
MIT Open Access Articles

Sound input filter generation for integer overflow errors

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin Rinard. 2014. Sound
input filter generation for integer overflow errors. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL '14). ACM, New York, NY,
USA, 439-452.

As Published: http://dx.doi.org/10.1145/2535838.2535888

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/90625

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90625
http://creativecommons.org/licenses/by-nc-sa/4.0/

Sound Input Filter Generation for Integer Overflow Errors

Fan Long Stelios Sidiroglou-Douskos Deokhwan Kim Martin Rinard
{fanl, stelios, dkim, rinard}@csail.mit.edu

MIT CSAIL

Abstract
We present a system, SIFT, for generating input filters that nullify
integer overflow errors associated with critical program sites such
as memory allocation or block copy sites. SIFT uses a static pro-
gram analysis to generate filters that discard inputs that may trigger
integer overflow errors in the computations of the sizes of allocated
memory blocks or the number of copied bytes in block copy opera-
tions. Unlike all previous techniques of which we are aware, SIFT
is sound — if an input passes the filter, it will not trigger an integer
overflow error at any analyzed site.

Our results show that SIFT successfully analyzes (and therefore
generates sound input filters for) 56 out of 58 memory allocation
and block memory copy sites in analyzed input processing modules
from five applications (VLC, Dillo, Swfdec, Swftools, and GIMP).
These nullified errors include six known integer overflow vulnera-
bilities. Our results also show that applying these filters to 62895
real-world inputs produces no false positives. The analysis and fil-
ter generation times are all less than a second.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis; D.4.6 [Operating Sys-
tems]: Security and Protection

General Terms Security; Program Analysis

Keywords Integer Overflow; Abstraction; Soundness

1. Introduction
Many security exploits target software errors in deployed applica-
tions. One approach to nullifying vulnerabilities is to deploy input
filters that discard inputs that may trigger the errors.

We present a new static analysis technique and implemented
system, SIFT, for automatically generating filters that discard in-
puts that may trigger integer overflow errors at analyzed memory
allocation and block copy sites. We focus on this problem, in part,
because of its practical importance. Because integer overflows may
enable code injection or other attacks, they are an important source
of security vulnerabilities [25, 33, 35].

1.1 Previous Filter Generation Systems
Standard filter generation systems start with an input that triggers
an error [10–12, 26, 36]. They next use the input to generate an ex-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2544-8/14/01.
http://dx.doi.org/10.1145/2535838.2535888

ecution trace and discover the path the program takes to the error.
They then use a forward symbolic execution on the discovered path
(and, in some cases, heuristically related paths) to derive a vulnera-
bility signature — a boolean condition that the input must satisfy to
follow the same execution path through the program to trigger the
same error. The generated filter discards inputs that satisfy the vul-
nerability signature. Because other unconsidered paths to the error
may exist, these techniques are unsound (i.e., the filter may miss
inputs that exploit the error).

It is also possible to start with a potentially vulnerable site and
use a weakest precondition analysis to obtain an input filter for that
site. To the best of our knowledge, the only previous technique that
uses this approach [5] is unsound in that 1) it uses loop unrolling
to eliminate loops and therefore analyzes only a subset of the
possible execution paths and 2) it does not specify a technique
for dealing with potentially aliased values. As is standard, the
generated filter incorporates execution path constraints, i.e., checks
from conditional statements along the analyzed execution paths.
The goal is to avoid filtering potentially problematic inputs that the
program would (because of safety checks at conditionals along the
execution path) process correctly. As a result, the generated input
filters perform a substantial (between 106 and 1010) number of
operations.

1.2 SIFT
SIFT starts with a set of critical expressions from memory allo-
cation and block copy sites. These expressions control the sizes of
allocated or copied memory blocks at these sites. SIFT then uses an
interprocedural, demand-driven, weakest precondition static analy-
sis to propagate the critical expression backwards against the con-
trol flow. The result is a symbolic condition that captures all expres-
sions that the application may evaluate (in any execution) to obtain
the values of critical expressions. The free variables in the sym-
bolic condition represent the values of input fields. In effect, the
symbolic condition captures all of the possible computations that
the program may perform on the input fields to obtain the values of
critical expressions. Given an input, the generated input filter eval-
uates this condition over the corresponding input fields to discard
inputs that may cause an overflow.

Because SIFT takes all paths to analyzed memory allocation
and block copy sites into account, it generates sound filters —
if an input passes the filter, it will not trigger an overflow in the
evaluation of any critical expression (including the evaluation of
intermediate expressions at distant program points that contribute
to the value of the critical expression).1

1 As is standard in the field, SIFT is designed to work with programs that do
not access uninitialized memory. Our analysis therefore comes with the fol-
lowing soundness guarantee. If an input passes the filter for a given critical
expression e, the input field annotations are correct (see Section 3.4), and
the program has not yet accessed uninitialized memory when the program
computes a value of e, then no integer overflow occurs during the evaluation

1.3 No Execution Path Constraints
Unlike standard techniques, SIFT incorporates no checks from the
program’s conditional statements and works only with arithmetic
expressions that contribute directly to the values of the critical
expressions. This design decision has the following consequences:

• Sound and Efficient Analysis: Ignoring execution path con-
straints improves the efficiency of the analysis because it elimi-
nates the need to track the different constraints that may appear
on the many different execution paths to each memory alloca-
tion or block copy site. Indeed, this efficiency is critical to the
soundness of SIFT’s analysis — in general, there may be an
intractably large or even statically unbounded number of paths
to a given memory allocation or block copy site. Attempting to
enumerate all of these different execution paths to derive the
complete set of execution path constraints is clearly infeasible
and a major source of the unsoundness of previous techniques.

• Efficient Filters: Because SIFT ignores checks from condi-
tional statements, it generates much more efficient filters than
standard techniques (SIFT’s filters perform tens of operations
as opposed to tens of thousands or more). Indeed, our experi-
mental results show that, in contrast to standard filters, SIFT’s
filters spend essentially all of their time reading the input (as
opposed to checking if the input may trigger an overflow error).

• Accurate Filters: One potential concern is that the program
may contain safety checks that enable it to safely process inputs
that would otherwise trigger overflows. Ignoring these safety
checks may cause the generated filter to discard inputs even
though the program can process them safely.
Our experimental results show that, in practice, ignoring execu-
tion path constraints results in no loss of accuracy. Specifically,
we tested our generated filters on 62895 real-world inputs for
six benchmark applications and found no false positives (in-
correctly filtered inputs that the program would have processed
correctly). We attribute this potentially counterintuitive result to
the fact that standard integer data types usually contain enough
bits to represent the memory allocation sizes and block copy
lengths that benign inputs typically elicit.

1.4 Input Fields With Multiple Instantiations
Input files often contain multiple instantiations of the same input
field (for example, when the input file contains repeated compo-
nents that have the same format). SIFT works with an abstraction
in which free variables in the propagated symbolic expressions (and
the final symbolic condition) represent all instantiations of the cor-
responding input fields that they reference — i.e., SIFT does not
attempt to determine the precise correspondence between variables
and different instantiations of the same input field.

This design decision simplifies and extends the range of the
analysis. All variables that reference the same input field are in-
terchangeable (because they all represent all possible instantiations
of the corresponding input field). SIFT can therefore successfully
analyze programs for which it is not possible to statically deter-
mine the precise correspondence between variables and different
instantiations of the same input field. This design decision also en-
ables SIFT to analyze programs in which a single variable may
reference different instantiations of the same input field over the
course of the execution. Interchangeability also enables a new ex-
pression normalization algorithm that renumbers variables during
the analysis of loops to obtain loop invariant expressions (see Sec-
tion 3.2). These expressions soundly characterize the effect (on the

of e (including the evaluations of intermediate expressions that contribute
to the final value of the critical expression).

propagated symbolic expression) of loops that may access multiple
potentially different instantiations of the same input field.

One final consequence of this design decision is that the gener-
ated input filter must check all combinations of input field instanti-
ations when it checks for potential overflows (see Section 3.5). Our
experimental results show that, for our benchmark applications, this
approach causes, at most, negligible overhead — the generated fil-
ters spend essentially all of their time reading the input.

1.5 Pointer Analysis and Precondition Generation
SIFT groups pointers into equivalence sets based on an analysis
of the potential aliasing relationships between different pointers.
To analyze a load statement that loads a value via a pointer, SIFT
generates a new variable that represents the loaded value. In the
propagated symbolic conditions, each such variable represents all
values that may be stored via any alias of the pointer.

This decision produces an appropriately imprecise abstraction
that enables SIFT to successfully analyze programs for which it is
not possible to statically determine the precise value that each vari-
able references. It also enables SIFT to work with any sound pointer
or alias analysis that provides SIFT with the aliasing information
required to soundly update the propagated symbolic condition at
statements that access values via pointers (see Section 3.2). To the
best of our knowledge, this is the first paper to show how to soundly
incorporate an arbitrary off-the-shelf alias or pointer analysis into a
precondition generation algorithm.

1.6 SIFT Usage Model
SIFT implements the following usage model:
Module Identification. Starting with an application that is de-
signed to process inputs presented in one or more input formats, the
developer identifies the modules within the application that process
inputs of interest. SIFT will analyze these modules to generate an
input filter for the inputs that these modules process.
Input Statement Annotation. The developer annotates the rele-
vant input statements in the source code of the modules to identify
the input field that each input statement reads.
Critical Site Identification. SIFT scans the modules to find all
critical sites (currently, memory allocation and block copy sites).
Each critical site has a critical expression that determines the size
of the allocated or copied block of memory. The generated input
filter will discard inputs that may trigger an integer overflow error
during the computation of the value of the critical expression.
Static Analysis. For each critical expression, SIFT uses a demand-
driven backwards static program analysis to automatically derive
the corresponding symbolic condition. Each conjunct expression
in this condition specifies, as a function of the input fields, how
the value of the critical expression is computed along one of the
program paths to the corresponding critical site.
Input Parser Acquisition. The developer obtains (typically from
open-source repositories such as Hachoir [1]) a parser for the de-
sired input format. This parser groups the input bit stream into input
fields, then makes these fields available via a standard API.
Filter Generation. SIFT uses the input parser and symbolic condi-
tions to automatically generate the input filter. When presented with
an input, the filter reads the fields of the input and, for each sym-
bolic expression in the conditions, determines if an integer over-
flow may occur when the expression is evaluated. If so, the filter
discards the input. Otherwise, it passes the input along to the appli-
cation. The generated filters can be deployed anywhere along the
path from the input source to the application that ultimately pro-
cesses the input.

