
A Distributed Architecture for Mobile,
Location-Dependent Applications

by

Anit Chakraborty

S.B., Computer Science and Engineering
Massachusetts Institute of Technology (1999)

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2000

(Copyright 2000 Anit Chakraborty. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and distribute publicly

paper and electronic copies of this thesis document.

Author
Department of Electrical Engineering and Computer Science

May 16, 2000

C ertified by
Hari Balakrishnan

Assistant Professor

Thesis Supervisor

Accepted by...........

Arthur C. Smith

Chairman, Department Committee on Graduate Theses C

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000

L- LIBRARIES--

A Distributed Architecture for Mobile, Location-Dependent

Applications

by

Anit Chakraborty

Submitted to the
Department of Electrical Engineering and Computer Science

May 16, 2000

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As pervasive computing becomes a reality, users will be able to interact with comput-
ing services which will all work together in a seamlessly integrated system. Resource
discovery is a key feature of pervasive computing which allows users simple and con-

venient access to resources. While there are several resource discovery systems in ex-
istence which are essential to pervasive computing, the support for location-based re-

source discovery is uncommon. The goal of this work is to integrate a location-support
system with a resource discovery system to support location-based resource discov-

ery. Our integrated system provides an in-building solution which is cost-effective,
scaleable, and distributed. In order to protect the user's privacy, the system provides
location discovery services without receiving any information from the user. We have

also implemented a simple scripting language which thin clients can use to control
and interact with network services. To demonstrate the power and functionality of

this system, we have deployed several location-dependent applications including a

map-based service discovery application with little manual configuration.

Thesis Supervisor: Hari Balakrishnan
Title: Assistant Professor

2

Acknowledgments

This thesis was the product of many people who helped shape it and provided feed-
back, direction, and encouragement. I would especially like to acknowledge the fol-
lowing people:

Professor Hari Balakrishnan who allowed me to pursue a project which greatly
interested me. He gave me the opportunity at every step in defining the direction
of my research so I would fully enjoy it.. Given all the circumstances surrounding
my research and the resulting thesis, I am indebted to him for providing me the
motivation to continue pressing forward with my work and finish it.

Elliot Schwartz and my officemate William Adjie-Winoto for designing and im-
plementing the first version of the Intentional Naming System which was an integral
part of my research.

Bodhi Priyantha for breathing life into my non-functioning hardware when nothing
was working. And I must thank him for accompanying me in the lab during the late
nights. We learned much from each other while chatting over many cold glasses of
Coca-Cola.

Jeremy Lilley for figuring out many of my most difficult bugs and of course for
starting the 504 Twix tradition. Allen Miu for all the great conversations we had
which always took my mind off of my research for some rest and relaxation.

John Ankcorn and Matthew Welborn for allowing me to climb on their desks in
the middle of the day to put up my radio transmitters.

My roommates Okan Alper, Hitesh Mehta and especially my friend, Sudipta Sen-
gupta, for providing support and insight while I was writing my thesis.

Finally, I must thank my mother and father. When things looked the worst, they
believed in me and made sure that I kept on looking forward.

3

Contents

1 Introduction
1.1 Related Work .

1.1.1 Olivetti's Active Badge System
1.1.2 AT&T Bats
1.1.3 Microsoft Research's RADAR

1.2 Background: Intentional Naming System (INS) . . .
1.3 Design Goals .
1.4 Contributions of this Thesis

1.4.1 INRClientLib
1.4.2 RF-Based Distributed Location Support System
1.4.3 Lightweight Scripting Model
1.4.4 Applications

1.5 O utline .

2 Intentional Naming System (INS)
2.1 Expressive Naming

2.2 Responsiveness

2.3 Robustness

2.4 Easy Configuration

3 INRClientLib:The INS Client
3.1 Design Goals
3.2 Operational Overview . . .
3.3 Architecture
3.4 Implementation

API

with User

7
8
9

. . . 10

. . . 11

. . . 12

. . . 13
. . . 14

. . . 14
Anonymity

. . . 15

. . . 15

. . . 15

16
16
18
19
19

20
20
21
22
24

26
. 2 6
. 2 7
. 2 8
. 2 9
. 3 0
. 3 0
. 3 1
. 3 2

4 Location-Support System
4.1 Design Goals
4.2 Architecture

4.2.1 Beacon-Receiver Protocol

4.2.2 Receiver Algorithms . . .

4.3 Implementation

4.3.1 Packet Format

4.3.2 Hardware

4.3.3 Software

4

14

4.4 INS Integration . 36
4.5 Evaluation . 37

4.5.1 Methodology . 37
4.5.2 Results and Analysis . 38

4.5.3 A New Approach . 39

5 Lightweight Downloadable Code 41

5.1 Design Goals . 41
5.2 LAS Lifecycle . 42
5.3 Language Specification . 42

5.4 Implementation . 44

6 Applications 45
6.1 Service Discovery Application . 45

6.2 MP3 Server . 47
6.3 TV Server . 48

7 Conclusion 49

A Lightweight Applet Scripting Specification 50
A.1 Control Overview . 50

A.2 Object Requirements . 51

A.3 Script Specification . 51

A.4 Event Specification . 53

A.4.1 Events . 53
A.4.2 Alerts . 54
A.4.3 Exiting . 54

A.5 Runtime Operation . 54

5

List of Figures

1-1 BAT Operational Overview . 11

2-1 A graphical view of an example name-specifier 17

2-2 A wire representation of the name-specifier shown in Figure 2-1. . . . 17

2-3 INS A rchitecture . 18

3-1 INRClientLib Architecture . 22

4-1 Location Packet Format . 30
4-2 Control Packet Format . 31

4-3 Schematic for Location Beacon/Receiver 32
4-4 Receiver Server Architecture . 34

4-5 Location Manager Error Rates . 38
4-6 Radiation Patterns of a Straight Antenna [20] 39

5-1 The Lifecycle of a LAS Application 42
5-2 A sample LAS script . 43

5-3 A LAS TV Remote Control . 44

6-1 Screen Shot of Service Discovery App 46

6-2 A LAS MP3 Remote Control . 47

6

Chapter 1

Introduction

In the near future, numerous mobile and wireless devices will join the traditional

desktop computer on the network as more and more users demand the ability to com-

pute and gain access to information while mobile. While considerable progress has

been made in recent years to enable network-layer connectivity for mobile hosts [13],

higher-layer functionality such as discovering and interacting with a particular com-

puting resource or service based on location has not yet received as much attention.

Attempting to locate and find services in an indoor environment such as an office

building is still a difficult task. Most environments do not yet have a resource discov-

ery system through which a user might easily find simple and common services such

as a printer. However, a resource discovery system by itself is not sufficient to solve

this problem. The user must have some notion of his location so he can find a nearby

printer and not just any random printer. The problem cannot be solved without a

location support system used in conjunction with a resource discovery system.

For example, consider the following scenario. A person uses a laptop to avoid

using two different computers at home and at work. At both locations the user has

several office components on the local area network such as a printer, scanner, fax

machine, etc. In addition, there are a few extra components present at home that

are not available at work such as a stereo or TV. Today, when the user goes from

the office to his home and vice versa, the user must reconfigure all of his laptop's

networking settings. Secondly, there may be several drivers or pieces of software that

7

are available at home and not at work such as the stereo remote control. Ideally as

the user travels, the list of services available to the user will depend on availability

at the user's location. While device drivers for a printer may need to be installed

to work properly, it may not be necessary to install software for every device on the

network. Many devices such as the stereo in this example have very simple controls

that should be represented via downloadable code or an applet rather than a complex

application. This scenario describes an environment where the network and services

on the network are ubiquitous [23] or pervasive [5, 18] from the user's perspective.

There is currently no existing framework that ties together location based resource

discovery as described in this scenario.

1.1 Related Work

There has been considerable amount of work done in both areas of location tracking

and resource discovery but not much on incorporating the two under one umbrella.

In the area of resource discovery, there are a number of existing systems. Sun has

created Jini [12]. Jini creates a "federation of networked devices" using JAVA's RMI

for communication. It has what it calls a "lookup service" which represents a col-

lection of services. However, Jini does not handle resource discovery in a dynamic

environment such as our target environment. It is a centralized approach to resource

discovery and requires IP Multicast for bootstraping. The Service Location Pro-

tocol (SLP) [16] uses centralized directory agents for discovery of network services.

