
Computationally Efficient Gaussian Process Changepoint

Detection and Regression

by

Robert Conlin Grande

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Masters of Science in Aerospace Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
A uth or

Department of Aeronautics and Astronautics
May 22, 2014

Signature redacted
C ertified by

Jonathan P. How

Richard C. Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

Signature redacted
Accepted by............... -

\ Paulo C. Lozano
Chair, Graduate Program Committee

MASSACHUSETTS rWM$
OF TECHNOLOGY

JUN 16 2014

LIBRARIES

2

Computationally Efficient Gaussian Process Changepoint Detection

and Regression

by

Robert Conlin Grande

Submitted to the Department of Aeronautics and Astronautics

on May 22, 2014, in partial fulfillment of the

requirements for the degree of

Masters of Science in Aerospace Engineering

Abstract

Most existing GP regression algorithms assume a single generative model, leading to poor

performance when data are nonstationary, i.e. generated from multiple switching processes.

Existing methods for GP regression over non-stationary data include clustering and change-

point detection algorithms. However, these methods require significant computation, do not

come with provable guarantees on correctness and speed, and most algorithms only work

in batch settings. This thesis presents an efficient online GP framework, GP-NBC, that

leverages the generalized likelihood ratio test to detect changepoints and learn multiple

Gaussian Process models from streaming data. Furthermore, GP-NBC can quickly recog-

nize and reuse previously seen models. The algorithm is shown to be theoretically sample

efficient in terms of limiting mistaken predictions. Our empirical results on two real-world

datasets and one synthetic dataset show GP-NBC outperforms state of the art methods for

nonstationary regression in terms of regression error and computational efficiency.

The second part of the thesis introduces a Reinforcement Learning (RL) algorithm,

UCRL-GP-CPD, for multi-task Reinforcement Learning when the reward function is non-

stationary. First, a novel algorithm UCRL-GP is introduced for stationary reward func-

tions. Then, UCRL-GP is combined with GP-NBC to create UCRL-GP-CPD, which is

an algorithm for nonstationary reward functions. Unlike previous work in the literature,

UCRL-GP-CPD does not make distributional assumptions about task generation, does not

assume changepoint times are known, and does not assume that all tasks have been expe-

rienced a priori in a training phase. It is proven that UCRL-GP-CPD is sample efficient in

the stationary case, will detect changepoints in the environment with high probability, and

is theoretically guaranteed to prevent negative transfer. UCRL-GP-CPD is demonstrated

empirically on a variety of simulated and real domains.

Thesis Supervisor: Jonathan P. How

Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I would like to thank a number of people throughout my career at MIT. Firstly, I would

like to thank my parents and brother for always being there and supporting me through this

degree. It has been difficult at times, but I could always take comfort in talking with my

family and coming home whenever I needed a break. I would also like to thank my close

friends at Johns Hopkins and the JHU AllNighters as well. It could be said that my once a

semester trip to Baltimore to see the JHU AllNighters and catch up with friends were some

of the best times I've had.

I would also like to thank Aerojet-Rocketdyne for generously having supported me in

my time at MIT through the Aerojet Fellowship. I seriously appreciate the opportunity that

Aerojet-Rocketdyne has given me, and it has been a pleasure working with James Drake

and others at Aerojet-Rocketdyne.

I would also like to thank the academics that I have met at MIT and who have reshaped

the way in which I view research and life itself. I have learned a great deal about how to

ask the important questions in research and delineate what constitutes great research that

will have a lastly impact versus research that is incremental and not likely to have a greater

impact. I would like to thank my advisor Jonathan How for teaching me how to properly

analyze research and really get to the crux of the problem. I learned how to quickly analyze

a field, realize the existing holes in the literature, identify the key challenges, and propose

solutions to the meaningful problems. Jon has also taught me a great deal about presenting

research, which I am very grateful for. It is not enough to simply do good research. It is

equally, if not more, important to be able to communicate to others what it is you have

done. One must properly convey why the research is important and why the listener should

care. Without properly motivating your research and presenting it such that the listener is

keenly aware of the flaws in the existing literature and how your solution fixes these issues,

your work, no matter the quality, will fall on deaf ears.

I would like to thank the former post-docs in my lab Girish Chowdhary and Thomas

Walsh, who helped me immensely with the creative and technical processes of research.

As a master's student, it is often difficult to come up with new research ideas or to know

5

what has been done in the field already. I found that Girish and Tom were always incredibly

knowledgeable about the field and were extremely good at motivating new ideas, problems,

and possible solutions. There were enough ideas generated in our conversations to fill

several theses. I would also like to thank a large set of members of the lab past and present

who I have collaborated with, received advice from, or with whom I drank a few beers at

the Muddy.

6

Contents

1 Introduction 17

1.1 Background .. 17

1.2 Problem Statement . 20

1.2.1 Online Non-Stationary Prediction 21

1.2.2 Reinforcement Learning . 21

1.3 Literature Review . 23

1.3.1 Changepoint Detection . 23

1.3.2 Reinforcement Learning . 25

1.4 Thesis Contributions . 30

2 Preliminaries 31

2.1 Gaussian Processes . 31

2.1.1 Online Budgeted Inference . 32

2.2 Nonstationary Prediction and Learning . 33

2.3 Information and Decision Theory . 34

2.3.1 Decision Theory . 34

2.3.2 Large Deviations and Large Number Asymptotic Theory 35

2.4 Reinforcement Learning . 37

2.4.1 Non-stationary Reward Functions 38

2.5 Probably Approximately Correct in MDPs Framework 39

2.6 Summary . 42

7

3 Nonstationary Learning and Prediction 43

3.1 GP-NBC Algorithm . 43

3.2 Theoretical Contributions . 46

3.2.1 Stationary GP Sample Complexity 48

3.2.2 Nonstationary Sample Complexity 52

3.3 Empirical Results . 56

3.3.1 Benchmark Experiments Over A Synthetic Dataset 56

3.3.2 Real Datasets . 59

3.4 Conclusions . 62

4 Nonstationary Reinforcement Learning 63

4.1 UCRL-GP Algorithm . 64

4.2 Theoretical Results . 71

4.2.1 Stationary Learning . 71

4.2.2 Non-Stationary Reward Functions 75

4.3 Empirical Results . 78

4.3.1 Stationary Reward Functions . 78

4.3.2 Nonstationary Reward Functions 81

4.3.3 Experimental Results . 83

4.4 Conclusions . 91

5 Conclusions and Future Work

5.1 Discussion and Future W ork .

A Proofs

A. 1 KL-divergence between estimated model and new distribution

A.2 Role of the Prior in Lemma 3.1 .

A.3 Proof that the variance decreases in the Voronoi region: Theorem 1

95

96

99

99

100

101

B Experimental Validation of Bayesian Nonparametric Adaptive Control using

Gaussian Processes 103

B .I A bstract . 103

8

B .2 Introduction . 104

B.3 Approximate Model Inversion based Model Reference Adaptive Control . . 107

B.4 Adaptive Control using Gaussian Process Regression 109

B.4.1 GP Regression . 110

B.4.2 Online Budgeted Inference . 110

B.4.3 GP nonparametric model based MRAC 112

B.4.4 Hyperparameter Optimization . 113

B.5 Control Policy using Bayesian Inference 115

B.6 Experimental Results . 118

B.6.1 Hardware Details . 119

B.6.2 Augmentation of baseline linear control with adaptation 120

B.6.3 Flight-Test results . 123

B .7 C onclusion . 129

C Sample Efficient Reinforcement Learning with Gaussian Processes 133

C .1 A bstract . 133

C .2 Introduction . 134

C.3 Background . 135

C.3.1 Reinforcement Learning . 135

C.3.2 Gaussian Processes . 136

C.3.3 Related Work . 136

C.4 GPs for Model-Based RL . 137

C.4.1 KWIK Learning and Exploration 137

C.4.2 KWIK Learning a GP . 138

C.5 GPs for Model-Free RL . 139

C.5.1 Naive Model-free Learning using GPs 140

C.5.2 Delayed GPQ for model-free RL 142

C.6 The Sample Complexity of DGPQ . 144

C.7 Empirical Results . 148

C .8 C onclusions . 150

9

References

10

160

List of Figures

3-1 (left)fi (lower curve) and f2 for the first experiment and (right) fi (lower

curve) and f2 for the second experiment. In the both experiments, a GP

is trained on 75 - 125 noisy samples from fi(x), the lower curve. The

generating function is then switched to f 2 (x), the upper curve. After ap-

proximately 100 samples, the function is switched back. 57

3-2 (Left) If the sliding window is too large, errors from changepoints will per-

sist for long times. (Right) If the sliding window is too small, changepoints

will be accomodated, but models will never be learned. 58

3-3 Heat map of the Mean Abs Error for various parameter settings for GP-

NBC. Green corresponds to better MAE than the optimal parameter set-

tings off GP-CPD, black to equivalent performance, and red to worse per-

form ance. 59

3-4 GP-NBC detects changepoints as well as reclassifying old models of robot

interaction dataset. 60

3-5 Top: Training data. Left: Test data. Right: Output of GP-NBC on test data.