1.7 Experimental Results
We used SIFT to generate input filters for modules in five real-
world applications: VLC 0.8.6h (a network media player), Dillo 2.1
(a lightweight web browser), Swfdec 0.5.5 (a flash video player),
Swftools 0.9.1 (SWF manipulation and generation utilities), and
GIMP 2.8.0 (an image manipulation application). Together, the
analyzed modules contain 58 critical memory allocation and block
copy sites. SIFT successfully generated filters for 56 of these 58
critical sites (SIFT’s static analysis was unable to derive symbolic
conditions for the remaining two critical sites, see Section 5.2
for more details). These applications contain six known integer
overflow vulnerabilities at their critical sites. SIFT’s filters nullify
all of these vulnerabilities.
Analysis and Filter Generation Times. We configured SIFT to
analyze all critical sites in the analyzed modules, then generate a
single, high-performance composite filter that checks for integer
overflow errors at all of the sites. The maximum time required to
analyze all of the sites and generate the composite filter was less
than a second for each benchmark application.
False Positive Evaluation. We used a web crawler to obtain a
set of at least 6000 real-world inputs for each application (for a
total of 62895 input files). We found no false positives — the
corresponding composite filters accept all of the input files in this
test set.
Filter Performance. We measured the composite filter execution
time for each of the 62895 input files in our test set. The average
time required to read and filter each input was at most 16 millisec-
onds, with this time dominated by the time required to read in the
input file.

1.8 Contributions
This paper makes the following contributions:

• SIFT: We present SIFT, a sound filter generation system for
nullifying integer overflow vulnerabilities. SIFT scans modules
to find critical memory allocation and block copy sites, stati-
cally analyzes the code to automatically derive symbolic con-
ditions that characterize how the application may compute the
sizes of the allocated or copied memory blocks, and generates
input filters that discard inputs that may trigger integer overflow
errors in the evaluation of these expressions.
Unlike all previous techniques of which we are aware, SIFT is
sound — because it takes all execution paths into consideration,
if an input passes the generated filter, it will not trigger an
integer overflow error at any analyzed site. Also unlike previous
techniques, SIFT generates efficient filters — because SIFT
ignores execution path constraints, the generated filters perform
tens of operations (as opposed to previous techniques, which
incorporate execution path constraints and therefore perform
tens of thousands or more operations).

• Sound and Efficient Static Analysis: We present a new static
analysis that automatically derives symbolic conditions that
capture, as a function of the input fields, how the integer values
of critical expressions are computed along the various possible
execution paths to the corresponding critical site. Unlike stan-
dard precondition generation techniques, the SIFT static analy-
sis does not incorporate checks from the program’s conditional
statements — it instead works only with the arithmetic opera-
tions that contribute directly to the values of the critical expres-
sions.

• Input Fields With Multiple Instantiations: We present a
novel abstraction for input fields with multiple instantiations.
This abstraction enables SIFT to analyze programs for which it
is impossible to statically determine the precise correspondence

between variables and different instantiations of the same input
field. With this abstraction, all variables that reference the same
input field are interchangable (because they all represent all in-
stantiations of that input field). This interchangability enables
a new expression normalization technique that SIFT deploys to
automatically obtain invariants for loops that access the values
of input fields.

• Pointer Analysis and Precondition Generation: We also
present a novel abstraction for values that load statements ac-
cess via pointers. This abstraction enables SIFT to analyze pro-
grams for which it is impossible to statically determine the
precise value that each pointer references. We believe that this
paper is the first to show how to soundly incorporate an arbi-
trary off-the-shelf alias or pointer analysis into a precondition
generation algorithm.

• Experimental Results: We present experimental results that
illustrate the practical viability of our approach in protecting
applications against integer overflow vulnerabilities at memory
allocation and block copy sites.

The rest of this paper is organized as follows. Section 2 presents
a motivating example that illustrates how SIFT works. Section 3
presents the core SIFT static analysis for C programs. Section 4
presents the formalization of the static analysis and discusses the
soundness of the analysis. Section 5 presents the experimental
results. Section 6 discusses related work. We conclude in Section 7.

2. Example
We next present an example that illustrates how SIFT nullifies
an integer overflow vulnerability in Swfdec 0.5.5, an open source
shockwave flash player.

Figure 1 presents (simplified) source code from Swfdec. When
Swfdec opens an SWF file with embedded JPEG images, it calls
jpeg_decoder_decode() (line 1 in Figure 1) to decode each
JPEG image in the file. This function in turn calls the func-
tion jpeg_decoder_start_of_frame() (line 7) to read the im-
age metadata and the function jpeg_decoder_init_decoder()
(line 22) to allocate memory buffers for the JPEG image.

There is an integer overflow vulnerability at lines 43–47 where
Swfdec calculates the size of the buffer for a JPEG image as:

rowstride * (dec->height_block * 8 * max_v_sample
/ dec->components[i].v_subsample)

At this program point, rowstride equals:

((jpeg_width + 8 * max_h_sample - 1) / (8 * max_h_sample))
* 8 * max_h_sample / (max_h_sample / h_sample)

while the rest of the expression equals

((jpeg_height + 8 * max_v_sample - 1) / (8 * max_v_sample))
* 8 * max_v_sample / (max_v_sample / v_sample)

where jpeg_height is the 16-bit height input field value that
Swfdec reads at line 9 and jpeg_width is the 16-bit width input
field value that Swfdec reads at line 11. h_sample is one of the
horizontal sampling factor values that Swfdec reads at line 14,
while max_h_sample is the maximum horizontal sampling factor
value. v_sample is one of the vertical sampling factor values that
Swfdec reads at line 17, while max_v_sample is the maximum
vertical sampling factor value. Malicious inputs with specifically
crafted values in these input fields can cause the image buffer size
calculation to overflow. In this case Swfdec allocates an image
buffer that is smaller than required and eventually writes beyond
the end of the allocated buffer.

The loop at lines 13–20 reads multiple instantiations of the
h_sample field and the v_sample field. Swfdec computes the

C : safe((((sext(jpeg_width[16], 32) + 8[32] × sext(h_sample〈1〉[4], 32)− 1[32])/(8[32] × sext(h_sample〈1〉[4], 32))

×8[32] × sext(h_sample〈1〉[4], 32))/(sext(h_sample〈1〉[4], 32)/ sext(h_sample〈2〉[4], 32)))

×(((sext(jpeg_height[16], 32) + 8[32] × sext(v_sample〈1〉[4], 32)− 1[32])/(8[32] × sext(v_sample〈1〉[4], 32))

×8[32] × sext(v_sample〈1〉[4], 32))/(sext(v_sample〈1〉[4], 32)/ sext(v_sample〈2〉[4], 32))))

Figure 2. The symbolic condition C for the Swfdec example. Subexpressions in C are bit vector expressions. The superscript indicates the
bit width of each expression atom. “sext(v, w)" is the signed extension operation that transforms the value v to the bit width w.

1 int jpeg_decoder_decode(JpegDecoder *dec) {
2 ...
3 jpeg_decoder_start_of_frame(dec, ...);
4 jpeg_decoder_init_decoder (dec);
5 ...
6 }
7 void jpeg_decoder_start_of_frame(JpegDecoder*dec){
8 ...
9 dec->height = jpeg_bits_get_u16_be (bits);

10 /* dec->height = SIFT_input("jpeg_height", 16);*/
11 dec->width = jpeg_bits_get_u16_be (bits);
12 /* dec->width = SIFT_input("jpeg_width", 16); */
13 for (i = 0; i < dec->n_components; i++) {
14 dec->components[i].h_sample =getbits(bits, 4);
15 /* dec->components[i].h_sample =
16 SIFT_input("h_sample", 4); */
17 dec->components[i].v_sample =getbits(bits, 4);
18 /* dec->components[i].v_sample =
19 SIFT_input("v_sample", 4); */
20 }
21 }
22 void jpeg_decoder_init_decoder(JpegDecoder*dec){
23 int max_h_sample = 0;
24 int max_v_sample = 0;
25 int i;
26 for (i=0; i < dec->n_components; i++) {
27 max_h_sample = MAX(max_h_sample,
28 dec->components[i].h_sample);
29 max_v_sample = MAX(max_v_sample,
30 dec->components[i].v_sample);
31 }
32 dec->width_blocks=(dec->width+8*max_h_sample-1)
33 / (8*max_h_sample);
34 dec->height_blocks=(dec->height+8*max_v_sample-1)
35 / (8*max_v_sample);
36 for (i = 0; i < dec->n_components; i++) {
37 int rowstride;
38 int image_size;
39 dec->components[i].h_subsample=max_h_sample /
40 dec->components[i].h_sample;
41 dec->components[i].v_subsample=max_v_sample /
42 dec->components[i].v_sample;
43 rowstride=dec->width_blocks * 8 * max_h_sample /
44 dec->components[i].h_subsample;
45 image_size=rowstride * (dec->height_blocks * 8 *
46 max_v_sample / dec->components[i].v_subsample);
47 dec->components[i].image = malloc (image_size);
48 }
49 }

Figure 1. Simplified Swfdec source code. Input statement annota-
tions appear in comments.

maximum values of these instantiations in the loop at lines 26–
31. It then uses these maximum values to compute the size of the
allocated buffer at each iteration in the loop (lines 36–48).
Analysis Challenges: This example highlights several challenges
that SIFT must overcome to successfully analyze and generate a
filter for this program. First, the computation of the expression
for the size of the buffer uses the max_h_sample variable and the

max_v_sample variable, which correspond to the maximum values
of all instantiations of the h_sample field and the v_sample field.
It is impossible to statically determine the precise instantiation
that these two variables represent. To overcome this challenge,
SIFT uses a novel abstraction in which variables in the propagated
symbolic condition represent all instantiations of the corresponding
input fields.

Second, the source code snippet contains many load/store state-
ments that access values derived from input fields via pointers. To
reason soundly about these load/store statements, SIFT uses an
abstraction that enables SIFT to incorporate an off-the-shelf alias
analysis [20].

Finally, Swfdec reads the input fields (lines 14 and 17) and com-
putes the size of the allocated memory block (lines 45-46) in the
loops at different procedures. SIFT therefore uses an interprocedu-
ral analysis that propagates the symbolic conditions across proce-
dure boundaries to obtain precise symbolic conditions. SIFT also
deploys a combination of a fixed point analysis and a novel expres-
sion normalization technique to obtain loop invariants that success-
fully characterize the effect of loops on propagated expressions.