However, centralized architectures are prone to single-point-of-failure problems. The

Berkeley Service Discovery Service (SDS) [4] works in a similar way but adds authen-

ticated communication and a hierarchal structure for wide-area application.

There are a number of systems available today that aid in location tracking. One

common solution used today is known as RFID [2]. RFIDs are small tags that can

contain both active and passive electromagnetic elements. The basic idea behind

these tags is selective reflection of electromagnetic radiation. A tracking device will

directs electromagnetic radiation at these tags, and the tags will selectively reflect

8

back a portion of the spectrum. The reflected spectrum represents the ID of the tag.

These are often used in the cattle industry to track cattle, and also at automobile toll-

booths for no-stop electronic toll collection. These devices are often severely affected

by the environment, for example large metal objects can affect the electromagnetic

transmissions.

A commonly-used wide area technology is the Global Positioning System (GPS) [6].

GPS uses signals from a number of satellites in geosynchronous orbit. By receiving

signals from three or more satellites a device located on the earth's surface can tri-

angulate its position. However, this technology does not work very well in an indoor

environment where the signals not always penetrate the walls.

Other than these two methods of location tracking, there are three projects de-

signed specifically for purposes of location tracking in mobile computing environ-

ments. One of the first location tracking systems was the Active Badge system from

Olivetti Labs [22]. A follow-on system was created recently at AT&T Labs (previ-

ously Olivetti) called the Bat System [9, 8]. A third system came out of Microsoft

Research and is called RADAR [3]. We survey these below.

1.1.1 Olivetti's Active Badge System

The Active Badge system tracks objects and puts this information into a central

database. Each object that is to be tracked is given an "active badge" which has a

unique ID. This ID is transmitted using infrared into its environment where there are

infrared sensors throughout the building that pick up the transmission. The sensors

send this information to a central database that keeps track of where the user is. In

this system, the walls act as a boundary between physical locations since infrared

cannot travel through walls.

One of the primary concerns with using the Active Badge system is the user's

right to privacy. If the user asks the system to track his location, the system knows

where the user is at all times. The only way to avoid this is to turn off the badge.

But then the user is not being tracked at all, and the user can then no longer utilize

location based services. Another drawback of this system is that it suffers from line-

9

of-sight issues. Because infrared generally cannot go through solid objects, tracking is

somewhat error prone. For example when a person is located between the transmitter

and the sensor, there is a high probability the sensor will not pick up the transmission.

1.1.2 AT&T Bats

Like the Active Badge system, the Bat system also tracks objects and puts this

location information into a central database. However, some of the problems with

the Active Badge system are solved by the Bat System. Instead of using infrared, the

Bat system uses both ultrasound and RF to track its users.

There are three components in this system - an RF base station, a receiver ele-

ment, and a transmitter. The RF base station sends out an RF message addressed to

each transmitter one by one. The transmitter has an RF transceiver which listens for

RF messages from the RF base station. When the RF transceiver receives a message

addressed to it, it causes the ultrasonic transmitters located on the same transmitter

to emit an ultrasonic pulse. Receiver elements located throughout the environment

(typically on the ceiling) associate the ultrasonic pulses from the transmitter with the

initial RF transmission from the RF base station. The time (which translates into

distance) between these two transmissions is recorded and sent to a central database

for processing. By collecting enough readings, calculations on this data yield loca-

tion readings accurate to a few centimeters. An operational overview of how these

components work together is further described in Figure 1-1.

Like in the Active Badge system, user-privacy issues arise in this system as well..

In addition, the entire system is heavily dependent on the central database. Once the

processing power of the central database saturates and as more objects to be tracked

are added to the system, tracking inevitably slows down. A major advantage of the

Bat system over the Active Badge system is its use of RF and ultrasound rather than

infrared. By using RF, the system no longer suffers from dead-spots that tend to

appear when using the infrared spectrum.

10

1 3

2

Mobile Transmitter]

Figure 1-1: 1. The RF base station transmits a unique ID via RF to all the mobile
transmitters. At the same time, it sends a reset signal to the receiver elements in
the receiver matrix. 2. The mobile transmitter with the same ID that is broadcasted
in step 1 trasmits an ultrasonic pulse from each of its ultrasound transmitters. 3.
The ultrasound receivers located on the receiver elements record the time between
the reset signal from the RF base station and the received ultrasound signal from
the mobile transmitter. This data is fed to a central computer which processes the
information to determine where the mobile transmitter is located.

1.1.3 Microsoft Research's RADAR

The RADAR system provides location-support information from lookup tables cre-

ated from an existing RF network (in this case a wireless LAN). During an off-line

phase, a network of RF transmitters is set up and measurements are taken at various

points throughout the building. A measurement consists of the RF signal strength

from each transmitter to the receiver at that point. So, the final result is a database

of RF signal strengths from each transmitter at various positions in the building.

After this is complete, the system is ready for normal operation. The mobile

receiver samples the signal strength from each transmitter and sends this information

to a central computer. The central computer then obtains a best fit for this data

against the positions from the database built during the off-line phase and produces

a location. If all of this information is colocated with the receiver, the receiver can

also compute the location based on received information, rather than having to send

the data to a central computer.

11

In receiver/central computer setup, the user's privacy is not protected since the

central computer is required to do processing on behalf of the user. However, in the

receiver only setup, the receiver's privacy is protected. However, by decentralizing the

database and locating a copy of it on each receiver, we run into data distribution prob-

lems whenever RF conditions in the building change or new access nodes are added.

Furthermore, large metallic objects or objects generating considerable amounts of RF

interference may cause problems. In addition, since the system relies on the use of

signal readings from a particular wireless RF network, the system requires different

sets of readings for each type of RF network. Also non-wireless devices (such as a

printer) can not take the readings required to identify a location.

1.2 Background: Intentional Naming System (INS)

In the area of resource discovery systems, we have chosen to use the Intentional

Naming System (INS) [1, 10, 19, 21]. INS provides mechanisms to create collections

of virtual spaces of services [10]. A virtual space (vspace) is a partioning mechanism

used by INS to create logical groupings of services in the system. Vspaces are cheap

and easy for INS to create. By mapping a virtual space (vspace) to each location, we

create a simple but efficient resource discovery system. For example, in the scenario

described above, the user's home office would be considered a vspace that contained

all of the user's office equipment, stereo, and TV.

INS consists of a collection of nodes called Intentional Name Resolvers (INRs)

that provide packet routing based on intentional names. An intentional name is hier-

archical structure of attribute-value pairs. For example, the intentional name [vspace

- camera [entity = transmitter] [wing = west]] describes a camera that is transmit-

ting data from the west wing. The expressive power of intentional names allows any

particular network to customize its naming system to fit the local environment.

To join an INS network, there are a number of Domain Space Resolvers (DSRs)

that act somewhat like DNS of the world today. These DSRs are responsible for

redirecting applications to INRs that serve a requested vspace. The distributed nature

12

of INS is attractive since there is no single-point-of-failure. INRs can go up and down

without affecting the rest of the system. This combination with the idea of vspaces

makes INS an excellent match for our purposes. We provide a more detailed discussion

of how INS works and its features later in this thesis.

1.3 Design Goals

The goal of this thesis is to develop an application framework that allows applications

to discover each other using a resource discovery system, recognize services based on

their location, and interact with other services using downloadable code. The system

we have designed and implemented consists of four main components: a resource

discovery system, an application library to use the system, a location support sys-

tem, and a framework for controlling remote applications using small downloadable

modules. Our design goals for these components are:

" Client Application Programming Interface: The exposed APIs should

provide application developers with a rich set of interfaces for rapid application

development. The complexities of the resource discovery system should be com-

pletely hidden from the developer to aid development and improve efficiency of

the application at runtime.

" Location Support: The system should provide location support, not location

tracking. The system should not necessarily know where a user is at all times

unless the user specifically gives the system and others the right to know. The

solution should be distributed to avoid a single point of failure, and should

maintain the user's privacy.

" Downloadable Code: A lightweight scripting language should be available

so computationally impoverished thin clients can access and control network

services discovered by the service discovery system.

Before proceeding, it is worthwhile to point out that the scenario described above

mentions automatic network configuration, which is an issue we do not address in

13

this system.

