trajectories).

We posit that the measured voltages in the trajectory will vary around this charac-

teristic exponential curve with independent, Gaussian noise. Thus, the voltage curve

associated with particular cooling behavior is characterized by the parameters of the

exponential curve and the amount of measurement noise.

77

Formally, we define the probability of a voltage trajectory p(v0:N |t0:N , θ
j
v) given a

particular characteristic curve as

vi ∼ N
(
bj0 + bj1 exp(bj2 + bj3ti), (σ

j
v)

2
)

(4.2)

and let θjv = {bj0, b
j
1, b

j
2, b

j
3, σ

j
v}. We place an independent Gaussian prior over the

values of each element of θjv.

We define the prior over the voltage trajectory model parameters to be

sjv|av, bv ∼ G (av, bv), bjk|µv,k, sv,k ∼ N (µv,k, sv,k)

where sv = 1/σ2
v is the precision of the voltage trajectory model and k = 0, 1, 2, 3.

Based on the likelihood function defined in equation 4.2 the posterior distributions

of parameters sv and b0 have closed form posteriors

sjv|v0:N , t0:N , b
j
0:3, av, bv ∼

G

(
av +

N + 1

2
,

1
1
2

∑N
i=0(vi − bj2t2i − b

j
1ti − b

j
0)2 + 1

bv

)
bj0|e0:N , t0:N , b

j
1, b

j
2, s

j
v, µv,0, sv,0 ∼

N

(
sv,0µv,0 + sv

∑N
i=0 vi − b2t

2
i − b1ti

(N + 1)sv + sv,0
,

1

(N + 1)sv + sv,0

)

that are normally distributed. Unfortunately, the posterior distributions for param-

eters b1:3 do not have a closed form and therefore we used importance sampling

[Rubinstein, 1981] to sample from them.

Temperature Trajectory Model The temperature trajectory exhibits a more

complex pattern because the battery initially continues to get warmer after the charg-

ing phase before cooling down. We evaluated first to fifth-order polynomial fits on

various sample trajectories using a nested ANOVA, and a third-order polynomial was

generally where the F-statistic reduced the most dramatically. Thus, we defined the

probability of a temperature trajectory p(e0:N |t0:N , θ
j) given a particular characteris-

78

tic mean curve as

ei ∼ N
(
dj0 + dj1ti + dj2t

2
i + dj3t

3
i , (σ

j
e)

2
)

(4.3)

and let θje = {dj0, d
j
1, d

j
2, d

j
3, σ

j
v}. We place an independent Gaussian prior over the

values of each element of θje.

We define the prior over the temperature trajectory model parameters to be

sje|ae, be ∼ G (ae, be) and bjk|µe,k, se,k ∼ N (µe,k, se,k) where se = 1/σ2
e is the preci-

sion of the temperature trajectory model and k = 0, 1, 2, 3. Based on the likelihood

function defined in equation 4.3 the posterior distributions of the parameters have

closed form posteriors

sje|e0:N , t0:N , d
j
0:3, ae, be ∼

G

(
ae +

N + 1

2
,

1
1
2

∑N
i=0(ei − dj2t2i − d

j
1ti − d

j
0)2 + 1

be

)
dj0|e0:N , t0:N , d

j
1:3, s

j
e, µe,0, se,0 ∼

N

(
se,0µe,0 + se

∑N
i=0 ei − d3t

3
i − d2t

2
i − d1ti

(N + 1)se + se,0
,

1

(N + 1)se + se,0

)
dj1|e0:N , t0:N , d

j
0, d

j
2, d

j
3, s

j
e, µe,1, se,1 ∼

N

(
se,1µe,1 + se

∑N
i=0 eiti − d3t

4
i − d2t

3
i − d0ti

se
∑N

i=0 t
2
i + se,1

,
1

se
∑N

i=0 t
2
i + se,1

)
dj2|e0:N , t0:N , d

j
0, d

j
1, d

j
3, s

j
e, µe,2, se,2 ∼

N

(
se,2µe,2 + se

∑N
i=0 eit

2
i − d3t

5
i − d1t

3
i − d0t

2
i

se
∑N

i=0 t
4
i + se,2

,
1

se
∑N

i=0 t
4
i + se,2

)
dj3|e0:N , t0:N , d

j
0, d

j
1, d

j
2, s

j
e, µe,3, se,3 ∼

N

(
se,2µe,2 + se

∑N
i=0 eit

3
i − d2t

5
i − d1t

4
i − d0t

3
i

se
∑N

i=0 t
6
i + se,3

,
1

se
∑N

i=0 t
6
i + se,3

)

that are normally distributed.

Mixtures of Measurement Trajectories

From Figure 4-1, we see that batteries exhibit a variety of cooling behaviors—that is,

a variety of characteristic voltage and temperature curves during cooling—over the

battery lifetime. We use a Dirichlet process 2.2 to guide the process of clustering the

79

voltage and temperature trajectories that we measure into distinct cooling behaviors.

The Dirichlet process (DP) posits that an infinite number of cooling behaviors may

exist, but certain behaviors are likely to be very common and others quite rare. Of

course, if only a finite number of voltage and temperature trajectories are observed,

they can only belong to a finite number of cooling behaviors. We first provide back-

ground on the DP and then describe how we use it to infer the number of cooling

behaviors in our battery model.

The Dirichlet Process Prior Let n1...nM be the number of trajectories assigned

to behaviors 1...M , respectively, and let zi be the labeled behavior of trajectory i

(that is, if zi = 5 then the ith trajectory was generated according to the 5th behavior).

Then, the probability that a newly observed trajectory N + 1 belongs to behavior j,

given the previous N data points, is

p(zN+1 = j, j ∈ 1, ...,M |n1:M , α) =
nj

N + α
(4.4)

p(zN+1 = j, j /∈ 1, ...,M |n1:M , α) =
α

N + α
. (4.5)

where α is a concentration parameter that governs how often we expect to see a

completely new type of cooling behavior. Having a model that can suggest that

an observed trajectory is unlike any previous trajectory gives us the flexibility to

automatically infer the number of behaviors in a dataset.

We place a gamma prior on α ∼ G(aα, bα) which leads us to the posterior distri-

bution

p(α|n1, ..., nM , aα, bα) ∝ p(n1, .., nM |α)p(α|aα, bα). (4.6)

We draw samples from this distribution using importance sampling [Rubinstein, 1981].

Model Learning: Computing the Dirichlet Process Posterior We now de-

scribe how to use the DP prior to infer the number of cooling behaviors in a set

of trajectory data and the corresponding parameters θ of the characteristic cooling

curves in each behavior. Once the number and characteristic curves for the cooling

80

behaviors have been inferred, we can use the cooling behaviors to predict the time

remaining until battery death (Section 4.1.2).

Exact inference over an infinite number of possible cooling behaviors is intractable.

Instead, we use an iterative process to sample the relevant parameters. First, suppose

that we had a set of assignments z1....zN . Given the temperature and voltage trajec-

tories assigned to a particular cooling behavior j, we can then sample the parameters

θj associated with the characteristic trajectories of that behavior. We can also sample

the concentration parameter α using Equation 4.6. Finally, given the parameters θj,

we can resample trajectories into more probable assignments z1....zN . Repeating this

process, known as Gibbs sampling, is guaranteed to converge to a set of samples that

represent the posterior p({zi}, {θj}, α|v0, v1, ..., vN , e0, e1, ..., eN).

Algorithm 3 summarizes our approach, which follows Rasmussen and Ghahramani

[2001] and Rasmussen [1999]. The Gibbs sampling procedure begins by resampling

each zi given the remaining parameters {θj}, α}. The probability that voltage and

temperature trajectories i will be assigned to an instantiated cooling pattern j is

p(zi = j|θj, α) ∝ p(v0:N |t0:N , θ
j
v)p(e0:N |t0:N , θ

j
e)

(
nj

N − 1 + α

)
(4.7)

where p(v0:N |t0:N , θ
j
v) and p(e0:N |t0:N , θ

j
e) are defined in equations 4.2 and 4.3, respec-

tively. The probability that the trajectories belong to a new cooling behavior is given

by

p(zi = M + 1|α) ∝
[∫

p(v0:N |t0:N , θ)p(e0:N |t0:N , θ)dθ

](
α

N − 1 + α

)
, (4.8)

and we use Monte Carlo integration [Hammersley, 1960] to approximate the integral

as suggested in Rasmussen and Ghahramani [2001].

Given a set of assignments, the trajectory parameters θj are resampled from their

posterior distributions. In practice we found that simply choosing the maximum a

posteriori θj worked well due to the peakiness of the posterior. Finally, the con-

centration parameter α is resampled according to Equation 4.6 from the previous

section.

81

Algorithm 3: Cooling Behavior Inference

1: for sweep = 1 to # of sweeps do
2: for each cooling behavior j do
3: Draw the parameters θj given zi.
4: end for
5: Draw the DP hyperparameter α using Equation 4.6
6: for each trajectory i do
7: Draw zi using equations 4.7 and 4.8
8: end for
9: end for

Figure 4-3 shows an example of the cooling behaviors in a single battery that

are discovered by the inference process. The fact that the blocks of color (denoting

cooling cycles that are inferred to be from the same behavior) are close together in

time suggests that clustering by trajectory type does indeed find groups of trajecto-

ries with similar times to battery death. We also see that at the beginning of the

battery’s lifetime (cycles 0 to 400), the distribution over cooling behaviors is quite

spread and not strongly associated with a particular time to death. As the battery

progresses through its life-cycle, each behavior marks a temporally-clustered block

preceding battery death. In Section 4.2, we will see that the relative indistinguish-

ably of cooling trajectories far from battery death means that predicting the lifetime

of a fresh battery is prone to large errors; however, the more distinct characteristics

of cooling trajectories closer to death allows for better predictions when the battery

is nearing death.

Cycles-to-Death Prediction

Once the parameters {θj}Mj=1 have been learned, we compute a distribution p(l|j, θj)

of the remaining cycles to death l for each cooling behavior j. Especially for cooling

behaviors that occur early in a battery’s lifetime, these distributions can be highly

multimodal: a fresh long-life battery and a fresh short-life battery might have very

similar voltage and temperature trajectories during their initial cooling phases, but

they will have very different numbers of cycles remaining until death (that is, when

the battery stops holding charge).

82

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

50

Cycles

B
e
h

a
v
io

r
In

d
e
x

Figure 4-3: Cooling behaviors (indexed both on the y-axis and by color) for a single
battery as it progresses through its life-cycle. (Cycles from the same behavior are
plotted with the same color.) Initially, the cooling behaviors occur at a variety of
points (see the behaviors for cycles 0 to 400), but as the battery progresses through
its life-cycle, each stage more distinctly marks a block of time preceding battery death.

We use an empirical distribution to model the number of remaining cycles l. This

distribution places a probability mass around each observed time-to-death li for each

cooling behavior j in the training set.

p(l|j, θj) ∝
N∑
i=1

N
(
l; li, σ

2
l

)
1{zi = j} (4.9)

where 1{zi = j} is the indicator function which equals one when trajectory i is

assigned to behavior j and zero otherwise.

We can now make predictions about the remaining cycles left in a battery given

voltage and temperature trajectories. The distribution over the cycles-to-death is

given by taking the expectation over the cooling behavior j

p(l|t0:N , v0:N , e0:N , {θj}, α) =
M+1∑
j=1

p(l|j, θj)p(j|t0:N , v0:N , e0:N , θ
j, α) (4.10)

83

where p(l|j, θj) and p(j|t0:N , v0:N , e0:N , θ
j, α) are defined in sections 4.1.2 and 4.1.2.4

Throughout a test run, we maintain a distribution over l, and after we observe a cycle

of data we shift the distribution by -1 to simulate the amount of life degradation that

occurred during the previous cycle.

4.2 Empirical Results

We tested our battery health model on a set of 13 non-standard Roomba batteries

provided by iRobot for research purposes. Of these, 6 had relatively short lives (under

400 cycles), 5 had long lives (over 600 cycles), and 2 were in-between. The errors in the

predicted cycles-to-death were computed using leave-one-out cross-validation, where

the trajectories for one entire battery’s run were held out each time. We chose to hold

out an entire battery—rather than a random subset of cycles—because trajectories

coming from the same battery tend to be more similar to each other than trajectories

coming from different batteries; having trajectories from the same battery in both

test and training sets would provide an unrealistic advantage to any algorithm. We

normalized the time, voltage, and temperature values of all the cycles by subtracting

the mean to avoid numerical problems during inference. Additionally, we set σl = 25

from Equation 4.9.

We compared our approach to four simple baselines. The naive approach estimated

the remaining battery life by simply subtracting the number of elapsed cycles from the

mean lifetime of the batteries in the training set. For the three remaining baselines, we

first fit a curve to each temperature and each voltage trajectory using the parametric

curves described in Section 4.1.2. This fit gave us a feature vector of trajectory

parameters for each cycle that we could use as input to predict the remaining life l.

We tested three baseline predictors: a linear regression of the form l ∼ βx; k-nearest

neighbor, which found the k nearest inputs x and returned their average time to

death l; and k-means, which first formed k clusters based on the inputs x and then

4We also considered a Gaussian distribution for p(l|j, θj) but, due to the multimodal nature of
p(l|j, θj), we found the empirical distribution a much better fit to the data.

84

returned the mean l of the nearest cluster. For k-means and k-nearest neighbors, we

tested values of k ranging from 1 to 300 (note that the entire dataset consisted of

4683 cooling trajectories). Each run of k-means had 10 restarts to avoid local optima.

4.2.1 Absolute Prediction Error

We first considered the absolute prediction error as a measure of prediction quality—

after all, an ideal model would provide the user of the device an accurate picture of

how many cycles are remaining in the battery’s life. Figures 4-4(a) and 4-4(b) show

the predictions of all the approaches on a typical short life and a typical long life

battery, respectively. We chose the best-performing value of k for each plot, and the

error bars show one standard error of the mean for blocks of 50 trajectories.

Our approach generally outperforms the baselines when predicting the remaining

life in the short life battery. While we initially do poorly in predicting the remaining

life in the long-life battery, we outperform the baselines as the long-life battery gets

closer to failure. Thus, for both types of batteries, we predict the cycles to death well

in regimes that matter most: when the battery is actually near death. From manual

inspection, we note that the cooling behaviors near battery death tend to be more

distinctive; we also have more data in this regime because every battery—long life

or short life—has trajectories that are within 300 cycles of death. Only the long-life

batteries have trajectories that are over 600 cycles out from death.

We see this trend when we consider all of the batteries from our complete cross-

validation test. As before, the best performing values for k are plotted for the k-means

and k-nearest neighbor. We see in Figure 4-5(a) that our approach outperforms the

baselines when the actual remaining cycles is relatively small (roughly within the

lifetime of a short-life battery). All approaches have difficulty with predictions when

the battery is farther away from failure (Figure 4-5(b)).

85

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

A
b

s
o

lu
te

 E
rr

o
r

Remaining Cycles

Naive

Regression

K−means

K−NN

Our Model

(a) Short-life batteries

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

A
b

s
o

lu
te

 E
rr

o
r

Remaining Cycles

Naive

Regression

K−means

K−NN

Our Model

(b) Long-life batteries

Figure 4-4: Mean absolute prediction errors for the different types of batteries.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

A
b

s
o

lu
te

 E
rr

o
r

Remaining Cycles

Naive

Regression

K−means

K−NN

Our Model

(a) Close to death

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

A
b

s
o

lu
te

 E
rr

o
r

Remaining Cycles

Naive

Regression

K−means

K−NN

Our Model

(b) Entire battery life

Figure 4-5: Mean absolute prediction errors across all batteries. Note that the model
had many fewer training points in regimes more than 500-600 cycles to failure, since
many of the batteries were short-life batteries.

