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Abstract

Numerical simulations of time-periodic flows are an essential design tool for a wide
range of engineered systems, including jet engines, wind turbines and flapping wings.
Conventional solvers for time-periodic flows are limited in accuracy and efficiency
by the low-order Finite Volume and time-marching methods they typically employ.
These methods introduce significant numerical dissipation in the simulated flow, and
can require hundreds of timesteps to describe a periodic flow with only a few harmonic
modes. However, recent developments in high-order methods and Fourier-based time
discretizations present an opportunity to greatly improve computational performance.

This thesis presents a novel Time-Spectral Hybridizable Discontinuous Galerkin
(HDG) method for periodic flow problems, together with applications to flow through
cascades and rotor/stator assemblies in aeronautical turbomachinery. The present
work combines a Fourier-based Time-Spectral discretization in time with an HDG
discretization in space, realizing the dual benefits of spectral accuracy in time and
high-order accuracy in space. Low numerical dissipation and favorable stability prop-
erties are inherited from the high-order HDG method, together with a reduced number
of globally coupled degrees of freedom compared to other DG methods. HDG provides
a natural framework for treating boundary conditions, which is exploited in the devel-
opment of a new high-order sliding mesh interface coupling technique for multiple-row
turbomachinery problems. A regularization of the Spalart-Allmaras turbulence model
is also employed to ensure numerical stability of unsteady flow solutions obtained with
high-order methods.

Turning to the temporal discretization, the Time-Spectral method enables direct
solution of a periodic flow state, bypasses initial transient behavior, and can often
deliver substantial savings in computational cost compared to implicit time-marching.
An important driver of computational efficiency is the ability to select and resolve
only the most important frequencies of a periodic problem, such as the blade-passing
frequencies in turbomachinery flows. To this end, the present work introduces an



adaptive frequency selection technique, using the Time-Spectral residual to form an
inexpensive error indicator. Having selected a set of frequencies, the accuracy of the
Time-Spectral solution is greatly improved by using optimally selected collocation
points in time. For multi-domain problems such as turbomachinery flows, an anti-
aliasing filter is also needed to avoid errors in the transfer of the solution across the
sliding interface. All of these aspects contribute to the Adaptive Time-Spectral HDG
method developed in this thesis.

Performance characteristics of the method are demonstrated through applications
to periodic ordinary differential equations, a convection problem, laminar flow over
a pitching airfoil, and turbulent flow through a range of single- and multiple-row
turbomachinery configurations. For a 2:1 rotor/stator flow problem, the Adaptive
Time-Spectral HDG method correctly identifies the relevant frequencies in each blade
row. This leads to an accurate periodic flow solution with greatly reduced compu-
tational cost, when compared to sequentially selected frequencies or a time-marching
solution. For comparable accuracy in prediction of rotor loading, the Adaptive Time-
Spectral HDG method incurs 3 times lower computational cost (CPU time) than
time-marching, and for prediction of only the 1st harmonic amplitude, these savings
rise to a factor of 200. Finally, in three-row compressor flow simulations, a high-order
HDG method is shown to achieve significantly greater accuracy than a lower-order
method with the same computational cost. For example, considering error in the am-
plitude of the 1st harmonic mode of total rotor loading, a p = 1 computation results
in 20% error, in contrast to only 1% error in a p = 4 solution with comparable cost.
This highlights the benefits that can be obtained from higher-order methods in the
context of turbomachinery flow problems.

Thesis Supervisor: Jaime Peraire
Title: Department Head & H.N. Slater Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 The Need for Better Periodic Flow Solvers

Time-periodic aerodynamic flows play a central role in a wide range of engineered
systems, including jet engines, wind turbines, and flapping wings. With the ongo-
ing exponential growth of computing power, engineers are increasingly relying on
Computational Fluid Dynamics (CFD) software for cost-effective prediction of aero-
dynamic performance during the design process. However, existing CFD algorithms
often struggle to achieve a high level of accuracy without incurring an impractically
high computational cost. These difficulties arise from both the spatial and temporal

discretizations typically employed:

e Spatial: Most high-fidelity CFD tools in use today are based on low-order Finite

2"_order accurate in space. Grid-

Volume discretizations, which are at most
converged solutions are often prohibitively expensive to obtain by these methods,

forcing engineers to accept a significant degree of error in their simulations.

e Temporal: Time-marching methods (such as Runge-Kutta) are most common,
though poorly suited to time-periodic problems. They do not exploit periodicity
and they require time-accurate integration of initial transient behavior. As a

result, several periods of integration and hundreds of timesteps may be required

15



to compute a periodic flow that is equivalently described by only a few Fourier

modes.

These algorithmic limitations form a considerable barrier to the productive use of
CFD in the design of jet engines and other periodic flow devices. New methods are

needed that will improve the accuracy and efficiency of periodic flow simulations.

A Perspective From Industry

The following quotation further illustrates the need for advances in periodic flow

solvers, from the perspective of an engineer in the turbomachinery industry:

“High-cycle fatigue (HCF) is a major concern in turbomachinery de-
sign. This is especially true for aircraft engines which operate under a wide
range of conditions. Requirements of low cost, low weight, small size, and
high efficiency all have the tendency to increase susceptibility to aerome-
chanics, as cheaper or lighter materials are chosen, blade row gaps are
reduced, blade aspect ratios are increased, and turbine blades are pushed
toward thermal material limits. Computational design tools that predict
HCF behavior, especially resonance response due to multi-row interaction,
are employed to reduce the need for expensive testing. To be applicable
to design optimization over a range of operating conditions in a manage-
able amount of time, these tools need to predict periodic flows with high

accuracy and computational speed.” !

'Mani Sadeghi, PhD, Staff Engineer, Pratt & Whitney (personal communication, May 6, 2014)
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1.2 Thesis Objectives

Leading on from the motivation described in the previous section, the objective of
this thesis is to develop and demonstrate a more accurate and efficient grid-convergent
method for solving time-periodic aerodynamic flow problems, with a particular focus
on flow through cascades and rotor/stator assemblies in aeronautical turbomachin-
ery. The goal is to design a method that is both more accurate (able to achieve
grid-converged solutions) and efficient (lower computational cost for a given level of
accuracy) than the current state of the art.

To this end, contributions of this thesis are summarized as follows:

1. A Time-Spectral Hybridizable Discontinuous Galerkin (HDG) method for the

efficient high-order solution of time-periodic flow problems

2. A high-order sliding interface coupling method for HDG, with an anti-aliasing

filter for Time-Spectral discretizations

3. Application of the time-marching and Time-Spectral HDG methods to single-
and multiple-row turbomachinery flow problems, with a regularized RANS-SA

turbulence model suitable for higher-order methods

4. A Frequency Adaptive Time-Spectral method to solve a periodic problem using
a non-sequential set of frequencies, and to provide an inexpensive error indicator

to guide selection of frequencies

5. Quantification of the gains in accuracy and efficiency that can be obtained us-
ing the Time-Spectral HDG method, from an industrial perspective, comparing

high-order to low-order and Time-Spectral to time-marching

17



1.3 Review of Methods for Periodic Flow Problems

Periodic flow problems arise in a broad range of engineering applications, and sim-
ulation techniques for such flows have a long history of development. This section
provides a context for the present thesis by reviewing previous work in high-fidelity
methods for time-periodic flow problems. The review is divided into two categories:

(1) high-order spatial discretizations, and (2) time discretizations for periodic flows.

1.3.1 High-Order Spatial Discretizations

A central goal of this thesis is to demonstrate the benefits that can be obtained from
using a high-order discretization in space, as opposed to the more commonly used
low-order methods. High-order methods show promise for delivering more accurate
solutions for a given computational cost, and the Hybridizable Discontinuous Galerkin
(HDG) method stands out as a particularly attractive choice among high-order meth-
ods. However, before examining HDG in more detail, let us provide some context for
HDG through a brief review of spatial discretization methods for flow simulation.

The first numerical methods for solving flow equations relied on Finite Difference
spatial discretizations, such as those reviewed by Sod [92]. Strengths of these methods
included their simplicity of implementation for simple differential operators, and their
computational efficiency on simple structured meshes. However, as computational
power grew and investigators sought to solve more advanced equations on complex
geometries, Finite Difference methods proved increasingly inadequate.

These limitations were overcome by a new class of Finite Volume methods, which
enabled a new level of geometric flexibility. Following early work on structured grids
[59], Finite Volume methods were found to be particularly well-suited for solving con-
servation laws on arbitrary unstructured meshes [6]. Unlike Finite Difference meth-
ods, they guarantee numerical conservation of physically conserved quantities, and
are easily applied to problems on arbitrarily complex geometries. Together with ro-

bust numerical stability properties, Finite Volume methods emerged as the method of
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choice for Computational Fluid Dynamics (CFD) in industry, and to this day remain

ubiquitous in commercial CFD packages.

However, the Finite Volume methods most commonly used in industry become
very inefficient at high levels of accuracy. These methods can be described as low-
order accurate in space, as they have a spatial truncation error which scales with
mesh size h no faster than O(h?). They have a long history of use in industry, and are
very robust. However, grid-converged solutions are often too expensive to obtain, as
solutions computed on successively finer grids do not improve in accuracy at a sufficient
rate. This implies that users often have no choice but to accept a substantial degree
of discretization error in their simulations, which can be manifested as numerical

dissipation and dispersion.

High-order methods offer a solution to this problem. With a faster solution con-
vergence rate, these methods open up the possibility of greater solution accuracy for
a given computational cost. In this thesis we will refer to a method as high-order if
it has a spatial truncation error that scales with mesh size faster than O(h?). While
high-order accurate Finite Volume methods have been developed [7, 51, 64], these
use reconstruction techniques that can be complicated to implement for complex ge-
ometries, making them less common in industrial use. High-order Finite Difference

methods also exist, but are only applicable to simple geometries with structured grids.

Finite Element methods, on the other hand, are readily formulated with high-order
accuracy in space and are well equipped for complex geometries. In these methods,
the discrete solution is represented on each element by a combination of high-degree
polynomial basis functions. Finite Element methods have long been formulated this
way, such as in the p-version of the Finite Element method [4], the Spectral Element
method [80], and the streamline-upwind Petrov-Galerkin method (SUPG) [57, 58]. As
demonstrated for hp-FEM by Babuska [3], increasing the polynomial order p can result
in much faster convergence than refining the mesh at a constant p, when compared in
terms of the total number of degrees of freedom. High-order Finite Element methods

also accommodate high-order representation of curved boundary geometries, leading
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to further enhancement of solution accuracy.

Discontinuous Galerkin (DG) methods are a particular type of high-order Finite
Element method that has attracted growing interest in recent years. DG methods
feature both the guaranteed local conservation of Finite Volume methods and the
high-order accuracy of Finite Element methods. In contrast to the continuous Finite
Element methods, DG numerical solutions are discontinuous between elements. These
discontinuities introduce a larger number of total degrees of freedom, but also provide
a richer approximation space and a natural means to stabilize the numerical scheme

through terms in the fluxes between elements.

Looking back at key milestones in the development of DG methods, Reed & Hill
were the first to introduce a DG method, in their application to the neutron transport
equation in 1973 [85]. However, DG received little further attention until the next
decade, when Johnson & Pitkaranta [60] and Richter [86] provided sharp a priori
error estimates. In the years that followed, Chavent & Cockburn [15] applied slope-
limiting, and Cockburn & Shu [29, 31] applied Runge-Kutta timestepping to the DG
method (RKDG). DG methods were generalized for convection-diffusion systems by
Bassi & Rebay [8], further generalized in the Local DG (LDG) method by Cockburn &
Shu [30], and made more efficient through the Compact DG (CDG) method developed
by Peraire & Persson [82].

DG methods have several important advantages over Finite Difference and Finite
Volume methods, including that they work well on arbitrary meshes, result in stable
high-order accurate discretizations of the convective and diffusive operators, allow for
a simple and unambiguous imposition of boundary conditions, and are very flexible
to parallelization and adaptivity [75]. However, they are also very computationally
expensive due to the large number of degrees of freedom they employ, arising from the

duplication of nodes at element interfaces to represent discontinuous solutions.

Recently, a successful approach for overcoming the computational expense of DG
methods has been introduced in the Hybridizable Discontinuous Galerkin (HDG)

method. HDG methods feature a significantly reduced number of globally-coupled
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degrees of freedom, compared to previous DG methods. HDG was first introduced for
elliptic problems by Cockburn et al. [20, 22, 24, 26-28], and developed for convection-
diffusion problems by Cockburn et al. and Nguyen, Peraire & Cockburn [21, 72, 73].
Several authors then extended HDG methods to linear elasticity [93], Maxwell’s equa-
tions [76], incompressible flow [23, 25, 74, 77], and the Euler and compressible Navier-
Stokes equations [77, 81].

The key innovation of HDG is to parametrize the high-order solution on each
element in terms of the approzimate trace of the solution, which is defined only on
the borders of each element (also known as the skeleton of the mesh). This decouples
the system into a smaller global problem for the approximate trace, and a set of local
problems on each element that can be solved independently once the approximate
trace is known. This approach has substantially fewer globally-coupled degrees of
freedom than earlier DG methods, offering significant savings in computation time
and memory usage. In terms of convergence rate, HDG surpasses earlier DG methods
by providing optimal convergence of all variables including the approximate gradient,
for convection-diffusion problems. This can be exploited by a local postprocessing
procedure to obtain even more accurate solutions. HDG also provides a framework
for treating boundary conditions in a natural and systematic manner, through the
definition of appropriate numerical fluxes on the domain boundaries. Finally, HDG
is highly amenable to adaptation and parallelization [75], as demonstrated in recent
work on scalable parallelization of HDG for compressible flow by Roca, Nguyen &
Peraire [87].

HDG methods have shown great promise for the efficient computation of high-
order accurate solutions, and the present thesis extends HDG to time-periodic flow
problems and multi-row turbomachinery applications for the first time. A major
focus of this work is to combine HDG with a time discretization that is well-suited
for turbomachinery problems. The following section provides a brief review of time

discretization methods for periodic problems.
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1.3.2 Time Discretizations for Periodic Flows

Turbomachinery design and flutter analysis are among the many important appli-
cations that have motivated development of better algorithms for time-periodic flow
problems over the last several decades. After the earliest work on analytical and semi-
analytical methods for simple problems, more realistic flows were first solved using
time-marching methods. For example, Giles [40] applied a time-marching method to
an Euler analysis of rotor/wake interaction, and He & Denton [55] applied a four-stage
explicit Runge-Kutta scheme to solve viscous unsteady flow through turbomachinery:.
Implicit time-marching based on Backward Differentiation Formulae (BDF) or Diago-
nally Implicit Runge-Kutta (DIRK [1]) schemes have also been applied to time-periodic
problems in turbomachinery and beyond [83, 84]. Time-marching methods have the
advantage that they are applicable to any arbitrary form of time variation, periodic or
not, and are thus essential for resolving transient non-periodic flow behavior. However,
when the main goal is to compute a periodic flow state (such as around a pitching
airfoil), the inability of time-marching methods to exploit periodicity can make them
highly inefficient. For instance, time-marching methods require time-accurate resolu-
tion of the initial transient behavior of the flow, even when this initial transient is of no
interest to the engineer. As a result, several periods of integration are often required
before initial transients subside and a repeating periodic flow state can be reached.
Furthermore, explicit time-marching methods are restricted to very small timestep
sizes by numerical stability constraints. While implicit time-marching methods are
not constrained by stability, they are still required to resolve the time variation of the
flow. As a result, even implicit time-marching methods commonly require hundreds
of timesteps per period, over several periods of time integration.