We next describe how SIFT generates a sound input filter to
nullify this integer overflow error.
Source Code Annotations: SIFT provides a declarative specifica-
tion interface that enables the developer to specify which state-
ments read which input fields. In this example, the developer
specifies that the application reads the input fields jpeg_height,
jpeg_width, h_sample, and v_sample at lines 10, 12, 15–16, and
18–19 in Figure 1. SIFT uses this specification to map the variables
dec->height, dec->width, dec->components[i].h_sample,
and dec->components[i].v_sample at lines 9, 11, 14, and 17
to the corresponding input field values. Note that the input fields
h_sample and v_sample may contain multiple instantiations,
which Swfdec reads in the loop at lines 14 and 17.
Compute Symbolic Condition: SIFT uses a demand-driven, inter-
procedural, backward static analysis to compute the symbolic con-
dition C in Figure 2. We use the notation “safe(e)" in Figure 2 to
denote that overflow errors should not occur in any step of the eval-
uation of the expression e. Subexpressions in C are in bit vector
expression form so that the expressions accurately reflect the rep-
resentation of the numbers inside the computer as fixed-length bit
vectors as well as the semantics of arithmetic and logical operations
as implemented inside the computer on these bit vectors.

In Figure 2, the superscripts indicate the bit width of each
expression atom. sext(v, w) is the signed extension operation that
transforms the value v to the bit width w. SIFT also tracks the sign
of each arithmetic operation in C. For simplicity, Figure 2 omits
this information.

Note that SIFT soundly handles the loops that access the in-
stantiations of the input fields h_sample and v_sample. In the
resulting final symbolic condition C, h_sample〈1〉 represents
the instantiation of the input field h_sample that corresponds to
the program variable max_h_sample, while h_sample〈2〉 rep-
resents the instantiation that corresponds to the program vari-
able dec->components[i].h_sample. SIFT does not attempt
to determine the precise instantiations that h_sample〈1〉 and
h_sample〈2〉 represent. Instead, SIFT conservatively assumes that

h_sample〈1〉 and h_sample〈2〉 may independently represent any
instantiation of the field h_sample. SIFT handles v_sample simi-
larly.
C includes all intermediate expressions evaluated at lines 32–

35 and 39–46. In this example, C contains only a single term of
the form safe(e). In general, however, different program paths may
compute different values for the critical expression. In this case,
the final symbolic condition C will contain multiple conjuncts of
the form safe(e). Each conjuct captures one of the ways that the
program computes the value of the critical expression.
Generate Input Filter: Starting with the symbolic condition C,
SIFT generates an input filter that discards any input that vio-
lates C, i.e., for any term safe(e) in C, the input triggers inte-
ger overflow errors when evaluating e (including all subexpres-
sions). The generated filter extracts all instantiations of the in-
put fields jpeg_height, jpeg_width, h_sample, and v_sample
(these are the input fields that appear inC) from an incoming input.
It then iterates over all combinations of pairs of the instantiations
of the input fields h_sample and v_sample to consider all possi-
ble bindings of h_sample〈1〉, h_sample〈2〉, v_sample〈1〉, and
v_sample〈2〉 in C. For each binding, it checks the entire evalua-
tion of C (including the evaluation of all subexpressions) for over-
flow. If there is no overflow in any evaluation, the filter accepts the
input, otherwise it rejects the input.

3. Static Analysis
This section presents the SIFT static analysis algorithm. We have
implemented our static analysis for C programs using the LLVM
Compiler Infrastructure [3].

3.1 Core Language and Notation

s := `: x = read(f) | `: x = c | `: x = y |
`: x = y op z | `: x = *p | `: *p = x |
`: p = malloc | `: skip | s′; s′′ |
`: if (x) s′ else s′′ | `: while (x) { s′ }

s, s′, s′′ ∈ Statement f ∈ InputField
x, y, z, p ∈ Var c ∈ Int ` ∈ Label

Figure 3. The core programming language

Figure 3 presents the core language that we use to present the
analysis. The language is modeled on a standard lowered program
representation in which 1) nested expressions are converted into
sequences of statements of the form `: x = y op z (where x, y,
and z are either non-aliased variables or automatically generated
temporaries, op represents binary arithmetic operations) and 2) all
accesses to potentially aliased memory locations occur in load or
store statements of the form `: x = *p or `: *p = x. Each statement
contains a unique label ` ∈ Label.

A statement of the form “`: x = read(f)” reads a value from an
input field f . Because the input may contain multiple instantiations
of the field f , different executions of the statement may return
different values. For example, the loop at lines 14–17 in Figure 1
reads multiple instantiations of the h_sample and v_sample input
fields.
Labels and Pointer Analysis: Figure 4 presents four utility func-
tions 1) firstS : Statement → Statement, 2) firstL : Statement →
Label, 3) last : Statement → Label, and 4) labels : Statement →
Label in our notations. Given a statement s, firstS (s) maps s to the
first atomic statement inside s, firstL(s) maps s to the label that
corresponds to the first atomic statement inside s, last(s) maps s
to the label that corresponds to the last atomic statement inside s,
and labels(s) maps s to the set of labels that are inside s.

firstS (s) =

{
firstS (s′) s = s′; s′′

s otherwise
firstL(s) = the label of firstS (s)

last(s) =

{
last(s′′) s = s′; s′′

` otherwise, ` is the label of s

labels(s) =


labels(s′) ∪ labels(s′′) s = s′; s′′

{`} ∪ labels(s′) s = `: while (x) { s′ }
{`} ∪ labels(s′) ∪ labels(s′′) s = `: if (x) s′ else s′′

{`} otherwise, ` is the label of s

Figure 4. Definitions of firstS , firstL, last, and labels

We use LoadLabel and StoreLabel to denote the set of la-
bels that correspond to load and store statements, respectively.
LoadLabel ⊆ Label and StoreLabel ⊆ Label.

Our static analysis uses the DSA pointer analysis [20] in combi-
nation with the basic pointer analysis pass in LLVM [2] to disam-
biguate aliases at load and store statements. Our underlying pointer
analysis [2, 20] provides two functions no_alias and must_alias:

no_alias : (StoreLabel× LoadLabel)→ Bool
must_alias : (StoreLabel× LoadLabel)→ Bool

We assume that the underlying pointer analysis is sound so that
1) no_alias(`store, `load) = true only if the load statement at the
label `load will never retrieve a value stored by the store statement
at label `store; 2) must_alias(`store, `load) = true only if the load
statement at the label `load will always retrieve the last value stored
by the store statement at label `store (see Section 4.2 for a formal
definition of the soundness requirements that the alias analysis must
satisfy).

3.2 Intraprocedural Analysis
Because it works with a lowered representation, our static analysis
starts with a variable v at a critical program point. It then propagates
v backward against the control flow to the program entry point. In
this way the analysis computes a symbolic condition that soundly
captures how the program, starting with input field values, may
compute the value of v at the critical program point. The generated
filters use the analysis results to check whether the input may
trigger an integer overflow error in any of these computations.

C := C ∧ safe(e) | safe(e)
e := e′ op e′′ | atom

atom := x | c | f〈id〉 | `〈id〉
id ∈ Index = {1, 2, . . .} x ∈ Var c ∈ Int

` ∈ LoadLabel f ∈ InputField

Figure 5. The condition syntax

Condition Syntax: Figure 5 presents the definition of symbolic
conditions that our analysis manipulates and propagates. A con-
dition C consists of a set of conjuncts of the form safe(e). Each
conjuct safe(e) requires that the evaluation of the symbolic expres-
sion e (including all subcomputations in the evaluation, see Sec-
tion 4.5) should not trigger an overflow.

Symbolic conditions C may contain four kinds of atoms: c
represents a constant, x represents the variable x, f〈id〉 represents
a value from the input field f , and `〈id〉 represents a value returned
by the load statement with the label `.
Abstraction for Input Field Instantiations: An atom f〈id〉 in a
symbolic condition C represents the value of an arbitrary instantia-
tion of the input field f . The analysis uses the natural number id to
distinguish values of potentially different instantiations of f . So all
occurrences of a given atom f〈id〉 in a symbolic condition C rep-
resent the same value. If id1 6= id2, then f〈id1〉 and f〈id2〉 may

F (`: x = c , ` , C) = C[c/x]
F (`: x = y , ` , C) = C[y/x]
F (`: x = y op z , ` , C) = C[y op z/x]
F (s′; s′′ , `′ ∈ labels(s′) , C) = F (s′, `′, C)
F (s′; s′′ , `′′ ∈ labels(s′′), C) = F (s′, last(s′), F (s′′, `′′, C))
F (`: if (v) s′ else s′′, ` , C) = F (s′, last(s′), C) ∧ F (s′′, last(s′′), C)
F (`: if (v) s′ else s′′, `′ ∈ labels(s′) , C) = F (s′, `′, C)
F (`: if (v) s′ else s′′, `′′ ∈ labels(s′′), C) = F (s′′, `′′, C)
F (`: while (v) { s′ } , ` , C) = Cfix ∧ C where Cfix = norm(F (s′, last(s′), Cfix ∧ C))
F (`: while (v) { s′ } , `′ ∈ labels(s′) , C) = F (s, `, F (s′, `′, C))
F (`: p = malloc , ` , C) = C
F (`: x = read(f) , ` , C) = C[f〈id〉/x] where id is fresh
F (`: x = *p , ` , C) = C[`〈id〉/x] where id is fresh
F (`: *p = x , ` , C) = C(`1〈id1〉, `, x)(`2〈id2〉, `, x) · · · (`n〈idn〉, `, x) for all `1〈id1〉, · · · , `n〈idn〉 in C

where C(`i〈id i〉, `, x) =

 C if no_alias(`, `i)
C[x/`i〈id i〉] if ¬ no_alias(`, `i) ∧must_alias(`, `i)
C[x/`i〈id i〉] ∧ C if ¬ no_alias(`, `i) ∧ ¬must_alias(`, `i)

Figure 6. Static analysis rules. The notation C[e′/e] denotes the symbolic condition obtained by replacing every occurrence of e in C with
e′. norm(C) is the normalization function that transforms the symbolic condition C to an equivalent normalized condition.

represent different instantiations of f (and may therefore represent
different values).
Abstraction for Values Accessed via Pointers: An atom `〈id〉
in a symbolic condition C represents an arbitrary value returned
by the load statement at the label `. The analysis uses the natural
number id to distinguish potentially different values loaded at
different executions of the load statement. Our analysis materializes
atoms of the form `〈id〉 in the propagated symbolic condition when
it analyzes the load statement at the label `. The analysis will
eventually replace these atoms with appropriate expressions based
on the aliasing information when it analyzes store statements that
may store the corresponding value from the previously analyzed
load statement at `. In our abstraction, `〈id〉 represents an arbitrary
value that may be stored via any alias of the pointer dereferenced
at ` during the execution from the starting point of the program to
the current program point of the propagated symbolic condition C
along any possible execution path (see Section 4.5).
Analysis Framework: Given a sequence of statements s, a label
` within s (` ∈ labels(s)), and a symbolic condition C at the
program point after the corresponding statement at the label `, our
demand-driven backwards analysis computes a symbolic condition
F (s, `, C). The analysis ensures that if F (s, `, C) holds before
executing s, then C will hold whenever the execution reaches the
program point after the corresponding statement at the label ` (see
Section 4.6 for the formal definition).