4.2.2 Guiding Replacement Decisions

While knowing the number of cycles left in a battery is a useful figure, remaining

life is usually an intermediate quantity needed to make the key decision of whether

the battery should be replaced. When the lifetime predictions have error, the user

of the device risks either waiting too long to replace the battery—and having it fail

unexpectedly—or replacing the battery too early due to a false alarm. In this section,

we analyze the predictions to determine how our model and the various baselines

performed in this trade-off.

86

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6
%

 F
a

ile
d

 W
it
h

in
 5

0
 C

y
c
le

s
 o

f
P

re
d

ic
te

d
 F

a
ilu

re

Actual Remaining Cycles

Naive

Regression

K−means

K−NN

Our Model

Ideal

(a) Early battery replacement

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

%
 F

a
ile

d
 W

it
h

in
 5

0
 C

y
c
le

s
 o

f
A

c
tu

a
l
F

a
ilu

re

Predicted Remaining Cycles

Naive

Regression

K−means

K−NN

Our Model

Ideal

(b) Late battery replacement

Figure 4-6: Risk of early and late battery replacement.

Figures 4-6(a) and 4-6(b) show how each of the models handle these trade-offs.

Figure 4-6(a) plots how often the models predicted that a battery had less than 50

cycles remaining (an arbitrary threshold for replacement) against the actual remaining

battery life; peaks far from 50 correspond to false alarms where the battery might

have been replaced even when it had significant life left. Figure 4-6(b) plots how

often the battery actually had less than 50 cycles remaining against the predicted

battery life; peaks far from 50 correspond to situations when a battery might have

failed despite a long predicted remaining life. Our model has peaks near 50 in both

plots; our main source of error is confusing a short-life battery for a long-life battery

or vica-versa (as seen in humps around 350-400). The other models seem to find less

structure in the data; their errors are more spread out. (Note that k-nearest neighbor

never predicts less than 50 cycles remaining.)

In the previous plots we created an arbitrary threshold of 50 cycles as when a

battery ought to be replaced. We varied the threshold w to illustrate the trade-

off more generally. Figure 4-7 plots false positive rates—how often did we predict

that battery had more than w cycles when it had less than w cycles—against true

positive rates—how often did we predict that the battery had less than w cycles

when it actually had less than w cycles left. The ideal predictor would have points

close to the top-left corner, corresponding to high true positive and low false positive

rates; our approach achieves relatively high true positive rates without high false

87

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Naive

Regression

K−means

K−NN

Our Model

w = 150

w = 150

w = 150
w = 25

w = 25

w = 25

Figure 4-7: False positive rate (how often the battery was replaced too early) versus
true positive rate (how often the battery was replaced in time) for various decision
thresholds w.

positive rates for a variety of thresholds w. However, we also see that our model

is somewhat conservative: if avoiding false positives (replacing too early) is more

important than finding true positives (replacing before death), then the baselines

might offer better options. Operationally, false negatives in predicting battery death

are typically dangerous for robots but the desired performance is usually domain

dependent.

4.3 Conclusions and Discussion

In Chapters 3 and 4 we answered the question: For complex environments where we

have limited domain knowledge, how may we grow our model? We used Dirichlet

processes as the technical centerpiece for allowing both our agent mobility model

(Chapter 3) and our battery health model (Chapter 4) to grow. A lingering question

is: What happens if these model classes (as flexible as they may be) are too limited to

capture the true underlying dynamics? What we see in Chapter 5 is that, even with

infinite data, these model classes may perform arbitrarily poorly when they cannot

capture the true underlying dynamics. We learn that this is not necessarily due to

88

the model classes themselves but the maximum a posterior approach used for model

selection. The next chapter introduces Reward Based Model Search, an approach

which remedies the problem of arbitrarily poor performance when using both limited

parametric and nonparametric model classes.

4.3.1 Broken Exchangeability Assumption of DPs

As discussed in Section 2.2, a core assumption of the DP model is that the components

are exchangeable. For DP applications on real-world data that will generally never

be true. To see this, consider the taxi data described in Section 3.1. Say that

during the process of learning we have found two mobility patterns around the greater

Boston area. If the exchangeable assumption were to hold, these two previous mobility

patterns should tell us nothing about the parametrization of the third mobility pattern

– but they do. They contain a lot of information about the road network and we

also know that the paths from the third mobility pattern will follow this same road

network. Therefore the parametrization of the third component is not independent

of the first two.

The technical reason why this happens is that the base distribution of the GP, H

in Figure 2-2, is incorrect. For the exchangeability assumption to hold it needs to be

a distribution on the flow on the greater Boston area’s road network, not just over

general flow fields. For the priors used in Chapter 3, we found that this error did not

greatly impact performance but it came at the cost of requiring additional data to

overcome the flat prior. We observed in Chapter 3 that the DPGP model did learn

quickly so the use of the prior must not have come at too great an expense.

When the error introduced by using an incorrect base distribution begins to greatly

impact performance there are two clear options we may use to overcome it. The first

is to place a prior over H and infer H alongside the DP model from the data. By

placing a prior over H we allow it to capture a larger range of distributions. A second

approach is to increase the representation power of the Dirichlet Process by using,

for example, the Dependent Dirichlet Process to model the correlation between the

different components [Caron et al., 2007].

89

90

Chapter 5

Reward Based Model Search

In Chapters 3 and 4 we presented extremely flexible models that can grow as more

data is seen. The hope of growing the model is that it will eventually capture the true

world dynamics “close enough” that the resulting policy will perform well. Unfortu-

nately, when the model class cannot capture the true dynamics the resulting model,

from approaches like those in Chapters 3 and 4, may perform arbitrarily poorly. In

this chapter we attempt to answer the question: How should we pick a model when

the model class is too limited to capture the true world dynamics? To begin answer-

ing this question, we will discuss a real-world system which confronts us with the

problem of having to plan with limited model classes.

Controlling a system with complex, unknown dynamics (e.g., the interaction of

a robot with a fluid) is a common and difficult problem in real-world domains. The

hydrodynamic cart-pole, shown in Figure 5-1 is such an example, constructed to cap-

ture many of the fundamental challenges associated with fluid interaction (described

in greater detail in Section 5.3). The system is composed of a thin flat plate (the

pole) placed in a flowing channel of water with a linear actuator (the cart) attached

to the pole’s trailing edge via a pin joint. For this system, the objective is to learn a

policy that stabilizes the pole pointing into the water current.

For real-world systems such as the hydrodynamic cart-pole, this trade-off means

the chosen representation will often be misspecified (i.e., the approximate represen-

tation cannot exactly capture the true dynamics). Such models can introduce repre-

91

Figure 5-1: The hydrodynamic cart-pole system with the pole pointing upstream into
the water current.

sentational bias, the difference between the performances of the true optimal policy

and the best policy found based on the misspecified model class. Furthermore the

learning algorithm using such model classes can introduce learning bias, which is the

the difference between the performances of the best possible policy in the model class

and the policy that is produced by the learner [Kalyanakrishnan and Stone, 2011].

The focus of this work is on identifying the cause of learning bias of MB RL,

regardless of the model class, and presenting an algorithm to overcome it. For a

given problem, typical MB RL algorithms choose a representation from the class of

potential representations by minimizing a form of error measured on the training data

(e.g., maximum likelihood). Unfortunately, when no representation in the chosen class

can capture the true representation, the fit by the standard minimum error metrics

(Section 2.1.2) does not necessarily result in the highest possible performing policy.

In other words, by optimizing a quantity other than the performance (e.g., prediction

error), the standard approaches introduce learning bias.

To address the issue of learning bias, Section 5.1 introduces Reward Based Model

Search (RBMS), a batch MB RL algorithm that estimates the performance of models

in the model class and explicitly searches for the model that achieves the highest

performance. Given infinitely dense data and unlimited computation, Section 5.2

92

shows both that the asymptotic learning bias of RBMS for any representation class is

zero and a probabilistic bound for limited data. Section 5.3 empirically demonstrates

that RBMS often results in a large performance increase over minimum error on

two common RL benchmark problems and on the real-world hydrodynamic cart-pole

system.

5.1 Algorithm

Here we briefly reintroduce a portion of the content from Section 2.1 on finite time

Markov Decision Processes (MDPs) with slightly different notation in order to clar-

ify the analysis presented later in this chapter. An MDP is defined as a tuple

(S,A,W ,m, ρ, sstart, T) where S is the state space, A is the action space, W is

the disturbance space1, m : S ×A×W → S is the deterministic dynamics model,

ρ : S → R is the reward function, sstart ∈ S is the starting state, and T is the maxi-

mum length of an episode2. For a policy3, π : S → A, we define its return4 as

V (π) =

∫
w0:T−1

[
ρ(sstart) +

T−1∑
t=0

ρ(m(st, π(st), wt))

]
p(w0:T−1) dw0:T−1 (5.1)

= Ew0:T−1

[
T−1∑
t=0

ρ(st)

∣∣∣∣∣ s0 = sstart, st+1 = m(st, π(st), wt)

]
. (5.2)

We call the sequence eπ = {s0, a0, s1, a1, . . . , sT−1, aT−1} an episode of data where

st+1 = m(st, at, wt) and at = π(st).

Throughout this chapter we assume that the dynamics model, reward function,

1The disturbance space is introduced so we may assume the dynamics model is deterministic and
add noise through w. This is primarily done to facilitate theoretical analysis and is equivalent to
the standard RL notation which uses a stochastic dynamics model that does not include w.

2For simplicity we assume ρ and s0 = sstart are known and deterministic and ρ is only a function
of the current state. Without loss of generality this allows us to write V as a scalar everywhere.
This work can be straightforwardly extended an unknown and stochastic ρ and sstart and the more
general ρ : S ×A× S → R.

3For computational reasons, in this chapter we focus on learning time-invariant policies for finite
horizon problems. Although we use a single policy across all time steps, the algorithm and bound
presented in this chapter are equally applicable to time-varying policies. See Kakade [2003], Bagnell
et al. [2003] for a discussion on the use of time-invariant policies in finite horizon problems.

4V (π) is shorthand for V π(sstart), the expected sum of rewards from following policy π from
state sstart.

93

and policy are Lipschitz continuous with constants Lm, Lρ, and Lπ, respectively Fonte-

neau et al. [2012], where

||m(s, a, w)−m(s′, a′, w)||S ≤ Lm(||s− s′||S + ||a− a′||A),

|ρ(s, a, w)− ρ(s′, a′, w)| ≤ Lρ(||s− s′||S + ||a− a′||A),

||π(t, s)− π(t, s′)||A ≤ Lπ||s− s′||S ,

∀(s, s′, a, a′, w) ∈ S2 ×A2 ×W , ∀t ∈ {0, .., T − 1}.

The objective of an MDP is to find the policy

π∗ = arg max
π∈Π

V (π) (5.3)

from a given policy class, Π. Typically in RL the dynamics model, m, is unavailable

to us and therefore we are unable use Equation 5.2 to solve Equation 5.3.

Section 2.1.2 discussed that minimum error techniques in RL are vulnerable to

learning poor policies when the representations for the dynamics model is not expres-

sive enough to capture the true dynamics. This section presents a novel batch MB

RL approach that learns a representation which explicitly maximizes Equation 2.1.

We treat the dynamics model class as a parametrization of the policy and search for

θ̂ ∈ Θ that achieves the highest return, rather than optimizing a different metric (e.g.,

maximum likelihood). We can think of the policy as being indirectly parametrized

by θ which defines the model and is updated using a policy gradient approach, such

that

θ̂ = θ̂ + c
∂V πθ(s0)

∂θ̂
, (5.4)

where c > 0.

Section 5.1.1 outlines a method for estimating the return of a policy in continuous

state spaces called Model-Free Monte Carlo (MFMC) [Fonteneau et al., 2010]. MFMC

estimates a policy’s return directly from data using Equation 2.3 rather than from a

dynamics model learned from the data. Section 5.1.2 describes a method of gradient

94

Algorithm 4: MFMC Policy Return Estimation

Input: π, D, s0, ∆, T, p
Output: V π

MFMC(s0)
1 for n = 1 to p do
2 s̃← s0, en ← []
3 for t = 0 to T do
4 ã← π(s̃)
5 (snt , a

n
t , s

n
t+1)← arg min(s,a,s′)∈D∆((s̃, ã), (s, a))

6 D ← D \ (snt , a
n
t , s

n
t+1)

7 Append (snt , a
n
t , s

n
t+1) to en

8 s̃← snt+1

9 return V π
MFMC(s0) (computed using Equation 2.3)

ascent in order to maximize Equation 2.1.

5.1.1 Off-Policy Policy Evaluation

Ideally, we would choose policies using Equations 2.3 and 2.1 with on-policy data.

This results in a sample complexity at least linear in the number of evaluated policies,

an impractical amount for most real-world problems. We can reduce this sample

complexity by sharing data across iterations, using off-policy data – data generated

under a policy different from the one we are evaluating. Therefore, we need an

approach that allows us to perform MC-like policy evaluation from off-policy data.

In continuous state spaces, creating on-policy episodes from off-policy data is

challenging because a single state is rarely visited more than once. We use Model-free

Monte Carlo (MFMC) [Fonteneau et al., 2010] for policy evaluation from off-policy

data in continuous state spaces. For a policy, πθ, MFMC creates pseudo on-policy

episodes from off-policy training data to compute statistics of the policy with bounded

estimation error.

To construct an episode of on-policy data, MFMC uses a set of training data

and a distance function. We define the data set as D = {(si, ai, s′i)}
|D|
i=0, where

s′i ∼ m(si, ai, ·). The designer-provided distance function takes the form

∆ ((si, ai), (sj, aj)) = ||si − sj||S + ||ai − aj||A, (5.5)

95

(a) 5 episodes of data (b) 50 episodes of data

Figure 5-2: Phase space plots for pseudo on-policy episodes constructed for a well
performing policy using the MFMC algorithm with 5 and 50 episodes of batch data.

where i and j are one-step transitions from D. MFMC constructs episodes starting at

s0 and sequentially adds transitions such that at time t, when the agent is in state s̃,

the next transition (st, at, st+1) = arg min(s,a,s′)∈D∆((s̃, πθ(s̃)), (s, a)). Each transition

in D can only be used once and episodes are terminated after T transitions.

MFMC also requires p, the number of episodes used for policy evaluation. The

decision of p, relative to |D|, trades off bias and variance (see [Fonteneau et al., 2010]

for analysis, bounds on bias and variance, and discussion on the trade-off). Algorithm

4 is a reproduction of MFMC from Fonteneau et al. [2010] for the reader’s convenience.

A visualization the of episode construction procedure is shown in Figure 5-2 for

the mountain car domain (described in Section 5.3) where the agent begins near the

center of the diagram and attempts to reach x ≥ 0.5. The figure shows two phase-

space plots of constructed episodes, where transitions observed in the data set are

shown in blue, and are connected by red lines for illustration purposes. Episodes were

generated using a well performing policy that reaches the goal. Figures 5-2(a) and 5-

2(b) show two episodes constructed based on 5 and 50 episodes, respectively. Actual

observed interactions are shown in blue while discontinuities in tailoring the episodes

are highlighted as red segments. Notice that more data leads to an overall smoother

prediction of the system evolution and the episode more accurately approximates an

on-policy sequence of interactions.