Seeking more efficient alternatives to time-marching, much work has been done
on formulating time discretizations schemes in the frequency domain. Comprehensive
reviews of these methods are provided by Ekici & Hall [34], He [53] and Hall et al. [48].
The first frequency domain methods were time-linearized methods for the potential

flow equations [103-105], the Euler equations [47] and the Reynolds-averaged Navier-
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Stokes equations [19], mainly applied to cascade flutter calculations. In all of these
methods, the unsteady flow equations were linearized about a steady mean flow field,
leaving a set of linear, variable-coefficient equations for the unsteady harmonics that
could be solved very efficiently. However, this time-linearized approach is only valid
for small disturbance flows and cannot be applied to large-amplitude or nonlinear

unsteadiness.

The first frequency domain method for larger-amplitude nonlinear unsteadiness was
developed by He & Ning [56]. In their nonlinear harmonic approach, they decomposed
the full unsteady flow problem into a set of equations for the time-average, coupled
to another set of first-order accurate equations for harmonic disturbances. Unlike
earlier time-linearized methods, harmonics influenced the time-averaged flow equations
through deterministic stress terms. Solving these coupled equations simultaneously, He
& Ning and other investigators were able to capture nonlinearities in turbomachinery
flows quite accurately [16, 54, 106], although the treatment of harmonics was inexact

and their initial demonstration was only implemented for one harmonic.

A more general method for large amplitude periodic unsteadiness was proposed by
Hall et al. [46, 49, 50]. In their Harmonic Balance method, the unsteady flow con-
servation variables are represented by a Fourier series in time with spatially varying
coefficients. Time derivatives are evaluated using a spectral operator, and the user can
decide how many harmonic modes they wish to resolve. Consequently, this approach
allows arbitrarily high accuracy in time for periodic unsteadiness of any amplitude and
spectrum. Ekici and Hall [33, 35, 36] and Ekici et al. [38] later extended the Harmonic
Balance method to model unsteady flows in turbomachinery with multiple excitation
frequencies. Several other investigators successfully applied the Harmonic Balance ap-
proach to a range of problems, including flow around a cylinder and a pitching airfoil
[67, 68], adjoint-based shape optimization in unsteady flow [70, 95|, turbomachinery
forced response calculations [100], rotor/stator interactions [90], unsteady aerodynam-
ics of helicopter rotors [13, 18, 37, 63, 111, 112], sound propagation and radiation of

lined ducts [11]; pulsating synthetic jets in quiescent cross-flows [108]; and nonlinear

23



flutter and limit cycle oscillation [96-99]. Implicit versions of the Harmonic Balance

method have also been developed [32, 88, 91, 95, 107, 110, 111].

An important improvement to the Harmonic Balance method was to formulate
this frequency domain approach solely in terms of time-domain quantities, for ease
of implementation around existing time-marching solvers. Gopinath & Jameson [42]
made this a key feature of their Time-Spectral method, in which the Fourier series of
the solution is provided not in terms of spatially-varying coefficients, but in terms of
discrete “snapshots” equispaced in time. This transformation into the time domain
results in a system of equations where all snapshots are coupled to one another through
a spectral time derivative operator. This formulation has the advantage that many
parts of a conventional time-marching code can be re-used in the implementation of a

Time-Spectral solver with the same spatial discretization.

Gopinath & Jameson successfully applied their Time-Spectral method to a range of
periodic flow problems, including pitching airfoils and wings [42], vortex shedding [43],
and turbomachinery flows with sliding mesh interfaces between blade rows [41, 44].
As with the work by Hall et al., Gopinath & Jameson used low-order Finite Volume
spatial discretizations. High-order spatial discretizations had not been used at all for
Time-Spectral computations until very recent work by Knapke ef al. [62] where a
Discontinuous Galerkin discretization was combined with the Time-Spectral method
for single cascade flows. However, a high-order HDG discretization has several advan-
tages, including fewer globally coupled degrees of freedom than other DG methods.
The HDG method’s natural framework for boundary conditions also facilitates the
formulation of a high-order sliding interface coupling technique, essential for turbo-

machinery applications.

In all of the time discretizations mentioned so far, it is assumed that the user will
specify a set of desired frequencies in advance which define the numerical solution.
However, it is not always obvious a priori which frequencies are the most important.
Towards addressing this issue, one contribution of this thesis is a new adaptive method

for automatically selecting frequencies that are likely to be most relevant in a given
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time-periodic problem.

1.4 Thesis Overview

The remainder of this thesis is organized as follows. In Chapter 2, details of the tem-
poral and spatial discretizations of the Time-Spectral HDG method are presented,
including a combined formulation and demonstration of the method for convection
problems and viscous flow over a pitching airfoil. Following this, Chapter 3 describes
the formulation of a high-order sliding interface coupling technique for HDG, together
with an anti-aliasing filter for use in Time-Spectral HDG simulations. Supporting
results are provided from a convection-diffusion problem on a static grid and a viscous
flow problem on a sliding grid. Chapter 4 presents applications of the Time-Spectral
HDG method to turbomachinery flow problems. This begins with details of regulariza-
tions applied to the Spalart-Allmaras (SA) model, designed to assist in the numerical
stability of high-order simulations of unsteady turbulent flows. Chapter 4 then presents
a series of turbomachinery flow simulations computed using the Time-Spectral HDG
method. Flow solutions for a rotor cascade, rotor/stator assemblies and a three-row
compressor are presented using different combinations of high and low order in space,
time-marching and Time-Spectral. Highlighted by these comparisons, performance
characteristics of the Time-Spectral HDG method are discussed. In Chapter 5, a
Frequency-Adaptive Time-Spectral method is introduced for periodic problems, and
demonstrations are presented for linear and nonlinear ordinary differential equations
and a rotor/stator flow problem. Finally, Chapter 6 presents a summary of findings

from this thesis and suggests a few salient directions for future work.
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Chapter 2

Time-Spectral Hybridizable
Discontinuous Galerkin (HDG)
Method

This chapter outlines the major features of the Time-Spectral Hybridizable Discon-
tinuous Galerkin (HDG) method for solving time-periodic flows. This method is the
first to combine a Time-Spectral discretization in time with an HDG discretization
in space. The following sections describe the formulation of the temporal and spa-
tial discretizations of Time-Spectral HDG, and provide a set of results for convection
problems and pitching airfoil flows to demonstrate performance characteristics of the

method.

2.1 Time-Spectral Method for Ordinary Differen-

tial Equations

The present thesis employs a Time-Spectral discretization in time, following earlier
work in a Finite Volume setting by Gopinath & Jameson [41, 42]. The Time-Spectral

method offers spectral accuracy in time and direct solution of time-periodic flows
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without the need to resolve initial transients. When the periodic unsteadiness of a
flow can be well represented by a small number of Fourier modes, the Time-Spectral
method can achieve an order of magnitude improvement in computational efficiency

compared to more conventional time-marching approaches [41].

To describe the Time-Spectral method, let us begin by considering a conservation

law written in semi-discrete form:

du

Here, u = u(t) is the numerical solution vector for a discretized spatial domain, defined
for continuous time ¢. The term M represents a mass matrix, and R(u) is a nonlinear
residual vector that is a function of w. (The form of M, R and u depends on the

chosen spatial discretization scheme.)

The discrete Fourier transform of u for a given time period T is:

R,
R —ikn2r
Uy = — E yreT kT Al (2.2)
N
n=0
and its inverse transform is:
N-1
2 2
~ : =7
Ut = ukev.k:n = At (23>
k=— 31

Here, u™ = u(t,) are N discrete snapshots in time of the solution u, equispaced by
intervals At = T/N over the period T. These N snapshots describe K = (N — 1)/2
harmonic frequencies, which we will refer to in this thesis as modes. (For example,
N = 3 snapshots describe exactly 1 mode - or, a constant value and a single harmonic
with an amplitude and phase. Together these are 3 variables that can be mapped from
the N = 3 snapshots.) The quantity i is the complex coefficient of the k" Fourier
basis function. The amplitude and phase of the £ mode (or harmonic frequency, as

we have defined it) is related to both @, and 4_j, which are in turn related to each
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other by @, = —t_; for real-valued u™.

Now, by differentiating Equation 2.3, the discrete time derivative operator can be

expressed in terms of frequency domain quantities as:

N1
M & e
D" = ;f 3 ket AL (2.4)
k=—N=1

2

Substituting the discrete Fourier transform (Equation 2.2) for %, we obtain an expres-

sion for the spectral time-derivative of u exclusively in terms of time-domain quantities:

21 g0 2T
Dtun — 71__'__ ik § u] —zk:]TAt ezk:nTAt

_ N
k== 2
N—-1
N-1
12§ ikj Z At ikn ZE At
= —— E tke "™ err w’
NT
]:O k‘——N_l
2
N-1
— 5 5 d
= & u (2.5)
j=0

where @ are constant coefficients which couple all the snapshots in time, u!. For

odd N, the form of these coefficients can be simplified using trigonometric identities

(41, 43]:
(—1)"Jcosec (W) , fn#j

ifn=j.

==

(2.6)

=

Together, Equations 2.5 & 2.6 define a Time-Spectral discretization of the time
derivative du/0t, which can be applied to the semi-discrete form of the governing

equation for any chosen spatial discretization (2.1). The semi-discrete form will be-

come:
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d?\f—l te d%:% MUN_I R(uN,l) 0
Ma?r?x D
or, more compactly:
(D@ M)u+ R(u)=0 (2.8)
Here u = [ug, ..., un_1]7 is the vector of N solution snapshots equispaced over the

period [0,T], R(u) = [R(u), - .., R(un_1)] is the vector of N residuals, and D is the
N x N Time-Spectral coupling matrix that acts as a spectral time-derivative operator.
Note that this matrix D is dense and skew-symmetric (ie. d/ = —d! and d! = 0).
The Time-Spectral approach therefore couples all snapshots of the solution, requiring
that the entire periodic flow solution be solved simultaneously. Once this system has
been solved, the /N snapshots can be interpolated in a Fourier sense (using FFT) to
obtain the solution at any time in the period [0, 7.

A convenient feature of the Time-Spectral formulation is that all quantities to
be computed (residuals and unknowns) are computed in the time-domain at discrete
snapshots. This means that many subroutines from a conventional time-marching
code can be reused in the implementation of a Time-Spectral solver, as opposed to

other methods that are formulated in the frequency domain.

2.2 Hybridizable Discontinuous Galerkin (HDG)
Finite Element Method

For spatial discretization, the present thesis employs a high-order Hybridizable Discon-
tinuous Galerkin (HDG) method, in contrast to the low-order Finite Volume schemes
seen in earlier work on Time-Spectral methods [42, 50]. HDG methods offer high-order

accuracy and low numerical dissipation with a reduced number of globally-coupled
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degrees of freedom compared to other DG methods, leading to substantial savings in
computation time and memory usage [75]. In this section we provide a brief review of
the formulation of the HDG method, summarizing the approach presented by Nguyen,
Peraire & Cockburn [72, 73, 75].

To illustrate the method, we will consider a time-dependent convection-diffusion

equation as a model problem. This can be written as a system of first-order equations:

q+xVu = 0, in 2 x (0,77,
%+V'(cu+q) = f, in Q x (0,71,
w = gp, onlpx(0,T], (2.9)
(g+cu)-n = gy, onlyx(0,T],

u = up, in Q for t =0.

Here, u is the scalar solution variable, q is its gradient, 2 € R? is the physical domain
with boundary 0Q, f € L*(Q) is a source term, k € L>®(Q) is a positive diffusivity
coefficient, ¢ € (L™®(2))? is a velocity vector field, gp is the Dirichlet boundary con-
dition, gy is the Neumann boundary condition, and ug is the initial condition for w.
Also, L*(D) is the space of square integrable functions on a domain D.

Let 7; be a collection of disjoint elements that partition Q. We denote by 97,
the set {OK : K € T,}. For an element K of the collection 7;, e = 0K NN is a
boundary face if the d — 1 Lebesgue measure of e is nonzero. For two elements K+
and K~ of the collection 75, e = 0KT NOK ~ is the interior face between K+ and K~
if the d — 1 Lebesgue measure of e is nonzero. Let £2 and £ denote the set of interior
and boundary faces, respectively. We denote by &, the union of £ and &7.

Let PP(D) denote the set of polynomials of degree at most p on a domain D.
For any element K of the collection 7; we denote W?(K) = PP(K) and VP(K) =

(PP(K))%. We can now introduce discontinuous finite element spaces:

WP ={weL*Q) : wgeWP(K)VK € Tp},
VP ={v e (L*(Q)" : v|x € VP(K)VK € T,}.
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In addition, we introduce a traced finite element space of special importance to HDG:
M ={pe L¥&) : pl. € PPe),Ve € En}.

We also set Mf(gp) = {u € M : u = PgponTp}, where P denotes the L2-
projection into the space {u|sq Vi € ML}, Note that MF consists of functions which

are continuous inside the faces (or edges) e € &, and discontinuous at their borders.

A few more definitions of notation will aid our description of the HDG method.
For functions w and v in (L?(D))?, we denote (w,v)p = J,w - v. For functions u
and v in L*(D), we denote (u,v)p = [, w if D is a domain in R? and (u,v),, = Jpuv

if D is a domain in R4, We finally introduce

(wv)g, =Y (w)k, Gy, = D (W, (e, = (im),

KeT;, KeT, e€l},

for functions w,v defined on 7, ¢, p defined on 87, and u,n defined on &,.

Now that we have introduced all the function spaces and notation, we can present
the HDG form of the governing equations (Equation 3.8). For the sake of illustration,
we will discretize the time derivative using a Backward-Euler scheme. The HDG

method then seeks an approximation (gf, uf, Af) € VP x WP x M?P(gp) such that:

. ("i_lq§7 v)Th - (’u’za V- v)Th + <)‘§7 v n>37;1 = 0, ;
—~k -
A_tlc (uz’w)'ﬁz - (cui + q/’i,VUJ)Th + <(C’U,h + a}li) ’ n7w>87'h = (f1 w)Th + 'M (U/;Cl 17w)7h )
<(@§+¢7’;§)-n7u> = (9N M1y »
T
(2.10)

for all (v, w, ) € VP x WP x MP(0), where the numerical fluz is defined by:
iy +GF = cUf + qf +7(uk — N)n, on 9K.

Here we have denoted uf = uy(t¥) and gf = g4(t*), and u? is the L? projection of g

into W} Note that 7 is the so-called stabilization parameter, chosen as 7 = llen|+k/¢
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for some characteristic length scale £.