GP-NBC detects the new behavior and successfully reclassifies it. 61

4-1 2D depiction of the reward function for puddle world. 79

4-2 Learning curves for various PAC-MDP algorithms on the puddle world do-

main (number of steps to reach the goal vs. episode number. The optimal

policy take approximately 20 steps to reach the goal. (left) The learning

curve of all algorithms is visible. (right) The axes are enlarged to compare

the speeds of the model-based methods. 79

11

4-3 Number of suboptimal (exploratory) steps taken by various PAC-MDP al-

gorithms to determine the optimal policy. UCRL-GP takes approximately

35% fewer steps than CPACE and 66% fewer steps than GP-Rmax. 80

4-4 Learning curves for various PAC-MDP algorithms on the cart-pole balanc-

ing domain (number of steps that the algorithm can keep the pole from

falling vs. episode number). The UCRL-GP algorithm can be seen to out-

perform the other methods by orders of magnitude in terms of learning

speed. (left) The learning curve of all algorithms is visible. (right) The

axes are enlarged to show the learning curve of UCRL-GP and GP-Rmax. . 81

4-5 Steps to goal (left) and reward (right) per episode for nonstationary pud-

dle world for UCRL-GP-CPD and UCRL-GP. UCRL-GP-CPD is able

to accommodate changepoints and reuse previous models. This results is

reliable changepoint detection and transfer of previous models to increase

learning speeds of new MDPs. UCRL-GP-CPD is able to detect changes

extrem ely fast . 83

4-6 The flight-test bed at the DAS lab at OSU emulates an urban environment

and is equipped with motion capture facility. 87

4-7 Comparison between Total Rewards for each model 89

4-8 Comparison of the accumulated rewards of GP clustering versus GPRe-

gression; the agent accumulates more positive rewards when clustering

m odels. 90

4-9 Plot indicating the actual model being tracked by the estimated model. At

the 2 0 0 th and 4 0 0 th run new models are introduced, the algorithm quickly

detects them after a brief misclassification. Note that the algorithm clusters

the underlying reward model quickly and reliably afterwards. 91

4-10 Estimated and actual mean of a Gaussian Process reward generative model. 92

4-11 Space Explored by each planner indicative of the variance 93

12

B-1 Two MIT quadrotors equipped to fly in the ACL Real Time Indoor Au-

tonomous Vehicle Test Environment (RAVEN) [54]. The baseline con-

troller on both quadrotors is PID. The small quadrotor uses gains and thrust

mappings from the bigger one, resulting in relatively poor trajectory track-

ing perform ance. 119

B-2 Sample trajectories of the quadrotor following a figure eight pattern. The

blue indicates the commanded path and the red indicates the actual path

flown by the quadrotor. On the left, baseline PID is shown, in the middle,

CL-MRAC, on the right, GP-MRAC. GP-MRAC follows the trajectory best

in terms of both tracking error and qualitatively matching the shape of the

figure 8 trajectory. 123

B-3 GP-MRAC outperforms traditional MRAC in terms of RMSE tracking er-

ror for a figure 8 trajectory. 124

B-4 GP-MRAC outperforms traditional MRAC in terms of RMSE modeling

error for a figure 8 trajectory. 125

B-5 Commanded pseudo-random sum of sines trajectory 126

B-6 Tracking performance in each dimension using CL-MRAC on the left and

GP-MRAC on the right. While CL-MRAC improves performance through

model learning, the improved model learning of GP-MRAC leads to even

better tracking performance and very small tracking error over time. 127

B-7 GP-MRAC outperforms traditional MRAC in terms of RMSE tracking er-

ror for a random trajectory. 127

B-8 GP-MRAC outperforms traditional MRAC in terms of RMSE modeling

error for a random trajectory. 128

B-9 GP-MRAC is able to reject sensor noise and produce a smooth control

sign al. 12 8

B-10 GP-MRAC is able to characterize very fine variations in the model error

which leads to superior tracking performance over standard RBFN-MRAC.

However, GP-MRAC is still able to reject sensor noise and produce a

sm ooth control signal . 128

13

B-II CL-MRAC with fixed RBFN bases initially overshoots the trajectory at

t = 125s. After overshooting, the system leaves the coverage of the RBF

centers leading to unstable oscillations . 130

B-12 GP-MRAC overshoots the trajectory at several points in the beginning, but

is able to reallocate centers to maintain domain coverage. Additionally,

as new centers are created, the model covariance increases, leading to a

smaller PMAP which results in a more conservative controller. 131

C-i Single-state MDP results: DGPQ converges quickly to the optimal policy

while the naive GP implementations oscillate. 141

C-2 Average (10 runs) steps to the goal and computation time for C-PACE and

DGPQ on the square domain. 149

C-3 Average (10 runs) reward on the F16 domain. 150

14

List of Tables

3.1 Errors, clusters and runtimes on Experiment 1 57

3.2 Errors, clusters and runtimes on Experiment 2 58

15

16

Chapter 1

Introduction

This thesis examines two subproblems within the larger field of algorithms operating in a

nonstationary stochastic world. In the first problem, nonstationary prediction and model

learning, the algorithm passively receives new samples from the environment, and must re-

turn accurate predictions about some latent function. In the second problem, reinforcement

learning with nonstationary reward models, an active agent may take actions to explore the

environment and exploit maximal reward. Since the agent may select actions dynamically,

the problem is not to just make accurate predictions, but also to plan under uncertainty.

1.1 Background

Many prediction, decision making, and control algorithms adapt to uncertainty by learning

online a model of the environment from noisy observations. Gaussian Processes (GPs) have

emerged as a widely applied framework for inference in many machine learning and de-

cision making applications, including regression, [102], classification, [85], adaptive con-

trol, [26], and reinforcement learning, [38]. However, most existing (online) GP inference

algorithms assume that the underlying generative model is stationary, that is, the data gen-

erating process is time-invariant. Yet, many online learning tasks, from predicting stock

market prices to controlling aircraft, may involve changepoints: points in time in when

abrupt changes occur (for example changes in market demand or actuator failure) and af-

fect the generating stochastic process itself. When the data contains changepoints, i.e., is

17

non-stationary', an online learning and prediction algorithm, such as a GP, needs to be aug-

mented to quickly detect changepoints, learn new models online, and reuse old models if

they become applicable again. Furthermore, it is useful for such an algorithm to have the-

oretical guarantees on sample complexity and accuracy, so its performance can be reliably

characterized for applications requiring learning rates and safety guarantees.

One way of dealing with non-stationarity is to add time, or another counting mecha-

nism, to the GP kernel [26, 97]. However, this technique forgets useful information from

earlier phases of learning if no changepoints occur, and cannot make use of previously

learned models that may reappear and become applicable again. The latter is important

in many domains in which models may be revisited, such as pedestrian tracking [6] and

robotic ping pong [126]. Online GP changepoint detection algorithms have been proposed

previously [47, 106]. However, these algorithms come with no theoretical guarantees on

accuracy and cannot reuse models after changepoints. Additionally, as shown in the ex-

periments section, Section 3.3, these algorithms require significant computation and are

therefore ill-suited for applications requiring real-time prediction.

The first portion of this thesis presents a novel algorithm for online regression over

data with changepoints, the Gaussian Process Non-Bayesian Clustering (GP-NBC) algo-

rithm. GP-NBC decouples the problems of changepoint detection, regression, and model

reuse, resulting in efficient online learning in the presence of changepoints. GP-NBC uses a

non-Bayesian test based on a Generalized Likelihood Ratio (GLR) test [7] to detect change-

points and to re-identify previously seen functions, and performs efficient inference using

a sparse online GP inference algorithm [34].