96

5.1.2 Policy Improvement

The second step to solving Equation 2.1 is the maximization over Θ. As discussed in

Section 2.1, enumerating and evaluating all possible parameter values is impractical

for real-world problems. Policy gradient approaches overcome this hurdle by updating

the parameter value in the direction of increasing performance (Equation 5.4).

We take the policy gradient type approach as described in Section 2.1, only we

are updating the parameters of the dynamics model rather than a parametrization

of the policy. Unfortunately, gradient ascent is known to be susceptible to local

maxima. To reduce the likelihood of becoming stuck in a poor local maxima, we use

random restarts in addition to including the maximum likelihood solution in the set

of potential starting points (see Section 5.2). For this work, we chose the basic form

of gradient ascent for policy improvement described in Section 5.1.5

Our overall approach is presented in Algorithm 5. The inputs to the algorithm

are the data, D, our representation, Θ, the initial gradient ascent step size, δinit, and

the minimum gradient ascent step size, δmin.

RBMS begins gradient ascent by selecting a dimension of the model space to

search and computes the policies for models θ, θ + δ, and θ − δ (line 5), where the

parameter δ is the step size in the model space. Once the policies are computed, we

use MFMC to estimate the return of each of these policies (line 6) and estimate the

difference in return between the current best model θ and the models θ+ δ and θ− δ.

If neither of these models yield an increase in the estimated return, we continue to

the next dimension. If θ + δ or θ − δ are positive steps in terms of estimated return,

we take the step in the steepest direction. When all dimensions have been stepped

through, δ is decreased (line 13) and the process is continues until δ reaches δmin. The

algorithm is then repeated for many random restarts, including the ML parameters.

5While more intelligent optimization methods [Bertsekas, 1999] were considered, we found that
this basic form of gradient ascent was sufficient for our optimization needs and rarely encountered
difficulties with local maxima.

97

Algorithm 5: RBMS

Input: D, Θ̃, δinit, δmin

Output: πθRBMS

1 V πθstart (s0)← −∞, θ ← θstart, δ ← δinit

2 while δ > δmin do
3 for each dimension of Θ do
4 while True do
5 {πθ−, πθ, πθ+} ← Compute the policies for {θ − δ, θ, θ + δ}
6 {V πθ−(s0), V πθ(s0), V πθ+(s0)} ← Estimate the return of

{πθ−, πθ, πθ+}
7 if max(V πθ+(s0), V πθ−(s0)) ≤ V πθ then
8 Break

9 if V πθ+(s0) > V πθ−(s0) then
10 θ ← θ + δ
11 else
12 θ ← θ − δ

13 δ ← δ/2

14 return πθ

5.2 Theoretical Analysis

As described in Section 5.1.1, MFMC constructs a set of on-policy episodes from

off-policy data and uses Equation 2.3 to estimate the return of πθ. This section

provides the formal analysis which shows that with infinitely dense data and unlimited

computation, RBMS is guaranteed to find the highest performing model from the

model class (Section 5.2.1). We relax these assumptions in Section 5.2.1 and guarantee

that using RBMS after finding the ML solution will never result in worse performance

in expectation. Section 5.2.2 presents a probabilistic bound on estimation error.

5.2.1 Bound on Expected Performance

Naively, using Equation 5.9 to approximate and solve Equation 5.3, would require

N data for each π ∈ Π, an infinite amount of data for infinite policy classes. Off-

policy policy evaluation aims to alleviate this issue by estimating V (π) using episodes

e1
π1
, e2
π2
, . . . , eNπN where π1, . . . , πN may be different than π. To perform off-policy

98

evaluation, we use an approach called Model-Free Monte Carlo-like policy evaluation

(MFMC) [Fonteneau et al., 2012], which attempts to approximate the estimator from

Equation 5.9 by piecing together artificial episodes of on-policy data from off-policy,

batch data.

Consider a set of data {e1
π1
, e2
π2
, . . . , eNπN}, which we re-index as one-step transitions

D = {(s0, a0, s1), . . . , (sNT−1, aNT−1, sNT)}. To evaluate a policy, π, MFMC uses a

distance function

∆((s, a), (s′, a′)) = ||s− s′||S + ||a− a′||A

and pieces together Ñ artificial episodes from D such that ẽnπ = {s̃n0 , ãn0 , . . . , s̃nT , ãnT}

is an artificial on-policy episode approximating an episode π for n = 1, . . . , Ñ . To

construct ẽnπ, MFMC starts with s̃n0 = sstart and for t = 1, . . . , T we find

s̃nt+1 = arg min
s′:(s,a,s′)∈D

∆((s, a), (s̃nt , ã
n
t)) (5.6)

where ãnt = π(s̃nt) and once a transition, (s, a, s′), is chosen using Equation 5.6 it is

removed from D. Following the construction of episodes ẽ1
π, . . . , ẽ

Ñ
π , MFMC estimates

the return of π using

VMFMC(π;D) =
1

Ñ

Ñ∑
n=1

T−1∑
t=0

ρ(s̃nt). (5.7)

We can bound the return using Theorem 4.1, Lemma A.1, and Lemma A.2 of

Fonteneau et al. [2010] and say that

V (π) ≥ ED [VMFMC(π)]− d(π;D) (5.8)

where

d(π;D) = max
n≤Ñ

T−1∑
t=0

LT−tδ
n
t , δnt = min

s′:(s,a,s′)∈D
∆((s, a), (s̃nt , ã

n
t))

for each s̃nt+1 chosen using Equation 5.6, and

LT−t = Lρ

T−t−1∑
i=0

[Lm(1 + Lπ)]i.

99

The term d(π;D) is the maximum deviation between the true return of any policy

and the expected MFMC estimate of return of that policy. See Fonteneau et al. [2010,

2012] for a discussion regarding the choice of ∆ and Ñ .

Infinitely Dense Data and Unlimited Computation

Solving Equation 2.1 is difficult because of two complex calculations: accurately

estimating V πθ(s0) and performing the optimization over policies. Equation 5.8 tells

us that as the density of the data increases, our estimate V̂ πθ(s0)→ V πθ(s0).

With unlimited computation, we have the ability to search over the entire repre-

sentation space Θ to find θ∗ = arg maxθ∈Θ V
πθ(s0).6 This implies that with infinitely

dense data and unlimited computation, RBMS is guaranteed to find θ∗, the highest

performing model from the model class.

Limited Data and Computation

While the guarantee of finding θ∗ is a nice theoretical property (Section 5.2.1), for

real-world domains we can never expect to have infinitely dense data nor unlimited

computation. Here we relax both assumptions and guarantee that using RBMS after

finding the ML solution will never result in worse performance in expectation.

With limited computation, we no longer have the ability to perform the maxi-

mization over Θ and instead resort to gradient ascent. Due to the non-convexity of

V πθ(s0) as a function of θ, we can no longer guarantee that θ∗ is found. By initializing

gradient ascent with θML, the ML model, we guarantee that RBMS takes steps in the

direction of improving on the ML solution. In addition to θML, we also initialize gra-

dient ascent with many random starting locations drawn from Θ to further increase

our chances of improving on the ML solution.7

The consequence of limited data is that V̂ πθ(s0) can be an inaccurate estimate of

V πθ(s0) and cause gradient steps to decrease V πθ(s0). Hence, one could imagine using

6This is trivially accomplished for discrete spaces and can be done to an arbitrary precision in
continuous spaces.

7In the analysis, θML can be trivially replaced by any prediction error metric (e.g., minimum
squared error).

100

the bound from Equation 5.8 and only step from θi to θi+1 if V̂ πθi+1
(s0) ≥ V̂ πθi (s0) +

d(π;D). This would ensure that the step from θi to θi+1 result in V πθi+1
(s0) ≥ V πθi (s0)

and consequently that V πθRBMS (s0) ≥ V πθML (s0), where θRBMS is the model selected

by RBMS. Unfortunately, this bound only holds in expectation over the data. For

future work, we plan develop a probabilistic bound based on Hoeffding’s inequality

for MFMC to ensure that gradient steps increase V πθ(s0) with high probability.

5.2.2 Probabilistic Bound on Performance for MFMC

Given a set of N episodes of data {e1
π, e

2
π, . . . , e

N
π } collected using π, we can estimate

V π(s0) using empirical return (analogous to Equation 2.12) where

V emp
π (s0;D) =

1

N

N∑
n=1

T−1∑
t=0

ρ(snt), (5.9)

V π(s0) ≥ V emp(π;D)− (B − A)

√
− ln δ

2N
, (5.10)

enπ = {sn0 , an0 , . . . , snT−1, a
n
T−1}, snt+1 = m(snt , a

n
t , w

n
t), ant = π(snt), and Equation 5.10

holds with probability 1 − δ by Hoeffding’s inequality [Hoeffding, 1963]. This ap-

proach, where episodes are generated on-policy and then the return is estimated

using Equation 5.9, is called Monte Carlo policy evaluation [Sutton and Barto, 1998].

Since we do not make any assumptions about the policies that will be evaluated nor

the policy under which the data was generated, we cannot directly use Equations 5.9

and 5.10 but we will build upon them in the following sections.

Unfortunately, the bound provided in Equation 5.8 only allows us to bound the

return using the expectation of the MFMC estimate, not the realized estimate based on

the data. We present such a bound, beginning with Hoeffding’s inequality [Hoeffding,

1963],

e2N(ε−d(π;D))2/(B−A)2

> Pr [VMFMC(π;D)− E[VMFMC(π)] + d(π;D) > ε] (5.11)

≥ Pr [VMFMC(π;D)− V (π) > ε] (5.12)

101

where we move from Equation 5.11 to Equation 5.12 using Equation 5.8. Setting

δ = e2N(ε−d(π;D))2/(B−A)2
, solving for ε, and substituting the quantity into Equation

5.12 we see that with at least probability 1− δ

V (π) ≥ VMFMC(π;D)− d(π;D)− (B − A)

√
− ln δ

2N
. (5.13)

While Equation 5.13 is useful for bounding the return estimate using MFMC, in

Section 6 we will require a bound between VMFMC(π;D) and V emp(π). By combining

Equations 5.10 and 5.13, we have with probability 1− 2δ

V emp(π;D) ≥ VMFMC(π;D)− d(π;D)− 2(B − A)

√
− ln δ

2N
. (5.14)

5.3 Empirical Results

The experiments described in this section highlight the performance improvement of

Reward Based Model Search (RBMS) over maximum likelihood (ML) learners on the

RL benchmark problems of mountain car and cart-pole and the real-world hydrody-

namic cart-pole system. The two benchmark domains allow for easier understanding

and more extensive evaluation to study how quickly the performance of ML and

RBMS degrade as the model classes become increasingly misspecified. To study the

different types of misspecification, Section 5.3.1 investigates both sharp misspecifica-

tion (unmodeled discontinuities in the true dynamics) and irrelevant data (unhelpful

data from a region of our state-space that well performing policies will not visit). Sec-

tion 5.3.2 investigates unmodeled noise and smooth misspecification (i.e., a gradual

change in misspecification as the agent moves through the state-space).

We compare RBMS and ML with misspecified model classes to a large tabular

Markov model fit using ML.We show the resulting performance versus the amount

of training data to highlight the sample complexity advantage of RBMS using small

model classes over tabular representations, despite being misspecified. For all model

classes, policies were found by first finely discretizing the continuous model and per-

102

forming value iteration using the same discretization for the value function [Sutton

and Barto, 1998]. RBMS was run with p = 10 and, unless otherwise specified, used

the distance function

∆ ((s, a)), (s′, a′)) =


∑D

d=1
|sd−s′d|

sdmax−sdmin
if a = a′

∞ otherwise
,

where sd is the d-th dimension.

5.3.1 Mountain Car

Mountain car [Singh et al., 1996] is a standard RL benchmark simulation where the

agent starts in a valley between two hills and takes actions to reach the top of the right

hill and receives -1 reward for every time step the agent is not at the goal. Episodes

end when the agent reaches the goal or after 500 steps. The standard mountain car

dynamics are

xt+1 = xt + ẋt, ẋt+1 = ẋt + a+ θ1 cos(θ2x)

with action a ∈ {−0.001, 0.001}. A uniform discretization of x and ẋ with a 500×250

grid was used to represent value functions. Note the differing numbers of cells in each

dimension were chosen to keep the representation small, because it is also used as the

dynamics representation for the large tabular model approach. This ensured the large

tabular model was made as competitive as possible in terms of data requirements.

To study how the two approaches’ performances change as their model class be-

comes increasingly misspecified, we modified the standard dynamics in three ways.

First, we added stochasticity to the car’s starting location by uniformly sampling from

the interval [−π/6 − 0.1, −π/6 + 0.1]. Second, we simulated a rock at x = 0.25, such

that when the car hits the rock its velocity (ẋ) decreased by c. Therefore, increasing

c corresponds to the standard car dynamics model class becoming increasingly mis-

specified. Third, we included a second valley to the left of the standard valley with

significantly different dynamics (the goal is still on the right hill of the right valley).

For the right valley we used θright1 = −0.0025, θright2 = 3 for the dynamics, as is com-

103

-500

-400

-300

-200

-100

0.00 0.01 0.02 0.03 0.04 0.05

n ML ML Trimmed POPS TRUE ML ML Trimmed POPS

0.00
0.01
0.01
0.02
0.02
0.03
0.03
0.04
0.04
0.05
0.05

-500 -97.9 -99.82 -97.54 0 0.73 1.55 0.73
-500 -181.58 -122.62 -123.24 0 2.31 10.49 2.24
-500 -500 -115.51 -106.5 0 0 2.68 0.52
-500 -500 -155.42 -115.39 0 0 4.52 1.22
-500 -500 -181.12 -142.54 0 0 1.36 1.8
-500 -500 -184.98 -136.36 0 0 4.44 1.76
-500 -500 -240.55 -154.35 0 0 19.85 1.66
-500 -500 -377.62 -155.93 0 0 33.29 2.32
-500 -500 -480.53 -155.8 0 0 19.47 2.58
-500 -500 -500 -240.84 0 0 0 3.25
-500 -500 -500 -500 0 0 0 0

RBMS

True Model

ML
-500

-400

-300

-200

-100

0 1250 2500 3750 5000

n ML Standard
Cart-pole_mu

ML
Tabular_mu

POPS
Standard

Cart-pole_mu

True
Model_mu

ML Standard
Cart-

pole_stderr

ML
Tabular_stder

POPS
Standard

Cart-
pole_stderr

True
Model_stderr

50 -500 -500 -430.33 -115.21 0 0 69.67 1.39
100 -500 -500 -404.7 -119.14 0 0 60.63 0.97
250 -500 -500 -165.12 -116.28 0 0 9.25 1.35
500 -500 -494.11 -162.4 -116.91 0 1.91 8.82 1.48
750 -500 -462.24 -162.24 -114.44 0 13.1 5.78 1.88

1000 -500 -400.96 -156.47 -113.4 0 20.77 5.72 1.09
1500 -500 -262.73 -150.25 -114.4 0 4.18 6.91 0.83
2000 -500 -234.13 -161.42 -117.67 0 6.51 8.64 1.68
2500 -500 -198.1 -149.16 -113.93 0 11.37 8.12 1.79
3000 -500 -167.07 -143.46 -115.15 0 6.95 8.81 1.17
4000 -500 -147.71 -147.09 -112.66 0 15.31 7.44 1.89
5000 -500 -121.09 -152.58 -117.74 0 7.62 8.03 2.55