Given a program s0 as a sequence of statements and a variable
v at a critical site associated with the label `, our analysis generates
the condition F (s0, `, safe(v)) to create an input filter that checks
whether the input may trigger an integer overflow error in the
computations that the program performs to obtain the value of v
at the critical site.
Analysis of Assignment, Conditional, and Sequence State-
ments: Figure 6 presents the analysis rules for basic program
statements. The analysis of assignment statements replaces the as-
signed variable x with the assigned value (c, y, y op z, or f〈id〉,
depending on the assignment statement). Here the notation C[e′/e]
denotes the new symbolic condition obtained by replacing every
occurrence of e in C with e′. The analysis rule for the input read
statement materializes a new id to represent the read value f〈id〉,
because the variable x may get the value of a fresh instantiation of
the input field f after the statement. This mechanism enables the
analysis to correctly distinguish potentially different instantiations

of the same input field (because values from potentially different
instantiations have different ids).

If the label ` identifies the end of a conditional statement, the
analysis of the statement takes the union of the symbolic condi-
tions from the analysis of the true and false branches of the condi-
tional statement. The resulting symbolic condition correctly takes
the execution of both branches into account. If the label ` identifies
a program point within one of the branches of a conditional state-
ment, the analysis will propagate the condition from that branch
only. The analysis of sequences of statements propagates the sym-
bolic condition backwards through the statements in sequence.
Analysis of Load and Store Statements: The analysis of a load
statement x = *p replaces the assigned variable x with a material-
ized abstract value `〈id〉 that represents the loaded value. For input
read statements, the analysis uses a newly materialized id to distin-
guish values read on different executions of the load statement.

The analysis of a store statement *p = x uses the alias analysis
to appropriately match the stored value x against all loads that may
return that value. Specifically, the analysis locates all `〈id〉 atoms
in C that either may or must load a value v that the store state-
ment stores into the location p. If the alias analysis determines that
the `〈id〉 expression must load x (i.e., the corresponding load state-
ment will always access the last value that the store statement stored
into location p), then the analysis of the store statement replaces all
occurrences of `〈id〉 with x. If the alias analysis determines that
the `〈id〉 expression may load x (i.e., on some executions the cor-
responding load statement may load x, on others it may not), then
the analysis produces two symbolic conditions: one with `〈id〉 re-
placed by x (for executions in which the load statement loads x)
and one that leaves `〈id〉 in place (for executions in which the load
statement loads a value other than x).

We note that, if the pointer analysis is imprecise, the symbolic
condition may become intractably large. SIFT uses the DSA algo-
rithm [20], a context-sensitive, unification-based pointer analysis.
We found that, in practice, this analysis is precise enough to en-
able SIFT to efficiently analyze our benchmark applications (see
Figure 13 in Section 5.2).
Analysis of Loop Statements: The analysis uses a fixed-point al-
gorithm to synthesize the loop invariant Cfix required to analyze
while loops. Specifically, the analysis of a statement while (x)
{ s′ } computes a sequence of symbolic conditions Ci, where
C0 = ∅ andCi = norm(F (s′, last(s′), C∧Ci−1)). Conceptually,

Input : original expression eorig

Output: normalized expression enorm

1 enorm ←− eorig

2 counterfield ←− {_ 7→ 0}
3 counterlabel ←− {_ 7→ 0}
4 for a in atoms(eorig) do
5 if a is in form f〈id〉 then
6 n′ ←− counterfield(f) + 1
7 counterfield ←− counterfield[f 7→ n′]
8 enorm ←− enorm[∗f〈n′〉/f〈id〉]
9 else if a is in form `〈id〉 then

10 n′ ←− counterlabel(`) + 1
11 counterlabel ←− counterlabel[` 7→ n′]
12 enorm ←− enorm[∗`〈n′〉/`〈id〉]

13 for a in atoms(enorm) do
14 if a is in form ∗f〈id〉 then
15 enorm ←− enorm[f〈id〉/ ∗ f〈id〉]
16 else if a is in form ∗`〈id〉 then
17 enorm ←− enorm[`〈id〉/ ∗ `〈id〉]

Figure 7. Normalization function norm(e). atoms(e) is a list
that iterates over the distinct atoms in the expression e from
left to right in order. The pseudo-code introduces temporary
atoms of the forms “*f〈id〉” and “*`〈id〉” to avoid conflicts
with existing original atoms in enorm.

each successive symbolic condition Ci captures the effect of exe-
cuting an additional loop iteration. The analysis terminates when it
reaches a fixed point (i.e., when it has performed n iterations such
that Cn = Cn−1). Here Cn is the discovered loop invariant. This
fixed point correctly summarizes the effect of the loop (regardless
of the number of iterations that it may perform).

The loop analysis normalizes the analysis result
F (s′, last(s′), C ∧ Ci−1) after each iteration. For a sym-
bolic condition C = safe(e1) ∧ · · · ∧ safe(en), the normalization
of C is norm(C) = remove_dup(safe(norm(e1)) ∧ · · · ∧
safe(norm(en))), where norm(ei) is the normalization of each
individual expression in C (using the algorithm presented in
Figure 7) and remove_dup() removes duplicate conjuncts from
the condition.

Normalization facilitates loop invariant discovery for loops that
read input fields or load values via pointers. Each analysis of the
loop body during the fixed point computation produces new mate-
rialized values f〈id〉 and `〈id〉 with fresh id ’s. The materialized
f〈id〉 represent values of input field instantiations that the current
loop iteration reads; the materialized `〈id〉 represent values that the
current loop iteration loads via pointers. The normalization algo-
rithm appropriately renumbers these ids in the new symbolic con-
dition so that the first appearance of each id is in lexicographic
order. This normalization enables the analysis to recognize loop in-
variants that show up as equivalent successive analysis results that
differ only in the materialized id ’s that they use to represent input
field instantiations and values accessed via pointers.

The normalization algorithm is sound because 1) all occur-
rences of f〈id1〉, ..., f〈idk〉 are interchangeable, and 2) the nor-
malization only renumbers the id1, ..., idk. The normalized con-
dition is therefore equivalent to the original condition (see Sec-
tion 4.6).

The normalization algorithm will reach a fixed point and termi-
nate if it computes the symbolic condition of a value that depends
on at most a statically fixed number of values from the loop itera-
tions. For example, our algorithm is able to compute the symbolic

1 F (`: v = call proc v1 · · · vk, `, C)

2 where proc ≡ proc(a1, a2, · · · , ak) { s; return vret } and
3 `1〈id1〉, · · · , `n〈idn〉 are all atoms of the form `〈id〉 in C
4 begin
5 C′ ←− ∅
6 Cv ←− F (s, last(s), safe(vret))

7 for ev in exprs(Cv [v1/a1] · · · [vk/ak]) do
8 C1 ←− F (s, last(s), safe(`1〈id1〉))
9 for e1 in exprs(C1[v1/a1] · · · [vk/ak]) do

10 · · ·
11 Cn ←− F (s, last(s), safe(`n〈idn〉))
12 for en in exprs(Cn[v1/a1] · · · [vk/ak]) do
13 e′v ←− make_fresh(ev , C)

14 e′1 ←− make_fresh(e1, C)
15 · · ·
16 e′n ←− make_fresh(en, C)
17 C′ ←

C′ ∧ C[e′v/v][e′1/`1〈id1〉] · · · [e′n/`n〈idn〉]

18 return C′

Figure 8. Procedure call analysis algorithm. exprs(C) re-
turns the set of expressions that appear in the conjuncts of
C. For example, exprs(safe(e1) ∧ safe(e2)) = {e1, e2}.
make_fresh(e, C) renumbers ids in e so that atoms of the forms
`〈id〉 and f〈id〉 will not conflict with existing atoms in C.

condition of the size parameter value of the memory allocation sites
in Figure 1 — the value of this size parameter depends only on the
values of jpeg_width and jpeg_height, the current values of
h_sample and v_sample, and the maximum values of h_sample
and v_sample, each of which comes from one previous iteration
of the loop at line 26–31.

Note that the algorithm will not reach a fixed point if it attempts
to compute a symbolic condition that contains an unbounded num-
ber of values from different loop iterations. For example, the algo-
rithm will not reach a fixed point if it attempts to compute a sym-
bolic condition for the sum of a set of numbers computed within
the loop (the sum depends on values from all loop iterations). To
ensure termination, our current implemented algorithm terminates
the analysis and fails to generate a symbolic condition C if it fails
to reach a fixed point after ten iterations.

In practice, we expect that many programs may contain expres-
sions whose values depend on an unbounded number of values
from different loop iterations. Our analysis can successfully ana-
lyze such programs because it is demand driven — it only attempts
to obtain precise symbolic representations of expressions that may
contribute to the values of expressions in the analyzed symbolic
condition C (which, in our current system, are ultimately derived
from expressions that appear at memory allocation and block copy
sites). Our experimental results indicate that our approach is, in
practice, effective for this set of expressions, specifically because
these expressions tend to depend on at most a fixed number of val-
ues from loop iterations.

3.3 Interprocedural Analysis
Analyzing Procedure Calls: Figure 8 presents the interprocedural
analysis for procedure call sites. Given a symbolic condition C and
a function call statement `: v = call proc v1 · · · vk that invokes a
procedure proc(a1, a2, · · · , ak) { s; return vret }, the analysis
computes F (`: v = call proc v1 · · · vk, `, C).

Conceptually, the analysis performs two tasks. First, it replaces
any occurrences of the procedure return value v in C (the sym-
bolic condition after the procedure call) with symbolic expressions

that represent the values that the procedure may return. Second, it
transforms C to reflect the effect of any store instructions that the
procedure may execute. Specifically, the analysis finds expressions
`〈id〉 inC that represent values that 1) the procedure may store into
a location p 2) that the computation following the procedure may
access via a load instruction that may access (a potentially aliased
version of) p. It then replaces occurrences of `〈id〉 in C with sym-
bolic expressions that represent the corresponding values computed
(and stored into p) within the procedure.