While this example has used a Backward-Euler scheme, many other discretization
methods can be applied to approximate the time derivative term. For example, higher-
order Backward Differentiation Formula (BDF) methods, implicit Runge-Kutta meth-
ods, or the Time-Spectral method that is employed in the present thesis. We also note
that while we have illustrated the HDG formulation for a linear convection-diffusion
problem, extension of the method to systems of nonlinear conservation laws is rather
straightforward, and thus omitted here. Applications of the HDG method can be found
in prior work on nonlinear convection-diffusion problems [73], the compressible Euler
and Navier-Stokes equations [81], and the Reynolds-Averaged Navier-Stokes equations

[69].

2.3 Combined Formulation of a Time-Spectral HDG
Method

We now describe the combination of a Time-Spectral discretization in time (Section
2.1) with an HDG discretization in space (Section 2.2), forming the Time-Spectral
HDG method which is the main subject of this thesis. Consider a general scalar
conservation law for a time-periodic problem:

ou

5 TV F@—Vu) =/ in Qx[0,T) (2.11)

where u is the primal solution variable, F = F(u,—Vu) are the nonlinear fluxes,
f € L*(Q) is a source term, T € R is the fundamental time period, and 2 € R? is the

spatial domain.

The corresponding system of first-order equations will be:

§+Vu = 0, inQx(0,7],

(2.12)
WV P = f, wmox07T]
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and we can apply the Time-Spectral method to approximate the time-derivative term:

g+Vu = 0, in €,

(2.13)
Du+V-F(u,q) = f, in{,

where the vector u = [ug, ..., uy_1]7 contains N equispaced snapshots of the solution
over the period [0,T], ¢ = [@, . .., gn—1]", and F(u, q) = [F(uo, ), . . ., F(un1,qn-1)]%
The operator D is the Time-Spectral coupling matrix of constants d/ (Equations 2.6

& 2.7).

The Time-Spectral HDG method involves extended discontinuous finite element

spaces:

Wi ={w e (L2(Q)" : wlx € WP(K))" VK € 7.},
n={v e (LQ)" : vl € (VI(K)N VK € T},
M} = {n e (L3E)" : pl. € (PP)Y, Ve € £4).
and we also set M} (gp) = {p € M} : p=Pgp on Tp}.

The Time-Spectral HDG method then seeks an approximation (qy,, ws, Uup) € QF x
W, x M} (gp) such that

(th U)Th - (u'ha \ ,U)Th + <ﬁh7 v n>8’Th = 0,
(Dus, w)g, = (Flun, 1), V), + (Flun,qn, i) -myw) = (f,w)s,
h
<F(uh7 dh, Uh) ', H>87h\3ﬂ + <Bh7 84 a0 =
(2.14)
for all (v,w, u) € Q) x WF x MP(0), where the numerical flux is defined:
F(up, qu, tip) - n = F(up,q,) - n+7(up —u,), on OK. (2.15)

and the boundary flux term ﬁh is defined on the domain boundaries, depending on

the particular boundary conditions employed (see [81]).

Equations 2.14 and 2.15 define the nonlinear system of equations for the Time-
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Spectral HDG solution of the governing conservation law, on the spatial domain and
time period specified. Solving these equations involves a Newton-Raphson procedure,
essentially the same as the procedure used in the HDG solution of a steady nonlinear
problem (73, 81]. To briefly summarize, after linearizing the system of equations, one

will obtain a matrix system of the form:

A B E 5Q H
C D L sU | =| F (2.16)
M N P 5T G

where (6QQ, 06U, § U ) are the Newton update vectors associated with the Time-Spectral
HDG solution quantities (gx, ws, Us), respectively. As in previous applications of the
HDG method, we can now exploit the block diagonal structure of the block [A B; C D]
and apply static condensation to form a much smaller system of equations solely for

the global degrees of freedom uy:
K§U = F (2.17)

where the form of K and F are as presented in [81]. Finally, after solving the global sys-
tem of equations (Eq. 2.17), the local quantities u;, and g, can be obtained efficiently

in a parallel fashion over all elements.

An important feature of the HDG method is that the global matrix K is sparse and
block-structured, with each dense block corresponding to the trace degrees of freedom
on a particular face of the spatial mesh. For a Time-Spectral HDG discretization with
spatial polynomial order p, number of conserved quantities m, total number of faces ny,
and number of snapshots N, each matrix block will be of size (p+ 1)mN x (p+1)mN,
and the overall matrix K will be of size (p+1)mNny x (p+1)mNn;. Block row i of the
matrix will contain dense blocks for face ¢ and for each of the faces that are adjacent
to face 1. Adjacency is defined as follows: a face is adjacent to an element K if it is

on the boundary K of element K'; and two faces are adjacent to each other if they
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are adjacent to the same element [87]. For example, in a two-dimensional triangular
mesh, block-row i of the matrix will contain up to 5 dense blocks, corresponding to
the face 7 and up to 4 adjacent faces (exactly 4 if face i is not a boundary face). This
sparsity pattern is illustrated schematically in Figure 2-1. Note that generalizing this
illustration to N > 1 snapshots will increase the size of each matrix block by a factor
N, but will not change the overall block structure shown. Also, the global matrix K
for a mesh with a larger number of elements will be much more sparse. For a two-
dimensional triangular mesh, no block-row will contain more than 5 dense blocks, but
the overall matrix will have a size corresponding to ns x ny blocks, where n; is the

total number of faces in the mesh.
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Figure 2-1: Schematic illustration of the sparsity pattern of HDG global matrix K, for
a scalar problem with NV = 1 snapshot on a simple p = 2 mesh (left) with 2 elements
and 5 faces. Trace degrees of freedom are defined at the nodes depicted on each face.

Note that the Time-Spectral HDG method with N snapshots will yield a linear
system which is N times larger than the linear system of the BDF-HDG method.
However, while the BDF-HDG linear system would need to be solved repeatedly for
a large number of timesteps (Ngpr), we only need to solve the Time-Spectral HDG
system once to obtain the numerical solution over the whole time span [0,7]. In many
cases the periodic unsteadiness of the flow will be spectrally simple enough to allow
N < Nppr, and it is these cases where the Time Spectral HDG method will have its

greatest advantage.
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2.4 Solution Techniques for Time-Spectral HDG

Equations

The Time-Spectral HDG method yields a system of steady nonlinear equations that
must be solved numerically. The simplest approach is to choose an initial guess for the
solution at all N snapshots, and then apply a Newton-Raphson method to iteratively
solve the nonlinear problem. In practice, complications can arise when the initial guess
is too far from the numerical solution and Newton iteration fails to converge. In such

cases, there are two strategies that can aid convergence towards a solution.

The first strategy is to use time-marching in a pseudo-time direction in order to
more gradually approach a solution. This kind of relaxation is analogous to pseudo-
time marching strategies often used to solve steady flow problems, and has even been
used for solving flow equations in the frequency domain (e.g. [79]). In the present
context, we begin with the Time-Spectral HDG equations (Equation 2.14) and add a

new time-derivative term Ou, /0% in a “pseudo-time” direction ¢:
(qhvv)'ﬁl - (u’h7 V. v)'Th + <ah7v ) n’>8Th = 07
- (F(uh7 qh)1vw)Th + <F(uh: qhyah) ‘N, w>57' = (fv ’LU)'E
h

<ﬁ(uh, Gh. Up) - n’”>37h\an + <1§h,ﬂ>69 =0
(2.18)

<% + Duh,w>

Ty,

An initial condition at { = 0 may be specified as the steady-state solution for the
problem, assigned to all N snapshots. Integrating the equations forward in pseudo-
time, one will ultimately reach a state where du;, /¢ ~ 0, and this will be the numerical
solution to the original problem. Alternatively, one can take a limited number of steps
forward in pseudo-time, and use the resulting solution as an improved initial guess for
Newton iteration of the original problem. Note that the pseudo-time variation of the
solution is not physical and does not need to be accurately resolved — the only goal
here is to reach a state where du,/0t ~ 0, and to do so as rapidly as possible. For

this purpose, highly stable implicit time-marching schemes such as Backward Euler
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are a very appropriate choice, and may be used with rapidly growing pseudo-timestep

sizes.

A second strategy is to employ continuation in the number of snapshots N, and this
may be a more attractive option in many cases. Beginning with an initial guess (such
as the steady-state solution), a series of Time-Spectral HDG problems may be solved
with a successively larger number of snapshots. At each stage, the solution for the
previous N is interpolated in time onto the new set of N’ snapshots as an initial guess
for Newton iteration. An advantage of this approach is that the problem solved at
each stage is substantially smaller than the final version of the problem, since problem
size scales with N. By contrast, in the pseudo-time-marching approach each step is as
expensive as the final problem. Another advantage of the N-continuation approach is
that the solution at each stage is a valid periodic solution of the problem, limited to
a subset of the total number of frequencies that appear in a converged solution. If a
user’s output of interest pertains to a phenomenon occurring at a low frequency, such
an output may converge with N more rapidly than the overall solution, allowing the
user to save a potentially large amount of computational effort by avoiding larger N.
In fact, in Chapter 4 of this thesis we will see examples where such early convergence

occurs for blade loading quantities in rotor/stator flow simulations.

In this thesis, the N-continuation strategy is employed for all Time-Spectral HDG
simulations, and it has been found sufficiently robust for the range of flow problems

examined herein.

2.5 Demonstrations of the Time-Spectral HDG method

This section serves to demonstrate the convergence properties of the Time-Spectral
HDG method, through two examples. First, a linear convection problem on a spatially
periodic domain, and then viscous compressible flow over a pitching airfoil. These

results are as reported by Chaurasia et al. 2013 [14].
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2.5.1 Convection on a Periodic Domain
Governing Equation

For our first demonstration of the Time-Spectral HDG method, we solve a time-
periodic convection problem in one and two dimensions. A prescribed initial condition
will be convected through a domain with spatially periodic boundary conditions, such
that the solution wraps around and returns to where it began, making the exact

solution of this problem periodic in time. The governing equation can be written:

ou

E%‘V'(CU) =0 in QX(O,T]
w = 0, onTpx(0,T] (2.19)
u = U, inQfort=0

where Q € R? is the spatial domain, T’ € R is the fundamental period, ¢ € (L®(2))¢ is
the convection velocity field, I'p is a Dirichlet boundary (for the 2D case), and ug is the
initial condition of the solution u. In the one-dimensional case, we choose a convection
velocity of ¢ = 1 and a unit domain 2 = [0, 1] with periodic boundary conditions on
the left and right, such that the fundamental period of the solution is 7" = 1. The
initial condition is chosen to be a Gaussian u(z,0) = exp[—200(z — 0.5)?)]. In the
two-dimensional case, we choose a convection velocity of ¢ = (1,0) and a unit square
domain Q = [0,1] x [0, 1] with periodic boundary conditions on the left and right,
such that the fundamental period of the solution is 7" = 1. For the initial condition we
choose a Gaussian function u(x,0) = exp[—200((z—0.5)2+ (y—0.5)?))]. Homogeneous
Dirichlet boundary conditions (¢ = 0) are imposed on the top and bottom boundaries
of the square domain (T'p), and spatially periodic boundary conditions are imposed
on the left and right boundaries.

Note that in this time-periodic convection problem, there is a prescribed initial
condition (t = 0 solution in the periodic cycle). This contrasts to problems such as
pitching airfoil flows, where the ¢ = 0 solution is not known a priori. In cases where

an initial condition is known and required to be prescribed, it is necessary to eliminate
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the ¢t = 0 solution snapshot from the Time-Spectral HDG linear system, reducing by

one the number of snapshots to be solved and resulting in an augmented source term.

1D Results

We first present results from the solution of a one-dimensional version of the time-
periodic convection problem described above. High order elements with p = 4 polyno-
mials were used. Figure 2-2 shows that we attain the expected exponential convergence
of our Time-Spectral method, as measured in the space-time L?-norm of solution error
relative to the known exact solution. Further, this result demonstrates the very small
number of snapshots required to fully resolve the solution in time, with only N = 15
snapshots (7 Fourier modes) required to fully resolve the solution on the finest grid
(20 p = 4 high-order elements). Note the behavior of the space-time solution error
as the grid is refined — this shows that the total accuracy of the solution is limited
by the accuracy of the spatial discretization. With the high-order HDG method, grid

refinement increases solution accuracy more efficiently than for low-order methods.

2D Results

We next present results from the application of our Time-Spectral HDG method to a
time-periodic convection problem in two dimensions (as defined in Section 2.5.1). Fig-
ure 2-3 shows a few representative snapshots of the time-periodic solution, as computed
using implicit time-marching (Backward Euler with 200 timesteps per period) and the
Time-Spectral HDG method (with 21 snapshots, or 10 Fourier modes), both on the
same spatial grid (128 p = 3 high-order elements). These plots visually illustrate the
strong numerical dissipation that arises from using low-order implicit time-marching
methods without sufficiently small timestep sizes, in contrast to the very high solution
accuracy that can be obtained with a much smaller number of Fourier modes by a
Time-Spectral method. In this example, 200 timesteps of Backward Euler produced
a first-period solution that is visibly much poorer than a Time-Spectral solution with

only 21 snapshots. While most practical time-marching codes would employ higher-
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Figure 2-2: Convergence of the Time-Spectral HDG method for a 1D time-periodic
convection problem, measured by the L?-norm of solution error in both space and
time.

order time-marching schemes than Backward Euler, this example simply serves to
illustrate the point that a Time-Spectral solution is more naturally suited to solving

time-periodic problems.

Figure 2-4 quantifies the convergence properties of our Time-Spectral HDG method
in this 2D convection application, showing that we attain the expected exponential
convergence in the space-time L? error norm. Here we also show a comparison of the
convergence behavior for high-order spatial grids with the same number of elements
but different polynomial orders p. Increasing p offers a convenient and efficient way
to decrease solution error. Here we see an illustration of both the spatial accuracy
advantages of the high-order HDG method, and the temporal accuracy attainable with
the Time-Spectral method.
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At =T/200

Time-Spectral
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Figure 2-3: Solution snapshots for a 2D time-periodic convection problem, contrasting
the behavior of implicit Backward Euler time-marching with 200 timesteps per period
(upper plots) against the present work’s Time-Spectral method with only N = 21
snapshots (10 harmonic modes) (lower plots).

2.5.2 Viscous Flow over a Pitching Airfoil

Here we demonstrate the performance of the Time-Spectral HDG method in a non-
linear setting by solving the periodic flow over a pitching airfoil at Re = 1000.
Problem Description

The airfoil has a symmetric NACA 0012 profile, and moves with an oscillatory vertical

translation and angle of attack defined by (in nondimensional terms):
y(t) = Acos(2nt/T), a(t) = Bsin(2nt/T). (2.20)

Parameters chosen for this example are: period T = 5, heaving amplitude A = 0.125,
and pitch amplitude B = 5°. These parameters correspond to a Strouhal number
of St = 2fA/U = 0.05, where f = 1/T is the oscillation frequency, and U = 1 is
the freestream velocity. The Reynolds number of the flow is Re = 1000 and the in-
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L2-norm of space-time solution error

Figure 2-4: Convergence of the Time-Spectral HDG method for 2D time-periodic
convection problem, measured by the L2-norm of solution error in both space and
time.

flow Mach number is M, = 0.2. The governing equations for this problem are the
laminar compressible Navier-Stokes equations, incorporating an Arbitrary Lagrangian-
Eulerian (ALE)[83] formulation to account for mesh motion. The computational do-

main is discretized by a high-order C-mesh with 560 elements, shown in Figure 2-5.