RBMS

ML Tabular

ML

True Model

Misspecification (c)

Av
er

ag
e

To
ta

l R
ew

ar
d

Av
er

ag
e

To
ta

l R
ew

ar
d

Episodes of Training Date

ML Trimmed

(a) Performance vs Misspecification

-500

-400

-300

-200

-100

0.00 0.01 0.02 0.03 0.04 0.05

n ML ML Trimmed POPS TRUE ML ML Trimmed POPS

0.00
0.01
0.01
0.02
0.02
0.03
0.03
0.04
0.04
0.05
0.05

-500 -97.9 -99.82 -97.54 0 0.73 1.55 0.73
-500 -181.58 -122.62 -123.24 0 2.31 10.49 2.24
-500 -500 -115.51 -106.5 0 0 2.68 0.52
-500 -500 -155.42 -115.39 0 0 4.52 1.22
-500 -500 -181.12 -142.54 0 0 1.36 1.8
-500 -500 -184.98 -136.36 0 0 4.44 1.76
-500 -500 -240.55 -154.35 0 0 19.85 1.66
-500 -500 -377.62 -155.93 0 0 33.29 2.32
-500 -500 -480.53 -155.8 0 0 19.47 2.58
-500 -500 -500 -240.84 0 0 0 3.25
-500 -500 -500 -500 0 0 0 0

RBMS

True Model

ML -500

-400

-300

-200

-100

0 1250 2500 3750 5000

n ML ML Trimmed ML Tabular POPS TRUE ML ML Trimmed ML Tabular POPS TRUE

50 -500 -174.1 -500 -284.57 -122.55 0 5.3 0 87.56 1.35
100 -500 -179.3 -500 -216.74 -124.09 0 4.25 0 72.62 2.63
250 -500 -179.65 -495.22 -165.57 -122.92 0 1.95 2.41 21.5 1.79
500 -500 -178.24 -467.89 -134.75 -120.46 0 3.55 11.27 15.22 1.64
750 -500 -176.12 -421.4 -114.04 -123 0 3.11 10.78 2.71 1.02

1000 -500 -178.63 -353.02 -128.59 -120.54 0 2.23 3.7 4.36 2.66
1500 -500 -175.12 -262.12 -123.66 -120.14 0 1.14 9.96 13.05 3.02
2000 -500 -180.73 -209.06 -109.44 -120.26 0 2.26 5.06 3.6 3.23
2500 -500 -173.86 -173.39 -109.7 -115.02 0 2.12 5.48 2.45 1.25
3000 -500 -176.53 -143.48 -113 -124.08 0 4.28 5.51 2.65 2.14
4000 -500 -181.42 -129.61 -117.92 -118.94 0 3.72 7.21 2.14 2.18
5000 -500 -180.65 -112.36 -111.42 -121.03 0 2.63 3.55 1.34 2.73

RBMS

ML Tabular

ML

True Model

Misspecification (c)

Av
er

ag
e

To
ta

l R
ew

ar
d

Av
er

ag
e

To
ta

l R
ew

ar
d

Episodes of Training Date

ML Trimmed

ML Trimmed

(b) Performance vs Data Size

Figure 5-3: Performance versus misspecification (a) and performance versus data size
for c = 0.005 (b) for RBMS with the standard mountain car model (yellow), ML
with the standard mountain car model (blue), ML with the standard mountain car
model with irrelevant data removed (gray), ML with the large tabular Markov model
(green), and the true model (red). The error bars show one standard error.

monly done in the literature [Sutton and Barto, 1998], and θleft1 = −0.01, θleft2 = 3 for

the left valley. For this experiment ML and RBMS were given the standard mountain

car dynamics model, parametrized by θ1 and θ2, with both hills sharing the same

parameters. The training data was generated from uniformly random policies.

Figure 5-3(a) shows the results of ML (blue, gray) and RBMS (yellow) as their

model class becomes increasingly misspecified (with increasing c) for 2500 episodes

of training data. For reference, the return of the planner with the true model8 is

shown in red. The blue line shows that the standard ML approach never performs

well due to the data from the left hill biasing its model estimate. While it may

seem straightforward to remove irrelevant data before fitting a model (e.g., data from

the left valley), in general for difficult problems (e.g., the hydrodynamic cart-pole),

identifying regions of irrelevant data can be extremely difficult. Shown in gray is a

demonstration that even if we were able to trim irrelevant data before using ML, other

unmodeled effects (a small influence of the rock) still cause ML to perform poorly.

In contrast, RBMS is able to learn models which allow it to reach the goal for

8Note that the planner first discretizes the continuous model to find a policy, so the policy plotted
for the “true model” is actual a finely discretized representation of the true continuous model.

104

a large range of misspecification both from the increasing effect of the rock and

irrelevant data. Additionally, we can see that when the rock had little effect (c ≤

.005), RBMS performed as well as the true model. Eventually, the influence of the

rock is too significant for any policy to escape the valley, as shown by the red line

eventually dropping to -500.

Figure 5-3(b) shows the results of ML (blue, gray), RBMS (yellow), the large

tabular Markov model (green) as the amount of training data increases for fixed

c = 0.005. For reference, the return of the planner with the true model is shown in

red. This figure illustrates that less data is required to use a small model, as opposed

to a large tabular Markov model with many parameters. Although the large tabular

model does eventually achieve the performance of RBMS and the true model, such

large data requirements are often prohibitive for real-world problems. Our approach,

on the other hand, performs well using only 500 episodes, an order of magnitude

reduction in the amount of training data compared to ML Tabular.

5.3.2 Cart-Pole

The cart-pole system [Spong, 1998] is composed of a cart that moves along a single

axis with a pendulum (the pole) attached by a pin joint. We focus on the task of

stabilizing the pole in an upright position against gravity.

The cart-pole deterministically starts at x = ψ = ẋ = ψ̇ = 0, where x is the

position of the cart, ψ is the angle of the pole, and the action space A = {−5, 5}.

An episode ends when the pole falls over (defined as |ψ| > π/15) or after 500 steps.

The reward function is 1− |θ|/(π/15). The training data was generated from a uniformly

random policy.

The dynamics were parametrized by three quantities: mass of the cart (mc), mass

of the pole (mp), and the length of the pole (l) [Barto et al., 1983]. For the true

dynamics, we chose mc = mp = l = 1 and introduced downward wind on the system

which applied a force, f , in the direction of gravity (i.e., increasing force as θ moves

away from zero) causing θ to be displaced. We also added to zero mean noise on ψ

with standard deviation of 0.01.

105

0

125

250

375

500

0.0 0.4 0.8 1.2 1.6 2.0

n ML POPS TRUE ML POPS TRUE

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

448.65 457.14 464.02 1.64 1.67 0.06
453.2 446.22 463.82 1.32 3.2 0.57

184.77 390.07 447.07 2.9 5.13 2.31
42.51 384.62 412.92 0.63 2.87 3.18
26.08 356.1 404.42 0.84 6.73 5.19
18.36 283.12 384.27 0.19 7.57 2.82
15.08 249.89 365.91 0.39 14.87 5.28
12.33 262.63 347.4 0.13 11.19 3.68
11.09 263.49 335.12 0.22 11.27 3.35
9.65 247.86 293.39 0.2 8.58 6.52
8.83 235.36 277.75 0.11 11.09 4.22
8.16 223.21 252.31 0.14 11.03 6.45
7.41 199.44 237.01 0.08 8.29 7.35
6.96 184.1 204.15 0.06 5.13 7.07
6.61 149.7 170.64 0.04 15.04 3.09
6.2 127.16 141.54 0.06 8.63 6.27

5.81 117.33 122.82 0.1 5.88 6.95
5.56 75.96 89.48 0.05 4.97 4.92
5.31 44.59 58.78 0.05 6.07 2.64
5.16 21.96 33.66 0.04 2.59 1.85
5.03 8.54 14.43 0.03 0.81 0.96

RBMS

True Model

ML 0

125

250

375

500

0 5000 10000 15000 20000

n ML ML Tabular POPS TRUE ML ML Tabular POPS TRUE

50 170.84 52.31 289.01 447.44 5.1 2.33 27.33 2.13
100 178.63 67.64 372.01 446.29 6.61 3.93 8.54 2.37
250 177.29 109.53 351.15 449 4.97 1.12 9.59 0.98
500 180.96 118.61 363.86 447.59 4.66 7.94 1.92 1.6

1000 184.54 134.49 371.15 447.71 5.36 7.12 2.27 1.96
1500 173.25 152.53 372.95 449.92 4.3 11.55 1.71 1.65
2500 180.62 156.02 366.48 451 2.92 10.36 5.59 1.34
5000 172.75 184.36 370.46 446.49 3.59 12.15 7.16 1.29
7500 178.97 199.34 384.41 449.33 3.05 14.45 6.25 1.68

10000 180.02 203.99 380.3 448.09 3.82 13.62 6.75 2.29
15000 180.05 242.09 381.88 446.68 3.66 14.25 6.11 2.23
20000 171.44 248.17 387.04 447.43 3.66 17.52 5.32 1.25

RBMS
ML Tabular

ML

True Model

Misspecification (f)

Av
er

ag
e

To
ta

l R
ew

ar
d

Av
er

ag
e

To
ta

l R
ew

ar
d

Episodes of Training Date

(a) Performance vs Misspecification

0

125

250

375

500

0.0 0.4 0.8 1.2 1.6 2.0

n ML POPS TRUE ML POPS TRUE

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

448.65 457.14 464.02 1.64 1.67 0.06
453.2 446.22 463.82 1.32 3.2 0.57

184.77 390.07 447.07 2.9 5.13 2.31
42.51 384.62 412.92 0.63 2.87 3.18
26.08 356.1 404.42 0.84 6.73 5.19
18.36 283.12 384.27 0.19 7.57 2.82
15.08 249.89 365.91 0.39 14.87 5.28
12.33 262.63 347.4 0.13 11.19 3.68
11.09 263.49 335.12 0.22 11.27 3.35
9.65 247.86 293.39 0.2 8.58 6.52
8.83 235.36 277.75 0.11 11.09 4.22
8.16 223.21 252.31 0.14 11.03 6.45
7.41 199.44 237.01 0.08 8.29 7.35
6.96 184.1 204.15 0.06 5.13 7.07
6.61 149.7 170.64 0.04 15.04 3.09
6.2 127.16 141.54 0.06 8.63 6.27

5.81 117.33 122.82 0.1 5.88 6.95
5.56 75.96 89.48 0.05 4.97 4.92
5.31 44.59 58.78 0.05 6.07 2.64
5.16 21.96 33.66 0.04 2.59 1.85
5.03 8.54 14.43 0.03 0.81 0.96

RBMS

True Model

ML 0

125

250

375

500

0 5000 10000 15000 20000

n ML ML Tabular POPS TRUE ML ML Tabular POPS TRUE

50 170.84 52.31 289.01 447.44 5.1 2.33 27.33 2.13
100 178.63 67.64 372.01 446.29 6.61 3.93 8.54 2.37
250 177.29 109.53 351.15 449 4.97 1.12 9.59 0.98
500 180.96 118.61 363.86 447.59 4.66 7.94 1.92 1.6

1000 184.54 134.49 371.15 447.71 5.36 7.12 2.27 1.96
1500 173.25 152.53 372.95 449.92 4.3 11.55 1.71 1.65
2500 180.62 156.02 366.48 451 2.92 10.36 5.59 1.34
5000 172.75 184.36 370.46 446.49 3.59 12.15 7.16 1.29
7500 178.97 199.34 384.41 449.33 3.05 14.45 6.25 1.68

10000 180.02 203.99 380.3 448.09 3.82 13.62 6.75 2.29
15000 180.05 242.09 381.88 446.68 3.66 14.25 6.11 2.23
20000 171.44 248.17 387.04 447.43 3.66 17.52 5.32 1.25

RBMS
ML Tabular

ML

True Model

Misspecification (f)

Av
er

ag
e

To
ta

l R
ew

ar
d

Av
er

ag
e

To
ta

l R
ew

ar
d

Episodes of Training Date

(b) Performance vs Data Size

Figure 5-4: Performance versus misspecification (a) and performance versus data size
for f = 0.2 (b) for RBMS with the standard cart-pole model (yellow), ML with the
standard cart-pole model (blue), ML with the large tabular Markov model (green),
and the true model (red). The error bars show one standard error.

Similarly to the experiment described in 5.3.1, the purpose of this experiment is

to understand how the approaches’ performance changes as the model class becomes

increasingly misspecified. For ML and RBMS, we used the standard cart-pole model

class, parametrized by mc, mp, and l and represented the value function using of a

50× 30× 30 grid over ψ, ẋ, and ψ̇.

Figure 5-4(a) shows the results of ML (blue) and RBMS (yellow) as their standard

cart-pole dynamics model class becomes increasingly misspecified (with increasing f)

for 10,000 episodes of training data. For reference, the return of the true model is

shown in red. The figure shows that the ML approach has difficulty coping with the

model misspecification and for f ≥ 0.3 the approach never learns a stabilizing policy.

In contrast, RBMS is able to learn models resulting in policies that stabilized the pole

for a much larger range of f . Eventually, the influence of the wind is too significant

for any policy to stabilize the pole, as shown by the red line eventually dropping to

near zero.

Figure 5-4(b) shows the results of ML (blue), RBMS (yellow), the large tabular

Markov model (green) as the amount of training data increases for a fixed f = 0.2.

Again, for reference, the return of the true model is shown in red. While it is not

shown in the figure, the large tabular Markov model does eventually achieve a level

106

of performance equal to that of the true model after approximately 50,000 episodes.

This further illustrates that less data is required to use a small model, as opposed to a

large tabular Markov model with many parameters. Our approach, on the other hand,

achieves a high level of return after 500 episodes, two orders of magnitude reduction

in the amount of training data compared to the ML Tabular, but may never achieve

performance equal to that of the true model due to the limited representational power

of the misspecified model.

5.3.3 Hydrodynamic Cart-Pole

The hydrodynamic cart-pole, shown in Figure 5-1, is a real-world, experimental, fluid

analog of the cart-pole system. It is composed of a thin flat plate (the pole) attached

at its trailing edge via a pin joint to a linear actuator (the cart) that is operated at

50 Hz. The flat plate (6.5 cm wide by 20 cm tall) is submerged in a channel (22 cm

wide) of flowing water, with the flat plate placed at the “upright position.” In this

position, the water attempts to turn the wing downstream via a “weather vane” effect,

making the upright position passively unstable and the downright position passively

stable.9 The system was operated at a Reynolds number of 15,000, considered to

be an intermediate flow. As opposed to large and small Reynolds number flows,

intermediate flows are particularly challenging due to the difficulty of modeling and

simulating them.

Learning a policy which stabilizes the pole at the upright is difficult because

the coupling between the motion of the cart and the motion of the pole is dictated

by the complex dynamics of the fluid, which itself has many states and is highly

nonlinear. Additionally, the flywheel mounted to the pole adds extra inertia to the

system and there is a free surface which can add secondary effects when the pole moves

violently through the water. Success on this system will demonstrate the robustness

of the technique to the many uncertainties inevitably present in actual hardware, and

9Due to fluid effects, the downright position is not precisely stable as vortex shedding from the
wing will cause it to oscillate slightly, but these are small deviations compared to those considered
in the experiments in this chapter.