GP-NBC is computationally efficient and shown to be orders of magnitude faster than

existing methods, which enables the real-time computation needed in decision making and

control domains. In addition, GP-NBC is able to reuse previously learned models, which

is in contrast to methods that use time or counters in the kernel function. Furthermore, this

thesis derives polynomial sample complexity bounds on the number of inaccurate predic-

tions by GP-NBC, a property not shared by competing algorithms. GP-NBC is validated

on two real-world and two synthetic datasets in Section 3.3, where it is shown to outper-

'Here "non-stationary" refers to data with abrupt changes and not to spatially nonstationary GP kernels

18

form state of the art hierarchical GP and changepoint detection algorithms by orders of

magnitude in computational efficiency and prediction accuracy.

The second portion of this thesis presentes an algorithm for reinforcement learning over

nonstationary reward functions. Within this framework, the thesis first introduces a novel

algorithm for stationary reward functions in continuous state spaces, the Upper Confidence

Bound Reinforcement Learning using Gaussian Processes (UCRL-GP) algorithm. Then,

this algorithm is modified to detect changepoints using GP-NBC, resulting in the full algo-

rithm, Upper Confidence Bound Reinforcement Learning using Gaussian Processes with

Changepoint Detection (UCRL-GP-CPD). UCRL-GP-CPD uses UCRL-GP to explore the

state space and learn an optimal policy in between changepoints, and uses GP-NBC to

detect changepoints as they occur.

Reinforcement Learning (RL) [119] is a widely studied framework in which an agent

interacts with an environment and receives rewards for performing actions in various states.

Through exploring the environment, the agent learns to optimize its actions to maximize

the expected return of discounted rewards in the future. As is common in the literature,

the RL environment is modeled as a Markov Decision Process [100], in which each action

taken by the agent results in a stochastic reward as well as a stochastic transition which is

dependent on the current state and action. Reinforcement Learning and Markov Decision

Processes are discussed in further detail in Section 2.4.

In single-task RL, the agent must learn to perform some task or policy for a single,

stationary reward function. However, in order for robots or other autonomous agents to

learn so called life long learning, this requires an agent to learn multiple distinct tasks,

detect when changes have occurred in the environment, and transfer past model knowledge

when it becomes applicable again. Therefore, this thesis also considers reward functions

that can switch discretely in time at changepoints and may reoccur. In this case, the agent

must also identify when the environment has changed as well as determine if the current

environment is similar to previously learned tasks. If the agent re-encounters a previous

environment, the agent should ideally re-identify the task and transfer past experience to

speed up learning and improve performance.

Most multi-task reinforcement solutions that have been proposed previously require

19

that all tasks be encountered in a training phase [14, 123, 129] or require a distributional

assumption about how the MDPs are generated [129]. These algorithms also assume that

changes may only occur in between episodes, requiring that the changepoint time is known

to the agent. These assumptions are overly restrictive in many domains such as pedestrian

avoidance [6] and strategic games [126]. UCRL-GP-CPD makes no such assumptions

about the distribution of tasks and does not require the changepoint to be known by the

agent. Rather, it can detect changes in the environment by making inferences from changes

in observations.

Lastly, many algorithms [123, 129] come without theoretical guarantees on sample

complexity. That is, given any MDP, the algorithm is guaranteed to find an (-optimal

policy with high probability, 1 - 6, in a polynomial number of suboptimal, or exploratory

steps. Many of these algorithms also do not come with theoretical guarantees on preventing

negative transfer, that is, transferring an incorrect training task to the current test task.

It is proven that UCRL-GP is PAC-MDP (Probably Approximately Correct in MDPs),

one of the first RL algorithms for continuous domains which has sample complexity guar-

antees. It is also proven that UCRL-GP-CPD is theoretically guaranteed to detect changes

in the environment and prevent negative transfer.

UCRL-GP is demonstrated on several empirical domains and outperforms the state of

the art algorithms in terms of learning the optimal policy in a the fewest number of samples.

Empirically, UCRL-GP-CPD is also demonstrated on several simulated and real domains.

It is shown that UCRL-GP-CPD effectively learns the optimal policy, detects changes in

the environment, and successfully identifies and transfers old models when they become

applicable.

1.2 Problem Statement

In this section, the problem statements for online prediction for nonstationary data and

reinforcement learning with nonstationary environments are defined.

20

1.2.1 Online Non-Stationary Prediction

On each step t of an online non-stationary prediction problem, a learning agent receives

an input xt E U C Rd that may be chosen adversarially (i.e., not chosen i.i.d. from a

distribution). The agent makes a prediction A(xt) of the expected value of the distribution

Ep(.l)[y I xt] = fi(xt) with generating distribution pi(y I x) c P that changes between

changepoints. The agent then observes an output drawn from the generative distribution

Yt - p(y I xt). The goal is to limit the number of mistakes in agent predictions for

some tolerance EE. More formally, the goal is to bound the number of timesteps where

|fi(xt) - f(xt)I > EE.

Nonstationarity is introduced when mean of the underlying process changes from fi (x)

to some fj (x) at unknown changepoints. Specifically, if timestep t is a changepoint, then

for some region U': Vx E U', Ifi(x) - fj (x) > (E. The period in between changepoints is

called a phase and a learning agent's goal in this scenario is to limit the number of mistakes

in each phase. This requires the agent to detect each changepoint and potentially re-use

previously learned functions. To further solidify the problem, it is assumed there is a lower

bound on the number of samples between changepoints. Section 3.2 provides sufficient

conditions regarding this lower bound and the realizability of each ft (i.e., how well a GP

captures fi) that lead to a bounded number of mistakes during each phase.

In the stationary analysis Section 3.2.1, no assumptions are made about the structure

of the distribution, other than it is Lipschitz. In the nonstationary analysis section, addi-

tional assumptions are made about the class of functions F that may be detected using the

nonstationary algorithm. These are detailed in the preliminaries Section 2.2.

1.2.2 Reinforcement Learning

A RL environment is modeled as a Markov Decision Process [99] (MDP). A MDP M is

a tuple (S, A, R, T, -y) where S is the potentially infinite set of states, A is a finite set of

actions available to the agent, and 0 < y < 1 is a discount factor for the sums of rewards.

Let lx denote the set of probability distributions over the space X. Then, the reward

distribution R(s, a) : S x A -+ PR is a distribution over rewards conditioned on the current

21

state and action, with bounded output, R(s, a) C [Rrnin, Rmax]. The transition function is

a distribution from the current state and action to a new state s', T(s, a) : S x A Ps.

This thesis only considers the case in which the transition distribution is deterministic and

Lipschitz with respect to the states. Furthermore, the expectation of the reward function

i(s, a) = E[R(s, a)] is assumed Lipschitz with respect to the states.

At the beginning of each episode, the agent starts in some initial state so. At each time

step, the agent observes its current state and must choose an action a C A. It receives a

reward r(s, a) ~ R(s, a) and transitions to a new state s' - T(s, a). The goal of the agent

is to obtain the largest possible reward possible over the episode. A policy is a mapping

from states to actions that a agent uses to determine which action to take in each state. For

any policy 7r, the value function, VL(s) = E,[E' -y-rj Is] is the expected discounted

infinite-horizon return of rewards following some policy ir on MDP M. The Q-function is

defined as Q' (s, a) = E,[E yj-'r Is, a] and returns the expected value function after

taking an action a in state s, and then following policy T. Throughout the analysis, the

notation Qt(s, a) will be used to denote the agents estimate of the Q-function at timestep t.

Every MDP has an optimal value function Q*(s, a) = T(s, a) + y J, T(s'I s, a)V*(s')ds'

where V*(s) = maxa Q*(s, a) and corresponding optimal policy * S H- A. Note the

bounded reward means V* E [Vmin, Vmax]. In the analysis, it is assumes that T(s, a) is a

deterministic function, although in practice the algorithm performs well even in stochastic

domains.

In RL, an agent is given S, A, and y and then acts in M with the goal of learning 7T*.

For value-based methods (as opposed to policy search [63]), there are roughly two classes

of RL algorithms: model-based and model-free. Model-based algorithms, such as KWIK-

Rmax [77], build models of T(s, a) and R(s, a) and then use a planner to find Q*(s, a).

Many model-based approaches have sample efficiency guarantees, that is bounds on the

amount of exploration they perform.