Computational Results

Flow around a pitching airfoil was solved using the Time-Spectral HDG method with
several different numbers of snapshots N, and on meshes with three different spatial
orders (p = 3,4,5). To assess the accuracy of the Time-Spectral HDG method in time,
solutions were also obtained using an HDG method with a Diagonally Implicit Runge-
Kutta (DIRK) time-marching scheme [1, 81]. Time-marched solutions obtained by a
3-stage, 3'9-order DIRK scheme with a very small timestep size (At = T'/200) were
used as “truth” solutions for comparison with the Time-Spectral results.

Several interesting observations follow from the results of these computations. First
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Figure 2-5: High-order mesh for pitching airfoil problem.

of all, Figure 2-6 illustrates the effects of initial transient flow behavior on time-
marched and Time-Spectral solutions. Shown here through the lift coefficient time-
series, a fully resolved DIRK(3,3) time-marched solution undergoes an initial transient
flow behavior that takes at least 3 full oscillation periods to subside. This behavior
is not due to numerical inaccuracy — rather, it is the physical behavior of the flow
following the necessarily imperfect initial condition prescribed for the flow at the
beginning of time-marching. The result is that 3 full periods of time-integration (300
or 600 timesteps in the example shown) are required before the computed flow can
reach a repeating periodic state. In contrast, the fully resolved Time-Spectral solution
shown in this figure completely avoids the initial transient behavior of the flow. The
Time-Spectral method solves the entire periodic flow state simultaneously. The ability
to avoid the cost of resolving undesired initial transient behavior is a key advantage

of the Time-Spectral method.

The next observation is that the Time-Spectral HDG solution converges very

rapidly to a fully time-resolved solution. For example, Figure 2-7 shows the airfoil
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Figure 2-6: The effect of undesired initial transient behavior is evident in the lift
coefficient Cp(t) computed from a fully resolved DIRK(3,3) time-marched solution
(red), compared with a fully resolved Time-Spectral solution (black). In this case, the
time-marched solution must be integrated for 3 full periods (300 or 600 timesteps)
before the initial transient gives way to a periodic flow state.

lift coefficient time-series computed by the Time-Spectral HDG method with several
different numbers of snapshots, N. Here we see that with only N = 5 snapshots (cor-
responding to just 2 harmonic modes), the lift coefficient time-series is surprisingly
close to the fully resolved solution. With N = 11 snapshots it is even closer, and at
N = 21 snapshots we can no longer see the difference visually.

For another perspective, Figure 2-8 uses the computed flow-fields to illustrate
convergence of the Time-Spectral HDG method. Here we show the flow-field at a
few representative snapshots in time, as computed by a Time-Spectral HDG method
with N = 5 snapshots, a Time-Spectral HDG method with N = 27 snapshots, and a
highly resolved time-marched HDG solution serving as a “truth” reference (computed
using DIRK(3,3) with timestep At = T'/200 as previously mentioned). The flow-field
from the N = 5 Time-Spectral solution is clearly under-resolved in time, smearing

out the wake region of the flow. However, since the flow near the airfoil appears well-
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Figure 2-7: Rapid convergence of the Time-Spectral HDG solution to the pitching
airfoil problem is seen in the lift coefficient Cy(t), shown here for different numbers of
snapshots, N.

resolved, the airfoil lift coefficient (Figure 2-7) can be predicted more accurately than
one might expect. At N = 27 snapshots, the flow field is almost indistinguishable
from the time-marched solution on the right.

To quantify the convergence of the Time-Spectral HDG method, Figure 2-9 presents
the L2-norm of the error in the lift coefficient timeseries across a range of Time-Spectral
HDG solutions with different numbers of snapshots N and different spatial orders D.
For each spatial order p, the error norm is computed with respect to a very highly
resolved time-marched solution on a p = 5 mesh, obtained using the 3-stage, 3"d-order
DIRK scheme mentioned previously. This plot shows the exponential convergence in
N that we expect of the Time-Spectral method, as we observed in the convection
problems presented earlier in this paper. The different curves for each spatial order
p illustrate the high-order accuracy of the HDG method, the ease with which we can

obtain a more accurate solution on the same mesh, and the large gains in accuracy
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Figure 2-8: Snapshots of the periodic flow solution for our pitching airfoil problem,
solved by 3 different time discretization schemes: Time-Spectral HDG with N = 5
snapshots; Time-Spectral HDG with N = 27 snapshots; and a very highly resolved
time-marching HDG solution, used as a “truth” reference. The time-marched solution
was obtained by a 3-stage, 3'%-order Diagonally Implicit Runge-Kutta (DIRK) scheme
with 200 timesteps per period over 6 periods of integration.

that can be achieved at higher p.

Finally, we note an interesting point of comparison between the Time-Spectral
HDG method and the DIRK time-marched HDG method. A periodic flow solution
was obtained for the pitching foil problem using a 2-stage, 2"d-order DIRK scheme
with At = T/100 over 6 periods on a p = 5 high-order mesh. Measuring solution
error with the same metric as in Figure 2-9, the error norm was found to be 0.0036.
Referring to Figure 2-9, we find that the Time-Spectral HDG solution with N = 23
snapshots has an error no greater than the DIRK(2,2) solution. That is, for this
demonstration problem, N = 23 snapshots are sufficient to predict airfoil loading

with the same accuracy as 600 timesteps of a 2-stage 2"d-order Diagonally Implicit
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Runge-Kutta time-marching scheme.

In terms of computation time, in the implementation used in the present thesis,
the N = 23 Time-Spectral result was obtained in approximately 4 x fewer CPU hours,
compared to the DIRK(2,2) time-marching result. This example illustrates the kind
of efficiency advantages that may be obtained by employing a Time-Spectral approach

rather than time-marching.

—_
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Figure 2-9: Spectral convergence of computed airfoil lift coefficient Cr(t) using the
Time-Spectral HDG method with an increasing number of snapshots N. The 3 curves
represent different spatial polynomial orders p on the same grid, highlighting the high-
order accuracy of our method. At lower spatial orders (p), we see that fewer snapshots
N are required to fully resolve the solution in time.
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2.6 Summary: Advantages of Time-Spectral HDG

We conclude this chapter by summarizing key advantages of the Time-Spectral HDG

method for periodic flow problems:

1.

High-order accuracy in space. The HDG spatial discretization provides a
higher order of accuracy than the low-order Finite Volume methods commonly
in use today. This leads to reduced numerical dissipation, and in many cases

enables a higher level of solution accuracy for a lower computational cost.

. Fewer globally-coupled degrees of freedom than other DG methods.

This property of HDG is particularly attractive for Time-Spectral applications,
since the system of equations is /N times larger and thus it is even more important

to minimize the size of the global system.

Spectral accuracy in time. Time-marching methods can require hundreds of
timesteps before an accurate periodic flow state is reached. The Time-Spectral
method has the potential to achieve the same accuracy with only a handful of

Fourier modes, realizing substantial savings in computation time.

. No need to resolve transient behavior. In contrast to time-marching meth-

ods, a Time-Spectral approach obviates the need to accurately resolve transient

behavior of the flow during start-up.

. A natural framework for treating boundary conditions. This property of

HDQG facilitates the formulation of a sliding mesh interface coupling technique,

essential for turbomachinery problems.

A key challenge of the method is the large size of the system of equations, since the

entire space-time solution with N snapshots must be solved simultaneously. However,

the results in this thesis will show relevant examples where these challenges may be

overcome, allowing Time-Spectral HDG to deliver high-order accurate solutions of

periodic flow problems for a computational cost that is competitive with conventional

methods.
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Chapter 3

High-Order Sliding Interface
Coupling Method for HDG

This chapter introduces a technique for coupling the solutions on two distinct sub-
domains which are connected by a sliding interface boundary. This technique is de-
veloped in the specific context of the Hybridizable Discontinuous Galerkin (HDG)
method [72, 73, 75], but may also prove applicable to other methods of spatial dis-
cretization. This chapter first presents the formulation of a sliding interface coupling
method for HDG (Section 3.1), then provides results for static and sliding grid prob-
lems to demonstrate performance characteristics of the coupling method (Section 3.2).
Finally, an additional anti-aliasing filter is introduced which has proven important for

Time-Spectral computations (Section 3.3)

3.1 Interface Coupling Formulation

Background

A sliding interface coupling technique is required for simulations of flow through mul-
tiple blade rows that are moving relative to one another. Sliding mesh interfaces have
been treated in many different ways for different numerical methods, such as overlaid

grids in Finite Difference [17], mortar methods in conforming Finite Elements [65] and
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Discontinuous Galerkin (DG) methods [12], and mortar-free DG methods [39]. Mortar
methods involve adding an intermediary trace element to couple the solutions on either
side of the interface, avoiding any problems with nonconforming meshes. Discontinu-
ous Galerkin methods, owing to the discontinuous nature of their discretization, are
capable of performing such a coupling without a mortar element at the cost of greater
implementation complexity (for example, to handle the evaluation of integrals along
the interface geometry with an arbitrary number of hanging nodes). In the HDG set-
ting a mortar element approach is very natural and simpler to implement, and for these
reasons is selected for development in the present thesis. The approach bears some
resemblance to the Hybridized Multiscale Discontinuous Galerkin Method (HMDG)
by Nguyen et al. [78], though application to sliding meshes requires a more general

formulation.

Formulation

\ N
LT
v \

\u./\ N\

/ I\

’fbl A ﬁg

Figure 3-1: Coupling variables for a high-order interface coupling technique. A mortar
variable ) is defined on the interface I, along which the two subdomains Q; and Q,
are permitted to slide (vertically, in this illustration).

Figure 3-1 schematically illustrates the type of problem that requires a sliding

interface coupling. A rotor/stator flow is an example of such a problem, and multi-

52



row turbomachinery flows are simple extensions of this base problem. Shown in the
figure are two subdomains ©; and ; with independent triangulations that do not
necessarily conform at their shared sliding interface. Our goal is to couple the HDG

solution in €2; to the HDG solution in €2,.

Let PP(D) denote the set of polynomials of degree at most p on a domain D. For
any element K of the collection 7, we denote W?(K) = (PP(K))™ and V?(K) =
(PP(K))™*4, where m is the number of conserved quantities and d is the number of
spatial dimensions. Also define MP(e) = (PP(e))™ for any edge in a set of edges
En, and let £y and &y be the complete set of faces in triangulations 7y and 7py of
subdomains §; and s, respectively. The interface I' will be discretized by a set of
edges denoted I'j,. Note that the sets of edges &,y and &y are not limited to those
edges coinciding with the interface T'; rather, these are the complete sets of edges on

the triangulation of each respective subdomain.

We can now introduce discontinuous finite element spaces on each subdomain. On

subdomain ;, we have approximation spaces for (w1, gn1, un1) as follows:

Wi ={w e (L*()" : w|x € WP(K) VK € Tui},
Vi = {v e (LH(Q))™? : v|x € V' (K) VK € Tu},

M = {p e (L*(En))™ : ule € MP(e),Ve € Ep}.

and on subdomain Q5 for (upz, gro, Una):

W2 = {w € (L*()" :w|lxk € WP(K) VK € Tjs},
V2 = {v € (LA(Q:))™ : v|g € VP(K) VK € Tra},
MP2 = {p € (L*(&Ew))™ : pl. € M™(e),Ve € Ena}.

Finally, an additional approximation space on the d — 1 dimensional interface I" for

the mortar variable Ap:

NP = {v e (LA)" : vl € MP (), Ve € T} (3.1)
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The interface (or mortar) variable A, belongs to this space N »*, and has polyno-
mial degree py on each face of the interface I'y. This polynomial order is not necessarily
the same as the polynomial degree of the solutions on the left and right (p1 and py).
Each mortar element is discretized using Chebyshev points, and is associated with test

functions v in the space NP

We can now proceed to describe the HDG equations for two subdomains coupled
through an interface I'y. The system of equations consists of a separate set of HDG
equations from each subdomain, taken from Section 2.2 and slightly modified by a
coupling term with A,. This coupling term implements a Dirichlet boundary condition
on the interface, coupling each subdomain’s solution to the mortar variable An. In
addition to these sets of equations on each subdomain, a final set of equations is

defined to enforce flux continuity across the interface T',.

The HDG system of equations for two coupled subdomains is thus as follows:

(@n,v1)7, — (up, V- v1)7,, + (Un1, vy - n1>8’2’h] = 0,
ou -~ ~
M a0y — (F (%1, qr1), Vwy) g, + <F(Uh1>Qh17Uh1) : nl,w1> = (fi,w1)z,
ot T 8T,

F\ ) 7/\ ' ’ > <-§ ) > - Aa =0
< (Wn1, @ar, Un1) - Mg, g aThl\aQ+ myb) (An, p1)p,

(G2, v2) 1, — (W2, V - 02) 75, + (Bnz, 02 - Ma) oy = 0,
ou -~ -
(ﬁ,’wz) — (F(un2, qn2), Vws)z,, + <F(uh27Qh2,uh2) ' ng,w2> = (fo,w2)7,

Tha 9Tha

<F(uh27Qh27ah2) : n2’“2>af \60 + <th,uz>m — (An, H2>Fh =0
h2

<(ﬁ1(uhlaqh17Ah) ‘ng + ﬁz(’uhz,qhza/\h) ' nz) , V>F =0

h

(3.2)
for all:

(V1, w1, 1, V2, Wa, po, ) € QB x W x MEL(0) x Q% x WF2 x MP2(0) x NP

The boundary flux terms B, and By, are defined according to the boundary

conditions chosen on each subdomain, with homogeneous Dirichlet boundary condi-
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tions applied on the boundaries coinciding with I";. The numerical flux at the sliding

interface is defined:
ﬁl(uhla gni, An) 1y = Fi(un1,qp1) - M1+ T(Upt — Ap) (3.3)

ﬁZ(“h?y Qha; An) - Mg = Fo(una, grz) - 2 + 7(Up2 — An) (3.4)

with a constant stabilization term 7.