The analysis examines the invoked procedural body s to obtain
the symbolic expressions that corresponds to the return value (see
line 6) or the value of `〈id〉 (see lines 8 and 11). The analysis avoids
redundant analysis of the invoked procedure by caching the analy-
sis results F (s, last(s), safe(vret)) and F (s, last(s), safe(`〈id〉))
for reuse.

Note that symbolic expressions derived from an analysis of the
invoked procedure may contain occurrences of the formal param-
eters a1, ..., ak. The interprocedural analysis translates these sym-
bolic expressions into the name space of the caller by replacing oc-
currences of the formal parameters a1, ..., ak with the correspond-
ing actual parameters v1, ..., vk from the call site (see lines 7, 9,
and 12 in Figure 8).

Also note that the analysis renumbers the ids in the symbolic
expressions derived from an analysis of the invoked procedure
before the replacements (see lines 13–16). This ensures that the
atoms of the forms f〈id〉 and `〈id〉 in the expressions are fresh
and will not conflict with existing atoms in C after replacements.
Propagation to Program Entry: To derive the final symbolic
condition at the start of the program, the analysis propagates the
current symbolic condition up the call tree through procedure calls
until it reaches the start of the program. When the propagation
reaches the entry of the current procedure proc, the algorithm uses
the procedure call graph to find all call sites that may invoke proc.

It then propagates the current symbolic condition C to the
callers of proc, appropriately translating C into the naming context
of the caller by substituting any formal parameters of proc that
appear in C with the corresponding actual parameters from the
call site. The analysis continues this propagation until it has traced
out all paths in the call graph from the initial critical site where
the analysis started to the program entry point. The final symbolic
condition C is the conjunction of the conditions derived along all
of these paths.

3.4 Extension to C Programs
We next describe how to extend our analysis to real world C
programs to generate input filters.
Identify Critical Sites: SIFT transforms the application source
code into the LLVM intermediate representation (IR) [3], scans the
IR to identify critical values (i.e., size parameters of memory al-
location and block copy call sites) inside the developer specified
module, and then performs the static analysis for each identified
critical value. By default, SIFT recognizes calls to standard C mem-
ory allocation routines (such as malloc, calloc, and realloc)
and block copy routines (such as memcpy) as critical sites. SIFT
can also be configured to recognize additional memory allocation
and block copy routines (for example, dMalloc in Dillo).
Bit Width and Signedness: SIFT extends the analysis described
above to track the bit width of each expression atom. It also tracks
the sign of each expression atom and arithmetic operation and cor-
rectly handles extension and truncation operations (i.e., signed ex-
tension, unsigned extension, and truncation) that change the width
of a bit vector. SIFT therefore faithfully implements the represen-
tation of integer values in the C program.

Function Pointers and Library Calls: SIFT uses its underlying
pointer analysis [20] to disambiguate function pointers. It can ana-
lyze programs that invoke functions via function pointers.

The static analysis may encounter procedure calls (for example,
calls to standard C library functions) for which the source code of
the callee is not available. A standard way to handle this situation
is to work with an annotated procedure declaration that gives the
static analysis information that it can use to analyze calls to the
procedure. SIFT currently contains predefined annotations for a
small set of important standard library functions that influence our
integer overflow analysis (e.g., memset() and strlen()).

If both the source code and the annotation for an invoked pro-
cedure are not available, by default SIFT currently synthesizes in-
formation that indicates that symbolic expressions are not available
for the return value or for any values accessible (and therefore po-
tentially stored) via procedure parameters (code following the pro-
cedure call may load such values). This information enables the
analysis to determine if the return value or values accessible via
the procedure parameters may affect the analyzed symbolic con-
dition C. If so, SIFT does not generate a filter. Because SIFT is
demand-driven, this mechanism enables SIFT to successfully an-
alyze programs with library calls (all of our benchmark programs
have such calls) as long as the calls do not affect the analyzed sym-
bolic conditions.
Command Line Arguments: At four of the 56 critical sites in our
analyzed benchmark modules, the absence of overflow depends, in
part, on the lengths of the command line arguments. The gener-
ated final symbolic condition that SIFT uses to generate the input
filter therefore contains variables that represent these lengths. Our
currently implemented system sets these lengths to a specific con-
stant value greater than the maximum length of the command line
arguments of all benchmark applications. In production use, we ex-
pect SIFT deployments to either 1) check that the command line
argument lengths are less than this constant value before launching
the application or 2) dynamically extract the command line argu-
ment lengths when the application is launched, then provide these
lengths to the filter.
Annotations for Input Read Statements: SIFT provides a declar-
ative specification language that developers use to indicate which
input statements read which input fields. In our current implemen-
tation, these statements appear in the source code in comments di-
rectly below the C statement that reads the input field. See lines
10, 12, 15-16, and 18-19 in Figure 1 for examples that illustrate the
use of the specification language in the Swfdec example. The SIFT
annotation generator scans the comments, finds the input specifica-
tion statements, then inserts new nodes into the LLVM IR that con-
tain the specified information. Formally, this information appears
as procedure calls of the following form:

v = SIFT_Input("field_name", w);

where v is a program variable that holds the value of the input field
with the field name field_name. The width (in bits) of the input
field is w. The SIFT static analyzer recognizes such procedure calls
as specifying the correspondence between input fields and program
variables and applies the appropriate analysis rule for input read
statements (see Figure 6).

3.5 Input Filter Generation
The SIFT filter generator prunes any conjuncts that contain resid-
ual occurrences of abstract materialized values `〈id〉 in the final
symbolic condition C. It also replaces every residual occurrence
of program variables v with 0. These residual occurrences corre-
spond to initial values in the program state σ and h̄ in the abstract
semantics (see Section 4.3). After pruning, the final condition CInp

contains only input field variables of the form f〈id〉 and constant
atoms.

In effect, the pruning algorithm eliminates any checks involving
uninitialized data from the filter — SIFT filters are not designed to
nullify overflow errors that may occur when the program accesses
uninitialized data (which, in C, may contain arbitrary values). The
SIFT soundness theorem (Theorem 4) reflects this restriction. For
languages such as Java which initialize data to specific values, the
SIFT filter generator would not prune conjuncts involving refer-
ences to uninitialized data. It would instead protect against over-
flows involving uninitialized data by replacing residual occurrences
of abstract materialized values and program variables with the cor-
responding initial values.

The generated filter operates as follows. It first uses an existing
parser for the input format to parse the input and extract the input
fields used in the input condition CInp. Open source parsers are
available for a wide range of input file formats, including all of the
formats in our experimental evaluation [1]. These parsers provide a
standard API that enables clients to access the parsed input fields.

The generated filter evaluates each conjunct expression in CInp
by replacing each symbolic input variable in the expression with the
corresponding concrete value from the parsed input. If an integer
overflow may occur in the evaluation of any expression in CInp,
the filter discards the input and optionally raises an alarm. For
input field arrays such as h_sample and v_sample in the Swfdec
example (see Section 2), the input filter enumerates all possible
combinations of concrete values (see Figure 11 for the formal
definition of condition evaluation). The filter discards the input if
any combination can trigger the integer overflow error.

Given multiple symbolic conditions generated from multiple
critical program points, SIFT can create a single efficient filter
that first parses the input, then checks the parsed input against all
final symbolic conditions in sequence. This approach amortizes
the overhead of reading the input (in practice, reading the input
consumes essentially all of the time required to execute the filter,
see Figure 14) over all of the final symbolic condition checks.

4. Soundness of the Static Analysis
We next formalize our static analysis algorithm on the core lan-
guage in Figure 3 and discuss the soundness of the analysis. We
focus on the intraprocedural analysis and omit a discussion of the
interprocedural analysis as it uses standard techniques based on
summary tables.

4.1 Dynamic Semantics of the Core Language
Program State: We define the program state (σ, ρ, ς, %, Inp) as
follows:

σ: Var → (Loc+Int+{undef}) ς: Var → Bool
ρ: Loc → (Loc+Int+{undef}) %: Loc → Bool
Inp: InputField → P(Int)
σ and ρ map variables and memory locations to their corre-

sponding values. We use undef to represent uninitialized values.
We define that if any operand of an arithmetic operation is undef,
the result of the operation is also undef. Inp(f) maps the input
field f to the corresponding set of the values of all instantiations of
the field f in the input file. Inp therefore represents the input file,
which remains unchanged during the execution. ς maps each vari-
able to a boolean flag, which tracks whether the computation that
generates the value of the variable (including all subcomputations)
generates an overflow. % maps each memory location to a boolean
overflow flag similar to ς .

In the initial state (σ0, ρ0, ς0, %0, Inp), σ0 and ρ0 map all vari-
ables and locations to undef. ς0 and %0 map all variables and lo-
cations to false. The values of uninitialized variables and memory

locations are undefined as per the C language specification stan-
dard.
Small Step Rules: Figure 9 presents the small step dynamic se-
mantics of the language. Note that in Figure 9, overflow(a, b, op)
is a function that returns true if and only if the computation a op b
causes overflow. A main point of departure from standard lan-
guages is that we also update ς and % to track overflow errors during
each execution step. For example, the binop rule in Figure 9 appro-
priately updates the overflow flag of x in ς by checking whether the
computation that generates the value of x (including the subcom-
putations that generates the value of y and z) results in an overflow
condition.

Also note that the rule for the input read statement nondetermin-
istically updates the value of x with an arbitrary element chosen
from the set Inp(f), which contains the values of all instantiations
of the input field f in the input file. This semantics conservatively
models the behavior of input read statements in C programs.

4.2 Soundness of the Pointer Analysis
Our analysis uses an underlying pointer analysis [20] to analyze
programs that use pointers. The underlying pointer analysis pro-
vides two functions no_alias and must_alias to our main analysis.
We formally state our assumptions about the soundness of the un-
derlying pointer alias analysis as follows:

Definition 1 (Soundness of no_alias and must_alias). Given any
execution sequence

〈s0, σ0, ρ0, ς0, %0〉 −→ 〈s1, σ1, ρ1, ς1, %1〉 −→ . . .

and two statements sstore (`store: *p = x) and sload (`load: x′ = *p′),
we have:

no_alias(`store, `load) =⇒ ∀i < j :
(firstL(si) = `store ∧ firstL(sj) = `load)→ σi(p) 6= σj(p

′)

must_alias(`store, `load) =⇒ ∀i < j :
(firstL(si) = `store ∧ firstL(sj) = `load ∧ (

∧
k∈(i,j) firstL(sk) 6= `store))

→ (σi(p) = σj(p
′))

4.3 Abstract Semantics
We next define an abstract semantics that allows us to prove the
soundness of our static analysis algorithm. There are two key dif-
ferences between the abstract and original semantics. First, for if
and while statements, the abstract semantics conservatively ignores
the condition and nondeterministically executes one of the two con-
trol flow branches. Second, the abstract semantics conservatively
groups values that load and store statements access via pointers
into equivalence classes based on the aliasing information from the
underlying pointer or alias analysis. It then conservatively mod-
els reads via pointers as nondeterministically returning an arbitrary
stored value from the corresponding equivalence class. We adopt
this abstract semantics because it more closely reflects how SIFT
incorporates the underlying pointer or alias analysis and analyzes
if, while, store, and load statements.
Abstract Program State: We define the abstract program state
(σ, ς, h̄, Inp) as follows:

σ: Var → Int ς: Var → Bool
h̄: LoadLabel → P(Int × Bool)

Intuitively, σ and ς are the counterparts of σ and ς in the original
semantics, but σ and ς only track values and flags for variables that
have integer values. h̄ maps the label of each load statement to the
set of values that the load statement may obtain from the memory.