1.4 Contributions of this Thesis

We have designed and implemented a resource discovery system and a location sup-

port system to provide applications the ability to find services on the network based

on their location.

1.4.1 INRClientLib

One of the problems of the existing INS implementation is the lack of a clean API to

easily access its features, in essence we lack an INS library that can be used by a client

to gain access to INS's features. Without a client library, INS applications can use the

INS network only by running as part of an INR. The application must use the INR to

advertise and route on its behalf. An INR does considerable amounts of processing

that is not needed by the application running on that INR. Hence, there is CPU time

spent on things that do not directly aid the application. To facilitate INS application

development, we have developed a new client library that exposes an API that allows

easy development of INS applications. This client library or INRClientLib allows a

developer to fully utilize the features provided by INS without having to understand

all the complexities of the underlying infrastructure using a small and efficient library.

The sole purpose is to serve the application and the application only , no extra work

is done as with the INR case.

1.4.2 RF-Based Distributed Location Support System with

User Anonymity

We have implemented an RF-based distributed location support system which pro-

vides its users anonymity. The systems contains hardware which is reponsible for

transmitting and deriving the current location within a building. This information is

then integrated with INS to provide location based resource discovery.

14

1.4.3 Lightweight Scripting Model

We propose and implement a specification for a lightweight scripting model. This

model uses small scripts to define GUI controls. The client downloading the script

can then display the GUI controls. Interacting with the GUI controls generate small

messages which are interpreted by the server.

1.4.4 Applications

We have implemented several applications that use all three of the components de-

scribed above. The applications all use the INRClientLib, the location-support sys-

tem, and the Lightweight Scripting Model to enable location-based resource discovery.

Two of the applications are network services available for use. The third application

can find and connect to those services using location information and INS, and it can

control those services using the Lightweight Scripting Model.

1.5 Outline

This thesis focuses on the design and implementation of the system described above.

Before delving into our contributions, we first look closely at the features that make

INS an attractive resource discovery system to use with our system (Chapter 2).

We then present a client side library designed to aid development of any application

using the INS (Chapter 3). Next, we discuss and evaluate and RF-based location-

support system that provides anonymity to its users (Chapter 4). Next we discuss

a framework for controlling network services using small downloadable modules and

messages (Chapter 5). We then describe some applications that make use of this

system (Chapter 6). Finally we conclude with a summary of our work (Chapter 7).

15

Chapter 2

Intentional Naming System (INS)

The Intentional Naming System (INS) is the resource discovery system that we use

in this system. INS was specifically designed with dynamic and mobile networks of

devices and computers in mind [19]. In this chapter we discuss the key benefits INS

gives us. In Section 2.1, we discuss the expressive naming power of INS. In Section 2.2,

we discuss INS's ability to respond to fluctuating network conditions. In Section 2.3,

we discuss INS's robustness. The chapter ends with a look at the self-configuration

features of INS in Section 2.4.

2.1 Expressive Naming

INS was designed so services would be located not by their IP address or domain name,

but by the properties of the service itself. Any service can be described and located

using its intentional name, which describe properties of a service. Intentional names

are implemented with what are known as name specifiers. These name specifiers are

based on a hierarchy of attributes and values. There is no strict mapping requiring

certain attributes to be a valid name specifier. Rather INS allows any application-

specified combination of attribute-value pairs to identify a service. This way, a service

chooses how much information to advertise about itself. A graphical representation

of a name specifier is show in Figure 2-1. Figure 2-2 shows a wire representation of

it.

16

root

vspace entity service

loc-504 server mp3-server

Figure 2-1: The hollow-circles are used to identify attributes; the filled circles identify
values.

[vspace = loc-0504]

[entity = server]
[service = mp3]

Figure 2-2: A wire representation of the name-specifier shown in Figure 2-1.

At the core of INS we have a number of Intentional Name Resolvers (INRs). These

INRs are responsible for advertising on behalf of all the services using intentional

names and for routing all the data between these services. As messages come into an

INR, a lookup is performed in its route tree for the destination. The lookup returns

a record containing information on how to route this packet. If there is no direct

path, the INR will forward the packet to another INR which will attempt to deliver

the packet. This allows a service to send a packet to a destination that may not

be known to the service yet. Although the packet's destination is unknown initially,

INS may be able to figure it out as the packet travels through the network. Thus,

by allowing a packet with known service but unknown destination to travel through

the INR network, INS provides the packet with a "best-effort" delivery service. A

hypothetical network of INRs, clients, and services and their interactions are shown

in Figure 2-3.

By separating service address resolution from the service, INS provides an abstrac-

tion between the two to provide resource discovery services. Using INS, we are not

encumbered by maintaining complex routing tables describing the mapping between

each service on the network and its address. Rather, we can leverage INS to perform

17

Application using early binding - 3 Application providing service
data for an intentional name

network location
intentional name2

Application announcing
an intentional name

* 7 tentional name

intentional name + data 7 -

Application using late binding INR network ap tn discovering

Figure 2-3: The architecture of the Intentional Naming System [191. The upper-left

corner shows an application using early binding: the application sends an intentional

name to an INR to be resolved (1), receives the network location (2), and sends

the data directly to the destination application (3). The lower-left corner shows

an application using late-binding: the application sends an intentional name and

the data to an INR, which forwards it through the INR network to the destination

application. The lower-right corner shows an application announcing an intentional

name to an INR. The intentional name is beginning to be propagated throughout the

INR network, and has reached an application performing discovery

this mapping for us while we focus on finding and using services which relate to the

user's needs.

2.2 Responsiveness

Since INS is responsible for keeping track of services for its client applications, it is

responsible for tracking its end nodes as their network location (IP address) changes.

In addition to tracking changing network locations, INS is also responsible for tracking

services which change their intentional name. In this case, the network location of the

service does not change, rather the name of the service itself changes. For example,

a printer may change its service advertisement from being online to experiencing

technical difficulties.

As services enter and exit the network, change locations, and change their names,

INS achieves responsiveness by combining name resolution and routing. Traditionally,

applications must first go to a DNS Server to lookup an IP address. After the DNS

query returns to the application, the application can proceed to send application data

18

to that IP address which the underlying network routes. Applications using INS can

use late binding as an alternative. The binding between the service and the intentional

name is made while the packet is being routed. Thus as network conditions fluctuate,

INS can change how a packet is being routed enroute which provides responsiveness

to fluctuating network conditions. This is necessary for mobile applications.

2.3 Robustness

If an INR crashes unexpectedly or loses network connectivity, we expect INS to main-

tain functionality. To do this, there is a well-known entity in the system known as

the Domain Space Resolver (DSR). The DSR keeps track of the INRs in the system

and can create new INRs or kill existing INRs. It is worthwhile to note that DSRs

can be replicated for redundancy.

If an INR fails and a new INR is brought up in its place, the INR gets a list

of neighboring INR's from the DSR. Using this list, the INR attempts to determine

(using latency) how far away neighboring INRs are. Based on these distances, the

INR can choose to peer with other INRs. As each INR does this, INS creates an

application-level overlay network in a distributed manner. In this fashion, INS creates

a spanning tree that can recover from network losses or INR crashes.

2.4 Easy Configuration

As discussed in Section 2.3, we see that INRs self-configure into an application-level

overlay network. This helps configuration greatly since the INR only needs to know

about the DSR. Applications using INS need not worry about how to configure the

INRs they are connecting to. All the application needs to worry about is which service

it is sending the packet to, and INS will take care of the routing and delivery.

For more details about INS, please refer to [1, 10, 19, 21].

19

Chapter 3

INRClientLib:The INS Client API

An important component of the INS is a client library to support rapid application

development. To aid application developers with a rapid INS application development

environment and an efficient subsystem for accessing INS, we need a client library

to interoperate with INS that developers can use. In Section 3.1, we describe our

design goals for the INRClientLib, our implementation of this library. In Section 3.2,

a brief description of the events required for an application to send data to another

application via INS is discussed. In Section 3.3, we look at the architecture of the

INRClientLib and how it implements the events required to operate with INS. Finally,

we end with a description of implementation details in Section 3.4.

3.1 Design Goals

As mentioned earlier, writing applications for INS is difficult since it requires that the

developer have considerable knowledge on how INS and its network of INRs work.

In the current INS implementation an INS application runs as a part of an INR.