Equations 3.2-3.4 define a set of coupled nonlinear equations which simultaneously
describe the solution on the left subdomain, the right subdomain, and the interface.
These equations are solved by applying a Newton-Raphson procedure, and applying

stalic condensation to the resulting linearized system. Defining the following:

Ry = <ﬁ1(uhlth1aAh) - ny, V>1‘ (3-5)
h

Ry, = <ﬁ2(uh27Qh27)\h> ‘T, V>r (3.6)
h

we ultimately obtain a coupled global matrix system to be solved at each Newton

iteration. This system is of the form:

K, 0 -B sU, —F, + B;A
0 KQ —B, (5[72 = —IF; + BQA (37)
G, G, H,+H, SA —(Ry1 + Ry)

where (6[71,6[/}2,5A) are the Newton update vectors associated with (p1, Upa, Ap)
respectively. Note that (K;,F,) and (Kg, Fs) are the Jacobian matrices and nonlinear
residual vectors arising from linearization of the HDG equations on each subdomain
independently, applying homogeneous Dirichlet boundary conditions at the interface
I'. Also, By, B,, G1, G, H; and H; are coupling matrices which arise from linearization

of the coupled system of equations 3.2.
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3.2 Solution Accuracy for Static and Sliding Grid

Problems

Here we present solutions of problems with sliding interface coupling between subdo-

mains, in order to demonstrate performance characteristics of the method.

3.2.1 Poisson Equation, Static Grid

We begin with a steady Poisson problem on a static grid, to test the performance of

the sliding interface coupling method. The governing equations being solved are:

g+ kVu = 0, in 1 U
Vg = f{, iU (3.8)

U = ¢p, on FD

and in this demonstration we have chosen x = f = 1. Forming a partitioned domain
with 2; and 5, we are able to solve the Poisson problem on a square domain, even
though the meshes of the two subdomains are non-conformal at the interface. An
example solution is presented in Figure 3-2, with polynomial order p = 4 on each
subdomain and polynomial order & = 10 for A\. As shown in Figure 3-3, we observe
optimal convergence of the solution on the partitioned domain with interface coupling,
with the Lo, norm of solution error converging with rate O(h?*1) for three different
values of p.

An important question to ask about the interface coupling technique is: how does
the polynomial order of A affect solution accuracy in the subdomains? Figure 3-4
presents the results of an experiment which addresses this question. The Poisson
problem described above was solved again with several different polynomial orders
p on the same partitioned spatial mesh, first with interface polynomial order k = 6
and then with k = 12. The results with £ = 12 show the expected exponential con-

vergence with p, whereas the £ = 6 case shows that solution accuracy is limited for
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Figure 3-2: Poisson equation solution on partitioned grid with high-order interface.

p > 4. In this case, the polynomial order of the interface variable A is too low to
maintain accurate coupling of the solution across the interface when p > 4. This is
not surprising, as the A on each mortar element is required to accurately represent
a piecewise discontinuous polynomial of order p from the subdomain solution (this
being piecewise discontinuous due to nonconformity between the mortar and subdo-
main discretizations). To represent a piecewise polynomial with degree p, the mortar
variable A must have a higher polynomial degree k > p to ensure a sufficiently rich
approximation space. In the simulations that follow in this thesis, a typical choice will

be p =4 and k = 10.

3.2.2 Viscous Flow over an Airfoil, Sliding Grid

To demonstrate the sliding interface coupling for a nonlinear and unsteady problem

with a sliding grid motion, this subsection presents results for laminar compressible
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Figure 3-3: Convergence of Poisson solution vs. h for various polynomial orders p, with
high-order & = 10 interface. Convergence rates are labelled and match the expected
optimal convergence rate of O(h?*!). Note that no HDG post-processing was applied
here.

flow over a NACA 0006 symmetric airfoil at Re = 2400. The mesh for this prob-
lem consists of two subdomains coupled through a sliding interface, and the outflow
subdomain is sliding with a constant grid velocity. Periodic boundary conditions are
employed between the upper and lower boundaries of each subdomain. Inflow Mach
number is 0.2, and the polynomial order in each subdomain is p = 4. The interface is
discretized with 4 elements of polynomial degree k = 10. Grid motion of the outflow
subdomain is taken into account by an Arbitrary Lagrangian Eulerian (ALE) formu-
lation of the Navier-Stokes equations [83]. The solution is integrated forward in time
using implicit time-marching schemes.

Figure 3-5 presents a snapshot of the flow solution during time-marching. Visually,

the wake behind the NACA airfoil appears to propagate correctly across the interface
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Figure 3-4: Convergence of Poisson solution vs. subdomain polynomial order p, for
two different choices of the interface polynomial order k used for A.

and continues into the outflow domain while keeping its basic character. Measuring
the wake velocity profile at the outflow boundary, we find in Figure 3-6 that the wake
velocity profile converges to the expected result, which was computed without any grid
velocity. In Figure 3-6 we also find that time-marching accuracy is critical for solution
accuracy across sliding interfaces, as we see the results from Backward Euler time-
marching eventually converge towards the steady “truth” solution. This confirms
the correct and accurate functioning of the sliding interface coupling technique for

turbomachinery flow problems.

3.3 Anti-Aliasing Filter

Understanding Aliasing Error

When a sliding interface is used together with a Time-Spectral discretization in time,
aliasing error can be introduced in the transfer of the solution across the interface.

Such aliasing error has also been reported for Time-Spectral Finite Volume simulations
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Figure 3-5: Snapshot of NACA laminar flow problem with vertically sliding outflow
domain (right) and sliding interface coupling. Contours of Mach number.

by Gopinath et al. [41].

Consider a flow problem such as in Figure 3-5. Here we have a stationary sub-
domain on the left, and a vertically sliding subdomain on the right. The wake that
has formed behind the airfoil must be transferred across the interface. Note that the
width of the wake is quite small relative to the total length of the interface.

Flow variables will be steady in time on the left-hand subdomain, but on the right-
hand subdomain each grid point should see a time-varying solution. In fact, nodes at
the sliding interface boundary on the right will see the solution vary in time the same
way as the solution on the left varies in space (y direction), due to the vertical sliding
motion of the right-hand subdomain. However, since the Time-Spectral method is
based on a discrete set of snapshots in time, a node on the right-hand side of the
interface will not see a continuous view of the solution from the left, but rather a
discretely sampled version of the continuous time variation. This discrete sampling

of the time-varying solution across the interface can result in aliasing error if the
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Figure 3-6: Effect of time-marching accuracy on wake profile at outflow boundary, for
flow over a NACA airfoil with sliding outflow subdomain.

spectral content of the transferred solution is too high to be accurately represented on

the given set of discrete time-samples.

To illustrate the issue further, Figure 3-7 shows two examples of a narrow solution
feature and the spectral truncation error arising from approximating this profile with
a finite number of modes K. In this case, we use a Gaussian profile as an example of
a narrow feature, but flow features such as wakes will behave exactly the same way.
In the Figure, we see that as we increase the number of modes used to approximate
the solution, the spectral truncation error decreases, but as the solution feature is
made narrower, more modes are required to reach the same level of accuracy. This
is summarized more generally in Figure 3-8, which shows the number of modes K
required to approximate a Gaussian with a given width BP/w at a certain level of

accuracy (shown on the contours). It turns out that the number of modes required to

61



represent a Gaussian-like solution feature is linearly proportional to the width ratio
BP/w. This will be an important observation that we will refer to in later chapters
when presenting multi-row turbomachinery flow simulations with the Time-Spectral

method.

s Exact, BP/w = 3.6

o
“ranas?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y/BP (or t/T)

- Vs

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
y/BP (or t/T)

Figure 3-7: Example of a narrow solution feature at the interface, and the spectral
truncation error which occurs when approximating with a finite number of Fourier
modes K. Two cases are presented here, based on the ratio of the interface length
(blade pitch) to the feature width: BP/w = 3.6 and BP/w = 16.

Controlling Aliasing via an Anti-Aliasing Filter

Now that we understand the problem of aliasing error, we are ready to present the
solution employed in the present work. An anti-aliasing filter has been implemented,
which combats the fundamental issue of under-sampling in time at the interface by
choosing instead to over-sample for the interface coupling equations.

The operation of the filter can be illustrated as follows. In a Time-Spectral sim-

ulation, all spatial degrees of freedom are expanded N times to represent each of

62



100 T T T T T T T T T
90} / N |
80 A" .

70+ ‘Q.‘-)_

N
60 / b
Ty

. | S logyollellz/[lull) i

25 30 35 40 45 50
BP/w

Figure 3-8: Spectral truncation error for Gaussian wake velocity profiles with different
width ratios BP/w, evaluated with different total numbers of modes K.

the N snapshots in time. Thus, u; becomes up = [ug,...,uN_l]T, Gr becomes
gr = [Go,...,qn-1)T, and @& becomes @y = [do,...,an—1]T in each subdomain (see
Section 2.3). Normally we might expand the interface variable A the same way. How-
ever, in the anti-aliasing filter approach, we expand A to more than N snapshots in
time — let us call it M snapshots, so that XA = [Ag, ..., Ap_1]%.

When M = N, we recover the original Time-Spectral HDG method with sliding
interface, where \; only couples (u, G, Uy ); across the interface. However, when M >
N, our interface coupling equations must be expressed at M > N snapshots in time,
based on (up, Gy, @) defined at only N snapshots. Specifically, with reference to the

previously presented set of HDG equations for coupled subdomains (Equation 3.2):

1. To construct the interface flux continuity equations, we must simply interpolate

the subdomain solutions (up, @i, i ); to the time coordinates of the M snapshots.

2. To construct the Dirichlet boundary condition terms on each subdomain, we
must project the interface variable A, from M to N snapshots, retaining only

the frequencies that are resolved by (un, gn, @) on each side of the interface.
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(This is the anti-aliasing filter.)

Let us define these interpolation and projection operators more carefully. Consider
a time-periodic scalar signal u(t). Let us and un be vectors containing uniform
discrete samples of u(t), where M > N. Introducing Discrete Fourier Transform

operators En and E,y, we have:
UK = ENUN (39)

UL = EMUM (310)

where Uy and Uy, are vectors of N and M complex Fourier coefficients, corresponding
to K = (N —-1)/2 and L = (M — 1)/2 harmonic modes, respectively. Note that
Exn and Ej; are respectively N x N and M x M complex matrices. Defining Iy and
Iiy as N x N and M x M identity matrices, we can now define the projection and

interpolation operators in matrix form:

Pr=Ey [Iv 0| Ey (3.11)
I

Ih=E7 | " | Ex (3.12)
0

Thus, we can now write a Time-Spectral version of the sliding interface equations
(Eq. 3.2) with an anti-aliasing filter as described above. The form of the equations is
largely the same, except for these modifications: Time-Spectral approximation spaces
instead of single-snapshot versions; a Time-Spectral time-derivative term; and appli-
cation of the projection and interpolation operators P, and Z,.

Since the adaptation of Eq. 3.2 to a Time-Spectral problem is fairly straightfor-
ward, we will not rewrite the equations here in full. However, to highlight the changes
that will be made to a sliding Time-Spectral HDG formulation to accommodate an

anti-aliasing filter, let us consider only the Time-Spectral HDG equations associated
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with the nonlinear residuals for 4, and Upe, and the equations enforcing flux conti-
nuity across the interface I'. Let us also use Ry, and Ry to denote the Time-Spectral
HDG nonlinear residuals on each subdomain, with homogeneous Dirichlet boundary
conditions on the interface I'. Now, with the application of our anti-aliasing filter, the

nonlinear residual equations for uy, @y and Ay will become:

Ry — (Pas, p1)y = 0 (3.13)
RﬁQ - <'P)\Ah, ”’2>F = 0 (3.14)

<<ﬁ1(I,\Uh1,I,\CIh1,)\) Ny + ﬁQ(I)\UhQ,I/\Qh% A) : n2> ) V>F = 0 (3-15)

where we note that in the Time-Spectral context, the interface numerical fluxes ﬁl

and F are an assembly of the numerical fluxes computed at all N snapshots in time.

Demonstration

To demonstrate the impact of the anti-aliasing filter on the accuracy of Time-Spectral
HDG calculations with sliding interfaces, consider a rotor/stator flow problem with a
2:1 ratio of stator blades to rotor blades. Examples of this kind of flow problem will
be presented in much more detail in the later chapters, but here we briefly present one
such result for the purpose of illustration.

Figure 3-9 presents the spectrum of total force on the rotor blade, computed several
ways — first using a high-order DIRK(3,3) implicit time-marching HDG scheme, and
then using a Time-Spectral HDG scheme with several different numbers of modes
resolved. The time-marching solution is computed with a very fine time-step so as to
make this an acceptable “truth solution” on the given spatial grid. All calculations
shown here were performed on the same p = 4 high-order spatial mesh.

What we notice from Figure 3-9 is that the truth solution has zero amplitude in the
odd frequencies, whereas the Time-Spectral results have nonzero amplitude in those
odd frequencies. The 2:1 blade count ratio in this problem guarantees that the rotor

force should only contain even frequencies, so these nonzero amplitudes in the odd
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modes are a clear sign of error. Note that the computation presented in Figure 3-9

was performed without an anti-aliasing filter at the interface.

O~1 T T T T T T T T T T

T T
DIRK(3,3)
0.09+ 1 mode 1

| ek | =€
: : : A 2 modes
0.08 - : e Ee § 3 modes |-
4 modes

0.07F 5 modes

§ 0.06 - a vl : : i
g 0,05} 1. _ : - 4
= 0.04
0.03
0.02
0.01

Figure 3-9: Rotor force spectrum for a 2:1 rotor/stator flow problem, solved using
Time-Spectral HDG without an anti-aliasing filter at the sliding interface.

Now let us see how the solution changes when an anti-aliasing filter is added at
the interface. Figure 3-10 presents the rotor force spectrum resulting from a new
computation that includes an anti-aliasing filter at the interface. We immediately see
that the rotor force amplitude at odd frequencies has been cut down to nearly zero, a
property we expected to see in the exact solution. This is clearly an improvement in

the accuracy of solution transfer across the interface.
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Figure 3-10: Rotor force spectrum for a 2:1 rotor/stator flow problem, solved using
Time-Spectral HDG with an anti-aliasing filter at the sliding interface.
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Chapter 4

Turbomachinery Flow Simulations

This chapter presents the results of applying Time-Spectral HDG and the sliding
interface coupling method to turbomachinery flow problems. These flows are modeled
as fully turbulent, and are computed by solving the Reynolds-Averaged Navier-Stokes
(RANS) equations.

We first note some necessary regularizations that were applied to the Spalart-
Allmaras (SA) turbulence model, to aid numerical stability with our high-order finite
element method (Section 4.1). We then present results for a rotor cascade (Section 4.2),
rotor /stator flow (Section 4.3) and three-row compressor (Section 4.4). Interesting
performance characteristics of the new method are highlighted through comparisons of
time-marching with Time-Spectral, and spatially high-order versus low-order (Section
4.5). These comparisons provide a quantitative demonstration of the advantages that

may be derived from a Time-Spectral HDG method for solving turbomachinery flows.
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4.1 Regularization of the Spalart-Allmaras (SA)
Turbulence Model

Background

Industrial turbomachinery flows are most often modeled as fully turbulent, and there
are several different approaches for modeling turbulent flow. The more common ap-
proach is to use the Reynolds-Averaged Navier-Stokes (RANS) equations together with
a closure model for the eddy viscosity & which models the effect of turbulence. Among
closure models, popular choices include the Spalart-Allmaras (SA) one-equation model
[94], the Baldwin-Lomax algebraic turbulence model [5], the & — w model introduced
by Wilcox [109] and the k£ — ¢ model introduced by Jones & Launder [61]. Turbu-
lent flow can also be modeled with greater fidelity by Large Eddy Simulation [89],
but such LES computations are currently considered too expensive for most practical
applications in industry.