107

0

2.5

5

7.5

10

50 100 150 200 250 300 350

n ML Standard
Cart-pole_mu

ML
Tabular_mu

POPS
Standard

Cart-pole_mu

ML Standard
Cart-

pole_stderr

ML
Tabular_stder

r

POPS
Standard

Cart-
pole_stderr

50 1.696 1.404 2.274 0.283 0.275 0.699
150 0.976 0.72 6.32 0.293 0.129 0.723
316 0.776 1.124 10 0.095 0.133 0

RBMS

ML TabularML

Ti
m

e
St

ab
ili

ze
d

(s
ec

on
ds

)

Episodes of Training Date

Figure 5-5: Time stabilized versus number of episodes for RBMS with the standard
cart-pole model (yellow), ML with the standard cart-pole model (blue), and ML with
a large tabular Markov model (green) on hydrodynamic cart-pole. The error bars
represent one standard error.

particularly present in fluid systems.

Our goal is to learn a controller from training data that stabilizes the pole similar

to the experiment performed in Section 5.3.2. We collected a data set of 316 episodes

(approximately 45 minutes of data) from the hydrodynamic cart-pole system from a

variety of hand-designed, poor controllers, none of which stabilized the pole for more

than a few seconds and many of them quickly fell over. For the system, an episode

was ended when the pole fell over (defined as |ψ| > π/15) or a maximum length of

500 steps (10 seconds) was reached. For our model class we used the standard cart-

pole system, parametrized by mc, mp, l as a model class of this far more complex

system. To represent the value function, we discretized the state space [x, ψ, ẋ, ψ̇]

into 7× 11× 11× 11 bins with an action space A = {−1,−0.9,−0.8, ..., 1}. We used

a quadratic cost function and used the distance function

∆ ((s, a)), (s′, a′)) =
|x− x′|

xmax − xmin
+

|ψ − ψ′|
ψmax − ψmin

+
|ẋ− ẋ′|

ẋmax − ẋmin
+

|ψ̇ − ψ̇′|
ψ̇max − ψ̇min

+
|a− a′|

amax − amin
.

Figure 5-5 shows the performance on the real system of the learned controllers for

the standard cart-pole model fit using ML (blue), the standard cart-pole model fit

108

using RBMS (yellow), and a large tabular Markov model fit using ML (green), where

each controller was run 10 times and one standard error is shown on the figure. The

results show that the 45 minutes of training data was sufficient to learn a controller

which stabilized the system for the maximum amount of time in all 10 trials from

the small representation. Neither ML with the misspecified model nor ML with the

large Markov model were able to achieve any statistically significant improvement

in performance. This experiment demonstrates that despite the misspecified repre-

sentation, RBMS was still able to use limited off-policy data to perform well on an

extremely complex system, because it focused on finding the model that achieves the

highest performance rather than minimizing the prediction error.

5.4 Bayesian Nonparametric Reward Based Model

Search

In this section we expand on the work of Section 5.1 to apply RBMS to Bayesian

nonparametric model (BNM) classes.

5.4.1 Algorithm

The approach described in Section 5.1.1 for policy evaluation will work, unchanged,

for nonparametric model classes. We will adapt the model improvement step (Sec-

tion 5.1.2) performed by gradient ascent in the model classes’ parameter space to fit

nonparametric models. In BNMs, the model is not only a function of some hyper-

parameters, but also of the data, so it is not clear what taking the gradient in the

model classes’ parameter space would mean for BNM classes.

The purpose of the model improvement step is to search through the model class

in the direction of increasing return. Therefore, following this purpose, we propose

three approaches for searching through the model class: removing data from the

model, sampling new data from the model, and treating the data as parameters

themselves to be adjusted. Note that these approaches may be used together or

109

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 start
goal
pit
ice
concrete

(a)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 start
goal
pit
ice
concrete

(b)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 start
goal
pit
ice
concrete

(c)

Figure 5-6: The domain (a) and the episode of data produced by the policy from the
MAP model (b) and the RBMS model (c).

separately. These are in addition to using the standard gradient technique with the

BNM classes’ hyperparameters, which can also be used to search through the space.

In Section 5.4.2 we experimentally test RBMS with the approach of removing

data from the model for model improvement with BNM classes. We leave it to future

work to further explore the other two approaches and the trade-offs between all the

approaches and their combinations

5.4.2 Empirical Results

We empirically validated RBMS for Bayesian nonparametric models on the domain

shown in Figure 5-6(a). In the domain the agent starts at the yellow point and uses

available actions {up, right} to try and reach the goal (green) while avoiding falling in

any of the pits (red). The agent experiences two different dynamics across the world,

concrete (black) and ice (blue). On the concrete the agent’s actions achieve their

desired outcome and on the ice the agent will move in the chosen direction but will

also “slide” south. The dynamics are deterministic and the reward function is -1 for

any action, -100 for falling in a pit, and the episode ends when the agent either falls

in a pit or reaches the goal. One hundred episodes of training data were generated

by randomly starting an agent in a state and randomly choosing actions until the

episode ended.

To model the dynamics, two separate Gaussian processes (GPs) were used to

model the transitions for the up action and the right action. We used the standard

110

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x
2

0.030

0.040

u = Up

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

(a) MAP Model, u = Up

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x
2

-0.020 -0.010

u = Right

210

180

150

120

90

60

30

0

30

(b) MAP Model, u = Right

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x
2

0.030

0.040

u = Up

0.024

0.032

0.040

0.048

0.056

0.064

0.072

0.080

(c) RBMS Model, u = Up

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x
2

-0.020
-0.010

u = Right

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(d) RBMS Model, u = Right

Figure 5-7: The GPs’ mean of the MAP model (a,b) and the MBRS model (c,d) for
both actions.

squared exponential form of the covariance function for both GPs. Figures 5-6(b) and

5-6(c) show the episode of data generated by the policy for the maximum a posteriori

(MAP) model and the RBMS model, respectively. For the RBMS model improvement

step we used the strategy of stochastically removing data, which proved sufficient.

Figures 5-7 is a visualization of the mean for both the learned MAP model and

RBMS model. Data points included in each model are shown as Xs and colored blue

if they were on the ice and black if on the concrete. The sharp contour of the MAP

GP around x2 = 0.1 shows each GP attempting to cope with the discontinuity in the

dynamics, in contrast to the smooth dynamics found by RBMS.

Figures 5-8 shows the GPs’ means and confidence intervals, plotted over x1 with

x2 = 0.05 to show the learned variances of the models in the center of the concrete.

111

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

∆
x

2

x2 = 0.05, u = Up

Mean, MAP
Mean, RBMS
95% confidence interval
95% confidence interval

(a) MAP and RBMS Models, u = Up, x2 = 0.05

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x1

0.02

0.00

0.02

0.04

0.06

∆
x

2

x2 = 0.05, u = Right

Mean, MAP
Mean, RBMS
95% confidence interval
95% confidence interval

(b) MAP and RBMS Models, u = Right, x2 =
0.05

Figure 5-8: The GPs’ means and confidence intervals with x2 = 0.05.

These figures demonstrate how the GPs, which assume the dynamics are smooth,

cannot cope with the discontinuity at x2 = 0.1. In other words, the discontinuity of

the dynamics violates the implicit assumption of the GPs’ covariance function and

leads to their misspecification. RBMS mitigated this problem by searching for the

model which achieved the highest return, not by attempting to fit the data well. Note

that RBMS has essentially chosen a model which says, “everywhere is concrete,” and

that works well for this domain. If the domain were modified in a way that it would

be necessary to model both the ice and concrete well (e.g., because the optimal route

involved both ice and concrete) we may have to turn to a more powerful model class,

such as a mixture of GPs (Chapter 3).

5.5 Related Work

The approaches most closely related to our work are Policy search (PS) techniques,

which search the policy space for high performing policies using gradient techniques

[Baird and Moore, 1999, Guestrin et al., 2002]. In order to estimate the gradient,

some methods obtain new samples for the new policy in order to avoid the learning

bias, which can translate into high sample complexity. Existing off-policy PS methods

[Meuleau et al., 2000] use importance sampling to reuse the data while attempting

112

to avoid learning bias. In general, such methods are limited to discrete domains and

stochastic policies. Additionally, sample efficient PS methods generally require data

from high performing policies [Kober et al., 2010]. We suspect that applying RBMS

in a PS setting, where the policy is directly parametrized by θ, would be successful

in cases where we, as designers, struggle to construct a model class that contains

high performing policies learnable from limited data. In these cases we may prefer

to directly parameterize the policy instead of using a dynamics model. We plan to

investigate this approach and compare it to the model-based approach described here

in future work.

Model Based (MB) methods aim to capture the unknown dynamics using a rep-

resentation of the dynamics model. While expressive representations [Deisenroth and

Rasmussen, 2011, Joseph et al., 2011] can capture nearly any type of world dynam-

ics, they are still vulnerable to choosing models which perform arbitrarily poorly,

especially from limited data due to the bias introduced by the learner. Compact

representations may eliminate the sample complexity problem, yet once combined

with classical learning methods (e.g., maximum likelihood), they incur substantial

learning bias, as shown in our empirical results. We hypothesize that we can remedy

this shortcoming by applying RBMS to Bayesian nonparametric models and plan to

explore that direction in future work.

Model-free Value Based (VB) techniques sidestep learning an explicit world model

and directly compute a value function, although Parr et al. [2008] showed that MB

and VB RL methods using linear representations are equivalent. In the online setting,

VB methods e.g., Rummery and Niranjan [1994] eliminate the learning bias by using

on-policy data, yet are sample inefficient. For real-world problem, batch VB tech-

niques [Lagoudakis and Parr, 2003b] have been shown to be sample efficient, yet they

are sensitive to the distribution of the training data10. Manually filtering the training

data by a domain expert has been used to correct for the sampling distribution; for

example, in a bicycle domain, episodes were trimmed after a certain length to expose

10For comparison note that the policies learned by the large tabular Markov model are equivalent
to the policies LSPI [Lagoudakis and Parr, 2003b] would learn if given the tabular representation
for its value function.

113

the agent to a higher proportion of the data from the bicycle balancing, which is more

likely to be seen under good policies [Petrik et al., 2010]. When the representation

containing the true value function is unknown, batch VB methods cannot guarantee

that the highest performing value function is chosen from the representation, and gen-

erally only show convergence [Sutton and Barto, 1998]. We believe we can overcome

this limitation by using the parameterization V (s; θ) for RBMS to find the highest

performing value function in the VB setting.

While there has been relatively little work on overcoming learning bias, there has

been a great deal of work in reducing representational bias by growing the represen-

tation using nonparameteric dynamics models [Vasquez Govea et al., 2009, Ure et al.,

2012], Bayesian nonparametric dynamics models [Joseph et al., 2011], nonparametric

value functions [Whiteson et al., 2007b, Geramifard et al., 2011], and kernel-based

methods [Ormoneit and Glynn, 2000, Barreto et al., 2011]. The work specifically

focused on reducing misspecification error generally has relied on strong assumptions

about the true model [White, 1982, Sugiyama, 2006]. Kalyanakrishnan and Stone

[2011] states that we must “pick and tailor learning methods to work with imperfect

representations,” and specifically highlights meta-learning [Vilalta and Drissi, 2002],

and combining value-based RL and policy search [Baird and Moore, 1999, Guestrin

et al., 2002] as work headed in this direction. Despite these previous algorithms being

a significant step toward the goal of reducing learning bias, for a given problem and

representation, it is extremely difficult to know which method will provide the desired

reduction in learning bias without implementing a variety of methods.

5.5.1 Conclusions

In this chapter we have shown how choosing models by maximizing estimated return

in both parametric and nonparametric settings can outperform minimum prediction

error techniques (e.g. maximum likelihood, maximum a posteriori) with misspecified

model classes. RBMS’s guarantees us the ability to find the best model from a

misspecified model class with infinite data, a claim that minimum prediction error

techniques cannot make. Additionally, as Figures 5-3(b) and 5-4(b) provides some

114

intuition that using smaller models (which may be misspecified) may let us learn

faster. In Chapter 6 we attempt to answer the question: Why would we want to

choose a misspecified model class? We see in the chapter that the intuition from the

plots is correct, and the amount of data available to us directly relates how large a

model class we should prefer.

115

116

Chapter 6

Structural Return Maximization

The goal of this chapter is to answer the question: Why would we choose a misspecified

model class? We find that the answer is the model class we choose should strongly

depend on the amount of data available to us. With limited data, approaches that

explicitly maximize estimated return are vulnerable to learning policies which perform

poorly due to the return being difficult to estimate. We aim to overcome this problem

by applying the principle of Structural Risk Minimization (SRM) [Vapnik, 1998],

which, in terms of RL, states that instead of choosing the policy which maximizes

the estimated return we should instead maximize the bound on return. In SRM the

policy class size is treated as a controlling variable in the optimization of the bound,

allowing us to naturally trade-off between estimated performance and estimation

confidence. By controlling policy class size in this principled way we can overcome

the poor performance of approaches which explicitly maximize estimated return with

small amounts of data.

The main contribution of this chapter is to apply the principle of SRM to RL

for general policy classes under mild assumptions. We first map RL to classification,

allowing us to transfer generalization bounds developed for classification based on

Rademacher complexity [Bartlett and Mendelson, 2003] which results in a bound on

the return of any policy from a policy class. Given a structure of policy classes, we

then apply the principle of SRM to find the highest performing policy from the family

of policy classes.

117

6.1 Bounding Return

In this section we discuss a variety of bounds on the return of policies. It is important

for the reader to note the distinction between three types of bounds:

1. A bound on the return for a policy

2. A bound on the return for a policy chosen from a policy class

3. A bound on the return for a policy chosen from a policy class which was chosen

from a set of policy classes

For example, Section 5.2.2 presented a bound on the return of a policy (bullet (1))

when its return is estimated using MFMC but this is not a bound on a policy produced

from RBMS (which is presented in Section 6.1.1). Another way to understand bullets

(1), (2), and (3) is to think of them as bounds on policy evaluation, policy learning,

and policy class selection, respectively. Note that one cannot simply apply a method

for doing (2) to many policy classes and pick the tightest bound as a solution for (3)

Vapnik [1998].

In this chapter we will first present a bound on RBMS (a policy chosen from a

policy class) based on bounds used in the classification literature. By using this type

of bound, combined with a specific structure of a set of policy classes, we then present

a bound on a policy chosen from a policy class which was chosen from a set of policy

classes.

6.1.1 Bound on the Return of a Policy Chosen from a Policy

Class

Our goal is to develop a bound on the return for a policy chosen from a policy class

from a set of policy classes that can be used for real-world, complex systems from

which we only have batch data. Despite significant work having been done to bound

the return of a policy chosen from a policy class Ng and Jordan [2000], Kearns et al.

[2002], Bagnell et al. [2003], Kakade [2003] there is no clear way to use these bounds to

118

choose between policy classes. Additionally, the previous work focused on producing

bounds for specify types of policy classes, where as the bounds contained in this

chapter require only mild assumptions on the policy class. Throughout this chapter

we use RBMS as the learning algorithm due to its minimal assumptions on the true

world dynamics with batch data but the bound presented in Section 6.1.2 could be

applied to any learning algorithm which has a bound on the return for a policy chosen

from the policy class and a policy class of which we can compute the Rademacher

complexity (Section 2.3.3).