This thesis also considers reward functions that may switch at changepoints. On each

step t of an non-stationary reinforcement learning problem, a learning agent receives an

observation from the reward function rt - Ri(s, a) with the reward function Ri(s, a) E

R and associated expected value Ti(s, a). R is a class of reward functions that satisfies

22

certain assumptions of seperability and well-behavedness (See Section 2.2). At unknown

changepoints, the mean of the underlying process changes from Fi(s, a) to some fj(s, a).

Specifically, if timestep t is a changepoint, then for some region, U', which is sufficiently

large, there exists a model gap F such that: V(s, a) c S x A, I i(s, a) - Fj (s, a) I > F. The

size of this region is established in Section 2.4.1.

The goal of the agent is still to maximize the expected infinite sum of discounted re-

wards given the current reward function. Although the reward function may change in the

future, it is assumed that sufficiently large number of actions may be taken between change-

points, so the goal of maximizing the expected return of returns over the finite horizon can

be approximated using an infinite sum. Furthermore, since no distributional structure is as-

sumed about the sequence of MDPs, the problem of maximizing the finite sum of rewards

over each MDP is ill-defined.

In the problem formulation, the goal of the agent is to maximize the expected return of

rewards, which requires maintaining an accurate estimate of the current reward function.

Thus, while correctly identifying changepoints and transferring models improves the ac-

curacy of the reward function, the goal is not to correctly identify the MDP. GP-NBC and

UCRL-GP-CPD provide guarantees that if a changepoint occurs in the environment, the

algorithm will either detect a changepoint, or will be able to successfully learn the changed

portion of the state space. In this way, if a change occurs, but predictions are still accurate,

it is not important for the sake of maximizing rewards.

1.3 Literature Review

This section reviews relevant literature in the fields of changepoint detection and reinforce-

ment learning.

1.3.1 Changepoint Detection

In the GP literature, algorithms for non-stationary data with changepoints can be broadly

classified into two categories: changepoint detection (CPD) algorithms and hierarchical

Bayesian clustering algorithms. First, general CPD algorithms are reviewed followed by

23

a focused review of CPD algorithms which use GPs. Then, hierarchical GP-clustering

algorithms are reviewed.

Online changepoint detection has been studied extensively in the context of time series

analysis [7]. There, a set of random variables is sampled, often at uniform time inter-

vals, and an algorithm infers points in time where the generative parameters of the time

series change. Several results for fast online CPD have been proposed for functions that

slowly drift [124], but this thesis considers time series with abrupt changepoints. For abrupt

changes, many CPD algorithms do not use or learn models. CPD algorithms with models

have been proposed given a set of possible models [84], but this thesis considers the case

where new models may need to be learned online.

Approaches to CPD and time series monitoring using GPs include GP-changepoint

detection algorithm (GP-CPD) [106] based on the Bayesian online changepoint detection

(BOCPD) algorithm [1] and using special kernels which include changepoint times [47].

GP-CPD creates a GP model for every possible run length, and performs Bayesian infer-

ence to get a distribution over changepoint times. Garnett et al. [47] include the change-

point time in the kernel function and uses optimization to determine the changepoint time.

In each case, the focus is not on model learning but rather on instantaneous regression.

Additionally, these approaches require significant computation at each instant and the com-

plexity grows as the number of data points increase. The experiments in Section 3.3 demon-

strate that wrapping such CPD approaches around GP regression creates a computational

burden that is outperformed by GP-NBC and that is not suitable for real-time applications.

Additionally, these approaches come with no theoretical guarantees on regression accuracy.

On the other hand, algorithms that learn hierarchical GP-mixture models largely deal

with changepoints using BNP approaches, such as the Infinite Mixture of Experts (referred

to in this thesis as DP-GP) [105] and the algorithm proposed in [113], which is referred

to as MCMC-CRP in this thesis. DP-GP uses a Dirichlet prior and Gibbs sampling over

individual data points to obtain the posterior distribution over model assignments and the

number of models. MCMC-CRP uses a similar sampling procedure, except the distribu-

tion is over changepoints. In this case, the Gibbs sampler creates, removes, and shifts

changepoints instead of individual data points. These methods require batch data and the

24

experiments in Section 3.3 show that these Bayesian inference methods fail to achieve the

required computational efficiency for many real-time prediction applications. Additionally,

the Dirichlet prior may not converge to the correct number of models [83] and comes with

no guarantees on regression accuracy or rates of convergence to the true posterior. While

variational inference [8, 13] can reduce computation, these approaches require a variational

approximation of the distribution, which do not exist for GPs, to the author's knowledge.

In contrast to these methods, GP-NBC has been designed to work with online deci-

sion making algorithms; the theoretical results provide bounds on the number of inaccurate

predictions GP-NBC may make per phase and the empirical results show that GP-NBC

is orders of magnitude faster than existing methods. In contrast to the sample efficiency

results for GPs in the optimization context [41], the bounds given here are designed specif-

ically for online prediction with non-stationary data.

1.3.2 Reinforcement Learning

In this section, relevant work in Reinforcement Learning (RL) is reviewed. Related algo-

rithms in RL for stationary reward functions are reviewed, followed by a review of algo-

rithms and frameworks in RL for multi-task and non-stationary MDPs.

Single Task Reinforcement Learning

In this thesis, a novel algorithm for continuous state spaces and discrete actions is in-

troduced, UCRL-GP, which uses GPs to model reward and transition functions, and it is

proven that UCRL-GP is sample efficient, i.e. PAC-MDP.

GPs have been studied in both model-free and model-based RL. In model-free RL, GP-

SARSA [43] has been used to model a value function and heuristically extended for better

empirical exploration (iGP-SARSA) [32]. However, I prove in [52] that these algorithms

may require an exponential (in 11-) number of samples to reach optimal behavior since they

only use a single GP to model the value function. This work is reproduced in Appendix

C. More recently, model-free DGPQ [52] was proven to be PAC-MDP. This algorithm

generalizes discrete Delayed Q-Learning [115] to continuous state spaces using a GP to

25

model the Q-function and determine regions of high accuracy.

In model-based RL, the PILCO algorithm trained GPs to represent T, and then de-

rived policies using policy search [37]. However, PILCO does not include a provably effi-

cient (PAC-MDP) exploration strategy. GP-Rmax [62] does include an exploration strategy,

specifically replacing areas of low confidence in the (T and R) GPs with high valued states,

but no theoretical results are given in that paper. In [52], I prove that this algorithm is actu-

ally PAC-MDP. It is shown in Section 4.2.1 that UCRL-GP actually has the same worst case

complexity as GP-Rmax, however, in practice, UCRL-GP outperforms GP-Rmax since it

uses a more nuaced notion of uncertainty in its planning phase. Instead of replacing regions

of high uncertainty with maximal reward and values, UCRL-GP uses an upper probabilistic

bound on the estimate of the reward.

A similar analogy between GP-Rmax and UCRL-GP exists in discrete RL as well. In

particular, discrete R-max [12] only uses information about a state action pair after suf-

ficient samples have been observed. Thus, until that number of samples is collected, the

algorithm ignores all previous information at that state action pair. On the other hand, the

UCRL [5] and MBIE [116] algorithms maintain optimistic upper bounds on the reward

function and error bounds on the empirical transition probability function, using the infor-

mation collected in the state action pair already. Using this information, the UCRL and

MBIE algorithms are able to achieve optimal regret [5]. Similarly, GP-Rmax only uses in-

formation about a state action pair after the confidence of the GP is sufficiently high, i.e. the

variance is sufficiently low, whereas UCRL-GP maintains an optimistic upper bound on the

reward function, thus allowing for a less conservative approach to planning. UCRLC [92]

is also an algorithm for continuous RL that maintains an optimistic upper bound on the re-

ward, but this algorithm relies on state space discretization, and requires a specific planner

that may not be tractable in practice.

In order to extend the UCRL algorithms to continuous spaces without discretization,

a notion of function approximator (FA) confidence is required even when the underlying

distribution is unknown. This is a non-trivial problem, and this idea has been studied

previously in the Knows What it Knows (KWIK) framework [78]. In particular, if a FA is

KWIK-learnable, then the FA can determine whether the estimate is within some defined

26

c with high probability. While many FAs have been shown to be KWIK learnable, these

are restricted to discrete or parameterized FAs. In order to represent a general function

whose structure is unknown, a nonparametric FA is required which is KWIK-learnable.

Thus, the contribution of this work is proving that GPs, a nonparametric FA, provide such

a notion of predictive confidence. The full proof that GPs are KWIK-learnable are available

in Appendix C.