In the present thesis, turbulent flow is modeled using the RANS equations with
the SA model. This choice was made due to the popularity of this method in industry
and the relative simplicity of the model compared to the two-equation models. The
HDG method has been applied to solve steady RANS-SA flow problems by Moro et
al. [69], and in this thesis the application is extended to unsteady turbulent flows. As
we will see, this has introduced a need for new regularizations of the SA model.

While developing HDG simulations of unsteady turbulent flow, problems were
encountered where certain parameters of the SA model caused numerical instability.
This has been observed by other researchers solving the RANS-SA equations with
high-order finite element methods, including recent work by Allmaras et al. [2] and
Moro et al. [69]. They found that at the boundary between turbulent and irrotational
regions of the flow (for example, at the edge of the boundary layer), the eddy viscosity
parameter can become negative as it falls away from a high value in the turbulent
region to a near-zero value in the irrotational region. Numerical dissipation in low-

order Finite Volume methods helps to mitigate this problem, but spatially high-order
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accurate methods are much more prone to negative eddy viscosity and oscillations
in these boundary zones, which can lead to numerical instability. For this reason,
Moro et al. and Allmaras et al. both proposed modifications to the SA model to
regularize the eddy viscosity parameter, and in the present thesis a regularization is
also applied. The present work includes regularizations of the modified vorticity S

and the parameter 7 of the SA model.

For the sake of completeness, these regularizations are briefly summarized below.

Regularization of eddy viscosity parameter x

The RANS-SA equations are as follows [2]:

Di .1 e 3 p?
Ft =y ST+ ; [V . ((1/ + I/)VI/) + CbQ(VI/)Q] — Cyt Jw {E} (4.1)
with:
3 ~
- v
He = plt, vy =V fo1, fv1:;<"3f_—cgl, X:;
- v X
S =54+ —=fus, = /20, firo=1— —"—7
+f{,2d2f2 S ] ¥ f2 1+va1
fo=19 [m} , g=TrHeg(r -r), r= S

The first regularization that was applied in the present thesis is a regularization
of the eddy viscosity parameter x, which has a tendency to become negative and
oscillatory in the zone between turbulent flow and irrotational flow (for example, at
the edge of the boundary layer). To prevent such behavior, we replace x with a

regularized version ¥ defined as follows:

Y = x(arctan(by)/m + 1/2) + ¢ (4.2)
b =100 (4.3)
¢=1/2 — arctan(b)/x (4.4)
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This is similar to regularizations presented by Allmaras et al. [2] and Moro et
al. [69], though the functional form of this regularization is slightly different, and we
add further regularization of S and r to the X regularization proposed by Moro et
al.. The particular forms presented in this thesis were chosen so that regularization
can be applied as a single continuous function with continuous gradient, which both
simplifies implementation and helps ensure convergence when the Newton-Raphson
method is applied to solve the RANS-SA equations. However, it is worth noting that
with a careful implementation in the context of the present method, we expect the
regularizations by Allmaras et al. [2] to perform well also.

Figure 4-1 illustrates the form of the function. The regularization ensures that
eddy viscosity never becomes negative. The smooth transition at y = 0 introduces a
small positive eddy viscosity ¢ in that condition, though it should be noted that this
small value is only 0.3% of the molecular viscosity, so its effect on the flow physics can

be expected to be negligible.
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Figure 4-1: Regularization of eddy viscosity parameter, ()

Regularization of modified vorticity S

Another important parameter to regularize is the modified vorticity S, as physical

considerations imply that this should never become negative, though numerically this
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is possible in the unregularized model. Negative modified vorticity can lead to numer-
ical stability issues, as it leads to a negative production of eddy viscosity, which can in
turn lead to negative eddy viscosity and unstable anti-dissipative effects on the flow.

The regularization employed in the present thesis is another single continuous

function, for the same reasons as discussed for ():
S =0.18 + (S + 0.99)(arctan(b(S/S + 0.9)) /7 + 1/2) + ¢S (4.5)

b=100, c=1/2— arctan(b)/w (4.6)

Figure 4-2 illustrates the form of this function.
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Figure 4-2: Regularization of modified vorticity S(S)

Regularization of r parameter

Finally, the » parameter in the SA model is the source of another numerical failure
mode that was observed in unsteady RANS-SA flow experiments with HDG. In the
original description of the SA model [94], it was noted that the r parameter can be
clipped at a value of 10, as the SA model equations raise r to a large power and this

can cause overflow. Moreover, clipping r at a value of 5 or 10 has a negligible impact
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on the other model terms — for example, clipping at r = 5 only has a @(107%) impact
on. Fu.

Rather than simply clipping r, a smooth clipping was implemented to help prevent
problems with Newton-Raphson iteration when solving the overall equations. The

form of this regularization is provided below and plotted in Figure 4-3.

T = Tmax — (Tmax — 7)(arctan(b(5 — r)) /7 +1/2) — ¢ (4.7)
Tmax =9, b=100, c=1/2— arctan(b)/x (4.8)
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Figure 4-3: Regularization of r parameter, 7(r)

Summary

Before the three regularizations described above, HDG simulations of unsteady RANS-
SA turbulent flows were occasionally observed to “blow up” due to the issues discussed.
Since applying these three regularizations to the SA model, numerical stability of the
model terms themselves has not been a problem, and for this reason we have seen that

regularization of the SA model is important for practical use of high-order methods

with the RANS-SA equations.
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4.2 Rotor Cascade Flow

In this section we begin the presentation of a series of turbomachinery flow simulations
to demonstrate the Time-Spectral or Time-Marching HDG method. First, a steady

flow through a single-row rotor cascade.

Geometric and Flow Parameters

The spatial mesh is plotted in Figure 4-4, showing details of the leading edge and the
trailing edge. This is a high-order p = 4 mesh with 12,330 triangles. The boundary
layer is a structured C-mesh, and the outer flow region is an unstructured isotropic
moesh. The rotor blade is a NACA 3507 airfoil, at a stagger angle of 60.8°, and with
blade pitch to chord length ratio 57/18. Periodic boundary conditions are employed
at the top and bottom boundaries of the blade passage to model the entire cascade.
The Reynolds number of the flow relative to the rotor is Re, = 518,000 and the

freestream Mach number is 0.149. At the inlet, the inflow angle is 10° (from axial).

Results and Discussion

Figure 4-5 presents a visualization of the vorticity and pressure fields through this
rotor cascade. The wake and boundary layer are well resolved and do not appear
unduly dissipative due to the numerical method.

To assess the relative efficiency of a high-order HDG method versus a low-order
HDG method (as a proxy for low-order Finite Volume methods), a study was per-
formed to repeat this simulation on a family of similar grids with different resolutions.
These simulations were performed with p = 4 and p = 1, and Figure 4-6 presents
the results in terms of solution accuracy and solution total degree of freedom (DOF)
count.

What we can see is that the higher-order method is much less expensive at moderate
to high levels of solution accuracy, compared to the lower-order method. In the present

implementation of the code, the right-most p = 1 simulation on the plot took 70X
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Figure 4-4: Mesh for rotor blade passage, showing detailed views of leading edge and
trailing edge.

more CPU time than the p = 4 simulation at the same level of accuracy. This is likely
explained by the significant numerical dissipation present in lower-order Finite Volume

methods, which in this case resulted in a dramatic cost advantage for the higher-order

(p =4) HDG method.

4.3 Rotor-Stator Flow

The next flow problem studied here is a rotor/stator flow, with an inlet guide vane
(IGV) row followed by a rotor row.
Geometry and Flow Parameters

For this example, the blade pitch of the rotor row has been reduced by half, so that
the blade pitch to chord length ratio is now 57/36. The geometry and motion of

the rotor row is otherwise the same as in the previous example. The reduction in
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35

Figure 4-5: High-order (p = 4) HDG solution of turbulent flow through a rotor cascade
at Re = 518k. Flow visualizations above are vorticity (left) and pressure (right).

blade pitch was chosen to make this example better suited for testing with the Time-
Spectral HDG method — as shown in Figure 3-8, the number of modes required to
resolve a wake transfer across an interface is directly proportional to the ratio of the
blade pitch to wake width, BP/w. So reducing the blade pitch by a factor of 2 allows
the Time-Spectral HDG solution to achieve a similar level of accuracy with 2 times
fewer modes, which in turn allows us to compute with a larger number of modes than
would otherwise fit within the computational memory constraint.

The IGV row has the same blade pitch as the rotor row. The blades are NACA
5507 airfoils with 7.4° stagger angle, chord length (7/8)crotor, and they are vertically
mirrored.

The IGV blade passage mesh has 1,011 p = 3 triangles, with a mesh design similar
to the design of the rotor mesh in the previous example, featuring a C-mesh boundary
layer region and unstructured farfield. The rotor blade passage mesh contains 1,661
p = 3 triangles. Rotor speed is the same as in the previous rotor cascade case.

The inflow parameters here are similar to the rotor cascade case; but the rotor
Reynolds number was dropped from 518,000 to 259,000 to help widen the wake and
further improve BP/w, allowing more frequencies to be resolved within the compu-

tational memory constraints arising from our shared memory implementation of the
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Figure 4-6: Accuracy vs. cost characteristics for rotor flow simulations, comparing
low order (p = 1) and high order (p = 4) in space. The metric used here for cost is the
total number of degrees of freedom in the solution (u,qy). Accuracy is measured by
the error in the computed z-component of force on the rotor, with respect to a finely
resolved “truth” solution on a p = 5 grid with 18,175,248 solution degrees of freedom,
which is approximately twice the DOF of the finest p = 4 result plotted here.

Time-Spectral method. As for the other inlet parameters, the flow angle is 0° (from

axial), and the inlet Mach number is 0.149.

Results and Discussion

Figure 4-7 presents a set of snapshots of the flow solution at 4 points in the blade-
passing period. The flow is visualized by vorticity. On the left side of the Figure are
results from an implicit time-marching. HDG simulation, using high-order DIRK(3,3)
time-marching with a very fine timestep size (At = 7/100). IGV wake propagation
across the interface appears to be well resolved, with no noticable errors appearing
there due to interface coupling.

On the right side of the Figure is a set of comparable results computed using the

Time-Spectral HDG method rather than time-marching. The Time-Spectral computa-
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tion used K = 9 modes on both blade rows. The flow visualizations are visually nearly
identical between time-marching and Time-Spectral, including resolution of the IGV
wake transferring across the interface, and the rotor wake propagating downstream.
Note that the mesh here is rather coarse, and certainly a lot more coarse than the
mesh used to solve the rotor cascade problem in the previous section.

As another point of comparison between the Time-Marching and Time-Spectral
solutions, Figure 4-8 and 4-9 present a comparison of the total rotor force timeseries,
both in the time domain and the frequency domain. Since the time-marching re-
sult was computed with a high-order accurate DIRK(3,3) time-marching scheme, and
with rather small time-step size (At = T/100), we have assumed here that the time-
marching result is a “truth” result on the given spatial mesh. The Time-Spectral
results are then compared against this for accuracy.

In Figure 4-8 we see that the Time-Spectral rotor forces converge to the time-
marching truth values rather quickly. With only 5 modes the solution is already
looking close in a time-domain sense.

However, what is often of interest to an engineer is the amplitude of a single mode,
such as the first harmonic (for reasons associated with structural analysis). Turning
to Figure 4-9, we see that the Time-Spectral forces do converge to the Time-Marching
results quite rapidly. Of particular note, the solution with only K = 3 modes is already
within 5% of the correct value for the 1st harmonic of rotor force. If this were the
output of interest for an engineer, then a Time-Spectral HDG approach could yield
cost savings over time-marching that are even more dramatic than what was seen in

the pitching airfoil example in Chapter 2.
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4.4 Three-Row Compressor Flow

In this example we compute flow through a three-row compressor, with an IGV row
followed by a rotor row and an additional stator row. These computations are per-
formed using a DIRK(3,3) high-order implicit time-marching scheme combined with
the HDG method and sliding interface described in this thesis. The flow is computed
on three different meshes, with the intent to directly compare the accuracy obtained

with a low-order method in space (p = 1) versus a high-order method (p = 4).

Geometry, Flow and Time-Marching Parameters

Here, IGV and rotor blades are the same as in the previous rotor /stator flow example,
however the blade pitch to chord length ratio for the rotor is now back to 57/18 (as
in the original rotor cascade problem), and the blade pitch of the IGV is set to match.
The additional stator row is a NACA 5507 airfoil with —11.3° stagger angle, vertically
mirrored, and with the same chord length as the IGV. The blade pitch of the stator
is the same as the other two blade rows. The rotor Reynolds number is 518,000, the
inlet Mach number is 0.149, and the inlet flow angle is 0° (from axial).

There are three different meshes considered in this analysis. The first is a low-order
(p = 1) mesh, with 5,486+ 10,394+ 13,201 = 29, 081 triangles in total. The second is
a high-order (p = 4) mesh, with 1,091+2,090+2, 328 = 5, 509 triangles total. Finally,
there is a “truth” mesh with double the degrees of freedom — this mesh is high-order
(p =4) and has 1,932+4,040+5,080 = 11, 052 triangles in total. For comparison, the
total number of spatial degrees of freedom in each of these three meshes is: 1,398,892
for the p = 1 mesh, 1,159,960 for the coarser p = 4 mesh, and 2,325,760 for the finer
p =4 “truth” mesh.

Regarding time-marching, all simulations were performed with a DIRK(3,3) high-

order implicit time-marching scheme and timestep size At = 7°/100.
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Results and Discussion

Figure 4-10 presents a snapshot of the time-marching flow solution from the coarser
p = 3 mesh. The snapshot was taken after 30 blade-passing periods of time integration
had elapsed, at which point the flow is very confidently periodic in time. The flow is
visualized here by the vorticity field, and we see that wakes are well-resolved behind
each blade and that these wakes propagate across the sliding interfaces fairly well.

The simulation shown in Figure 4-10 was repeated for all 3 meshes (coarse p = 1,
coarse p = 4, and fine p = 4). Upon reaching periodicity, the spectrum of total rotor
force timeseries was measured from each simulation, and these results are plotted in
Figure 4-11.

The rotor force spectra presented in Figure 4-11 demonstrate a very interesting
result. Recall that the spatial meshes for the coarse p = 1 and coarse p = 4 cases
were purposefully chosen to have approximately the same total number of degrees of
freedom. (In fact, the p = 1 mesh has approximately 21% more degrees of freedom.)
Given the parity in degrees of freedom, it is remarkable that the error in the rotor
force spectrum (relative to the finer “truth” solution) is much larger for the p = 1
solution than the p = 4 solution. In this case, the p = 4 result features approximately
1% error in the first harmonic, and the p = 1 result features approximately 20% error,
despite having 21% more spatial degrees of freedom.