Mapping of Classification Bounds to Reinforcement Learning

To show the mapping we begin by defining the return function,

G(s0, w0:T−1, a0:T−1) , ρ(s0) +
T−1∑
t=0

ρ(m(st, at, wt)), (6.1)

where st, at, and wt are the state, action, and disturbance at time t, ρ is the reward

function, and m is the true (unknown) dynamics model. Using the return function

we can then show that the classification objective of minimizing risk is equivalent to

the RL objective of maximizing return. Using Equation 2.11 and a loss function that

does not depend on y1, we set L(y, f(x)) = L̃(x, f) and see that

R(f) =

∫
L̃(x, f) p(x) dx (6.2)

=

∫
−G̃(s0, w0:T−1, f) p(s0, w0:T−1) dw0:T−1 (6.3)

= −V (f) (6.4)

where we go from Equation 6.2 to Equation 6.3 by setting x = [s0, w0:T−1] and noting

that L̃(x, f) = −G̃(s0, w0:T−1, f) = −G(s0, w0:T−1, a0:T−1) for at = f(st), and we move

from Equation 6.3 to Equation 6.4 using Equation 5.2. Therefore, minimizingR(f) for

f ∈ F is identical to maximizing V (f) for f ∈ F . We see thatG is the term in brackets

1While it may seem that writing L without y is an abuse of notation, if instead we view L as a
measure of performance the relationship between RL and classification becomes more clear.

119

in Equation 5.1; G encodes both the reward function and dynamics model and is

analogous to classification’s L. This is a crucial relationship since transferring the

bounds from Section 2.3.3 depends on our being able to calculate the RL equivalent

of L ◦ F , which we denote G ◦ Π.

Using this mapping we can rewrite Equations 2.12 and 2.15 for RL as

V emp(π;D) =
1

N

N∑
n=1

G(s0, w
π,n
0:T−1, a

π,n
0:T−1) =

1

N

N∑
n=1

T∑
t=0

ρ(sπ,nt) (6.5)

V (π) ≥ V emp(π;D)− Ω(G ◦ Π,D, δ). (6.6)

where sπ,nt+1 = m((sπ,nt , π(sπ,nt), wn0:T−1). Note that in Equation 6.5, wn0:T−1 is needed to

compute the empirical return which typically is not observed in practice. Since we

assume the state is fully observable, we can use Equation 6.5 to calculate empirical

return. Combining Equations 5.14 and 6.6,

V (π) ≥ VMFMC(π;D)− d(π;D)− 2(B − A)

√
− ln δ

2N
− Ω(G ◦ Π,D, δ) (6.7)

with probability 1−3δ and is a bound on return for all policies in Π. The remainder of

this section describes the use of VC dimension and Rademacher complexity (Section

2.3.3), respectively, to compute Ω in Equation 6.7. We also assume that the return is

bounded by A ≤
∑T−1

t=0 ρ(st) ≤ B. An alternative to the approach described in this

section for computing Ω may be similar to the one taken in Kearns et al. [2002].

Bound Based on VC Dimension for RL To use the bound described in Section

2.3.3 we need to know the VC dimension of G ◦Π. Unfortunately, the VC dimension

is only known for specific function classes (e.g., linear indicator functions [Vapnik,

1998]), and, since the only assumptions we made about functional form of ρ, m, and

π is that they are Lipschitz continuous, G ◦ Π will not in general have known VC

dimension.

There also exist known bounds on the VC dimension for e.g., neural networks [An-

thony and Bartlett, 1999], decision trees [Asian et al., 2009], support vector machines

120

[Vapnik, 1998], smoothly parametrized function classes [Lee et al., 1995], but, again,

due to our relatively few assumptions on ρ, m, and π, G ◦ Π is not a function class

with a known bound on the VC dimension. Cherkassky and Mulier [1998] notes that

for some classification problems, the VC dimension of F can be used as a reasonable

approximation for the VC dimension L ◦ F , but we have no evidence to support this

being an accurate approximation when used in RL.

Other work has been done to estimate the VC dimension from data [Shao et al.,

1969, Vapnik et al., 1994] and bound the VC dimension estimate [McDonald et al.,

2011]. While, in principle, we are able to estimate the VC dimension using one of these

techniques, the approach described in the following section is a more straightforward

method for computing Ω in Equation 2.15 based on data.

Bound Based on Rademacher Complexity for RL Using the Rademacher

complexity bound (Section 2.3.3), allows us to calculate Ω (Equation 6.6) based on

data. The only remaining piece is how to calculate the summation inside the absolute

value sign of Equation 2.18 for RL. Mapping the Rademacher complexity estimator

(Equation 2.18) into RL yields

R̂N(G ◦ Π;D) = Eσ1:Ñ

[
sup
π∈Π

2

Ñ

∣∣∣∣∣
Ñ∑
n=1

σn

T−1∑
t=0

ρ(snt)

∣∣∣∣∣
∣∣∣∣∣D
]
. (6.8)

Therefore, with probability 1− δ

R̂N(G◦Π;D) ≥ −2+Eσ1:Ñ

[
sup
π∈Π

2

Ñ

∣∣∣∣∣
Ñ∑
n=1

σn

(
VMFMC(π;D)−d(π;D)−2

√
− ln δ

2N

)∣∣∣∣∣
∣∣∣∣∣D
]

(6.9)

where we move from Equation 6.8 to Equation 6.9 using

σn

T−1∑
t=0

ρ(snt) ≥ −Ñ + σn

(
VMFMC(π;D)− d(π;D)− 2

√
− ln δ

2N

)
(6.10)

from Equation 5.14 and assumed −1 ≤
∑T−1

t=0 ρ(st) ≤ 0 for simplicity. Note that

Equation 6.8 is an estimate of the true (unknown) Rademacher complexity and we

121

use Equation 6.9, a bound on Rademacher complexity, in the computation of Ω.

6.1.2 Bound on the Return of Policy Classes Selection

Policy Class Structures

In Section 2.3.4 we defined a structure of function classes, from which a function class

and function from that class are chosen using Equation 2.20. To use structural risk

minimization for RL, we must similarly define a structure,

Π1 ⊆ Π2 ⊆ · · · ⊂ Πk ⊆ · · · , (6.11)

of policy classes2. For RL we add the additional constraint that the policies must

be Lipschitz continuous (Section 2.1) in order to use the bound provided in Section

5.2.2. Note that the structure (e.g., the indexing order 1, . . . , k, . . .) must be specified

before any data is seen.

Fortunately, some function classes have a “natural” ordering which may be taken

advantage of, for example support vector machines [Vapnik, 1998] use decreasing mar-

gin size as an ordering of the structure. In RL, many common policy representations

contain natural structure and are also Lipschitz continuous. Consider a policy class

consisting of the linear combinations of radial basis functions [Menache et al., 2005].

This class is Lipschitz continuous and using this representation, we may impose a

structure by progressively increasing a limit on the magnitude of all basis functions,

therefore high k allows for a greater range of actions a policy may choose. This policy

class consists of policies of the form

π(s) =
M∑
i=1

φie
−c(s−s̄i)2

(6.12)

where c ≥ 0, s̄i ∈ S are fixed beforehand and the progressively increasing limit

lk ≥ |φi|, i ∈ {1, . . . ,M} and k is the index of the policy class structure. A second

2Note that the structure is technically over G ◦Πk but Πi ⊆ Πj =⇒ G ◦Πi ⊆ G ◦Πj .

122

policy representation which meets our requirements consists of policies of the form

π(s) =
M∑
i=1

φi
||s− li||S

(6.13)

where li ∈ S are fixed beforehand and a policy of this representation is described by

set φi ∈ A, i ∈ {1, . . . ,M}. Using this representation, we then present two possible

structures, the second of which we use for the experiments in Section 4.2. The first

places a cap on φi, where −ak ≤ φi ≤ ak, ∀i ∈ {1, . . . ,M} and ak ≤ ak+1. The

second structure “ties” together φi, i ∈ {1, . . . ,M} such that for k = 1, φ1 = φ2 =

· · · = φM . For k = 2, we untie φ1 but still maintain that φ2 = · · · = φM and continue

for the remaining k such that Equation 6.11 is maintained. While we believe the

representation described in this section is a natural structure that can be used for

many RL policy classes, we leave further investigation into automatically constructing

structures or making the structure data-dependent (e.g., Shawe-Taylor et al. [1996])

to future work.

Overall Bound

Using a structure of policy classes as described in the previous section, we may now

reformulate the objective of SRM into Structural Return Maximization for RL as

k̂ = arg min
k
VMFMC(π̂k;D)− d(π̂k;D)− 2(B − A)

√
− ln δ

2N
− Ω(G ◦ Πk,D, δ) (6.14)

π̂k = arg min
π∈Πk

VMFMC(π;D)− d(π;D), (6.15)

where Ω is computed using Equations 2.17, 2.19, and 6.9. Therefore, with a small

batch of data, Equations 6.14 and 6.15 will choose a small k and as we acquire more

data k naturally grows. The only term in Equations 6.14 and 6.15 that we must

assume is Lm, the Lipschitz continuity constant of the world (Section 5.1). To solve

Equation 6.15 we follow Joseph et al. [2013] and use standard gradient decent with

random restarts.

123

6.2 Empirical Results

The experiments described in this section are all instances of batch, off-policy learn-

ing used to compare Structural Return Maximization (SRM), described in Section

6.1.2, to a maximum return (MR) learner [Joseph et al., 2013], which maximizes the

estimated return. For each experiment, the chosen approaches3 choose policies from

a designer-provided policy class. To use SRM we imposed a structure on the policy

class (where the original policy class was the largest, most expressive class in the

structure) and the methodology from Section 6.1.2 allowed SRM to select an appro-

priately sized policy class and policy from that class. The MR learner maximizes the

empirical return (Equation 5.9) using the single, largest policy class.

We compare these approaches on three simulated problems: a 1D toy domain,

the inverted pendulum domain, and an intruder monitoring domain. The domains

demonstrate how SRM naturally grows the policy class as more data is seen and is far

less vulnerable to over-fitting with small amounts of data than a MR learner. Policy

classes were comprised of linear combinations of radial basis functions (Section 6.1.2)

and training data was collected from a random policy. To piece together artificial

trajectories for MFMC we used Ñ = (0.1)N where N is the number of data episodes.

6.2.1 1D Toy Domain

The purpose of the 1D toy domain is to enable understanding for the reader. The

domain is a single dimensional world consisting of an agent who begins at s0 = 0

and attempts to “stabilize” at s = 0 in the presence of noise. The dynamics are

st+1 = st + a + e, st ∈ [−1, 1] and e is a uniform random variable over [−1/4, 1/4].

The agent takes actions a ∈ [−0.5, 0.5] and has reward function ρ(st) = 5|st|. For the

policy representation we used four evenly spaced radial basis functions and for SRM

we imposed five limits lk ∈ {0, 0.125, 0.25, 0.375, 0.5} on |φi| (see Equation 6.12).

Figures 6-1(a) and 6-1(b) show the performance of SRM (red solid line) and MR

3See Section 2.1.2 for our discussion on the pitfalls of using model-based approaches in this
setting.

124

0 2 4 6 8 10 12 14 16
Number of Episodes

−0.65

−0.60

−0.55

−0.50

−0.45

−0.40

−0.35

−0.30

Re
tu

rn SRM
MR

(a) 1D Toy Domain

0 20 40 60 80 100
Number of Episodes

−0.45

−0.40

−0.35

−0.30

Re
tu

rn

MR
SRM

0

1

2

3

4

5

Cl
as

s
Si

ze
 C

ho
se

n

MR Class Size
SRM Class Size

(b) 1D Toy Domain

0 20 40 60 80 100 120
Number of Episodes

−0.60

−0.55

−0.50

−0.45

−0.40

−0.35

Re
tu

rn SRM
MR

(c) Inverted Pendulum

0 50 100 150 200
Number of Episodes

−0.125

−0.120

−0.115

−0.110

−0.105

−0.100

−0.095

−0.090

−0.085

Re
tu

rn MR
SRM

(d) Intruder Monitoring

Figure 6-1: Performance versus the amount of training data and class size versus the
amount of training data (a, b) on the 1D toy domain. Performance versus the amount
of training data on the inverted pendulum domain (c) and the intruder monitoring
domain (d). Error bars represent the 95% confidence interval of the mean.

(blue solid line) on the 1D toy domain, where figure 6-1(a) is zoomed in to highlight

the SRM’s performance with small amounts of data. The plot shows that MR over-fits

the small amounts of data, resulting in poor performance. On the other hand, SRM

overcomes the problem of over-fitting by selecting a policy class which is appropriately

sized for the amount of data. Figure 6-1(b) illustrates how SRM (red dashed line)

selects a larger policy class as more data is seen, in contrast to MR, which uses a fixed

policy class (blue dashed line). The figures show that as SRM is given more data, it

selects increasing larger classes, allowing it learn higher performing policies without

over-fitting.

125

6.2.2 Inverted Pendulum

The inverted pendulum is a standard RL benchmark problem (see Lagoudakis and

Parr [2003b] for a detailed explanation and parametrization of the system). In our

experiments we started the pendulum upright with the objective of learning policies

which stabilize the pendulum in the presence of noise. For the policy representation

we placed 16 evenly spaced radial basis functions and for SRM we imposed two limits

on |φi| (Equation 6.12), lk ∈ {0, 50}.

Figure 6-1(c) shows the performance of SRM (red) and MR (blue) on inverted

pendulum. Similar to the results on the 1D toy domain, we see that MR over-fits

the training data early on, resulting in poor performance. In contrast, SRM achieves

higher performance early on by using a small policy class with small amounts of data

and growing the policy class as more data is seen.

6.2.3 Intruder Monitoring

The intruder monitoring domain models the scenario of an intruder traversing a two

dimensional world where a camera must monitor the intruder around a sensitive

location. The camera observes a circle of radius rcam = 0.5 centered at scam, and the

intruder, located at sI , wanders toward the sensitive location with additive uniform

noise. The camera dynamics follow scam = scam + a, where the agent takes action

a ∈ [−0.1, 0.1] and has reward

ρ(scam, sI) =
∑
i

min(||scam −Xi||, 0.5)

max(||ssensitive −Xi||, 0.05)

where ssensitive = [0, 0]. For our policy representation, we placed 16 radial basis

points on a grid inside [[−1, 1], [−1, 1]] and for SRM we imposed two limits on |φi|,

lk ∈ {0, 0.1}.

Figure 6-1(d) shows the performance of SRM (red) and MR (blue) on inverted

pendulum. Similar to the results on the previous domains, we see that SRM outper-

forms MR due to using a small policy class with small amounts of data and growing

126

the policy class as more data is seen.

6.3 Related Work

While there has been a significant amount of prior work relating Reinforcement Learn-

ing (RL) and classification [Langford and Zadrozny, 2003, Lagoudakis and Parr,

2003a, Barto and Dietterich, 2004, Langford, 2005], to the best of our knowledge, our

work is the first to sufficiently develop the mapping to allow the analysis presented

in this Chapter on general policy classes under mild assumptions to be transferred

to RL. Other work has been done to bound the return of a policy chosen from a

policy class Ng and Jordan [2000], Kearns et al. [2002], Bagnell et al. [2003], Kakade

[2003] there is no clear way to use these bounds to choose between policy classes

and they focus on producing bounds for specify types of policy classes, where as the

bounds contained in this chapter require only mild assumptions on the policy class.

There has also been work to use classifiers to represent policies in RL [Rexakis and

Lagoudakis, 2008, Dimitrakakis and Lagoudakis, 2008, Blatt and Hero, 2006], which

is tangential to our work; our focus is on using bounds on return to choose the size

of policy classes.