In the initial state (σ0, ς0, h̄0, Inp), σ0 and ς0 map all variables
to 0 and false respectively. h̄0 maps all labels of load statements to
the empty set.

read
c ∈ Inp(f) σ′ = σ[x→ c] ς′ = ς[x→ false]

〈` : x = read(f), σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ′, ρ, ς′, %, Inp〉
const

σ′ = σ[x→ c] ς′ = ς[x→ false]

〈` : x = c, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ′, ρ, ς′, %, Inp〉

assign
σ′ = σ[x→ σ(y)] ς′ = ς[x→ ς(y)]

〈` : x = y, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ′, ρ, ς′, %, Inp〉
malloc

ξ ∈ Loc ξ is fresh σ′ = σ[p→ ξ] ς′ = ς[p→ false]

〈` : p = malloc, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ′, ρ, ς′, %, Inp〉

seq-1
〈nil: skip; s, σ, ρ, ς, %, Inp〉 −→ 〈s, σ, ρ, ς, %, Inp〉

load
σ(p) = ξ ξ ∈ Loc σ′ = σ[x→ ρ(ξ)] ς′ = ς[x→ %(ξ)]

〈` : x = ∗p, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ′, ρ, ς′, %, Inp〉

seq-2
〈s, σ, ρ, ς, %, Inp〉 −→ 〈s′′, σ′, ρ′, ς′, %′, Inp〉

〈s; s′, σ, ρ, ς, %, Inp〉 −→ 〈s′′; s′, σ′, ρ′, ς′, %′, Inp〉
store

σ(p) = ξ ξ ∈ Loc ρ′ = ρ[ξ → σ(x)] %′ = %[ξ → ς(x)]

〈` : ∗p = x, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ, ρ′, ς, %′, Inp〉

op
σ(y) /∈ Loc σ(z) /∈ Loc b = ς(y) ∨ ς(z) ∨ overflow(σ(y), σ(z), op)

〈` : x = y op z, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ[x→ σ(y) op σ(z)], ρ, ς[x→ b], %, Inp〉

if-t
σ(x) 6= 0

〈` : if (x) s else s′, σ, ρ, ς, %, Inp〉 −→ 〈s, σ, ρ, ς, %, Inp〉
if-f

σ(x) = 0

〈` : if (x) s else s′, σ, ρ, ς, %, Inp〉 −→ 〈s′, σ, ρ, ς, %, Inp〉

while-f
σ(x) = 0

〈` : while (x) {s}, σ, ρ, ς, %, Inp〉 −→ 〈nil: skip, σ, ρ, ς, %, Inp〉
while-t

σ(x) 6= 0 s′ = s; ` : while (x) {s}
〈` : while (x) {s}, σ, ρ, ς, %, Inp〉 −→ 〈s′, σ, ρ, ς, %, Inp〉

Figure 9. The small step operational semantics of the language. “nil" is a special label reserved by the semantics.

if-t
〈` : if (x) s else s′, σ, ς, h̄, Inp〉 −→a 〈s, σ, ς, h̄, Inp〉

op
b = ς(y) ∨ ς(z) ∨ overflow(σ(y), σ(z), op) σ′ = σ[x→ σ(y) op σ(z)]

〈` : x = y op z, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ′, ς[x→ b], h̄, Inp〉

if-f
〈` : if (x) s else s′, σ, ς, h̄, Inp〉 −→a 〈s′, σ, ς, h̄, Inp〉

malloc
〈` : p = malloc, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ, ς, h̄, Inp〉

load
〈c, b〉 ∈ h̄(`) σ′ = σ[x→ c] ς′ = ς[x→ b]

〈` : x = ∗p, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ′, ς′, h̄, Inp〉
store

h̄
′ satisfies (*)

〈` : ∗p = x, σ, ς, h̄, Inp〉 −→a 〈nil: skip, σ, ς, h̄′
, Inp〉

∀`load ∈ LoadLabel : h̄
′
(`load) =

 h̄(`load) no_alias(`, `load)
{〈σ(x), ς(x)〉} ¬ no_alias(`, `load) ∧must_alias(`, `load)

{〈σ(x), ς(x)〉} ∪ h̄(`load) ¬ no_alias(`, `load) ∧ ¬must_alias(`, `load)

(*)

Figure 10. The small step abstract semantics. “nil" is a special label reserved by the semantics.

Small Step Rules: Figure 10 presents the small step rules for
the abstract semantics. We omit rules for simple assignment state-
ments, while statements, and sequence statements for brevity.

The rules for if, while, malloc, load, and store statements reflect
the primary differences between the abstract and original seman-
tics. The rules for if and while statements (if-t, if-f, and the omit-
ted while statement rules) in the abstract semantics conservatively
ignore the condition and nondeterministically execute one of the
two control flow branches. The rule for store statements maintains
the state h̄ according to the aliasing information. The rule for load
statements nondeterministically returns an element from the corre-
sponding set in h̄.

4.4 Relationship of the Original and the Abstract Semantics
We formally state the relationship between the original and abstract
semantics as follows.

Theorem 2. For any execution trace in the original semantics:

〈s0, σ0, ρ0, ς0, %0〉 −→ 〈s1, σ1, ρ1, ς1, %1〉 −→ . . .

there is an execution trace in the abstract semantics:

〈s0, σ0, ς0, h̄0〉 −→a 〈s1, σ1, ς1, h̄1〉 −→a . . .

such that the following conditions hold:

∀i∀x ∈ Var : σi(x) /∈ Int ∨ (σi(x) = σi(x) ∧ ςi(x) = ςi(x))

∀i : firstS (si) = “` : x = ∗p”→
(ρi(σi(p)) /∈ Int ∨ 〈ρi(σi(p)), %i(σi(p))〉 ∈ h̄i(`))

The intuition behind the first condition is that σi and σi as well
as ςi and ςi always agree on the variables holding integer values.
The intuition behind the second condition is that h̄i(`) corresponds
to the possible values that the corresponding load statement of
the label ` may obtain from the memory. When a load statement
executes in the original semantics, the obtained integer value is in
the corresponding set in h̄i in the abstract semantics.

This theorem connects an arbitrary program execution in the
original semantics to a corresponding execution in the abstract
semantics. An important consequence of this theorem is that the
soundness of our analysis in the abstract semantics implies the
soundness of the analysis in the original semantics. See our techni-
cal report [23] for the proof sketch of this theorem.

4.5 Evaluation of the Symbolic Condition
Our static analysis maintains and propagates a symbolic condition
C. Figure 11 defines the evaluation rules of the symbolic con-
dition C over an abstract program state (σ, ς, h̄, Inp) The nota-
tion (σ, ς, h̄, Inp) |= C denotes that the abstract program state
(σ, ς, h̄, Inp) satisfies the condition C. The evaluation rule for
safe(e1 op e2) checks that no overflow error occurs in any subcom-
putation that contributes to the final value of (e1 op e2).

In our abstraction, each atom of the form f〈id〉 corresponds to
the value of an arbitrary instantiation of the input field f – i.e.,
f〈id〉 corresponds to an arbitrary element of the set Inp(f). Each
atom of the form `〈id〉 corresponds to an arbitrary value that may
be stored via any alias of the corresponding pointer – i.e., `〈id〉

∀c ∈ Inp(f) : (σ, ς, h̄, Inp) |= C[c/f〈id〉]

(σ, ς, h̄, Inp) |= C

∀〈c, b〉 ∈ h̄(`) : (σ[tmp→ c], ς[tmp→ b], h̄, Inp) |= C[tmp/l〈id〉] tmp is fresh in C

(σ, ς, h̄, Inp) |= C

(σ, ς, h̄, Inp) |= C (σ, ς, h̄, Inp) |= safe(e)

(σ, ς, h̄, Inp) |= C ∧ safe(e)

(σ, ς, h̄, Inp) |= safe(e1) ∧ safe(e2) overflow([[e1]](σ), [[e2]](σ), op) = false

(σ, ς, h̄, Inp) |= safe(e1 op e2)

ς(x) = false

(σ, ς, h̄, Inp) |= safe(x)
[[c]](σ) = c [[x]](σ) = σ(x) [[e1 op e2]](σ) = [[e1]](σ) op [[e2]](σ)

Figure 11. Symbolic condition evaluation rules.

corresponds to an arbitrary element of the set h̄(`). The evaluation
rules enumerate all possible bindings of f〈id〉 and `〈id〉 to check
that no binding causes an overflow.

The definition of the evaluation rules also ensures that all oc-
currences of f〈id〉 which reference the same input field f and all
occurrences of `〈id〉 materialized from the same load statement `
are interchangable. This interchangability ensures that the normal-
ization algorithm in Section 3.2 is sound — i.e., that renumbering
ids in a symbolic condition C does not change the meaning of the
condition. Therefore, given symbolic condition C, the normaliza-
tion algorithm produces an equivalent condition norm(C).

4.6 Soundness of the Analysis
Soundness of the Analysis over the Abstract Semantics: We
formally state the soundness of our analysis over the abstract se-
mantics as follows.