In this model, the INR is responsible for all of the INS applications communication

with other applications. Because of this, there are two primary reasons why the

INRClientLib is essential to INS. Rather than integrating applications and the INR,

it makes more sense to provide a clean division of duties between the two. Secondly,

in the old model, whenever the developer tests or runs his application, the entire INR

20

must be instantiated for the application to run. Instead of having to run this entire

stack of software, it would be much easier for the developer to only rely on a small

and efficient library that would take care of interacting with the INS system on behalf

of the developer.

The library will expose a simple set of APIs which will facilitate INS applica-

tion development. All of the functionality required to operate with INS should be

encapsulated in the INRClientLib. This includes creating and manipulating packets

and name-specifiers, retrieving information from the DSR, registering with INRs, and

sending data to other INS applications.

3.2 Operational Overview

To understand the INRClientLib architecture, it is important to understand the events

required for one INS application to successfully communicate with another INS ap-

plication. There are five steps required for two INS applications to communicate. We

must assume that there is at least one INR per vspace in the system.

To communicate with a service in a particular vspace, the application must speak

to an INR that services that vspace.

" First, the application must find out how to contact that INR. To do this, the

application must contact a DSR to retrieve the address of an INR servicing the

targeted vspace.

" After receiving the address information for an INR, the application must peer

with that INR before it can use the INR as a gateway into the vspace. To peer

with an INR, the application must register its name and address with the INR.

" After registering with the INR, the application must continue sending service

advertisements to maintain its registration. Through the service advertisements,

the INR learns how to contact the application. Hence, the INR can now route

packets that specify the application as the destination.

21

INRClientLib Architecture

Garbage
Collector

Other
Control
Packets

ApplicationT
Specific
n.+.

Applicatior
Specific
Packets INRClientLib

Network

Figure 3-1: INRClientLib Architecture

* After peering with the INR, the application can then send data to the INR

using the INS packet format which simply consists of a source name-specifier,

a destination name-specifier, and a payload.

* Finally, to maintain membership in a vspace, the application must continue to

send service advertisements to the INR stating that it is still an active member

of the vspace.

The INRClientLib has been designed to abstract all of these operations from the

application. The application must only specify a destination for a packet, and the

INRClientLib will take care of all of the events listed above.

3.3 Architecture

The INRClientLib is composed of three main components that are responsible for

carrying out the steps described in Section 3.2: the Node Interface, the Receive

22

Manager, and the Route Announcer. The three components and how they relate to

each other are shown in Figure 3-1. Here is an overview of how these components

work together to enable applications to work with INS.

" Node Interface: The Node Interface contains the entire API that is exposed

to the developer. The Node Interface provides a function that the application

can use to send packets to an INR. If the application is not registered as a part

of the vspace the packet is destined for, the Node Interface handles registration

with that vspace. As application packets come into the Receive Manager, the

Node Interface forwards these packets to a user-defined callback function in the

application. The Node Interface allows the application to hear the service ad-

vertisements coming from the INR that the application is peering with. Using

these service advertisements, the application can discover services as they join

the vspace. When an application wants to send data to a vspace, the Node In-

terface is responsbile for contacting the DSR for INR address information. After

receiving this information, the Node Interface registers the appliation's name

with the Route Announcer which will take care of announcing the application

to the vspace.

" Receive Manager: The Receiver Manager handles all incoming packets from

INS. It must determine if a packet needs to be forwarded to the application,

to the Node Interface, or to be thrown away. If the packet is destined for the

application, the Receive Manager will forward the packet to the application.

If the packet is a control message from the INR or DSR that the Node In-

terface is waiting on, it will forward the packet to the Node Interface. If the

packet is a control packet containing service advertisement, and the application

is interested, the Receive Manager will forward the packet to the application.

" Route Announcer: The Route Announcer is responsbile for periodically ad-

vertising the application to the various vspaces it is a member of. As the appli-

cation requests to join/drop vspaces, the Node Interface forwards the request

to the Route Announcer which then starts or continues service advertisement

23

to a vspace.

The INRClientLib also provides a function to retrieve the current location from

a Location Server colocated on the same machine if one is available. This is to be

discussed further in Section 4.4.

3.4 Implementation

The INRClientLib is implemented in both JavaTM [11) and Win32. In the Java

implementation, an application inherits from a base class named Node Interface which

contains all of the helper functions. The Win32 implementation is written in C and is

provided as a DLL, which is used as a shared library. The DLL also exposes all of the

helper functions that the Java implementation does. In addition, the INRClientLib

provides several helper libraries to help with creating and accessing the various packet

formats and intentional names used in the system.

INRClientLib completely abstracts communication to the DSR, INR, or any other

application. As packets with new destination names are specified, the INRClientLib

will take care of finding an INR that can handle the packet. Once it finds an INR,

The Route Announcer will register the application as a neighbor, or more accurately

in this case, a client, with the INR. Once connected to the INR, the application

can ask the INRClientLib to listen for service announcements that this INR receives.

For example, if another client in the same vspace starts up somewhere else in the

network, by registering for service announcements, the application will be notified.

When packets arrive for the application, the Receiver Manager determines if the

packet should go to the application. The INRClientLib delivers any application-

specific packets to an application defined callback function to let the application deal

with the packet.

Each application using the INRClientLib will run in its own thread. This thread

drives all interaction with the Node Interface. On startup, the Node Interface must

be initialized with the location of a DSR. Once this is done, the Node Interface will

start up the two helper threads: the Receiver Manager and the Route Announcer.

24

The Receive Manager is responsible for all incoming packets. The Route Announcer

runs in the other thread, and it makes sure that application is a part of any vspace

that the application is interested in. The Node Interface maintains a pair of locks

around the socket, one for reading and one for writing, which prevent the multiple

threads from sending or reading from the socket at the same time.

25

Chapter 4

Location-Support System

To fully utilize INS as a location-based resource discovery system, we must augment

it with a location-support system. The location-support system is responsible for pro-

viding location information to any entity which is interested in what their location

is. In conjuction, the two can provide location-based services for mobile applications.

In Section 4.1, we discuss the design goals for such a system. Section 4.2 shows our

architecture for the location support system. In Section 4.3, we look at both imple-

mentation details for both the hardware and software involved. In Section 4.4, we look

at how we integrate this location support system with INS. Finally in Section 4.5, we

analyze the system we have implemented and take a look at the experimental results.

4.1 Design Goals

INS provides a solid framework for our resource discovery needs, but INS requires

additional location support to fully utilize its functionality. INS already provides

applications the ablity to interact with other applications based on their intentional

names. However, these intentional names only provide information about the char-

acteristics of the individual application, not the location information relating it to

other applications. Our location support system should provide INS applications the

ability to discover not only where they are physically located, but to also discover

other INS applications based on this location information. For example, suppose a

26

group of people are in a conference room and need to print something; the print

spooler should find the nearest printer based on its location.

Most of the systems described in Section 1.1 rely on a central computer to do

some large amount of processing on behalf of the user to resolve the user's location.

Our location support system should avoid this dependency on a central computer

to avoid single-point-of-failure problems. Also, by creating a distributed location

support system, we protect the user's privacy from the centralized systems described

in Section 1.1.

The RADAR system from Microsoft [3] solves this problem by moving a database

of information from the central computer to the user's computing device. This creates

a distributed solution which also protects the user's privacy. However by distributing

the database to each user's mobile device, everytime the environment changes, we

are required to redo all the off-line measurments. To avoid this, any changes to the

environment (e.g., changing the structure of the building) should not require mass

redistribution of software or data. Our location support system should protect the

user's privacy and not require changes to the client as the environmental conditions

change.

Finally, we want our solution to be cost-effective. Only a relatively low-cost solu-

tion is viable for wide-scale deployment.

4.2 Architecture

Our system consists of two types of devices: beacons and receivers. The beacons

transmit information, which we refer to as packets about the geographic location, and

the receivers (located with the user) receive and interpret these packets. Since the

beacon is transmitting to the receiver and the receiver does not transmit anything

back, the user's privacy is protected. The information in the packets being transmit-

ted by the beacons are not hard wired to any particular format; any short string is

valid. Hence, any restructuring of a building or of the location namespace will not

result in the system going off-line; rather only the values being transmitted from the

27

locations which are affected by the restructuring will need to be changed.