Since the time-marching scheme was kept constant among all three cases, this
result is an interesting quantification of the accuracy that can be gained by using a

high-order method in space, as opposed to a lower-order method.
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4.5 Discussion: Relative Performance of Discretiza-

tion Methods

We conclude this chapter by briefly summarizing some key results which highlight
interesting performance characteristics of the Time-Spectral HDG method applied to

turbomachinery flows.

4.5.1 High-Order vs. Low-Order in Space

One sensible practical question to ask about the method presented in this thesis is:
what do you gain by changing from a low-order method (such as p = 1 Finite Volume)
to a high-order method (such as the present p = 4 HDG)? In response, two key results
from this chapter can be highlighted:

e In Figure 4-6, we saw a comparison of a rotor cascade simulation performed with
successively finer meshes, using p = 1 and p = 4. These results showed that at
a moderate or higher level of accuracy, the p = 4 simulation required far fewer
spatial degrees of freedom than a p = 1 simulation with the same accuracy. In
the worst case, the penalty associated with a p = 1 method was a factor of 35 in

degrees of freedom and roughly 70 in CPU time (on the current implementation).

e In Figure 4-11, we compared the rotor force spectrum obtained from a p =1
simulation and a p = 4 simulation, relative to a 2x refined p = 4 simulation
that served as “truth”. In this experiment, we saw a substantial improvement
in accuracy (from 20% to 1%) when switching from p = 1 to p = 4, even after
giving up 17% of the degrees of freedom included in the p = 1 result. This is a
clear example of a high-order method delivering a more accurate solution at a

more efficient cost.
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4.5.2 Time-Spectral vs. Time-Marching

Another salient question to ask about the method presented in this thesis is: what
benefits are gained by changing from a time-marching HDG method to a Time-Spectral
HDG method? The key to this is presented in Figure 4-9.

Figure 4-9 shows that the rotor force spectrum obtained from Time-Spectral HDG
computations is remarkably similar to that obtained by Time-Marching. Specifically,
with a cost of simultaneously solving only N = 7 snapshots of the flow, we see that we
can obtain the amplitudes of the 1st and 2nd harmonics within 2% of the truth solu-
tion. The truth solution here was computed with a 3™-order implicit time-marching
scheme (DIRK(3,3)), with 100 timesteps per period and 30 periods of time integra-
tion. While this study did not specifically identify a coarser time-marching scheme
that achieves the same level of accuracy as the N = 7 Time-Spectral solution, these
results nonetheless suggest that substantial gains in computational efficiency can be
obtained by using a Time-Spectral approach.

In the case of a pitching airfoil flow (Section 2.5.2), the comparison between time-
marching and Time-Spectral was seen more precisely. For the low Reynolds number
pitching airfoil flow studied, the same level of solution accuracy was obtained from
a Time-Spectral HDG solution with N = 23 snapshots, and a 2™-order accurate
DIRK(2,2) time-marching scheme with 100 timesteps per period over 6 periods. In
the implementation used in this thesis, the Time-Spectral result was obtained in ap-
proximately 4 x fewer CPU hours than the time-marching result. This is one demon-
stration of the gains in computational efficiency which may be obtained by using a
Time-Spectral approach rather than time-marching.

However, notc that this advantage will not be achievable for every type of periodic
flow problem. The key condition for Time-Spectral methods to have an advantage is
that there should be only a small number of dominant harmonic modes in the flow.
The reason for this is that the Time-Spectral HDG method is memory intensive, as
all NV snapshots of the flow solution must be solved simultaneously. The memory cost

of a Time-Spectral solution is therefore (O(N?) larger than a single timestep of a time-
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marching method for the same problem. When a large number of harmonic modes are
required, N is large and the requirements of solving the linear system may exceed the
system memory available. Thus, the choice of Time-Spectral versus time-marching
HDG methods will often be a trade-off between memory cost and total computational
effort, with the balance being more in favor of a Time-Spectral approach when the
flow can be adequately described by only a few harmonic modes.

One further limitation of the Time-Spectral approach is that it requires the spec-
ification of a time period 7', which excludes any periodic time variation that does
not occur as a harmonic of the fundamental frequency f; = 1/7T. There are many
problems where this is not a strong limitation, for example turbomachinery flows with
known blade-passing periods and negligible vortex shedding (such as the flow prob-
lems studied in this chapter). However, in problems where phenomena such as vortex
shedding are significant, it might be difficult to determine the fundamental period T
ahead of time. Approaches have been proposed to handle this uncertainty in T [43],

but not without an associated computational cost.
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Figure 4-7: Snapshots of rotor/stator flow solution, comparing DIRK(3,3) time-
marching with At = T/100 (left) and a Time-Spectral solution with K = 9 modes
resolved (right). Vorticity is plotted between limits [-20,20] for 4 snapshots during the
blade-passing period T: t =0, t = T/4, t = T/2, and t = 3T/4 (from top to bottom).
Both solutions are computed on the same p = 3 unstructured spatial mesh.
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Figure 4-8: Comparison of rotor force timeseries obtained from time-marching solu-
tion (DIRK(3,3)) and from Time-Spectral solutions with various numbers of resolved

frequencies K.
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quencies K.
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Figure 4-10: Snapshot of high-order flow solution for three-row compressor, visualized
by flow vorticity.
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Figure 4-11: Rotor force spectrum, comparing high order solution vs low order solution
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Chapter 5

A Frequency-Adaptive
Time-Spectral Method

This chapter presents an approach to Time-Spectral computations which extends the

method presented in previous chapters, and achieves two new goals:

1. Solve a periodic problem by resolving a particular set of frequencies, rather than

all frequencies up to a given maximum

2. Provide an automatic means to guide selection of the most relevant frequencies

in the numerical solution

The sections that follow will present a motivation (Section 5.1), then formulation
and application to ordinary differential equations (ODEs) (Section 5.2), and finally a
formulation and application to Time-Spectral HDG simulations of multi-row turbo-

machinery flows (Section 5.3).
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5.1 Motivation

In most time-periodic flows, there are some frequencies that are more important than
others. For example, in the context of industrial turbomachinery flows with multiple
blade rows, flow behavior will be dominated by a set of frequencies based on the blade
passing frequencies of each row. This leads to one desirable feature of any method
for solving turbomachinery flows — that the method should be capable of solving for
flow behavior limited to certain pre-selected frequencies, thereby saving unnecessary
computational expense. This is an aspect that will be demonstrated in this chapter
for Time-Spectral HDG.

Another desirable feature would be to have an automatic way of guiding the user’s
selection of the most important frequencies. For example, there may be some uncer-
tainty about which frequencies are most important in a turbomachinery flow, making
it unclear which frequencies should be resolved first before refining with additional
frequencies. Depending on the size of the simulation, it may be quite expensive to re-
solve a large number of frequencies, and so careful selection of frequencies can be vital.
Towards addressing this challenge, this chapter will present a technique for frequency

selection based on the Time-Spectral residual.

5.2 Adaptive Time-Spectral Method for Ordinary

Differential Equations

5.2.1 Formulation of Error Indicator
To begin, consider a time-periodic ordinary differential equation (ODE) as follows:

du
4 F = 1

Here, F' may be a linear or nonlinear function of u and ¢ which results in a time-

periodic solution u. Note that a Time-Spectral discretization of this problem would
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be as follows:

D,u, + F,(u,,t,) =0 (5.2)

where D,, is the N x N Time-Spectral coupling matrix (Eq. 2.7), u,, is a vector of N

snapshots of u, and F,, is a vector of N snapshots of F.

Now return to the original ODE and define a residual ry:

d
Th = %’l + F(up, t) (5.3)

where u, is the numerical approximation of u.

Note that in the numerical solution from the Time-Spectral method described
above, this residual r;, will be driven to zero at the N collocation times #,, but may
be nonzero at other times. We will exploit this feature in the formulation of an

inexpensive error indicator.

First, interpolate the Time-Spectral solution w, to a finer set of M equispaced
time-points ¢, using the chosen Fourier mode basis (result ,,), and compute the
residual 7, at times t,,:

G = E7Y(Eu,) (5.4)

'Fm = Dmﬂ'm + Fm(&ma tm) (55)

Finally, evaluate the projection of this residual onto a set of K candidate Fourier

modes. For frequency f:

Ry =Y #m - exp(—i2r fm/M) (5.6)

m=1

This amplitude R ¢ is the approximate error indicator for frequency f. Comparing
the error indicator for several different frequencies f will provide useful guidance in
selecting which frequencies are most important in the solution, as we will demonstrate

in the following sections.
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5.2.2 Collocation Points and Coupling Matrix for Arbitrary

Frequencies
Collocation Points

When we select frequencies sequentially (e.g. f, = {1,2,3,4}) for solving a periodic
problem by the Time-Spectral method, the natural choice of temporal collocation
points is a uniform distribution of 2K + 1 points, where K is the total number of
frequencies resolved. However, when we select frequencies any other way (e.g. f. =
{1,3,7,8}), we can no longer use uniform collocation points in time, as this may lead
to poor conditioning of the linear system and large numerical errors.

The question of selecting high quality collocation points was addressed in recent
work by Guedeney et al. [45] for harmonic balance computations. They pointed
out that the condition number of the Discrete Fourier Transform (DFT) matrix is a
useful metric of quality for a set of collocation points, given a corresponding set of
frequencies. In the present thesis, collocation points are chosen by explicitly seeking
to minimize the condition number of the DFT matrix.

We may define the Inverse Discrete Fourier Transform (IDFT) matrix as:
E, . = exp(i2n fyt,/T) (5.7)

where n € {0,...,N — 1} is the temporal collocation point index, k¥ € {-K,..., K}
is the frequency index, and 7" is the fundamental period. Regarding the frequencies,
fo=0and f, = —fr but K independent frequencies are otherwise free to choose
arbitrarily. For example, with K = 2 we could have f = {-5,-2,0,2,5}.

Now, since condition number x(E~!) = x(E), we can write down the optimization

statement which describes our optimal collocation points:
t* = argmin x(E~'(f,t)), st. t€[0, TV (5.8)
t

In the present thesis, a simple SQP optimizer was used to solve this optimization
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problem for the optimal collocation points ¢* given the resolved frequencies f and the
fundamental period T. This approach relies on having good starting guesses for t*,
which here are found via the “magic points” algorithm of Maday et al. [66]. The magic
points algorithm chooses interpolation point locations in a greedy fashion, identifying
the location of the largest interpolation error at each iteration. The resulting points are
not optimal, but they have often proven to be good starting points for the optimization

routine, and they are very inexpensive to compute.

Coupling Matrix

Now that we have the optimal collocation points ¢* defined for a given set of frequencies

f, it is simple to define the appropriate Time-Spectral time-derivative coupling matrix:

OE !
D= 5 E

(5.9)

Here, E = E(f,t*) is the Discrete Fourier Transform matrix derived by first form-
ing the Inverse Discrete Fourier Transform E~' (Eq. 5.7) and then inverting the
result.

The matrix D above can be calculated for any choice of frequencies and associ-
ated temporal collocation points, and this will be used to perform “Adaptive Time-

Spectral” computations where the choice of frequencies is generally non-sequential.

5.2.3 Results for a Linear Equation

To demonstrate the proposed error indicator and frequency selection methodology,

consider a linear ODE:

d
d_ltL = 6cos(2mt) + 6 cos(6mt), u(0) =0 (5.10)

In our earlier terminology, this is a specific case of the general ODE (Eq. 5.1)

with F'(u,t) = —6cos(2nt) — 6 cos(6mt). Discretizing this equation with the Adaptive
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Time-Spectral approach, we can compute solutions and also error indicators (Eq. 5.6)
for several different frequencies. The results of this analysis for several different choices

of the resolved frequencies f, are presented in Figure 5-1 below.
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Figure 5-1: Time-Spectral Error Indicator R as a function of frequency f, for several
different sets of resolved modes f,.

The key result shown in Figure 5-1 is that the error indicator always indicates
exactly the right frequency, in this linear ODE demonstration. The exact solution
should contain only frequencies 1 and 3, and this is correctly identified by the method.
Looking at the case in Figure 5-1 with f, = {1}, the error indicator R has large values
in frequencies 1 and 3, suggesting that the next frequency to choose should be 3
(correctly). Looking at the case with f, = {1,2}, the next indicated frequency is
also f = 3 (correctly). When f, = {1,3}, this matches the exact solution and the
error indicator is evaluated to be O(107'4) for all frequencies, suggesting that no new
frequencies need to be selected (again, correct). Similarly for the cases f, = {1,4},
fr = {1,10} and f, = {1,2,3,4}, the correct frequency to choose next is always
indicated, unless the exact frequencies have already been chosen, in which case the

error indicator remains at O(1071).

94



In the case of a linear ODE like this, such accuracy in frequency selection is ex-
pected, as the residual 7, effectively captures the unresolved portion of the linear
source term. The method can be seen to be “exact” in the linear ODE case. The next
test is to apply this method to nonlinear equations and see if beneficial properties are

still observed.

5.2.4 Results for a Nonlinear Equation
Consider the following nonlinear ODE as a model problem:

d
d_T: + u® = 20(cos(2nt) + cos(8mt) + cos(127t)) (5.11)

Much like the example in the previous section, this equation has time-periodic
solution, but now we have also introduced a nonlinear term to the equation. Solving
this ODE with a very large number of snapshots, we find that the “truth” solution
has frequency content as plotted in Figure 5-2. In descending order of amplitude, the

most important frequencies appear to be 1,4,6,2,3,8.
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Figure 5-2: Amplitude spectrum of truth solution for nonlinear ordinary differential
equation used as a model problem (Eq 5.11)
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Discretizing by the Time-Spectral method, we can solve the equation for just the
constant mode (K = 0) and obtain the error indicator at all candidate frequencies
(Figure 5-3). This will suggest a new frequency to be added to the resolved set. After
including the new frequency, we can recompute the solution and repeat the process,

iteratively extending the resolved set of frequencies f,.
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Figure 5-3: Error indicator Nonlinear ODE residual plots

Figure 5-4 plots the improvement in solution accuracy as the number of resolved
frequencies is increased. In blue we see the result if frequencies are selected sequen-
tially, i.e. applying the original Time-Spectral method. The line in red shows how
solution accuracy changes when we instead choose frequencies adaptively (the Adap-
tive Time-Spectral approach).

We see in Figure 5-4 a clear advantage of using the Adaptive Time-Spectral ap-
proach. In the early stages of the adaptation process, when the number of resolved

modes is small, the Adaptive Time-Spectral algorithm led to better choices of the
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Figure 5-4: Convergence of the numerical solution to a nonlinear ordinary differential
equation (Eq 5.11), comparing sequential frequency selection to the proposed adaptive
algorithm. Solution error is measured by the RMS error in w.

frequencies to resolve. In fact, the method selected frequencies {6,4,1,3,2} for the
first 5 frequencies, which is remarkably similar to the truth solution of {1,4,6,2,3}.
In this demonstration, the guidance provided by the error indicator appears to have
helped resolve the solution more efficiently than a sequential selection approach, par-
ticularly over the first 5 frequencies. This suggests that the Adaptive Time-Spectral
approach may be valuable in the nonlinear PDE context as well, such as our RANS-SA
turbomachinery flow simulations.