The RL literature also has a great deal of work growing representations as more

data is seen. Past work in the model-based [Doshi-Velez, 2009, Joseph et al., 2011]

and value-based [Ratitch and Precup, 2004, Whiteson et al., 2007a, Geramifard et al.,

2011] settings have proven successful but generally require either prior distributions

or a large amount of training data collected under a specific policy. Additionally, our

approach applies in model-based, value-based, and policy search settings by treating

either the model class or value function class as indirect policy representations.

6.4 Conclusions and Discussion

In this chapter we answered the question: Why would we choose a misspecified model

class? We learned that the class size should strongly depend on the amount of data

127

available. By using the Principle of Structural Risk Minimization (and transferring

the theory over from the statistical learning theory literature) we were able to show

how to choose an appropriately sized policy class for a given amount of data.

128

Chapter 7

Conclusions

In this thesis we looked at three questions:

1. How big should our model be?

2. How do we pick a policy when the model class is too limited to capture the true

dynamics?

3. Why would we pick a limited model class?

In Chapters 3 and 4 we answered the first question using Bayesian nonparametric

model (BNM) classes. The BNM classes were extremely flexible and allowed the

models to grow with the size of the data. For the first application (Chapter 3),

mobile agent modeling, we represented a mobility patterns as a Gaussian process.

Not knowing how many mobility patterns to expect, we used a Dirichlet process

(DP) prior over the number of mobility patterns. The DP prior allowed us to grow

the number of mobility patterns based on the given data. We applied to the model to

simulated interception and tracking domains and a real-world dataset of taxis driving

around the greater Boston area. We continued using BNM classes in Chapter 4 to

model battery health where we applied a similar model of a DP prior over battery

behaviors to iRobot Roomba battery data.

We addressed the second question in Chapter 5 by stating that we should pick

the model based on the performance of the resulting policy. The chapter introduced

129

Reward Based Model Search (RBMS) for both parametric model classes and BNM

classes. RBMS leveraged Model-free Monte Carlo [Fonteneau et al., 2010] to perform

policy evaluation and gradient ascent for policy improvement. We applied RBMS to a

variety of parametric and nonparametric simulated environments and the real-world

hydrodynamic cart-pole system.

In Chapter 6 we answered the third question by following the Principle of Struc-

tural Risk Minimization [Vapnik, 1995] and let both the estimated performance and

the performance estimation accuracy dictate the size of the model class. We developed

an algorithm called Structural Return Maximization (SRM) which utilized a bound

on the true return to decide the appropriate size of the policy class. We evaluated

SRM’s performance versus naively maximizing performance on a variety of simulated

domains.

7.1 Relationship Between Bayesian Nonparamet-

ric Modeling and SRM

A natural question to ask is what the relationship between Structural Return Maxi-

mization (SRM, Chapter 6) and Bayesian Nonparametric Models (BNM, Chapters 3

and 4) is since they both seem to answer the question: How large should our model

class be?

An important part of understanding the relationship between SRM and BNMs

is to first understand the assumptions of each learning technique discussed in this

thesis. For model inference, both maximum likelihood (ML) and maximum a poste-

riori (MAP) learning both assume the true world dynamics are contained within the

model class they are inferring over. Reward Based Model Search (RBMS) assumes

a designer provided distance function (for MFMC, Section 5.1.1) and a known Lip-

schitz continuity constant of the world dynamics (Section 5.1). Structural Return

Maximization (SRM) inherits both assumptions of RBMS (since RBMS is inside of

the SRM algorithm) and additionally that the model classes it is searching over are

130

nested subsets (Section 6.1.2).

To understand the relationship between SRM and BNMs we must first note that

SRM is a technique for choosing between model classes and a BNM is a model class.

So the relationship we are technically interested in is between SRM and BNMs with

MAP inference (BNM+MAP). This relationship, between SRM and BNM+MAP, is

best understood by first considering how RBMS is related to ML learning. To begin,

ML learning is far more well known in the literature and is, for many classes of models,

computationally simpler. With this in mind, the decision to use RBMS depends on

when the assumptions of ML cannot be relied on and in these situations we would

then turn to RBMS. For example, in Section 5.3.3, we learned a cart-pole model of

the hydrodynamic cart-pole system. This clearly broke the ML assumption that the

mode class (the class of standard cart-pole models) contains the true system (the

hydrodynamic cart-pole).

Figures 5-3(a) and 5-4(a) illustrate how the broken assumptions of ML manifest

in poor performance. In these situations where we can not rely on the ML assump-

tions we have two choices: design a larger model class that we can rely on the ML

assumptions for or choose a model from the original model class based on a different

set of assumptions. RBMS squarely addresses the latter approach.

Unfortunately, the move from ML to RBMS does not come without a cost. First,

RBMS requires a designer-provided distance function and a known Lipschitz continu-

ity constant of the world dynamics. Additionally, RBMS, in general, has a far higher

computational cost and it may be intractable to use in some situations either because

of the difficulty running the optimization or because many, long episodes must be

pieced together by MFMC.

The relationship between RBMS and BNM+MAP follows a similar story to RBMS

and ML. BNM+MAP is far better understood and, in general, is computationally far

easier than SRM. In Section 5.4.2 we illustrated how the GP kernel function assumed

smooth dynamics but the true world contained a sharp discontinuity between the

concrete and ice. The result of this were poorly inferred models by BNM+MAP and

better models inferred by RBMS (see Figure 5-8). To more clearly understand this,

131

we will discuss the two BNM classes used in this thesis, Dirichlet Process (DP) and

Gaussian Process (GP), separately.

When using DPs with MAP inference (DP+MAP) the DP places a likelihood on

the number of components and MAP chooses the number of the components with

the highest likelihood. Choosing the size of the representation (for either the model

or policy) in this way is common in the literature and generally straightforward to

implement. SRM then comes in when we cannot rely on the assumptions of DP+MAP

or DP+RBMS. For example, in the case of DP+MAP, this could be due to the broken

exchangeability assumption as described in Section 4.3.1. In the case of DP+RBMS,

this could be due to, for example, needing the DP’s components to have different

models (not just different parameter values). We are then faced with a decision

similar to the one faced with ML, make the model class more powerful (e.g., using

dependent DPs, as suggested in Section 4.3.1) or change DP+MAP to DP+RBMS

(Section 5.4). If we cannot rely on the assumptions of DP+MAP or if the model

class is not powerful enough for DP+RBMS (e.g., needing different models across

components), SRM provides us with a third choice. SRM also is the approach to use

third because it is 1) more poorly understood than MAP and RBMS inference and

2) is more computationally difficult than DP+MAP and DP+RBMS.

An alternate way of understanding the choice of DP+MAP/DP+RBMS or SRM

is to examine their assumptions. DP+MAP/DP+RBMS assumes all components

have the same representation and the true world both contains an infinite number of

these components and can be perfectly captured by the model class. SRM requires

the representation classes to be nested subsets (which is more general than the DP

assumption) and only requires mild Lipschitz continuity assumptions (Section 5.2).

So DP+MAP has harsher assumptions and benefits from these assumptions by easier

computational complexity and implementation.

The other BNM used in this thesis, Gaussian processes using MAP inference

(GP+MAP), does not increase in “size” in a way similar to DP+MAP or SRM. As

GP+MAP sees more data it can increasingly place higher probability mass on more

complex functions (measured by, e.g., Lipschitz continuity) if the data warrants it but

132

there is no clear way in which the GP “grows in size”. Hence, there is no meaningful

relationship between a GP+MAP, a fixed size model class, and SRM, a method for

choosing between model classes; although GP+RBMS is a perfectly valid choice when

the MAP assumptions do not hold for GPs (Section 5.4). And when GP+RBMS is

a poor choice because the GP model class is too limited, for example, because a

mixture of GPs is needed, then a designer can make the model class larger (e.g., with

DPGP+MAP, see Chapter 3) or SRM can be used to appropriately grow the size of

the model class.

The cost of moving from BNM+MAP to SRM also follows a similar story of the

move from ML to RBMS. Since RBMS is inside SRM, to use SRM we are required

to have a designer-provided distance function and a known Lipschitz continuity of

the world dynamics. SRM also, in general, has a far higher computational cost than

BNM+MAP and therefore may be intractable to use in some situations. On addi-

tional requirement is knowledge of Lm, the Lipschitz continuity constant of the world

(Section 5.1), which will generally be a weaker assumption than the BNM+MAP

assumptions, but is still needed by the algorithm.

In this section so far we have only addressed the relationship between BNM+MAP

and SRM in computational and implementation difficulty and in terms of previous

use in the literature. A final relationship that the reader may be interested in is in

regards to data complexity. We can again look to the comparison between ML and

RBMS. As we learned from Chapter 5, ML can learn extremely quickly (e.g., ML

Trimmed on Figure 5-3(b)) if the model class can capture the truth (or close to it).

On the other hand, it may also never learn a high performing policy (e.g., ML on

Figure 5-3(b)). Similarly, BNM+MAP can learn very quickly (Chapters 3 and 4) but

can also never learn a high performing policy (Section 5.4) even when one exists and

given unlimited data and computation. Whereas, if a high performing policy exists,

SRM is guaranteed to find it with unlimited data and computation.

In conclusion, the question of when we should use BNM+MAP and SRM is an-

swered by the following decision tree:

• Can we rely on the BNM+MAP assumptions?

133

• If no, can we either make the BNM more powerful or exchange MAP for RBMS

and rely on the resulting assumptions?

• If no, design a structure of policy or model classes and use SRM.

7.2 Future Work

We believe there are two main promising directions for future research based on the

work presented in this thesis. The first is to extend SRM to an active learning setting

using e.g., Koltchinskii [2010]. The type of methodology introduced in Koltchinskii

[2010] should directly fit into the overall approach from Chapter 6. The second direc-

tion for future work would be to perform a much deeper investigation into structures

of policy classes to be used for SRM. Additionally, structures of model class or value

function classes may be more appropriate for specific applications. This may also

lead into interesting work automatically generating structures of policy classes that

can be used in SRM, as opposed to the designer provided structures we described in

this thesis.

134

Appendix A

Probability Distributions

A.1 Gamma

A gamma distribution is a continuous distribution defined by shape parameter, a,

and scale parameter, b. A random variable x ∼ G(a, b) implies

P(x) = fG(x; a, b) =
1

Γ(a)ba
xa−1e−x/b. (A.1)

In (A.1), Γ(a) =
∫∞

0
za−1e−zdz is the gamma function, the extension of the factorial

function to complex numbers. There are other common parameterizations of the

gamma distribution that the reader may be familiar with but this is the only one

used in this thesis.

A.2 Dirichlet

A Dirichlet distribution is a continuous distribution with parameters α1, ..., αk that

defines a distribution over π1, ..., πk where
∑

i πi = 1. It can be thought of as a

distribution on k dimensional discrete distributions, explicitly written

P(π1, ..., πk|α1, ..., αk) = fDir(π1, ..., πk;α1, ..., αk) (A.2)

=

∏
i Γ(αi)

Γ(
∑

i αi)

∏
i

παi−1
i . (A.3)

135

136

Bibliography

D. Aldous. Exchangeability and Related Topics. In Ecole d’Ete de Probabilities de
Saint-Flour XIII 1983, pages 1–198. Springer, 1985.

Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foun-
dations. Cambridge University Press, 1999.

C. E. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Non-
parametric Problems. The Annals of Statistics, 2:1152–1174, November 1974.

D. Ashbrook and T. Starner. Using GPS to Learn Significant Locations and Predict
Movement Across Multiple Users. Personal Ubiquitous Computing, 7(5):275–286,
2003.

Ozlem Asian, Olcay Taner Yildiz, and Ethem Alpaydin. Calculating the vc-dimension
of decision trees. In ISCIS 2009, 14-16 September 2009, North Cyprus, pages 193–
198. IEEE, 2009.

Bernardo Avila Pires, Mohammad Ghavamzadeh, and Csaba Szepesvari. Cost-
sensitive Multiclass Classification Risk Bounds. In International Conference on
Machine Learning, 2013.

J. Andrew Bagnell, Sham Kakade, Andrew Ng, and Jeff Schneider. Policy search
by dynamic programming. In Neural Information Processing Systems, volume 16.
MIT Press, 2003.

Leemon Baird and Andrew Moore. Gradient descent for general reinforcement learn-
ing. In Proceedings of the 1998 conference on Advances in neural information
processing systems II. MIT Press, 1999.

Andre S. Barreto, Doina Precup, and Joelle Pineau. Reinforcement learning using
kernel-based stochastic factorization. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett,
F.C.N. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems 24, pages 720–728. 2011.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities:
risk bounds and structural results. J. Mach. Learn. Res., 3:463–482, March 2003.
ISSN 1532-4435.

137

Peter L. Bartlett, Stéphane Boucheron, and Gábor Lugosi. Model selection and error
estimation. Machine Learning, 48(1-3):85–113, 2002a.

Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local rademacher com-
plexities. In Annals of Statistics, pages 44–58, 2002b.

Peter L. Bartlett, Michael I. Jordan, and Jon D. Mcauliffe. Convexity, classification,
and risk bounds. Journal of the American Statistical Association, 101(473):138–
156, March 2006.

A.G. Barto and T.G. Dietterich. Reinforcement learning and its relationship to su-
pervised learning. Handbook of learning and approximate dynamic programming.
John Wiley and Sons, Inc, 2004.

Andrew Barto and Michael Duff. Monte carlo matrix inversion and reinforcement
learning. In In Advances in Neural Information Processing Systems 6, pages 687–
694. Morgan Kaufmann, 1994.

Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE Transactions on
Systems, Man, and Cybernetics, 13(5):835–846, 1983.

Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 2001.

Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
USA, 1 edition, 1957.

Shai Ben-David, David Loker, Nathan Srebro, and Karthik Sridharan. Minimizing
the misclassification error rate using a surrogate convex loss. In ICML, 2012.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, August 2006. ISBN 0387310738.

D. Blackwell and J. B. Macqueen. Ferguson distributions via Pólya urn schemes. The
Annals of Statistics, 1:353–355, 1973.

Doron Blatt and Alfred Hero. From weighted classification to policy search. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, NIPS. 2006.

Phillip Boyle and Marcus Frean. Dependent gaussian processes. In In Advances in
Neural Information Processing Systems 17, pages 217–224. MIT Press, 2005.

Francois Caron, Manuel Davy, and Arnaud Doucet. Generalized polya urn for time-
varying dirichlet process mixtures. In Proceedings of the Twenty-Third Conference
Annual Conference on Uncertainty in Artificial Intelligence (UAI-07), pages 33–40,
Corvallis, Oregon, 2007. AUAI Press.

138

M Chen and G A Rincon-Mora. Accurate Electrical Battery Model Capable of Pre-
dicting Runtime and I-V Performance. IEEE Transactions on Energy Conversion,
21(2):504–511, 2006.

Vladimir S. Cherkassky and Filip Mulier. Learning from Data: Concepts, Theory,
and Methods. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1998.
ISBN 0471154938.

Lehel Csat and Manfred Opper. Sparse representation for gaussian process models.
In Advances in Neural Information Processing Systems, pages 444–450. MIT Press,
2001.

Marc P. Deisenroth and Carl E. Rasmussen. PILCO: A Model-Based and Data-
Efficient Approach to Policy Search. In L. Getoor and T. Scheffer, editors, Pro-
ceedings of the 28th International Conference on Machine Learning, Bellevue, WA,
USA, June 2011.