Theorem 3. Given a series of statements si, a program point
` ∈ labels(si) and a start condition C, our analysis generates a
condition F (si, `, C), such that if (σi, ςi, h̄i, Inp) |= F (si, `, C),
then

((〈si, σi, ςi, h̄i〉 −→∗a
〈sj−1, σj−1, ςj−1, h̄j−1〉 −→a

〈sj , σj , ςj , h̄j〉) ∧ (firstL(sj−1) = `))
=⇒ ((σj , ςj , h̄j , Inp) |= C)

This theorem guarantees that if the abstract program state before
executing si satisfies F (si, `, C), then the abstract program state at
the program point after the statement at label ` will always satisfy
C (here the notation “ −→∗a ” denotes the execution of the program
for an arbitrary number of steps in the abstract semantics).
Soundness of the Analysis over the Original Semantics: Be-
cause of the consistency of the abstract semantics and the original
semantics (see Section 4.3), we can derive the following soundness
property of our analysis over the original semantics based on the
soundness property over the abstract semantics:

Theorem 4. Given a program s0, a program point ` ∈ labels(s0),
and a program variable v, our analysis generates a condition
C = F (s0, `, safe(v)), such that if (σ0, ς0, h̄0, Inp) |= C, then

((〈s0, σ0, ρ0, ς0, %0〉 −→∗
〈sn−1, σn−1, ρn−1, ςn−1, %n−1〉 −→
〈sn, σn, ρn, ςn, %n〉) ∧ (firstL(sn−1) = `))
=⇒ (σn(v) /∈ Int ∨ ςn(v) = false)

This theorem guarantees that if the input satisfies the generated
condition C (note that (σ0, ς0, h̄0, Inp) is the predefined constant
initial state in Section 4.3), then for any execution in the original
semantics (here the notation “ −→∗ ” denotes the execution of the
program for an arbitrary number of steps in the original semantics),
at the program point after the statement of the label `, as long as
the variable v holds an integer value (not an undefined value due

Application Distinct Fields Relevant Fields
VLC 25 2
Dillo 47 3
Swfdec 219∗ 6
png2swf 47 4
jpeg2swf 300 2
GIMP 189 2

Figure 12. The number of distinct input fields and the number of
relevant input fields for analyzed input formats. (*) For Swfdec the
second column shows the number of distinct fields in embedded
JPEG images in collected SWF files.

to uninitialized access), the computation history for obtaining this
integer value contains no overflow error.

5. Experimental Results
We evaluate SIFT on modules from five open source applications:
VLC 0.8.6h (a network media player), Dillo 2.1 (a lightweight web
browser), Swfdec 0.5.5 (a flash video player), Swftools 0.9.1 (SWF
manipulation and generation utilities), and GIMP 2.8.0 (an image
manipulation application). Each application uses a publicly avail-
able input format specification and contains at least one known in-
teger overflow vulnerability (described in either the CVE database
or the Buzzfuzz paper [15]). All experiments were conducted on an
Intel Xeon X5363 3.00GHz machine running Ubuntu 12.04.

We focus on media and browser applications (client applica-
tions) in our experiments due to the ease of obtaining inputs re-
quired to evaluate our system against false positives. Other types of
applications (e.g., server applications) would require additional in-
frastructure (i.e., recording network traffic) to test. By design, SIFT
is applicable to a wide range of applications.

5.1 Methodology
Input Format and Module Selection: For each application, we
used SIFT to generate filters for the input format that triggers the
known integer overflow vulnerability. We therefore ran SIFT on the
module that processes inputs in that format. The generated filters
nullify not only the known vulnerabilities, but also any integer
overflow vulnerabilities at any of the 56 memory allocation or block
copy sites in the modules for which SIFT was able to generate
symbolic conditions (recall that there are 58 critical sites in these
modules in total).
Input Statement Annotation: After selecting each module, we
added annotations to identify the input statements that read relevant
input fields (i.e., input fields that may affect the values of critical
expressions at memory allocation or block copy sites). Figure 12
presents, for each module, the total number of distinct fields in our
collected inputs for each format, the number of annotated input
statements (in all of the modules the number of relevant fields
equals the number of annotated input statements — each relevant
field is read by a single input statement). We note that the number

Application Module # of IR Total Input Relevant Inside Loop Max Condition Size Analysis Time
VLC demux/wav.c 1.5k 5 3 0 2 <0.1s
Dillo png.c 39.1k 4 3 3 410 0.8s
Swfdec jpeg/*.c 8.4k 22 19 2 144 0.2s
png2swf all 11.0k 21 18 18 16 0.2s
jpeg2swf all 2.5k 4 4 4 2 <0.1s
GIMP file-gif-load.c 3.2k 2 2 2 2 <0.1s

Figure 13. Static analysis and filter generation results

of relevant fields is significantly smaller than the total number of
distinct fields (reflecting the fact that typically only a relatively
small number of fields in each input format may affect the sizes
of allocated or copied memory blocks).

The maximum amount of time required to annotate any module
was approximately half an hour (Swfdec). The total annotation time
required to annotate all benchmarks, including Swfdec, was less
than an hour. This annotation effort reflects the fact that, in each
input format, there are only a relatively small number of relevant
input fields.
Filter Generation and Test: We next used SIFT to generate a
single composite input filter for each analyzed module. We then
downloaded at least 6000 real-world inputs for each input format
and ran all of the downloaded inputs through the generated filters.
There were no false positives (the filters accepted all of the inputs).
Vulnerability and Filter Confirmation: For each known integer
overflow vulnerability, we collected a test input that triggered the
integer overflow. We confirmed that each generated composite fil-
ter, as expected, discarded the input because it correctly recognized
that the input would cause an integer overflow.

5.2 Analysis and Filter Evaluation
Analysis Evaluation: Figure 13 presents static analysis and filter
generation results. This figure contains a row for each analyzed
module. The first column (Application) presents the application
name, the second column (Module) identifies the analyzed mod-
ule within the application. The third column (# of IR) presents the
number of analyzed statements in the LLVM intermediate repre-
sentation. This number of statements includes not only statements
directly present in the module, but also statements from analyzed
code in other modules invoked by the original module.

The fourth column (Total) presents the total number of memory
allocation and block copy sites in the analyzed module. The fifth
column (Input Relevant) presents the number of memory allocation
and block copy sites in which the size of the allocated or copied
block depends on the values of input fields. For these modules, the
sizes at 49 of the 58 sites depend on the values of input fields.
The sizes at the remaining nine sites are unconditionally safe —
SIFT verifies that they depend only on constants embedded in the
program (and that there is no overflow when the sizes are computed
from these constants).

The sixth column (Inside Loop) presents the number of memory
allocation and block copy sites in which the size parameter depends
on variables that occurred inside loops. The sizes at 29 of the 58
sites depend on values computed inside loops. To generate input
filters for these sites, SIFT must therefore compute loop invariants
that capture the effect of the loop on the sizes that occur at these
sites.

The seventh column (Max Condition Size) presents, for each
application module, the maximum number of conjuncts in any
symbolic condition that occurs in the analysis of that module. The
conditions are reasonably compact (and more than compact enough
to enable an efficient analysis) — the maximum condition size over
all modules is less than 500.

Application Format # of Input Average Time
VLC WAV 10976 3ms (3ms)
Dillo PNG 18983 16ms (16ms)
Swfdec SWF 7240 6ms (5ms)
png2swf PNG 18983 16ms (16ms)
jpeg2swf JPEG 6049 4ms (4ms)
GIMP GIF 19647 9ms (9ms)

Figure 14. Generated filter results.

The final column (Analysis Time) presents the time required to
analyze the module and generate a single composite filter for all of
the successfully analyzed critical sites. The analysis times for all
modules are less than a second.

SIFT is unable to generate symbolic conditions for two of the 58
call sites (one in Swfdec and one in png2swf). The expressions at
these two sites contain subexpressions whose values depend on an
unbounded number of values computed in loops. To analyze such
expressions, our analysis currently requires an upper bound on the
number of loop iterations. Such an upper bound could be provided,
for example, by additional analysis or developer annotations.
Filter Evaluation: For each input format, we used a custom web
crawler to locate and download at least 6000 inputs in that format.
The web crawler starts from a Google search page for the file
extension of the specific input format, then follows links in each
search result page to download files in the correct format.

Figure 14 presents, for each generated filter, the number of
downloaded input files and the average time required to filter each
input. We present the average times in the form Xms (Yms), where
Xms is the average time required to filter an input and Yms is the
average time required to read in the input (but not apply the integer
overflow check). These data show that essentially all of the filter
time is spent reading in the input.

5.3 Filter Confirmation on Vulnerabilities
Each benchmark application contains a known integer overflow
vulnerability. To confirm that the generated filters operate correctly,
we obtained, for each vulnerability, a malicious input that triggers
the integer overflow error. We confirmed that the filters successfully
identified and discarded all of these malicious inputs. We also man-
ually examined the root cause of each vulnerability and confirmed
that the generated filters completely nullified the vulnerability —
if an input passes the filter, it will not trigger the overflow error
that enables the vulnerability. See our technical report [23] for the
detailed case study of each vulnerability.

5.4 Discussion
The experimental results highlight the combination of properties
that, together, enable SIFT to effectively nullify potential integer
overflow errors at memory allocation and block copy sites. SIFT is
efficient enough to deploy in production on real-world modules (the
combined program analysis and filter generation times are always
under a second), the analysis is precise enough to successfully
generate input filters for the majority of memory allocation and
block copy sites, the results provide encouraging evidence that the

generated filters are precise enough to have few or even no false
positives in practice, and the filters execute efficiently enough to
deploy with acceptable filtering overhead.

6. Related Work
Weakest Precondition Analysis: Madhavan et. al. present an ap-
proximate weakest precondition analysis to verify the absence of
null dereference errors in Java programs [24]. The goal is to ver-
ify that, for each pointer dereference, there are appropriate null
checks within the program that guard the dereference to ensure that
the program will never execute the dereference with a null pointer
value. The analysis tracks only pointer dereferences, pointer assign-
ments, and conditions involving null pointer checks.

SIFT faces different challenges and therefore uses different
techniques. Instead of using a finite domain to track dereferenced
pointers and pointer assignments, SIFT must track potentially un-
bounded arithmetic symbolic expressions involving input fields and
values accessed via pointers. To successfully analyze loops, SIFT’s
abstraction and expression normalization algorithms work together
to discover invariants for loops that may access a statically un-
bounded number of input field instantiaions (as long as the value
of the analyzed expression depends only on a statically bounded
number of input field instantiations).