Lastly, the C-PACE algorithm [95] has already been shown to be PAC-MDP in the

continuous setting, though it does not use a GP representation. C-PACE stores data points

that do not have close-enough neighbors to be considered "known". When it adds a new

data point, the Q-values of each point are calculated by a value-iteration like operation.

Multi-task Reinforcement Learning

The problem of learning multiple tasks has been studied under a number of different names

and fields, including multi-task reinforcement learning, inverse reinforcement learning,

transfer learning, and non-stationary MDPs. As opposed to learning each MDP from

scratch at the beginning of every episode, multi-task algorithms aim to leverage past knowl-

edge and transfer past model knowledge to increase learning speeds in the current task.

While it was widely believed that transfer learning could improve the learning speed of al-

gorithms in RL, it was not shown theoretically until recently [14]. Transferring past model

knowledge can greatly improve the speed of learning, however, a significant challenge in

multi-task reinforcement learning is to determine when it is appropriate to transfer past

knowledge. In cases where a task is incorrectly labeled, an algorithm may transfer knowl-

edge from a different task to the current task, resulting in extremely poor performance.

This phenomena is known as negative transfer. While some algorithms provide guarantees

against negative transfer [3, 14, 74], others offer no such guarantees [122, 129].

In multi-task reinforcement learning, one of the more common frameworks is the hier-

archical Bayesian RL framework [129]. In this framework, tasks are drawn i.i.d. from a

distribution over MDPs at the beginning of each episode, and parameters are drawn from

a distribution conditioned on the drawn task of the MDP drawn. In the case that the true

number of tasks is unknown, a Dirichlet prior can be used [129], however, it has been

27

shown that the Dirichlet prior is not a consistent estimator of the number of tasks [83].

While Bayesian methods have had a variety of success in RL [98], Bayesian methods

do not offer any theoretical guarantees on performance or against negative transfer. Indeed,

if the prior distribution is significantly different than the true, or posterior distribution, of

tasks, the algorithm will perform poorly. Additionally, this framework requires the follow-

ing two restrictive assumptions: tasks are drawn i.i.d. and the changes only occur at known

times. For many real-life tasks, the tasks are not drawn i.i.d. and changes may occur at

arbitrary times unknown to the agent. For example, in pedestrian avoidance, the goal po-

sition of a pedestrian is highly correlated with other pedestrians and with previous goals

selected by the pedestrian [6]. Additionally, the pedestrian may change his/her intent at

any time within the trajectory [45]. In robotic ping pong [69], where the person aims the

ball is likely to be highly correlated with past strategies. Lastly, these approaches require a

costly sampling procedure using Gibbs sampling to obtain the posterior. In many real life

domains which require real-time decision making, this sampling procedure is prohibitive.

BOSS [3] is an algorithm that is based on the hierarchical Bayesian RL framework, but

only performs Gibbs sampling at specific points in time in which a new state becomes

known. BOSS comes with some guarantees on accuracy, however, BOSS still requires a

distributional assumption and cannot accomodate changepoints.

In [14], an algorithm for discrete multi-task RL is presented which has theoretical guar-

antees on correctly identifying the number of tasks and correctly transferring model knowl-

edge. However, this algorithm requires an extensive training phase in which all tasks are

encountered and sufficient exploration is allowed. This is a restrictive assumption in do-

mains in which all the tasks may be unavailable a priori for training or in which the number

of tasks is unknown. For example, in dynamic soaring, every type of wind field may not be

known. In pedestrian avoidance, every pedestrian trajectory and goal pattern may not be

available or known a priori.

In these works, it is assumed that changes occur only in between episodes. Therefore,

the changepoint times are known, so no changepoint detection algorithm is required. Al-

gorithms do exist which perform changepoint detection using hidden Markov models [70]

and by formulating the problem as a partially observed MDP (POMDP) [6], but these algo-

28

rithms assume that the models are known a priori. In many applications, however, the time

of the changepoint is unknown to the agent or all the models may not be available a priori.

Unlike these approaches, UCRL-GP-CPD does not make any distributional assump-

tions, and is capable of detecting changes at arbitrary points in time. Unlike Bayesian meth-

ods, it has PAC-MDP guarantees on learning the current reward function efficiently, as well

as guarantees on preventing negative transfer. The analog is that in contrast to Bayesian

methods, UCRL-GP-CPD provides a framework for multi-task learning in a nonBayesian,

or frequentist, framework. Bayesian methods work well when a prior over possible tasks

is available and tasks are drawn i.i.d. However, in cases in which a prior is not available,

or in which tasks are not drawn i.i.d., a frequentist perspective is better suited. In order

to facilitate a frequentist approach to multi-task RL, extra machinery is required to detect

changes that may occur at any time. In particular, if a change occurs in a location of the

environment that the agent has not explored recently, the agent will be unable to detect this

change. In order to maintain an up to date representation of the environment, the agent

must periodically explore the environment. This idea was first introduced in [2] as afog

of war. In that paper, a naive exploration strategy was proposed which utilized a variance

based exploration policy. In this thesis, a new periodic exploration policy is proposed that

is guaranteed to discover a change in the environment if one has occurred.

Lastly, in inverse reinforcement learning (IRL), the agent attempts to learn a task through

demonstration by an expert. In the case that the task contains multiple subtasks, many

algorithms [70, 82] exist to automatically decompose a task into the relevant subtasks,

or segments. While there are many technical parallels between decomposing a task and

changepoint detection for multi-task RL, the focus of IRL is fundamentally different than

that of multi-task RL. In particular, IRL is focused primarily on creating a reward function

which adequately describes the observed behavior of an expert. In this case, the agent does

not perform active exploration, but rather focuses on passive observation. In multi-task

RL, the agent has direct access to the true reward function and attempts to learn an optimal

policy through exploration with the domain.

29

1.4 Thesis Contributions

The main contributions of this thesis are as follows. In Chapter 3, a novel algorithm, GP-

NBC, is introduced for changepoint detection and model reuse using Gaussian processes.

It is proven that, unlike previous algorithms for regression over data with changepoints

using GPs, GP-NBC has provable guarantees on the number of errorenous predictions.

In addition, GP-NBC is able to reuse previously learned models, which is in contrast to

methods that use time or counters in the kernel function. It is demonstrated empirically that

GP-NBC is orders of magnitude faster than state of the art competing algorithms without

losing accuracy. These results are currently under review at the Uncertainty in Artificial

Intelligence Conference (UAI 2014) [51].

In Section 4.1, a novel algorithm, UCRL-GP, is presented for single-task RL. It is

proven that UCRL is PAC-MDP, one of the first algorithms for continuous RL ever proven

to be PAC-MDP. Empirically, it is shown that UCRL outperforms state of the art RL al-

gorithms in terms of learning the optimal policy in the smallest number of samples. In

Section 4.1, an algorithm for multi-task RL is presented, UCRL-GP-CPD. This algorithm

uses UCRL-GP to explore the domain in between changepoints, and uses GP-NBC to detect

changes in the environment. A new periodic exploration algorithm is presented to maintain

an up to date representation of the reward function. It is proven that when coupled with the

periodic exploration algorithm, GP-NBC will detect changes in the reward function with

high probability. It is also proven that using a modified version of GP-NBC model transfer

algorithm, UCRL-GP-CPD will not transfer incorrect models, i.e. there is no negative

transfer. UCRL-GP-CPD is empirically demonstrated on a variety of simulated and real

domains to detect changes in the environment as well as transfer past models correctly.

Lastly, the appendices of this thesis include work for two other projects which I worked

on during my Masters. These include my work on Gaussian Processes in adaptive con-

trol [49, 50] in Appendix B, as well as the first sample complexity results ever for a model-

free continuous RL algorithm, DGPQ [52], which is presented in Appendix C.

30

Chapter 2

Preliminaries

This section discusses preliminaries for Gaussian processes, nonstationary prediction, re-

inforcement learning, large number asymptotic theory, and sample complexity definitions.

2.1 Gaussian Processes

Each underlying mean function fi(x) is modeled as a Gaussian Process (GP). A GP is

defined as a collection of random variables, any finite subset of which has a joint Gaussian

distribution [102] with mean Ap(x) and covariance k(x, x'). The experiments section uses

the Radial Basis Function, k(x, x') = Aexp(- 1x12). This thesis assumes that f(x) E R.

Multidimensional extensions are straightforward in that each dimension is represented by

a separate GP. See [102] for a complete analysis of the properties of GPs.