We place one beacon in every location that we would like to identify using our

system. The location does not have to be restricted to only one room. Since we are

not aiming for the type of accuracy achieved in a system like the Bat [9, 8], our costs

stay low. In addition, by tying each locatable region to a beacon, the failure of any

one beacon does not affect the operation of the other beacons.

The receiver which is colocated with the user (or mobile device more accurately)

listens to packets from the beacons which it uses to determine its current location.

The receiver then sends this information to the mobile device. The device can then

use this information to find nearby resources using INS.

The receiver also runs a tiny server, which we will refer to as the receiver server,

on the device to which it is connected. This receiver server exposes an API through

which applications can learn their location.

The rest of this section discusses how the beacon and receiver interact and the

location inference algorithms that run on the receiver server.

4.2.1 Beacon-Receiver Protocol

The beacons transmit packets using a low-cost 418 MHz RF transmitter which can

transmit information at 1200 bits/s. The range of this transmitter is approximately

10-12 feet. The receiver has a low-cost RF receiver which can receive data at 1200

bits/s. Each receiver interfaces with any device that supports standard RS232 com-

munications.

Since there may be two locations close enough such that their RF transmissions

may collide, we try to limit collisions by using randomized transmission. Each packet

transmission is separated by a random delay uniformly chosen from the interval [150,

350] ms. Another method to avoid collisions is by using carrier sense multiple access

(CSMA). Using this scheme, the transmitter will actually "sense" whether or not

a transmission is in progress and waits until the transmission is over to transmit.

In addition to increasing the complexity of the hardware involved and increasing

power consumption, we are interested in detecting which beacon is closer. We are not

28

interested in reliably detecting every packet being sent out by every beacon.

When a collision does occurs, one of two things will happen. The transmission

from the beacon which is farther away maybe be weak (since signal strength varies

as some inverse power of distance). Hence, the transmission from the nearby beacon

will remain valid. Or, the transmission from the beacon which is farther away will

be sufficiently strong enough to corrupt the transmission from the closer beacon. In

the second case, the receiver will drop the packet anyway since the checksum will be

invalid. One of the two cases result in the proper location being heard by the receiver.

Hence, the receiver will be able to determine the proper location given enough time

to take a few samples.

4.2.2 Receiver Algorithms

The receiver server runs a simple inference algorithm to determine the correct location

from the data coming from the receiver. An inference algorithm is necessary since the

data may often be noisy with occasional packets from nearby beacons. The inference

algorithm smooths this data out and makes a best-guess estimate to the current

location using a mode-based algorithm.

As discussed earlier, there can be two types of collisions that occur. When the two

signals are both corrupted, we simply drop the packet. The other type of collision

occurs when the packet from the closer beacon is sufficiently stronger than the col-

liding packet. In this case, we end up receiving the correct packet. Looking at these

two scenarios, the beacon with the most received packets at the receiver will be the

correct beacon. The receiver server collects data for a certain of window time. We

optimize this window of time by experimentation. Each building will have slightly

different RF interference characteristics, hence a few experiments which check what

window size is optimal should be conducted to determine the window size. From this

window, the receiver will count the number of packets from each beacon and select

the location being advertised by the beacon with the highest packet count.

The receiver server provides this functionality so that there is no duplication of

effort on the same device. This makes sense since some of these devices may be devices

29

11 bytes

OF OF OF OF FF 00 05 00 04 01 10

Header Data Checksum

Figure 4-1: A location packet containing the data '0504'

with limited computational power; there is no reason for the same computation to

occur multiple times on the same device.

4.3 Implementation

In this section, we describe our implementation of the location support system de-

scribed in Section 4.2. In Section 4.3.1 we take a look at the packet format transmitted

by a beacon. In Section 4.3.2, we look at the hardware implementation of the beacon

and receiver. We conclude this chapter in Section 4.3.3 with a look at the software

running on our hardware and the receiver server.

4.3.1 Packet Format

The location packet has a five-byte header consisting of 4 OxOF and 1 OxFF. These

five bytes are used to train the microcontroller so its ready to receive the first data

byte. In this implementation, all locations were four bytes long (indicating a room

number in the laboratory). For error checking, each location was appended with a

2-byte checksum. A sample location packet and its format are shown in Figure 4-1.

The checksum is a 2-dimensional XOR. The first checksum byte is an XOR of all the

data bytes, i.e., in the "y" direction). The first four bits of the second byte of the

checksum correspond to a XOR of the bits of each byte in the payload, i.e., in the

"x" direction).

In addition to the location packet, the system also uses a packet not discussed yet

called a control packet. The control packet is used for remote management of beacons.

The control packet differs slightly from the location packet in the header, the size,

30

15 bytes

OF OF OF OF F8 00 05 00 04 01 02 03 04 05 1D

Header Data Checksum

Figure 4-2: A control packet containing the data '05041234'

and checksum. The header of the the control packet ends with a OxF8 instead of a

OXFF. The payload of the packet is eight bytes long instead of the four in a normal

location packet. The checksum is almost the same; instead of throwing away the last

four bits of the second checksum byte, they are the "x" direction XOR of the extra

four bytes in the payload. A sample location packet and its format are shown in

Figure 4-2.

4.3.2 Hardware

We used the iRX hardware platform [17] for our implementation. We replaced the

infrared hardware on the iRX hardware with RF transmitters and receivers [14]. The

beacon and receiver both have the same design which makes them interchangeable,

and only the software changes. The hardware configuration of both consists of off-

the-shelf parts that cost less than US $10.

Each device is controlled by a PIC micro-controller with 68 bytes of RAM and

1024 words of program memory running at 10MHz. Each device has both an RF

transmitter and RF receiver. The RF transmitter is a Micro Tx from Low Power

Radio Solutions [15], and the RF receiver is from the same company. The transmitter

and receiver provide support for serial data in/out. Apart from a few capacitors

and voltage regulators, there is an RS-232 signal converter which the device uses to

communicate with any serial port. A schematic of the device is shown in Figure 4-3.

The device uses a standard 9V battery.

31

Super RX AM Receiver

TP2

Figure 4-3: Schematic for Location Beacon/Receiver

4.3.3 Software

This section descibes the implementation of our software.

32

PIC Microcontroller

The software on the PIC micro-controller coordinates all the components on the hard-

ware device. It takes care of sending and receiving RF data, verifying checksums and

forwarding valid packets onto the receiver server. The micro-controller can operate

in three different modes depending on its function. In addition to the beacon and

receiver modes, there is an additional management mode used to configure beacons.

" Beacon Mode

Since beacon's are responsible for advertising location information, the micro-

controller must coordinate sending randomized transmissions of the location

information out through the RF transmitter. Each micro-controller is pro-

grammed with an array of ten random numbers between [150,350]. The micro-

controller is also programmed with the short string that represents the location

information it is to transmit. Using the random numbers as the interval be-

tween transmissions (in ms), the micro-controller randomizes its transmissions

of the location information.

" Receiver Mode

The receiver software uses many of the same communication functions that the

beacon software uses. The only difference is while it loops, it reads information

from the RF receiver rather than transmitting information. It looks for packets

following the format described by Figure 4-1. When a packet comes through,

the micro-controller will compute the checksum to validate the packet. If the

packet is valid, the micro-controller sends the data through the serial port to

the receiver server.

" Management Mode

Since it is convenient to wirelessly configure a beacon rather than attaching a se-

rial cable to the beacon, we have implemented a management feature. Instead

of hard-coding the location information into the micro-controller, the micro-

controller merely waits for a control packet from another transmitter, reads the

33

Receiver Server
Architecture

Location
Information Receiver Server

Figure 4-4: Receiver Server Architecture

location information out of the control packet's payload, and starts transmit-

ting that location information. The extra four bytes of payload information in

the control packet contain authorization information to validate the location

information with. This prevents unauthorized users from changing the location

of beacons in the system.

Receiver Server

The receiver server is responsible for processing any information on the serial port

coming from the receiver. The receiver server is composed of three main components:

Receiver Server Manager, Serial Port Manager, and Request Manager. An architec-

tural diagram of the Receiver Server is shown in Figure 4-4. Here is an overview of

34

how these three components work together to read information from the serial port

and deliever it to requesting applications:

" Receiver Server Manager

The Receiver Server Manager is the glue that mediates interactions between the

Serial Port Manager and the Request Manager. The Receiver Server Manager

starts the other two Managers with initialization information. As location in-

formation is passed from the Serial Port Manager to the Request Manager for

applications to use, it goes through the Receiver Server Manager which han-

dles all of the locks involved in keeping the location information from being

corrupted.