Flanagan et. al. present a general intraprocedural weakest
precondition analysis for generating verification conditions for
ESC/JAVA programs [14]. SIFT differs in that it focuses on in-
teger overflow errors. Because of this focus, SIFT can synthesize
its own loop invariants (Flanagan et. al. rely on developer-provided
invariants). In addition, SIFT is interprocedural and uses the anal-
ysis results to generate sound filters that nullify integer overflow
errors.
Anomaly Detection: Anomaly detection techniques generate (un-
sound) input filters by empirically learning properties of success-
fully or unsuccessfully processed inputs [16, 19, 34]. Two key dif-
ferences are that SIFT statically analyzes the application, not its in-
puts, and takes all execution paths into account to generate a sound
filter.
Input Rectification: Input rectification [22, 30] empirically learns
input constraints from benign training inputs. It then monitors in-
puts for violations of the learned constraints. Instead of discarding
inputs that violate the learned constraints, input rectification modi-
fies the input so that it satisfies the constraints. The goal is to nul-
lify potential errors while still enabling the program to successfully
process as much input data as possible. Because it learns the con-
straints from examples, this technique is not sound — the generated
filter may miss some inputs that target the error. It would be possi-
ble to combine SIFT with input rectification to obtain a sound input
rectification technique.
Runtime Repair: Researchers have developed a range of tech-
niques for dynamically detecting and repairing errors in the pro-
gram’s execution [18, 27–29]. These techniques all purposefully
change the program’s semantics in an attempt to enable the pro-
gram to successfully process inputs that it would otherwise be un-
able to process without error. The goal of SIFT, in contrast, is to
nullify errors without changing the program’s semantics by dis-
carding inputs that might trigger the errors.
Static Analysis for Finding Integer Overflow and Sign Errors:
Several static analysis tools have been proposed to find integer
overflow and/or sign errors [7, 31, 35]. KINT [35], for example,
analyzes individual procedures, with the developer optionally pro-
viding procedure specifications that characterize the value ranges
of the parameters. KINT also unsoundly avoids the loop invariant
synthesis problem by replacing each loop with the loop body (in
effect, unrolling the loop once). Despite substantial effort, KINT
reports a large number of false positives [35].

SIFT addresses a different problem: it is designed to nullify, not
detect, overflow errors. In pursuit of this goal, it uses an interpro-
cedural analysis, synthesizes symbolic loop invariants, and soundly
analyzes all execution paths to produce a sound filter.
Symbolic Bug Finding and Validation: DART [17] and KLEE [6]
use symbolic execution to automatically generate test inputs that
systematically exercise different control-flow paths in a program.
One goal is to find inputs that expose errors in the program.
IntScope [33] and SmartFuzz [25] are symbolic execution sys-
tems designed specifically to expose integer overflow and/or sign
errors. It would be possible to combine these systems with previous
input-driven filter generation techniques to obtain filters that dis-
card inputs that take the discovered path to the error. As discussed
previously, SIFT differs in that it considers all possible paths so
that its generated filters come with a soundness guarantee that if an
input passes the filter, it will not exploit the integer overflow error.

Snugglebug [8] is a backward symbolic analysis engine for
error validation — the goal is to generate an input that can trigger
a potential error identified by some other means. As with other
symbolic execution systems, Snugglebug is designed to enumerate
all potential paths that the program may take to reach the error.
If the number of paths is large or unbounded (for example, if the
program contains loops), it may be infeasible to enumerate all
paths. SIFT, in contrast, uses a precondition generation technique
that can successfully analyze large programs while soundly taking
all paths into consideration.
Runtime Checks and Library Support: To alleviate the problem
of false positives, several research projects have focused on run-
time detection tools that dynamically insert runtime checks before
integer operations [4, 9, 13, 37]. Another technique is to use safe
integer libraries such as SafeInt [21] and CERT’s IntegerLib [32]
to perform sanity checks at runtime. Using these libraries requires
developers to rewrite existing code to use safe versions of integer
operations.

However, the inserted code typically imposes non-negligible
overhead. When they detect an error, these techniques typically
generate a warning and terminate the execution (effectively turning
any integer overflow attack into a denial of service attack). SIFT,
in contrast, inserts no code into the application and nullifies integer
overflow errors by discarding inputs that trigger such errors.
Benign Integer Overflows: In some cases, developers may inten-
tionally write code that contains benign integer overflows [13, 33,
35]. A potential concern is that techniques that nullify overflows
may interfere with the intended behavior of such programs [13, 33,
35]. Because SIFT focuses on critical memory allocation and block
copy sites that are unlikely to have such intentional integer over-
flows, it is unlikely to nullify benign integer overflows and there-
fore unlikely interfere with the intended behavior of the program.

7. Conclusion
Integer overflow errors can lead to security vulnerabilities. SIFT
analyzes how the application computes integer values that appear
at memory allocation and block copy sites to generate input filters
that discard inputs that may trigger overflow errors in these compu-
tations. Our results show that SIFT can quickly generate sound,
efficient, and precise input filters for the vast majority of mem-
ory allocation and block copy call sites in our analyzed benchmark
modules.

Acknowledgements
We thank Michael Carbin, Sasa Misailovic, and the anonymous re-
viewers for their insightful comments. We note our earlier tech-
nical report [23]. This research was supported by DARPA (Grant
FA8650-11-C-7192).

References
[1] Hachoir. http://bitbucket.org/haypo/hachoir/wiki/Home.

[2] LLVM Basic Alias Analysis Pass. http://llvm.org/docs/
AliasAnalysis.html#the-basicaa-pass.

[3] The LLVM compiler infrastructure. http://www.llvm.org/.

[4] D. Brumley, T. Chiueh, R. Johnson, H. Lin, and D. Song. Rich: Auto-
matically protecting against integer-based vulnerabilities. Department
of Electrical and Computing Engineering, page 28, 2007.

[5] D. Brumley, H. Wang, S. Jha, and D. Song. Creating vulnerability
signatures using weakest preconditions. In Proceedings of the 20th
IEEE Computer Security Foundations Symposium, CSF ’07’, pages
311–325, Washington, DC, USA, 2007. IEEE Computer Society.

[6] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX conference on Operating systems
design and implementation, OSDI’08, pages 209–224, Berkeley, CA,
USA, 2008. USENIX Association.

[7] E. Ceesay, J. Zhou, M. Gertz, K. Levitt, and M. Bishop. Using type
qualifiers to analyze untrusted integers and detecting security flaws
in c programs. Detection of Intrusions and Malware & Vulnerability
Assessment, pages 1–16, 2006.

[8] S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: a powerful
approach to weakest preconditions. In Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and imple-
mentation, PLDI ’09, pages 363–374, New York, NY, USA, 2009.
ACM.

[9] R. Chinchani, A. Iyer, B. Jayaraman, and S. Upadhyaya. Archerr:
Runtime environment driven program safety. Computer Security–
ESORICS 2004, pages 385–406, 2004.

[10] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado. Bouncer:
securing software by blocking bad input. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, SOSP ’07.
ACM, 2007.

[11] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham. Vigilante: end-to-end containment of internet worms.
In Proceedings of the twentieth ACM symposium on Operating systems
principles, SOSP ’05. ACM, 2005.

[12] W. Cui, M. Peinado, and H. J. Wang. Shieldgen: Automatic data patch
generation for unknown vulnerabilities with informed probing. In
Proceedings of 2007 IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2007.

[13] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer over-
flow in c/c++. In Proceedings of the 2012 International Conference
on Software Engineering, pages 760–770. IEEE Press, 2012.

[14] C. Flanagan and J. B. Saxe. Avoiding exponential explosion: gen-
erating compact verification conditions. In Proceedings of the 28th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’01’, pages 193–205, New York, NY, USA, 2001.
ACM.

[15] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed whitebox
fuzzing. In ICSE ’09: Proceedings of the 31st International Confer-
ence on Software Engineering. IEEE Computer Society, 2009.

[16] D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for
anomaly detection. In Proceedings of the 13th conference on USENIX
Security Symposium - Volume 13, SSYM’04. USENIX Association,
2004.

[17] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated ran-
dom testing. In Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’05, pages
213–223, New York, NY, USA, 2005. ACM.

[18] M. Kling, S. Misailovic, M. Carbin, and M. Rinard. Bolt: on-demand
infinite loop escape in unmodified binaries. In Proceedings of the ACM
international conference on Object oriented programming systems
languages and applications, OOPSLA ’12’, pages 431–450, New
York, NY, USA, 2012. ACM.

[19] C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In
Proceedings of the 10th ACM conference on Computer and communi-
cations security, CCS ’03. ACM, 2003.

[20] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In
Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’07, pages 278–289, New
York, NY, USA, 2007. ACM.

[21] D. LeBlanc. Integer handling with the c++ safeint class. url-
http://msdn. microsoft. com/en-us/library/ms972705, 2004.

[22] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard. Auto-
matic input rectification. ICSE ’12, 2012.

[23] F. Long, S. Sidiroglou, D. Kim, and M. Rinard. Sound input filter
generation for integer overflow errors. MIT-CSAIL-TR-2013-018.

[24] R. Madhavan and R. Komondoor. Null dereference verification via
over-approximated weakest pre-conditions analysis. In Proceedings
of the 2011 ACM international conference on Object oriented pro-
gramming systems languages and applications, OOPSLA ’11, pages
1033–1052, New York, NY, USA, 2011. ACM.

[25] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test generation to
find integer bugs in x86 binary linux programs. Usenix Security’09.

[26] J. Newsome, D. Brumley, and D. X. Song. Vulnerability-specific
execution filtering for exploit prevention on commodity software. In
NDSS, 2006.

[27] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically
correcting memory errors with high probability. In In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM. Press, 2007.

[28] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically patch-
ing errors in deployed software. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, SOSP ’09, pages
87–102, New York, NY, USA, 2009. ACM.

[29] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee. Enhancing server availability and security through failure-
oblivious computing. In In Proceedings 6 th Symposium on Operating
Systems Design and Implementation (OSDI), pages 303–316, 2004.

[30] M. C. Rinard. Living in the comfort zone. In Proceedings of the 22nd
annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, OOPSLA ’07. ACM, 2007.

[31] D. Sarkar, M. Jagannathan, J. Thiagarajan, and R. Venkatapathy. Flow-
insensitive static analysis for detecting integer anomalies in programs.
In IASTED, 2007.

[32] R. Seacord. The CERT C secure coding standard. Addison-Wesley
Professional, 2008.

[33] W. Tielei, W. Tao, L. Zhiqiang, and Z. Wei. IntScope: Automatically
Detecting Integer Overflow Vulnerability In X86 Binary Using Sym-
bolic Execution. In 16th Annual Network & Distributed System Secu-
rity Symposium, 2009.

[34] K. Wang and S. J. Stolfo. Anomalous payload-based network intrusion
detection. In RAID, 2004.

[35] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. Kaashoek. Improving
integer security for systems with kint. In OSDI. USENIX Association,
2012.

[36] X. Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choi. Packet
vaccine: black-box exploit detection and signature generation. CCS
’06. ACM, 2006.

[37] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou. Intpatch: Automati-
cally fix integer-overflow-to-buffer-overflow vulnerability at compile-
time. Computer Security–ESORICS 2010, pages 71–86, 2010.