As is common in the GP literature, it is assumed that the GP has a zero mean. In

general, this assumption is not limiting since the posterior estimate of the latent function

is not restricted to zero. The elements of the GP kernel matrix K(X, X) are defined as

Kijy = k(xi, xj), and k(X, xi+) C R' denotes the kernel vector corresponding to the

Z + Ith measurement. The joint distribution is given by

yi ~ ,K(Z, Z) + W2 I k (Z, zi+ 1) .21

yi+1 k' (Z, zi+ 1) k(zi+1, zi+1)

31

The conditional probability can then be calculated as a normal variable [102] with mean

z(Xi+1) = a T k(X, xi+1), (2.2)

where a = [K(X, X) + ,oI] -y are the kernel weights, and covariance

(xi,1) = k(xi+1, xi+1) - kT(X, xi+1)[K(X, X) + w2I] -k(X, xi,).

Due to Mercer's theorem and the addition of the positive definite matrix w!I, the matrix

inversion in (B.12) and (B.13) is well defined.

2.1.1 Online Budgeted Inference

In general, traditional GP inference does not scale well with the number of data points be-

cause it requires that a kernel center be added for every data point seen [104]. Hence, in

order to enable efficient GP inference online on resource constrained platforms, modifica-

tions must be made that can ensure online tractability. The matrix inversion required for

prediction scales with the number of data points n as 0(n'). Csato [34] provides recur-

sive, rank 1 updates for the weights a and covariance (B. 13). However, even with rank-I

updates, prediction computation grows as 0(n), where n is the number of kernel points.

Instead of creating a kernel at every data point, a restricted set of points referred to as

the active basis vector set is used. Furthermore, the size of this set is limited by a user

selectable "budget". When the number of points stored exceeds the budget, new points

can only be added by removing an existing point in a way that further enriches the active

basis set. In order to determine the novelty of a new point, a linear independence test is

performed [34] as,

y = k* - k(BV,Xi±1)T a. (2.3)

If -y exceeds some threshold EtoI, then the point is added to the data set. Otherwise, the

weights a and covariance E are updated using a rank-i update, but do not increase in

dimension. This sparse representation requires 0(113V1) calculations for prediction and

32

O(IBV 1) for variance. If the budget is exceeded, a basis vector element must be removed

prior to adding another element. For this purpose, the KL divergence based scheme pre-

sented by Csato [34] is used. This scheme efficiently approximates the KL divergence

between the current GP and the (t + 1) alternative GPs missing one data point each, then

removes the data point with the lowest score. The online sparse GP algorithm allocates

new basis vector locations dynamically, thus preventing ad-hoc a priori feature selection

as is common with other methods such as neural networks [107]. Hyperparameters can be

optimized online as well [50, 106].

2.2 Nonstationary Prediction and Learning

In the stationary analysis Section 4.2.1, no assumptions are made about the structure of

the distribution, other than it is Lipschitz. In the nonstationary analysis Section 4.2.2,

additional assumptions are made about the class of functions F that may be detected using

the nonstationary algorithm: realizability, separability, and Gaussianity; it is assumed each

mean function fi E F can be exactly modeled by a GP given infinite data and the expected

approximation loss of using a GP model with finite data S is approximately the same over

all functions, functions are well separated regionally, and the distributions are Gaussian,

although possibly heteroskedastic.

Assumption 2.1 (Realizability) The approximation error between a GP model learned

from a subset of the data and the true generative distribution does not change between

phases by more than EDS,

sup D(pi GPs) - D(pjl|GPs)| EDS (2.4)
i~j

Assumption 2.2 (Separability) All functions f c F differ by some (F over at least

one compact input region U:

Vij :3X C U C U s.t. If,(X) - f (x)I (F > CE (2.5)

33

Assumption 2.3 (Gaussianity) Vi, pi(y, I x) ~ .(fi(x), w'(x)) with nonzero vari-

ance infx w' (x) ;> w' > 0 and Lipschitz constant K associated with f(x).

Assumption 2.3 ensures well-behavedness of the KL-divergence, since the KL-divergence

between a deterministic function and a probabilistic distribution may be ill-defined.

Lastly, auxiliary definitions are used in the sample complexity analysis of GP-NBC and

UCRL-GP-CPD: the covering number (adapted from [95]) and the equivalent distance map.

The covering number quantifies the notion of how large a continuous space is (according

to a distance metric) to a discrete number. The equivalent distance is a mapping between

the Euclidean distance between points and the distance in the reproducing kernel Hilbert

space used by GPs.

Definition 2.1 The Covering Number !\u(r) of a compact domain U C R" is the

cardinality of the minimal set C = {ci, ... }, CN s.t. Vx c U, 3c E C s.t. d(x, c) < r,

where d(., -) is some distance metric. The minimal set is referred to as the Covering Set.

Definition 2.2 The equivalent distance r(ctoj) is the maximal distance s.t. Vx, c E U,

if d(x, c) < r(Etoi), then the linear independence test -y(x, c) = k(x, x) - k' C)
2 < E

2.3 Information and Decision Theory

This section discusses decision theory for probabilistic classification as well as results from

large numbers asymptotic theory. These theorems underpin many of the theoretical results

of GP-NBC.

2.3.1 Decision Theory

In this thesis, a hypothesis will refer to the proposal that a set of points is generated from

a given model. For two models, H1 and H0 with known priors, the decision rule that

maximizes the probability of correct model identification reduces to a likelihood ratio test

34

(LRT):

fl = H,
P(y I H1) > exp(77) (2.6)
P(y Ho) <

H = Ho

where 17 = log ((1 - pi)/pi), and pi = p(Hi). If the left hand side is greater than 77, then

= H1 is chosen, otherwise H = Ho.

When a prior is not available, the problem is formulated as a nonBayesian hypothesis

test based on the probability of detecting an event H, and the probability of a false alarm.

The decision rule that maximizes the probability of detection subject to some maximum

probability of a false hypothesis choice is still a LRT by the Neyman-Pearson lemma [90].

A variation of the Generalized Likelihood Ratio (GLR) [7], an instance of non-Bayesian

hypothesis testing, is utilized to perform changepoint detection. The GLR detects changes

by comparing a windowed subset S of data to a null hypothesis. At each step, a new

distribution p(y I H1 (S)) of the same family as the null hypothesis is created with the

maximum likelihood statistics from S. The likelihood of the windowed set is taken with

respect to both distributions, and if the LRT exceeds some ratio, a changepoint is detected.

The joint log likelihood of a subset of points given a GP model is

log P(y I x, 6) = (y - p(x))(EXX + wI<)-(y - f(x)) - log xI 1/2 + C (2.7)
2

The log-likelihood contains two terms which account for the deviation of points from the

mean, y - (x))TExx(y - A(x)), as well as the relative certainty in the prediction of the

mean at those points log E XX1/2.

2.3.2 Large Deviations and Large Number Asymptotic Theory

Given two models HO and H1 , Large Deviations theory states that if m observations are

generated i.i.d. from H 1, the likelihood of those samples with respect to HO decays with

exp(-mD(HI1 Ho)). In the case that the true models are known a priori, the LRT values

will tend towards the KL-Divergence D(Hi I Ho) exponentially fast. This implies that even

a small set of points will give good performance for identifying the correct hypothesis. In

35

online learning, H1 is not known a priori and must be approximated using a subset of the

current data, so the LRT will tend towards

E[LH1I Ho(y)] = D(Hi I Ho) - D(H 1 |H 1) (2.8)

which is the KL-divergence between the current model and the true distribution minus the

approximation error of using a model f 1 instead of H1 (see Appendix A).

The theory of large deviations depends on i.i.d. observations of yi, but the inputs may

not be i.i.d. Therefore, the expectation operator is conditioned on.x such that if H1 is

implicitly a function of x, (2.8) holds for each x.

Although the strong law of large numbers states that the expected value will tend to

(3.1), and that the distribution will Gaussian in the limit as the number of observations

increases to infinity, it does not provide information about the distribution structure for

smaller numbers of samples. For this purpose, two large deviations inequalities are used,

Hoeffding's Inequality [53] and McDiarmid's Inequality [81], to bound the probability of

(2.8) deviating from its expected value by more than some specified amount. These are

often referred to as concentration inequalities.