" Serial Port Manager

The Serial Port Manager is the most important component of the three that

comprise the Receiver Server. The Serial Port Manager is responsible for col-

lecting data from the serial port as the receiver sends it location information.

The Receiver Server Manager gives the Serial Port Manager a window size in

which to collect samples. The Serial Port Manager uses a pair of Location Data

objects to collect the data. As each time window finishes, the Location Data

object is swapped with the other Location Data object. As soon as a Location

Data object is swapped out, the Serial Port Manager uses that data to calcu-

late the current location using the mode-based inference algorithm described in

Section 4.2.2. This information is passed to the Receiver Server Manager which

passes it to the Request Manager as needed.

" Request Manager

The Request Manager is responsible for handling application requests for loca-

tion information. The Request Manager actually handles two types of requests.

The first type of request is to simply ask for the location as calculated by the

Serial Port Manager. The second type of request asks the Request Manager to

35

return all the location information collected in the last time window which it

gets from the Receiver Server Manager.

The network interface is very simple. The requesting application sends a UDP

packet to the Request Manager's socket. The Request Manager has two meth-

ods of replying. The first method is the "location only" method which is invoked

only when the UDP packet is empty. The second method is the "all location

information method" invoked when the UDP packet is non-empty. In the loca-

tion only mode, the Request Manager sends back an UDP packet with current

location information from the last time window determined by the inference

algorithm running in the Serial Port Manager. If the UDP packet is non-empty,

the Request Manager will send back all of the location information from the

last time window. The information will be two columns, one with the location

and one with the number of samples from that location.

4.4 INS Integration

INS integration relies on the INS's notion of vspaces. Since vspaces are the basic

construct that INS organizes its services around, we map the vspace name to a location

being served by a beacon in our location support system. All services related to

a location register with the vspace mapped to that location. Now all services in

that location are members of the same vspace which enables location-based service

discovery.

An application looking for nearby services (in nearby locations) can use the "all

location information method" of the Request Manager in the Receiver Server to find

out about nearby locations and join those vspaces also to discover nearby services.

In our implementation, the Receiver Server returns the same location string given

to it by the receiver which forwards the packet sent to it by the beacon. Since

any service in that location ultimately relies on the beacon for the location string,

changing the location string at the beacon does not affect operation of the system.

So, if there is some sort of room re-organization and rooms numbers are changed, the

36

system has no problem adapting to the new numbering system. All the services in

the location will change to the new number just by changing the information in the

beacon servicing that location.

As mentioned in Section 3.3, the INRClientLib provides a function for retrieving

the location only information from the Receiver Server running on the same machine

(if there is one running on that machine). INRClientLib also provides a convenience

function for registration in that location's vspace enabling easy access to location-

based service discovery.

4.5 Evaluation

In this section, we take a look at how well our location support system performs

in a realistic test environment. Section 4.5.1 discusses the experiment and how to

interpret the outcome of the experiment. Section 4.5.2 looks at the results of running

the experiment and provides an analysis of these results. Section 4.5.3 looks at other

possible solutions to this problem.

4.5.1 Methodology

The obvious measure of performance for the location support system is how well it

can resolve location using data from a receiver. To do this, we walked back and forth

between three rooms and logged each room transition. By keeping track of which

room we were in, it was easy to see when the Receiver Server was giving the correct

location. We also attempted to find out what the best window size in seconds was

for the Serial Port Manager by varying the window size (in seconds). Each time the

Receiver Server reported an incorrect location, an error was logged. The error rate is

the number of incorrect locations divided by the total number of reported locations.

37

Error Rates

20.5 -

20

19

i.118.5

17.5
2 3 4 5 6

Sample Time (s)

Figure 4-5: Location Manager Error Rates

4.5.2 Results and Analysis

The results of the experiment described above are given in Figure 4-5. It is obvious

from the results that the error rates are not low enough for this to be a robust system.

Why is an RF-only solution difficult to use as a location support system?

One of the main problems with RF is its radiation pattern. Ideally, we expect

the radiation pattern to radiate equally in all directions from the antenna in a sense

bathing the entire room with radio waves, but this is not the case. There are many

factors which affect the RF signal. Common office items such as monitors and com-

puters can generate RF interference which distort the RF transmissions. There are

also a number of other sources of interference. In addition, depending on where the

receiver is placed with respect to the beacon, the transmission power at that location

can be an order of magnitude different from a location just a few feet away. Figure 4-6

shows the radiation pattern of a straight antenna. Notice that at around 120 degrees

and 300 degrees, the transmission power is significantly lower than other positions.

Therefore, if the receiver's position is in a dark spot of the current room, but not

a dark spot for an adjoining room's transmitter, there is a good chance the wrong

38

.0 dB

240 300

270

Figure 4-6: Radiation Patterns of a Straight Antenna [20]

location will be reported

4.5.3 A New Approach

The reason our error rates were not low enough is due to the transmission medium. In

our implementation, we have determined that using 418 MHz AM as the carrier will

not work. A possible solution would be to use a different carrier medium, but more

likely than not, we would run into the same problems that 418 MHz AM has. Another

possibility may be to fine-tune each transmitter's output power so that it transmits

no farther than its walls. This once again becomes a problem since fine-tuning for

asymmetric rooms is extremely difficult. Having a large metal desk in one corner

of the room may make it just about impossible to adjust power and gain precisely

enough to cover exactly the area of one room.

It would almost seem that finding a solution short of a complex location trian-

39

gulation hardware/software (which would be expensive) is currently quite difficult.

However, one possible solution would be to use two different carrier mediums simul-

taneously to take advantage of the different benefits each one offers. The system

we think shows the most promise involves coupling ultrasound with our existing sys-

tem. By increasing the power of the beacons in each room, a receiver in a particular

room should receive a fairly large number of location packets from all the surrounding

rooms in addition to the one that it is in. The benefit that ultrasound adds to this

system is that its signal does not go through walls. Ultrasound wave travels at the

speed of sound which is much slower than the speed of radio waves (which travel at

the speed of light). A beacon can start transmitting the location packet via RF, and

at the same time transmit an ultrasound pulse. The receiver will know if a packet is

valid (from the correct beacon) by checking if it received an ultrasound pulse while

receiving the packet. This works since the packet takes a few milliseconds to transmit

which is enough time for the ultrasound pulse to make its way to the receiver.

It is worth pointing out that ultrasound may suffer from the same issues that

plagued our original RF-only implementation of this system. For example, if the

receiver is in a dark spot of the room, it may not receive any RF information from the

beacon. However, even if it is receiving many packets from an adjoining room, it will

not be able to associate an ultrasound pulse with those location packets. Therefore,

it will not report the incorrect location. By increasing the power of the transmitters,

we will try to alleviate these problems so the number of dark spots in a room is

minimized.

40

Chapter 5

Lightweight Downloadable Code

There is a class of mobile applications that typically do not require very much com-

putational power. These applications may provide simple functions such as turning

devices on and off or running simple informational queries. Simple functions as this

do not require large complex pieces of software, but small downloadable modules.

Hence, we propose the Lightweight Applet Script (LAS) language. In Section 5.1, we

look at the design goals for this language. In Section 5.2, we look at the lifecycle for

a typical LAS script. In Section 5.3, we look at the specification for LAS. And in

Section 5.4, we look at some implementation details for a LAS interpreter.

5.1 Design Goals

The main design goal for this scripting language was to be able to navigate services

even when the client has no prior knowledge of the details of the service. It needs

to be a simple scripting language which provides developers the ability to define

simple graphical user interface (GUI) layouts on these thin clients. Once the script

is downloaded to a client, simple lightweight messages should allow the client and

the server to interact such that the server is informed of user interactions with the

GUI defined by the script, and the client can be informed of events from the server if

necessary.