Finally, a note on interpreting the meaning of the error indicator amplitude. For
each iteration of the Adaptive Time-Spectral computation, Figure 5-5 plots the max-
imum value of the time-domain version of the interpolated residual ( R(t)), versus the
actual measured solution error at that iteration of the Adaptive Time-Spectral algo-
rithm. The result is remarkably well-correlated, suggesting that the magnitude of the

residual R can serve as a useful proxy for solution accuracy in some cases. It also
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Figure 5-5: Correlation between solution accuracy and Adaptive Time-Spectral error
indicator, for the nonlinear ordinary differential equation example (Eq 5.11). Solution
accuracy is measured by the maximum difference between the computed and truth
solutions u, and this is correlated with the maximum absolute value of the error
indicator R(t). '

implies that working towards decreasing the residual will also result in a decrease in

solution error.

5.3 Adaptive Time-Spectral HDG Method

5.3.1 Formulation

We now extend the method presented in the previous section to Time-Spectral HDG
discretizations of time-periodic problems. The residual quantity # (Equation 5.5) will
be adapted for the new context of a partial differential equation solved by a Time-

Spectral HDG method.

The Time-Spectral HDG equivalent of the residual comes from first interpolat-

ing the solution quantities to a larger number of time points (see Eq. 3.12), then
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computing the following functional:

o~

R, = (Duy,w)g, — (F(un, qn), Vw)g, + (F(un, qn, @r) - 1, w)om, (5.12)

which can then be converted to a function form by solving the following equation to
obtain the residual ry:

(rn,w)p, = Ru (5.13)

This residual (a function of time) will be defined at every spatial degree of freedom
in the problem, though what we actually require is a global measure of this. For
frequency selection purposes, an effective choice seems to be the maximum residual
amplitude value at each candidate frequency, across all spatial degrees of freedom of

the problem:
M

Ry = max Z Frm(%, ¢, €) - exp(—i2m fm/M) (5.14)
m=1

i,c,e

where 4, c, e are the indices of the spatial node, flow component and element number
respectively, and m is the time snapshot index. Equation 5.14 is the Adaptive Time-
Spectral error indicator we will use for partial differential equations.

Note that the rationale for this maximization is that all governing equations are
nondimensionalized to (O(1), so comparing values across all spatial nodes and flow

components should be a fair comparison.

5.3.2 Results for a Rotor-Stator Flow Problem

To demonstrate the Adaptive Time-Spectral HDG method introduced in the previous
section, we will apply the method to compute flow through a rotor/stator assembly
with a 2:1 blade count ratio. The useful property of this flow example is that the total
force on the rotor should contain only even frequencies, whereas the forces on the stator
should contain both even and odd frequencies. This flow problem is therefore a good
test of the Adaptive Time-Spectral HDG method, because an ideal frequency-selection

algorithm should choose only even frequencies on the rotor subdomain.
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Geometry, Flow and Time Discretization Parameters

The geometry of this flow problem can be seen in Figure 5-6. Details of the geometry,

flow, mesh and time discretization parameters are as follows:
e Inlet Guide Vane (IGV) row:

— NACA 5507 airfoil, 7.4° stagger angle, flipped vertically
— Blade pitch: BPigv = BProtor/2

— Chord length: cigv = (7/8)crotor

e Rotor row:

— NACA 3507 airfoil, 60.8° stagger angle

— Blade pitch to chord length ratio = 57/18
e Flow:

— Rotor Reynolds number = 259,000
— Freestream Mach number = 0.149

— Inlet flow angle = 0° (from axial)

Mesh: p = 4, with a total of 1,824 + 2,315 = 4,139 triangles.

Time discretization: limit IGV to K; = 5 modes; rotor unlimited.

Results

The flow problem described above was solved using Adaptive Time-Spectral HDG
and implicit time-marching HDG, and these results are presented in Figure 5-6. On
the left is the result from time-marching, and on the right is the result from the 7th
iteration of the Adaptive Time-Spectral HDG method. At this iteration, the Adaptive
Time-Spectral HDG solution was computed with frequencies fi/BPF, = {1,2,3,4,5}
on the 1st row and f;/BPF; = {2,4,6,8,10,12,14} on the 2nd row, where BPF; is
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the blade-passing frequency of the rotor row. These frequencies were automatically
identified by the Adaptive Time-Spectral HDG method, and correctly so, beginning
from 1st iteration values of fi/BPF, = {1} and fo/BPF; = {2}. The optimal choice
was to select frequencies sequentially on the IGV, and only even frequencies on the
rotor, and this is exactly what the Adaptive Time-Spectral error indicator proceeded
to do (see Figure 5-7).

Looking at the flow solution itself, we can see that there is visually very little
difference between the time-marching and Adaptive Time-Spectral solutions. However,
there is a large difference in cost. In this implementation of the method, the time-
marching result (26 periods with 100 DIRK(3,3) timesteps per period) was computed
in 133 hours, and the Adaptive Time-Spectral result (7 iterations) was computed in
just 39 hours — saving more than a factor of 3 in computational expense.

If we examine the rotor forces more carefully, in Figure 5-8 we see that the Adaptive
Time-Spectral HDG results converge to the time-marching HDG results quite quickly.
Moreover, examining the spectrum of the computed rotor force in Figure 5-9, we see
again that the Adaptive Time-Spectral results converge rapidly to the time-marching
results, but we also see that the amplitude of the 1st harmonic converges even more
rapidly than the overall rotor force. In fact, with only 1 frequency resolved on each
subdomain ( “ATS step 1), the rotor force amplitude at the lowest frequency is already
within 1% of the correct converged value. Therefore, if an engineer’s output of interest
happens to be only related to phenomena occurring at low frequency (such as the
amplitude of the 1st harmonic of the rotor force), the cost savings arising from a
Time-Spectral approach (Adaptive or otherwise) will be even greater than the factor
of 3 we have previously identified. In this implementation, the CPU time savings

would be a factor of almost 200 over the full time-marching HDG result.
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Figure 5-6: Snapshots of rotor/stator flow solution, comparing DIRK(3,3) time-
marching with At = T'/100 (left) and an Adaptive Time-Spectral solution with K; = 5
and K3 = 7 modes resolved on the 1st and 2nd blade rows respectively. Frequencies
were selected automatically using the Adaptive Time-Spectral algorithm, resulting in
modes fi/BPF; = {1,2,3,4,5} on the 1st row and fo/BPF, = {2,4,6,8,10, 12, 14}
on the 2nd row, where BPF; is the blade-passing frequency for the rotor row. Vortic-
ity is plotted for 4 stages of the rotor blade-passing period T: t = 0, t = T/4, t = T/2,
and ¢ = 37/4 (from top to bottom). Both solutions are computed on the same p = 4
unstructured spatial mesh.
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Figure 5-7: Error indicator Ry, (f) for 7 iterations of the Adaptive Time-Spectral
rotor/stator flow solution, shown for each blade row (stator on the left, rotor on the
right). Red squares identify the frequencies selected by the ATS algorithm at each
iteration.

103



4-55 I T l T T T | l l

O DIRK(3,3) i ‘ :

| meme= ATS step 1
===m= ATS step 3

ATS step 5

ATS step 7 |-

4.45

441 W

|F1l'0t01' (t)!

4.25F i

4.2 i i i | i i i
25 251 252 253 254 255 256 257 258 259 26
t/T

i i

Figure 5-8: Convergence of rotor force timeseries from Adaptive Time-Spectral HDG
results vs. a comparable time-marching HDG result.
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Figure 5-9: Convergence of rotor force spectrum from Adaptive Time-Spectral HDG
results vs. rotor force spectrum from a comparable time-marching HDG result.
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Chapter 6

Conclusions

6.1 Summary of Findings

This thesis has presented a novel Time-Spectral Hybridizable Discontinuous Galerkin
(HDG) method for periodic flow problems, with applications to flow through cascades
and rotor/stator assemblies in aeronautical turbomachinery. The present work com-
bines a Fourier-based Time-Spectral discretization in time with an HDG discretiza-
tion in space, realizing the dual benefits of spectral accuracy in time and high-order
accuracy in space. Low numerical dissipation and favorable stability properties are in-
herited from the high-order HDG method, together with a reduced number of globally
coupled degrees of freedom compared to other DG methods. HDG provides a natural
framework for treating boundary conditions, which is exploited in the development of
a new high-order sliding mesh interface coupling technique for multiple-row turboma-
chinery problems. A regularization of the Spalart-Allmaras turbulence model has also
been employed to ensure numerical stability of unsteady flow solutions obtained with
high-order methods.

Turning to the temporal discretization, the Time-Spectral method enables direct
solution of a periodic flow state, bypasses initial transient behavior, and can often
deliver substantial savings in computational cost compared to implicit time-marching.

An important driver of computational efficiency is the ability to select and resolve
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only the most important frequencies of a periodic problem, such as the blade-passing
frequencies in turbomachinery flows. To this end, the present work has developed
an adaptive frequency selection technique, using the Time-Spectral residual to form
an inexpensive error indicator. Having selected a set of frequencies, the accuracy of
the Time-Spectral solution is greatly improved by using optimally selected collocation
points in time. For multi-domain problems such as turbomachinery flows, an anti-
aliasing filter is also needed to avoid errors in the transfer of the solution across the
sliding interface. All of these aspects contribute to the Adaptive Time-Spectral HDG
method developed in this thesis.

Performance characteristics of the method were demonstrated through applications
to periodic ordinary differential equations, a convection problem, laminar flow over a
pitching airfoil, and turbulent flow through a range of single- and multiple-row turbo-
machinery configurations. In particular, the following results highlight the advantages

of the method:

e Solving a steady rotor cascade flow problem, a p = 4 high-order method was
shown to be up to 70x less expensive than a p = 1 low-order method (with the
same convergence rate as a typical Finite Volume method), when compared at

the same level of accuracy. (Figure 4-6)

e Solving a rotor/stator flow problem, a Time-Spectral HDG approach results in
rotor forces that converge to the same values obtained from a more expensive

implicit time-marching HDG approach. (Figure 4-9)

e Solving a three-row compressor flow problem, a p = 4 high-order HDG method
with implicit time-marching had 1% error in the Ist harmonic of rotor loading,
relative to a truth solution, while a p = 1 method with 21% more spatial degrees
of freedom was actually much less accurate at 20% error. This demonstrates that
spatially high-order methods can be more accurate than low-order methods, per

unit computational cost. (Figure 4-11)

e Applying the Adaptive Time-Spectral method to a nonlinear ordinary differential
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equation, the error indicator automatically selects frequencies in approximately

the correct manner. (Section 5.2.4)

e Solving a rotor/stator flow with 2:1 blade count ratio, the Adaptive Time-
Spectral HDG method converges to the correct rotor forces, and correctly selects
the (even) frequencies required on the rotor subdomain, incurring a computa-

tional cost roughly 3x lower than a comparable implicit time-marching result.

e For an engineering output of interest which is simply the rotor force amplitude
of the first harmonic, the Adaptive Time-Spectral HDG method converges to
within 1% of the true value using only 1 resolved frequency on each subdomain.
This results in computational cost savings of a factor of roughly 200, over a

comparable time-marching result. (Section 5.3.2)

Together, these observations highlight the fact that the combination of a Time-
Spectral discretization in time and a high-order HDG discretization in space can re-
sult in substantial savings in computational cost, and/or substantial gains in solution
accuracy, when compared to more conventional state of the art methods such as time-
marching and 2nd-order Finite Volume. In particular, the benefits of high-order HDG
will be realized when the desired level of solution accuracy is at least moderately high,
and the benefits of a Time-Spectral approach will be realized when the flow physics

of interest can be captured in a relatively small number of harmonic modes.

6.2 Future Work

Building upon the foundation laid by the present thesis, there are a few potential

directions for future work that can be suggested:

e Extension of the method to 3D flow problems, together with a parallel imple-
mentation of the code to enable the solution of larger problems. A parallel 3D
implementation of the HDG method has recently been developed for compress-

ible flow by Roca et. al. [87], and published results indicate favorable weak
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scaling characteristics for low Reynolds number flow problems. Extension of the
Time-Spectral HDG method and RANS-SA model to this parallel implementa-
tion will enable 3D turbomachinery flow simulations with strong relevance to
industrial applications. We expect our main conclusions regarding efficiency of
the Time-Spectral method to apply in 3D just as well as they do in 2D, though
memory constraints will become a more significant factor with the larger size of

3D problems.

A parallel implementation will also enable 2D studies of much larger turbo-
machinery problems, with more blade rows and more resolved harmonic modes.
Such simulations may reveal interactions between distant blade rows, which may
be more easily captured by a high-order HDG method rather than lower-order
Finite Volume methods, due to the lower numerical dissipation of high-order

HDG.

Development of a phase-lagged boundary condition for the top and bottom
boundaries of each blade passage will allow studies of turbomachinery flow prob-
lems with more general blade count ratios. The form of the phase-lagged bound-
ary condition could be similar to that proposed by Gopinath et. al. [41], adapted
to the HDG setting. Rather than blade count ratios of 1:1 or 2:1, phase-lagged
boundary conditions will allow simulations with ratios such as 18:19, which are
more typical in industrial designs. Aside from increased relevance to industry,
these studies may yield interesting flow behavior due to the slight differences in

fundamental flow frequency between blade rows.

Extension of the method to transonic turbomachinery flow problems with shocks.
This will require implementation of a shock-capturing method, for which two
approaches have already been developed in the HDG context by Nguyen et. al.
[71, 78]. Applying the Time-Spectral HDG method to transonic turbomachinery
flows with shocks will be a new and stringent test of the method, as shocks

will introduce additional sharp features to the flow that must be transferred
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across the sliding interfaces between blade rows and also resolved with temporal
harmonic modes. We expect this to increase the number of harmonic modes
required to adequately resolve the time-varying flowfield, but what remains to
be seen is exactly how costly it will be to meet a desired level of accuracy for
an industrial output of interest. The results in the present thesis suggest the
possibility that key outputs of interest may converge much faster than the overall

flowfield, but this must now be tested for flow problems with shocks.

Adjoint-based adaptation of the spatial mesh could be applied to the Time-
Spectral HDG method. The Time-Spectral HDG method essentially transforms
an unsteady flow problem into a larger steady problem, with the entire period of
time-variation determined simultaneously, and this makes the problem amenable
to adjoint-based adaptation. (As opposed to a time-marching approach, for
which adjoint-based adaptation is significantly more complex.) While adjoint-
based adaptation is yet to be applied to HDG methods, it has been a significant
area of research in the broader context of Finite Volume and Discontinuous
Galerkin methods. For example, the Dual Weighted Residual error estimate
[9, 10] has been applied in several adaptation strategies [52, 101, 102, 113].
These existing techniques could be applied to the HDG context to develop a
spatially adaptive Time-Spectral HDG method. We may expect this method to
be capable of achieving a high level of solution accuracy in an even more efficient
manner than could be obtained without adaptation, at the cost of additional

implementation complexity.
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