Theorem 2.1 (Hoeffding's Inequality) Given n observations x 1 ,.. ., x, drawn i.i.d.

from distributions X, with respective bounded output ranges p(xi E [ai, bi]) = 1. Define

X = K= xi. Then,

2n22
Pr(IX - E[X] > c) < 2 exp -) (2.9)

1 j~(bj - ai)2

In the case that all observations are drawn from the same distribution X, with Vm - lb - a

/2n(2
Pr(IX - E[X]i > E) < 2exp (2 (2.10)

Hoeffding's Inequality states that the worst case probability that the empirical mean of a

group of i.i.d. observations will deviate from the expected value of the mean by more than

some E is bounded by a quantity determined by the number of observations, E, and the

36

range of the output. Hoeffding's Inequality is powerful in that it makes no assumptions

about the structure of the distribution, and does not require observations to be drawn from

the same distribution. McDiarmid's Inequality is a generalization of the Hoeffding bound.

Instead of analyzing the behavior of the empirical mean, McDiarmid's Inequality bounds

the probability of a general multi-variate function deviating from its expected value by

some 6.

Theorem 2.2 (McDiarmid's Inequality) Consider n observations x 1 ,... , x, drawn

i.i.d. from distributions Xi and a function f(x1, x 2 ,... , Xn) which satisfies the following

constraint:

sup if(Xi, x 2 ,. .. ,X) - f(x1, x 2 ,. .. , i ,, . , n)| I Ci Vi (2.11)

That is, changing one xi cannot change f(Xi, x 2 ,. . . , xn) by more than ci. Then

Pr(If(Xi, x 2 , . ,Xn) -E[f(xI, x 2,. .. ,xn)] >) < 2 exp - 2 (2.12)

2.4 Reinforcement Learning

An RL environment is modeled as a deterministic Markov Decision Process [99] M

(S, A, R, T, 7) with a potentially infinite set of states S, finite actions A, and discount factor

-y < 1. Each step elicits a reward R(s, a) i-+ [Rmin, Rmax] and a deterministic transition to

state s' = T(s, a). Every MDP has an optimal value function Q*(s, a) R(s, a) + V*(s')

where V*(s) = maxa Q*(s, a) and corresponding optimal policy r* : S i-> A. Note the

bounded reward means V*E [Vmin, Vmnax]. The algorithm's current estimate of the value

function is denoted as Q(s, a).

In RL, an agent is given S,A, and -y and then acts in M with the goal of enacting 7r*.

For value-based methods (as opposed to policy search [63]), there are roughly two classes

of RL algorithms: model-based and model-free. Model-based algorithms, such as KWIK-

Rmax [77], build models of T and R and then use a planner to find Q*. Many model-based

approaches have sample efficiency guarantees, that is bounds on the amount of exploration

37

they perform.

By contrast, model-free methods such as Q-Learning [127] build Q* directly from expe-

rience without explicitly representing T and R. Generally model-based methods are more

sample efficient but require more computation time for the planner. Model-free methods are

generally computationally light and can be applied without a planner, but need (sometimes

exponentially) more samples, and are usually not PAC-MDP. There are also methods that

are not easily classified in these categories, such as C-PACE [95], which does not explicitly

model T and R but performs a fixed-point operation for planning.

2.4.1 Non-stationary Reward Functions

This thesis also consider MDPs where the reward function may switch at changepoints.

This thesis focuses on the class of reward functions IZ that satisfy the same assumptions

in Section 2.2: realizability (Assumption 2.1), separability (Assumption 2.2), and Gaus-

sianity (Assumption 2.3). In addition, the following assumptions are adopted from [14] to

continuous spaces: the region for which functions are well separated is sufficiently large,

i.e. it is observable by the agent, and each MDP in the class of possible MDPs M has a

known upper bound on the diameter.

Assumption 2.4 (Separability) There is a known gap F of model difference in M: for

all Mi, Mj E M, there exists some compact region of the input region U C S for which

for all (s, a) C U such that Ifi(s, a) - Tj (s, a)I > F. Furthermore, U contains at least one

voronoi region of the covering set.

The notion of a diameter was first introduced in [5] for discrete state spaces to quan-

tify how long it takes an agent to traverse the entire state space. The diameter intuitively

measures the maximum number of steps that an agent must take to move from one state

to any other arbitrary state. Here, the notion of a diameter is generalized to continuous

spaces by using the covering set. The modified definition says that given any initial state,

the diameter is the maximum number of steps required on average to reach any region of

the state space. This assumption is effectively a reachability assumption. That is, the agent

38

can reach any region of the state space in order to detect and model the reward function in

a finite number of samples.

Definition 2.3 Consider the stochastic process defined by a stationary policy 7r S F-

A operating on an MDP M with initial state s. Let T(s' I M, T, s) be the random variable

for the first time step in which any state s' E Vi, where V is the Voronoi region around

element (si, ai) E KSxA(r) is reached in this process. Then the diameter of M is defined

as

D(M) := max min E[T(s'l M, 7r, s)] (2.13)
s 4s' r:SH+A

Assumption 2.5 (Known Diameter) There is a known diameter D, such that for every

MDP in M, any region of states s' is reachable from any state s by at most D steps on

average.

2.5 Probably Approximately Correct in MDPs Framework

In the following section, the Probably Approximately Correct in MDPs (PAC-MDP) frame-

work is reviewed. Definitions and Theorems are reproduced from [114]. The PAC-MDP

framework is a methodology for analyzing the learning complexity of a reinforcement

learning algorithm. Learning complexity refers to the number of steps for which an algo-

rithm must act sub-optimally, or explore, in order to determine the (approximate) optimal

policy. In the analysis of RL algorithms, two additional non-negative parameters (and 6

are used. c controls the quality of the solution that the algorithm is required to return, and

6 controls the confidence in that solution, i.e. the probability that the algorithm functioned

correctly and returned a solution within the performance bounds. As these parameters ap-

proach zero, more exploration and learning is required in order to return a more accurate

solution.

In this context, an algorithm is a non-stationary policy that, on each timestep, takes

as input the entire history or trajectory through an MDP, and outputs an action which the

agent executes. Given this view of an algorithm, the sample complexity of exploration is

formally defined as follows:

39

Definition 2.4 Let c = (si, a,, S2, a2 , . . .) be a random path generated by executing an

algorithm A in an MDP M. For any fixed c > 0, the sample complexity of exploration

(sample complexity) of A is the number of timesteps t such that the policy at time t, At,

satisfies VA (st) < V*(st) - c.

Intuitively, this definition states that the sample complexity of an algorithm is the number

of steps before the algorithm models the value function accurately (within C) everywhere.

Next, an efficient PAC-MDP algorithm is defined to formalize the notion of an efficient

learning algorithm.

Definition 2.5 An algorithm A is said to be an PAC-MDP (Probably Approximately

Correct in Markov Decision Processes) algorithm if, for any (> 0 and 0 < 6 < 1, the sam-

ple complexity of A are less than some polynomial in the relevant quantities (S, A, , ,)

with probability at least 1 - 6.

Now that the definition of PAC-MDP has been established, some definitions and lem-

mas are introduced from [114]. The main result of [114] shows that if an RL algorithm

satisfies certain properties of optimism, high accuracy, and learning rates, then the algo-

rithm is PAC-MDP. These results are used to prove that UCRL-GP is PAC-MDP in Section

4.2.1.

To begin, definitions for a greedy algorithm and the notion of a known state-action pair

are presented

Definition 2.6 Suppose an RL algorithm A maintains a value, denoted Q(s, a) for each

state-action pair (s, a) E S x A. Let Qt(s, a) denote the estimate for (s, a) immediately

before the tih action of the agent. It is said that A is a greedy algorithm if for the tih action

ofid A, at is at = arg maxaEA Qt(s, a), where st is the tth state.

Definition 2.7 Let M = (S, A, T, R, 'y) be an MDP with a given set of action val-

ues, Q(s, a), for each state-action pair (s, a), and a set K of state-action pairs, called the

known state-action pairs. The known state-action MDP MK = (S U {zs,aI(s, a)

K}, A, TK, RK, -y) is defined as follows. For each unknown state-action pair, (s, a) $ K, a

new state zs,a is added to MK, which has self-loops for each action (TK(Zs,a I Zs,a,) = 1).

40

For all (s, a) E K, RK S, a) = R(s, a) and TK(- I s, a) = T(. I s, a). For all (s, a) V K,

RK(s, a) (s, a)(I - -y) and TK(Zs,a s, a) = 1. For the new states, the reward is

RK (Zs,a,) Q (s, a) (I - -y).