41

Client Server

bsendsback script

server even

"EXIT"

Figure 5-1: The Lifecycle of a LAS Application

5.2 LAS Lifecycle

Before describing the elements of the scripting language itself, we first take a look at

the lifecyle of a LAS script. To request an LAS script from a server, the client must

send a 'HELO' command to the server. Upon receiving this command, the server will

send back the LAS script to the client. The client, which runs a LAS interpreter,

will interpret the script and display a user interface on the device. The user can

interact with the interface which generates events that send messages to the server.

The server can also send messages back to the client which the LAS interpreter will

display appropriately on the client. The life of the script ends when the user exits,

and the LAS interpreter sends an 'EXIT' command to the server informing it the user

has stopped using the script. A timeline depeciting these events is show in Figure 5-1.

5.3 Language Specification

The script format itself is extremely simple. The script is composed of a number of

GUI controls, their names, and the properties that define the GUI control. Each line

that specifies the start of a new GUI control description starts with ':'. All other

lines that describe the GUI control that the follow begin with a '-'. The last line of

the script has no beginning character and just contains the string 'SCRIPTEND' to

42

notify the LAS interpreter it has reached the end of the script.

The format of a new GUI control is a control type followed by '_' followed by the

name of the control which is a number. To make lookups easier on the client side

LAS interpreter at runtime, we require the script developer to sequentially number

the controls from top to bottom. Each GUI control description is a key-value pair.

Once again, for simpler and more efficient parsing, we enforce that the key and value

are separated by '=', and there is one space on both sides of the '='. This makes

parsing extremely fast and efficient for the LAS interpreter. A sample script is given

in Figure 5-2. The resulting GUI running on a LAS interpreter might look like the

loaded script in Figure 5-3, which represents a typical TV remote control.

All attributes are abbreviated to conserve bandwidth during transmission (hence

the name "Lightweight Applet Script"). For instance on line 2 of the sample script,

the attribute 't' is the text tag for the control. When the user clicks on a button or

changes a text field, the action is relayed to the server using a small message which

consumes very little bandwidth. A complete description of the language and the

messages is given in Appendix A.

1 :BU
2 - t = "Down"

3 -h =10
4 -w =40
5 -x = 10
6 -y = 125
7 :TF
8 -edit = 0
9 -x = 10
10 -y = 110
11 -h = 10
12 -w =40
13 - t = "Vol"
14 - maxchar = 4

15 SCRIPTEND

Figure 5-2: A sample LAS script

This lightweight protocol is intended for small mobile devices such as PDAs that

do not have very much network bandwidth, and cannot support complex graphical

43

Figure 5-3: A LAS TV Remote Control

controls. LAS provides for Textfields, Buttons, Checkboxes, and Checkbox Groups.

With only these simple controls, a small device can give the user considerable control

over many devices that may be present in the network such as rice cookers, television,

or home alarm system.

5.4 Implementation

We have implemented a JAVA class, named LASPanel, which provides a fully-compliant

LAS interpreter. Any developer can use this class as part of their application to in-

terpret LAS scripts and interact with LAS-enabled services. The class extends the

java.awt.Panel, and expose a function which can be passed a LAS script. It will in-

terpret the script and display it in the panel. The user may interact with the GUI

controls as described in the LAS specification. All events are posted to the parent

application via a standard JAVA listener interface.

44

Chapter 6

Applications

This chapter describes how three applications work using the INRClientLib in con-

junction with the Location Support system. In Section 6.1, we describe a location-

based LAS-enabled service discovery client. In Section 6.2 and 6.3, we describe two

LAS enabled service providers, an mp3-server and a TV-server, that use the INR-

ClientLib.

6.1 Service Discovery Application

This application provides a location-based service discovery client to the user. Be-

cause of its function, We have named it ServiceDiscoveryApp. We wanted to create an

application which allowed the user to walk around a building with a location-support

system installed, and locate the services that were currently nearby. As the user

moves from location to location, she has the option of remembering the services from

the previous location, and also the option of knowing only about the current location.

Given a list of services, the user should be able to quickly control any of these services

on demand. Hence, the service neede to support LAS, and the ServiceDiscoveryApp

needs to have a LAS interpreter.

We were able to easily create this application using the INRClientLib and the

LASPanel in less than one day with 550 lines of code. As the user walks from room

to room, the ServiceDiscoveryApp uses the helper functions provided by the INR-

45

Figure 6-1: Screen Shot of Service Discovery App

ClientLib to find out what location it is in. As it leaves and enters a new location, it

instructs the INRClientLib to deregister from the vspace representing the old location

and register with the vspace representing the new location. We represent vspaces as

"loc-xxxx", where xxxx is the room number within the building. After registering

with the vspace, the ServiceDiscoveryApp uses the INRClientLib to register for ser-

vice advertisements from the vspace. This way, as new devices and users enter and

leave the vspace, the ServiceDiscoveryApp is aware of them.

Once the user is displayed a list of nearby services, a flag appears that tells the

user if the service is LAS enabled or not. If it is, the user can double click on the

service in the service list box (shown in Figure 6-1), and the ServiceDiscoveryApp

will initiate the LAS initialization sequence. Once the script is loaded, the user can

use the interface to interact with the service.

46

Figure 6-2: A LAS MP3 Remote Control

6.2 MP3 Server

In addition to the service discovery application described above, we implemented two

LAS-enabled services. The MP3 Server provides a network-controlled music jukebox

using the INRClientLib. Once the MP3 Server is an active INS service, it waits for

a LAS interpreter to contact it. Through LAS, the interpreter can control the MP3

Server just as a person controls a normal cd player.

The MP3 Server is a Windows-based application that uses the INRClientLib

Win32 DLL. When the program starts, the MP3 Server finds its location using the

INRClientLib API. After determining and registering with its location, other INS

applications can discover it if they have joined the same vspace as the MP3 Server.

The MP3 Server then waits for INS to deliver it a LAS 'HELO' packet from any LAS

interpreter. The MP3 Server responds with a script which describes a set of controls

with which the user can control a cd player-like interface. The script is nothing more

than a few simple buttons that control an MP3 player such as Volume Up, Play, Stop,

Pause, etc (shown in Figure 6-2). After sending the client the script, the server just

waits for commands from the client. As commands are issued, the server executes

them just like a stereo responds to a remote control. The server controls any mp3

player (we used Winamp [24]) by sending it keystrokes using the Win32 API.

47

6.3 TV Server

The TV Server operates the same way that the MP3 Server does. The TV Server

also uses the INRClientLib Win32 DLL. When the TV Server is sent a LAS 'HELO'

packet, the TV Server sends back a LAS script which is a TV remote control (shown

in Figure 5-3). As commands are issued to TV Server, the TV server translates and

redirects the resulting command to a Hauppauge WinTV PC Card [7]. The result of

each action is displayed in a TV window on the screen.

48

Chapter 7

Conclusion

This thesis describes the design and implementation of a system that combines re-

source discovery and location-support. We chose to use an existing resource discovery

system named INS and integrated a location-support system that we designed. To

aid the application developer we have developed a client-side API called the INR-

ClientLib. The INRClientLib provides a clean abstraction between an INS application

and the underlying INS infrastructure. Using this API, the developer can rapidly and

efficiently create and deploy INS applications without needing to fully understand the

internals of INS.

The distributed location support-system we designed provides location informa-

tion to its users; but the user receives this information privately. Hence, the system

cannot track the user. Once the user discovers the services around him, he may

select to use or control one of these services via LAS, which provides thin clients a

lightweight interface for control and communication.

Due to the nature of radio waves, our implementation was not robust enough in

this phase of the project. However, the results are quite encouraging, and we think

that coupling ultrasound with RF may result in a system which performs robustly.

However, location support was integrated with the INRClientLib to enable developers

to write location-based mobile applications that can use resource discovery to their

advantage. We hope to leverage all of this work in the next phase of the on-going

project to successfully deploy a building-wide solution for resource discovery.

49

Appendix A

Lightweight Applet Scripting

Specification

A.1 Control Overview

The lightweight applet model can support a limited number of controls. It supports:

" text fields (editable and non-editable)

" buttons

* checkboxes (can be grouped together)

" selector items (either on or off like checkboxes)

In addition, it also supports alert boxes throughout applet execution in case the

server would like to emphasize the importance of a particular action or consequence.

The server is given an ID for each object that it creates. After this, the server can

use this ID to query and change the state of the object represented by this ID. For

example, a text field can be changed, or the contents of it can be retrieved for further

processing.