Marc P. Deisenroth, Marco F. Huber, and Uwe D. Hanebeck. Analytic Moment-based
Gaussian Process Filtering. In L. Bouttou and M. Littman, editors, Proceedings of
the 26th International Conference on Machine Learning, pages 225–232, Montreal,
Canada, June 2009. Omnipress.

Hussein Dia. An Agent-Based Approach to Modeling Driver Route Choice Behaviour
Under the Influence of Real-Time Information. The American Statistician, 10,
2002.

Christos Dimitrakakis and Michail G. Lagoudakis. Rollout Sampling Approximate
Policy Iteration. Machine Learning, 72(3):157–171, September 2008.

Finale Doshi-Velez. The infinite partially observable markov decision process. In
NIPS, 2009.

R. A. Dougal. Dynamic Lithium-ion Battery Model for System Simulation. IEEE
Transactions on Components and Packaging Technologies, 25(3):495–505, 2002.

Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid
Monte Carlo. Physics Letters B, 195(2), September 1987.

Raphael Fonteneau, Susan A. Murphy, Louis Wehenkel, and Damien Ernst. Model-
free monte carlo-like policy evaluation. Journal of Machine Learning Research -
Proceedings Track, 2010.

Raphael Fonteneau, SusanA Murphy, Louis Wehenkel, and Damien Ernst. Batch
mode reinforcement learning based on the synthesis of artificial trajectories. pages
1–34, 2012.

Emily Fox, Erik Sudderth, and Alan S. Willsky. Hierarchical Dirichlet Processes for
Tracking Maneuvering Targets. In Proc. Inter. Conf. Information Fusion, January
2007.

139

Alborz Geramifard, Finale Doshi, Joshua Redding, Nicholas Roy, and Jonathan How.
Online discovery of feature dependencies. In ICML, 2011.

Agathe Girard, Carl Edward Rasmussen, Joaquin Quintero-Candela, and Roderick
Murray-smith. Gaussian process priors with uncertain inputs - application to
multiple-step ahead time series forecasting. In Advances in Neural Information
Processing Systems, pages 529–536. MIT Press, 2003.

P Gomadam. Mathematical Modeling of Lithium-ion and Nickel Battery Systems.
Journal of Power Sources, 110(2):267–284, 2002.

Carlos Guestrin, Michail G. Lagoudakis, and Ronald Parr. Coordinated reinforcement
learning. In Proceedings of the Nineteenth International Conference on Machine
Learning, ICML ’02, pages 227–234, San Francisco, CA, USA, 2002. Morgan Kauf-
mann Publishers Inc. ISBN 1-55860-873-7.

J. M. Hammersley. Monte-Carlo Methods for Solving Multivariable Problems. Ann.
New York Acad. Sci., 86:844–874, 1960.

Ruijie He, Abraham Bachrach, and Nicholas Roy. Efficient planning under uncertainty
for a target-tracking micro-air vehicle. In Proc. IEEE International Conference on
Robotics and Automation, May 2010.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, March 1963.

R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge,
MA, 1960.

David Hsu, Wee Sun Lee, and Nan Rong. A point-based POMDP planner for target
tracking. In Proc. IEEE International Conference on Robotics and Automation,
Pasadena, CA, May 2008.

Joshua Joseph. Nonparametric bayesian behavior modeling. 2008.

Joshua Joseph, Finale Doshi-Velez, Albert S. Huang, and Nicholas Roy. A Bayesian
Nonparametric Approach to Modeling Motion Patterns. Autonomous Robots, 31
(4):383–400, 2011.

Joshua Joseph, Alborz Geramifard, John W. Roberts, Jonathan P. How, and Nicholas
Roy. Reinforcement learning with misspecified model classes. In ICRA, 2013.

Joshua Mason Joseph, Finale Doshi-Velez, and Nicholas Roy. A bayesian nonpara-
metric approach to modeling mobility patterns. In AAAI, 2010.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning.
2003.

140

Shivaram Kalyanakrishnan and Peter Stone. On learning with imperfect represen-
tations. In Proceedings of the 2011 IEEE Symposium on Adaptive Dynamic Pro-
gramming and Reinforcement Learning, pages 17–24. IEEE, April 2011. ISBN
978-1-4244-9886-4.

Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm
for near-optimal planning in large markov decision processes. Machine Learning,
49(2-3):193–208, 2002.

Jonathan Ko and Dieter Fox. GP-BayesFilters: Bayesian filtering using Gaussian
process prediction and observation models. Autonomous Robots, 27(1):75–90, July
2009.

J. Kober, E. Oztop, and J. Peters. Reinforcement learning to adjust robot movements
to new situations. In Proceedings of Robotics: Science and Systems, Zaragoza,
Spain, June 2010.

Vladimir Koltchinskii. Rademacher complexities and bounding the excess risk in
active learning. Journal of Machine Learning Research, 11:2457–2485, 2010.

H. Kurniawati, Y. Du, D. Hsu, and W.S. Lee. Motion Planning under Uncertainty
for Robotic Tasks with Long Time Horizons. In Proc. International Symposium of
Robotics Research, 2009.

Michail G. Lagoudakis and Ronald Parr. Reinforcement learning as classification:
Leveraging modern classifiers. In ICML, 2003a.

Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. JMLR, 4:
1107–1149, 2003b.

John Langford. Relating reinforcement learning performance to classification perfor-
mance. In ICML, 2005.

John Langford and Bianca Zadrozny. Reducing t-step reinforcement learning to clas-
sification, 2003.

Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson. Lower bounds on the
vc-dimension of smoothly parametrized function classes. Neural Computaion, 7:
7–1040, 1995.

Julia Letchner, John Krumm, and Eric Horvitz. Trip Router with Individualized
Preferences (TRIP): Incorporating Personalization into Route Planning. In AAAI,
2006.

Lin Liao, Donald J. Patterson, Dieter Fox, and Henry Kautz. Learning and Inferring
Transportation Routines. Artif. Intell., 171(5-6):311–331, 2007. ISSN 0004-3702.

Daniel McDonald, Cosma Shalizi, and Mark Schervish. Estimated vc dimension for
risk bounds. 2011.

141

Edward Meeds and Simon Osindero. An alternative infinite mixture of Gaussian
process experts. In NIPS 18, 2006.

W. Meiring, P. Monestiez, P.D. Sampson, and P. Guttorp. Developments in the
modelling of nonstationary spatial covariance structure from space-time monitoring
data. In E.Y. Baafi and N. Schofield, editors, Geostatistics Wallongong 1996, pages
162–173, Dordrecht, 1997. Kluwer.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis function adaptation in
temporal difference reinforcement learning. Annals OR, 134(1):215–238, 2005.

Nicolas Meuleau, Leonid Peshkin, Leslie Kaelbling, and Kee Kim. Off-policy policy
search. Technical report, MIT Articical Intelligence Laboratory, 2000.

Scott A. Miller, Zachary A. Harris, and Edwin K. P. Chong. A POMDP framework
for coordinated guidance of autonomous UAVs for multitarget tracking. EURASIP
Journal on Advances in Signal Processing, 2009.

Andrew Ng and Michael Jordan. Pegasus: A policy search method for large mdps and
pomdps. In In Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, pages 406–415, 2000.

Dirk Ormoneit and Peter Glynn. Kernel-based reinforcement learning in average-
cost problems: An application to optimal portfolio choice. In Advances in Neural
Information Processing Systems, 2000.

Christopher J. Paciorek and Mark J. Schervish. Nonstationary covariance functions
for gaussian process regression. In Neural Information Processing Systems, 2000.

Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L.
Littman. An analysis of linear models, linear value-function approximation, and
feature selection for reinforcement learning. In Proceedings of the 25th international
conference on Machine learning, ICML ’08, 2008.

D. Patterson, L. Liao, D. Fox, and H. Kautz. Inferring High-Level Behavior From
Low-Level Sensors. In Proc. UBICOMP, 2003.

Leonid Peshkin. Reinforcement learning by policy search, 2000.

Marek Petrik, Gavin Taylor, Ronald Parr, and Shlomo Zilberstein. Feature selection
using regularization in approximate linear programs for Markov decision processes.
In ICML, 2010.

Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. Point-based value iteration:
An anytime algorithm for pomdps. In International Joint Conference Artificial
Intelligence, pages 1025 – 1032, August 2003.

Jim Pitman. Poisson–Dirichlet and GEM Invariant Distributions for Split-and-Merge
Transformations of an Interval Partition. Comb. Probab. Comput., 11(5):501–514,
2002. ISSN 0963-5483. doi: http://dx.doi.org/10.1017/S0963548302005163.

142

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, 1994.

Adrian Raftery. Choosing models for cross-classifications. Americal Sociological Re-
view, 51, 1986.

C. E. Rasmussen. The Infinite Gaussian Mixture Model. In NIPS 12, 2000.

C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process experts.
In NIPS 14, 2002.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). 2005. ISBN 026218253X.

Carl Edward Rasmussen. The Infinite Gaussian Mixture Model. In NIPS, pages
554–560, 1999.

Carl Edward Rasmussen and Zoubin Ghahramani. Infinite Mixtures of Gaussian
Process Experts. In NIPS, pages 881–888, 2001.

Bohdana Ratitch and Doina Precup. Sparse distributed memories for on-line value-
based reinforcement learning. In Machine Learning: ECML, Lecture Notes in
Computer Science, 2004.

Ioannis Rexakis and Michail G. Lagoudakis. Classifier-based policy representation. In
Seventh International Conference on Machine Learning and Applications, ICMLA,
2008.

Stephane Ross, Joelle Pineau, Sebastien Paquet, and Brahim Chaib-Draa. Online
planning algorithms for POMDPs. Journal of Artificial Intelligence Research, 32:
663–704, July 2008.

Nicholas Roy and Caleb Earnest. Dynamic action spaces for information gain maxi-
mization in search and exploration, 2006.

R.Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons, Inc.,
1981.

G. A. Rummery and M. Niranjan. Online Q-learning using connectionist systems
(tech. rep. no. cued/f-infeng/tr 166). Cambridge University Engineering Depart-
ment, 1994.

B. Saha, K. Goebel, and J. Christophersen. Comparison of Prognostic Algorithms
for Estimating Remaining Useful Life of Batteries. Transactions of the Institute of
Measurement and Control, 31(3-4):293–308, 2009.

J. Sethuraman. A Constructive Definition of Dirichlet Priors. Statistica Sinica, 4:
639–650, 1994.

143

Xuhui Shao, Vladimir Cherkassky, and William Li. Measuring the vc-dimension using
optimized experimental design. Neural Computation, 12:2000, 1969.

John Shawe-Taylor, Royal Holloway, Peter L. Bartlett, Robert C. Williamson, and
Martin Anthony. Structural risk minimization over data-dependent hierarchies,
1996.

Satinder Singh, Richard S. Sutton, and P. Kaelbling. Reinforcement learning with
replacing eligibility traces. In Machine Learning, pages 123–158, 1996.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-
inputs. In Advances in Neural Information Processing Systems 18, pages 1257–1264.
MIT press, 2006.

Mark W. Spong. Underactuated mechanical systems. In Control Problems in Robotics
and Automation. Springer-Verlag, 1998.

Masashi Sugiyama. Active learning for misspecified models. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages
1305–1312. MIT Press, Cambridge, MA, 2006.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, May 1998.

Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Ad-
vances in Neural Information Processing Systems 12, pages 1057–1063. MIT Press,
2000.

Christopher Tay and Christian Laugier. Modelling smooth paths using gaussian pro-
cesses. In International Conference on Field and Service Robotics, 2007.

Y. W. Teh. Dirichlet Processes. In Encyclopedia of Machine Learning. Springer, 2010.

K. Ure, A. Geramifard, G. Chowdhary, and J. P. How. Adaptive Planning for Markov
Decision Processes with Uncertain Transition Models via Incremental Feature De-
pendency Discovery. In European Conference on Machine Learning (ECML), 2012.

Vladimir Vapnik. Statistical learning theory. Wiley, 1998. ISBN 978-0-471-03003-4.

Vladimir Vapnik, Esther Levin, and Yann LeCun. Measuring the vc-dimension of a
learning machine. Neural Computation, 6(5):851–876, 1994.

Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag New
York, Inc, 1995.

Dizan Alejandro Vasquez Govea, Thierry Fraichard, and Christian Laugier. Growing
Hidden Markov Models: An Incremental Tool for Learning and Predicting Human
and Vehicle Motion. International Journal of Robotics Research, 28(11-12):1486–
1506, November 2009.

144

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of Meta-Learning.
Artificial Intelligence Review, 18:77–95, 2002.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):
279–292, May 1992. doi: 10.1007/BF00992698.

Ye Wen, Rich Wolski, and Chandra Krintz. Online Prediction of Battery Lifetime for
Embedded and Mobile Devices. In Special Issue on Embedded Systems. Springer-
Verlag Heidelberg Lecture Notes in Computer Science, 2004.

Halbert White. Maximum likelihood estimation of misspecified models. Econometrica,
50(1):1–25, January 1982. ISSN 00129682. doi: 10.2307/1912526.

Shimon Whiteson, Matthew Taylor, and Peter Stone. Adaptive tile coding for value
function approximation. Technical Report AI-TR-07-339, University of Texas at
Austin, 2007a.

Shimon Whiteson, Matthew Taylor, and Peter Stone. Adaptive tile coding for value
function approximation. Technical Report AI-TR-07-339, University of Texas at
Austin, 2007b.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. In Machine Learning, pages 229–256, 1992.

Brian D. Ziebart, Andrew Maas, James Bagnell, and Anind K. Dey. Maximum
Entropy Inverse Reinforcement Learning. In AAAI, July 2008.

145

	Introduction
	Contributions and Document Outline

	Background
	Reinforcement Learning
	Policy Evaluation
	Minimum Error Reinforcement Learning

	Dirichlet Processes
	Statistical Learning Theory
	Classification
	Empirical Risk Minimization
	Bounding the Risk of a Classifier
	Structural Risk Minimization

	A Bayesian Nonparametric Approach to Modeling Motion Patterns
	Mobility Model
	Dirichlet Process Gaussian Process Motion Model

	Interception and Tracking with Full Information
	Tracking Problem Formulation
	Model Inference
	Results

	Interception and Tracking with Partial Information
	Interception and Tracking Problem Formulation
	Model Inference
	Results

	Related Work
	Conclusions and Discussion

	A Bayesian Nonparametric Approach to Modeling Battery Health
	Battery Health Model
	Battery Data
	Battery Cooling Behavior Model

	Empirical Results
	Absolute Prediction Error
	Guiding Replacement Decisions

	Conclusions and Discussion
	Broken Exchangeability Assumption of DPs

	Reward Based Model Search
	Algorithm
	Off-Policy Policy Evaluation
	Policy Improvement

	Theoretical Analysis
	Bound on Expected Performance
	Probabilistic Bound on Performance for MFMC

	Empirical Results
	Mountain Car
	Cart-Pole
	Hydrodynamic Cart-Pole

	Bayesian Nonparametric Reward Based Model Search
	Algorithm
	Empirical Results

	Related Work
	Conclusions

	Structural Return Maximization
	Bounding Return
	Bound on the Return of a Policy Chosen from a Policy Class
	Bound on the Return of Policy Classes Selection

	Empirical Results
	1D Toy Domain
	Inverted Pendulum
	Intruder Monitoring

	Related Work
	Conclusions and Discussion

	Conclusions
	Relationship Between Bayesian Nonparametric Modeling and SRM
	Future Work

	Probability Distributions
	Gamma
	Dirichlet