50

A.2 Object Requirements

Here is a list of the requirements for each object. A valid script is required to provide

these attributes of each object listed below.

* Button: text in button, (x,y) position on the screen, height, width

* TextField: editable/non-editable, (x,y) position on the screen, height, width,

maximum # of characters, dynamically resizable/not resizable, left or right

justified

* Checkboxes: (x,y) position on the screen, height, width, optional text to right

of box, grouplD (if it is part of a group where only one box can be checked at

any time)

o Selector: (x,y) position on the screen, height, width

o Alert: type of alert (defaults to 0 for informational for now, may expand in

the future), title in text, message in text

NOTE: All editable text fields will have a tiny circle next to them. When the

user clicks this circle, the value in the text field is flushed to the server so it knows

what the user is writing. This is provided so the interpreter may be more efficient

since we are accomodating many differing display types.

A.3 Script Specification

Alerts are not specified in this section; alerts are done throughout execution by issuing

commands from the server.

The beginning of the specification of any object is started with a ':' at the be-

ginning of a line. Each line must be ended with a new line character. Finally each

attribute of an object specification must be started with a '-' (which is also started

at the beginning of a line).

51

For example:

< objectl > - < id >

- < attributelforobjectl >=< value >

< attribute2forobjectl >=< value >

< object2 > - < id >

< attributelforobject2 >=< value >

< object > can be either TF for Text Field, BU for Button, CB for Checkbox, or

SE for selector.

The possible attributes are described in Table A.1. The list of required and

optional attributes per field type is shown in Table A.2.

Attribute format (in file) variable type

Text t string (starts with ", ends with ")

height h int

width w int

x-coordinate x int

y-coordinate y int

Max # characters maxchar int

left or right justification just 0 for left, 1 for right

editable/non-editable edit 1 for editable, 0 for non-editable

resizable/non-resizable rsz 1 for resizable, 0 for non-resizable

underlined under 1 for underline, 0 for none

single line sing 1 for single line, 0 for more

GroupID gid int (0 for no group, same positive gid

for those in same group, gid is from 0

to 65535)

Table A.1: Possible attributes for each field type.

< object > must be followed by an < id >. Each object id is a unique integer

from 0 to 100. After transferring the script, all objects will be addressed with this

52

< object > < id > string. For example, if the first object is written in as

: BU_1

Then all actions concerning that button will be referenced by the name "BU_1".

Object Required I Optional

Button text, height, width, n/a

(xy)
TextField editable/non-editable, dynamically resizable (defaults to non-

(xy), height, width, resizable), justification (defaults to left

max # of characters justified), underlined (defaults to un-

derlined), single line (defaults to 1 line)

Checkbox(es) (xy), height, width text to right of box, groupID (defaults

to 0)
Selector text, (xy), height, n/a

width

Table A.2: Required/optional attributes for each field type..

A.4 Event Specification

A.4.1 Events

The syntax for an event message is:

< eventspecif ier >< object > - < id >< arguments... >

There are four types of events: CHK for checking state, ALT for altering state,

EXT for exiting, and INF for info. A list of the events and possible values are shown

in Table A.3.

NOTE: Query responses are sent to the server using the INF event specifier. For

a Text Field, the handheld will send INF TF_< id > < string >

and for a Checkbox or Selector, the handheld will send INF (CB/SE)_< id > <

(T/F) >

53

Object Type From Interpreter [From Server

Button When hit, sends ALT BU_< (No Action)

id >

TextField (ed- When text changes, sends Can query with CHK TF-<

itable) ALT TF_< id > < string > id >Can change with ALT
TF_< id > < string >

TextField (non- (No Action) Can change with ALT

editable) TF_< id > < string >
Checkbox When state is changed, Can query with CHK CB_<

sends ALT CB_< id > < id >Can change with ALT
(T/F) > (T for checked, F CB_< id > < (T/F) >
for not checked)

Selector When state is changed, Can query with CHK SE_<

sends ALT SE_< id > < id >Can change with ALT
(TIF) > SE_< id > < (T/F) >

Table A.3: Required/optional attributes for each event type..

A.4.2 Alerts

Alerts are sent with the ERR event specifier. The syntax is

ERR '< string >\n'

where string is the message to be displayed on the handheld's screen.

A.4.3 Exiting

Either side (handheld or server) can exit a connection. All either has to do is just

send an 'EXIT\n'. When handheld sends EXIT, the program exits immediately on

handheld and server is merely notified. When server terminates, it is general practice

to notify the user if something terminates abnormally. So, send a notification (such

as an alert), and then send the EXIT.

A.5 Runtime Operation

Initialization

o First, the handheld initializes the session by sending over a hello and a version

number: 'HELO V1\n'

54

" After the server receives the init string, it formulates its response accordingly

and sends back the applet.

" At the end of the script, the server sends a script termination sequence 'SCRIPTEND\n'

Operation

Once everything is set up, they system works by sending small messages back

and forth between the interpreter and the server. Each event message referring to an

object consists of a event specifier, object, and arguments. An alert message has an

event specifier and a message to give to the user. When an alert is sent, the alert

dialog that pops up on the handheld will be modal until the user dismisses it by

clicking 'OK'. Lastly, 'exit' is the final message sent from either one or both of the

sides.

55

Bibliography

[1] Adjie-Winoto, W. and Schwartz, E. and Balakrishnan, H. and Lilley, J. The

design and implementation of an intentional naming system. In Proc. ACM

Symposium on Operating Systems Principles, pages 186-201, December 1999.

[2] Amtech Systems Division. http://www.amtech.com/, 2000.

[3] P. Bahl and V. Padmanabhan. RADAR: An in-building RF-based User Location

and Tracking System. In Proc. IEEE INFOCOM, March 2000.

[4] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An Architecture

for a Secure Service Discovery Service. In Proc. A CM/IEEE MOBICOM, pages

24-35, August 1999.

[5] M. Dertouzos. The Future of Computing. Scientific American,

August 1999. Available from http://www.sciam.com/1999/0899issue/

0899dertouzos . html.

[6] I. Getting. The Global Positioning System. IEEE spectrum, 30(12):36-47, De-

cember 1993.

[7] Hauppauge Computer Works Inc. http: //www .hauppauge .com/, 2000.

[8] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The Anatomy of a

Context-Aware Application. In Proc. A CM/IEEE MOBICOM, August 1999.

[9] Harter, A. and Hopper, A. A New Location Technique for the Active Office.

IEEE Personal Communications, 4(5):42-47, October 1997.

56

[10] Lilley J. Scalability in an Intentional Naming System. PhD thesis, Massachusetts

Institute of Technology, May 2000.

[11] Java (TM). http://java. sun. com/, 2000.

[12] Jini (TM). http://java. sun. com/products/jini/, 1998.

[13] D. Johnson. Scaleable support for transparent mobile host internetworking. Mo-

bile Computing, pages 103-128, 1996.

[14] Loffler, A. How to modiy a Locust Board for RF. http: //www. media. mit . edu/

wearables/locust/rf-locust/index.html.

[15] Low Power Radio Solutions. http: //www. lprs .co .uk/, 2000.

[16] C. Perkins. Service Location Protocol White Paper. http: //playground. sun.

com/srvloc/slp-white-paper.html, May 1997.

[17] Poor, R. The iRX 2.0 PIC Development Board. http://http://www.media.

mit.edu/~r/projects/picsem/irx2_l/.

[18] B. Schilit and M. Theimer. Disseminating Active Map Information to Mobile

Hosts. IEEE Network, pages 22-32, Sep/Oct 1994.

[19] E. Schwartz. Design and Implementation of Intentional Names. PhD thesis,

Massachusetts Institute of Technology, May 1999.

[20] Kent Smith. Antennas for Low Power Applications. http://www.rfm.com/

corp/appdata/antenna.pdf, 2000.

[21] Adjie-Winoto W. A Self-Configuring Resolve Architecture for Resource Discov-

ery and Routing in Device Networks. PhD thesis, Massachusetts Institute of

Technology, May 2000.

[22] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location Sys-

tem. ACM Transactions on Information Systems, 10(1):91-102, January 1992.

57

[23] M. Weiser. The computer for the 21st century. Scientific American, September

1991.

[24] Winamp: Windows MP3 Player. http: //www. winamp. com, 2000.

58