Intuitively, K is the set of state-action pairs for which the agent has sufficiently accurate

estimates of the reward and dynamics. Finally, the main theorem of [114] is presented.

Theorem 2.3 ([114]) Let A(c, 6) be any greedy learning algorithm such that, for every

timestep t, there exists a set Kt of state-action pairs that depends only on the agent's history

up to timestep t. It is assumed that Kt = Kt±1 unless, during timestep t, an update to some

state-action value occurs. Let MK, be the known state-action MDP and 7rt(s) be the current

greedy policy, that is, for all states s, 7t(s) = arg maxa Qt(s, a). Furthermore, assume

Qt (s, a) <_ Vmax for all t and (s, a). Suppose that for any inputs C and 3, with probability

at least 1 - 6, the following conditions hold for all states s, actions a, and timesteps t: (1)

Vt(s) > V*(s) - E (optimism), (2) Vt(s) -VJ (s) K c (accuracy), and (3) the total number

of updates of action-value estimates can occur is bounded by ((E, 6) (learning complexity).

Then, when A(c, 3) is executed on any MDP M, it will follow a 4E-optimal policy from its

current state on all but

Vmax((E,) (1\ (1
0 lmax og-g log 6) (2.14)

C(1 - 3) \(1 -)

timesteps, with probability at least 1 - 23.

The key intuition behind the theorem relates to the "optimism in the face of uncertainty"

paradigm. This states that if a greedy algorithm remains optimistic, then it will explore

regions with low certainty over those with known values. In this case, the greedy algorithm

will either act optimally or learn something new about the environment. Since the number

of samples required before learning every state action pair in bounded by a polynomial

quantity, it follows that a greedy algorithm will learn the value function in a polynomial

number of exploratory steps.

41

2.6 Summary

This chapter reviewed the many technical frameworks from which the algorithms in this

thesis are based: Gaussian processes, nonstationary prediction, reinforcement learning,

large number asymptotic theory, and sample complexity definitions. The problem state-

ments in this thesis are based in the nonstationary prediction and reinforcement learning

frameworks, and these frameworks provide a method for analyzing performance in a mean-

ingful manner. The Gaussian process, large number asymptotic theory, and sample com-

plexity sections provide the machinery required to prove the main theoretical results of this

thesis.

42

Chapter 3

Nonstationary Learning and Prediction

This chapter presents an algorithmic solution to the problem of performing regression and

model learning when faced with nonstationary data, i.e. data containing changepoints. Sec-

tion 3.1 introduces an algorithmic solution to this problem, GP-NBC. In Section 3.2, the

algorithm is proven to be theoretically sound in limiting the number of mistaken predic-

tions. In Section 3.3, GP-NBC is shown empirically to perform orders of magnitude faster

than existing state of the art algorithms without losing predictive accuracy.

3.1 GP-NBC Algorithm

This chapter considers the problem of performing accurate regression when learning from

data containing changepoints. This section presents an algorithm as a possible solution to

this problem, the Gaussian Process Non-Bayesian Clustering algorithm, GP-NBC. The full

algorithm, GP-NBC, including a component for utilizing previously identified models (or

clusters), is presented in Algorithm 1. GP-NBC can be initialized with or without a set

of prior models. The main idea of the approach to the problem of online non-stationary

prediction and clustering is to decouple the problems of prediction, CPD, and model rei-

dentification.

The algorithm begins with a (newly initialized) working model GP". For the prediction

problem, an algorithm is given Xt and GP, makes a prediction A,,(xt) and is then updated

with an observation yt. Next, for the changepoint detection problem, an LRT (Algorithm 2)

43

is used, so the algorithm needs to construct a set of points S that the LRT can compare to the

current model (Line 6). While a sliding window may suffice when successive generating

functions differ at all points in the domain, if there is sufficient overlap between functions

one of the following more nuanced approaches is needed:

* Thefiltered sliding window rule uses a buffer of size ms for S and adds points when

their log-likelihood is below a given threshold 0.

* The local sliding window rule adds points to local version of S, denoted S,(d,), that

contains the previous ms measurements within a given distance of x.

The number of points ms is domain specific, but generally small sets on the order of

ms ~_ 10 suffice for most domains. It is later shown the latter method produces a bound on

the number of mistakes made by GP-NBC, even in the case of adversarially chosen inputs.

However, the experiments section uses the filtered sliding window as it is simpler to imple-

ment and often approximates the local sliding window well, especially for real-world data

with some (though not strictly i.i.d.) regularities in the inputs.

After this set has been created, a new candidate GP model, GPs, is created from these

points, S, using the same hyperparameters and kernel as GP, (Line 3), and the LRT is

calculated for these points with respect to the two models. If the average of the last m LRT

values (L,) differs significantly from the average LRT values up until that point, then a

changepoint is declared and a new model is initialized with an empty S. In the case that

a local sliding window is used, the last m LRTs corresponding to the points in that region

are used. If a changepoint is detected, the last m points are deleted from GP", restoring

GP, +- GPS-m. This prevents points which were potentially generated after a changepoint

from being included in the old model. Using a sparse GP requires only O(mILV I') storage

for this operation. After a new model is created, an initial burn-in period of approximately

R E [2m, 4m] is used before calculating the LRT again (Line 8).

In practice, the changepoint detection algorithm of GP-NBC works very robustly based

on the following intuition. In the first step, the filtered sliding window allows the algorithm

to focus on anomalous points while ignoring points that fit the current model well, i.e. were

likely generated from the current model. In the second step, a new candidate GP model,

44

Algorithm 1 GP-NBC
1: Input: (Optional) Set of previous models {GP1 ,. , GPN

2: Initialize working model GP
3: while Input/Output (xt, Yt) available do
4: Predict A,(xt)

5: Update GP, with (xt, yt) using [34]
6: Add (xt, yt) to S according to rules in Sec 3.1

7: Save GP, to array {GPt,,... GP"m}

8: if GP, has > R measurements then

9: Call Algorithm 2

10: Call Algorithm 3
11: end if
12: end while

GPs, is created from these points, S.

If the points are anomalous simply because of noise in the output, then on average, the

new GP model created from these points will be similar to the current model, and the joint

likelihood given the new model will not be substantially different from that of the current

model. If the points are anomalous because they were drawn from a new function, then

on average, the GP model created from these points will be substantially different from the

current model. In this case, the joint likelihood of these points will be much higher for the

new model relative to the current model. Lastly, instead of making a decision on a single

LRT, the last m LRTs are averaged and compared to the average LRT values seen since the

last changepoint. In practice, the LRT may have some offset value due to modeling error.

Looking at the difference between the last m values and the average LRT values makes the

algorithm robust to this problem. In particular, in Section 3.2, theoretical guidelines for

setting m are given. In practice, the algorithm is robust to the selection of parameters m

and ,, as shown in the empirical section.

To store and reuse previous models, the following modifications are made. Once a

model has at least R data points, a test is performed to see if GP matches a previous GP

model using an LRT (Algorithm 3). In this case, the mean values at the basis vector set

A,+, (BVn+a) are used as an artificial data set. If the LRT values indicate that the mean of

GP+ 1 is not substantially different from an old model GP, the new model is deleted and

the previous model with the lowest LRT score becomes the working model. The sparse

45

Algorithm 2 Changepoint Detection
1: Input: Set of points S
2: 11 = logp(S I GP,)
3: Create new GP GPs from S
4:2 =logp(S I GPs)
5: Calculate LRT Li(y) = (12 - 1i)

6: Calculate average of last m LRT: L, = _m L3 (y)
7: Calculate average of LRT after changepoint: L,, = i_ _1 -- Lj (y)
8: i = + 1
9: if L, - L, > t then

10: Restore GP, to previous version
11: Initialize GPn+1, set GP, = GP,+1, set i 1
12: end if

Algorithm 3 Compare to Previous Models
1: Input: Basis vectors BV., prediction values Pit(BV.), and library of models
2: for Each model j in library do
3: 11 = log P(ft,(BV) GP)
4: 12 = log P(JiW(BV) GP,)
5: if 1 (/2 - 1i) < 17 then
6: Delete current model and set GP, = GP
7: end if
8: end for

online GP implementation ensures the basis vectors are chosen to adequately cover the

input domain avoiding over-fitting to one region of the input domain.

In summary, the computational complexity for the LRT is given by O(IL3Vl 2m) for

variance calculations. The computational complexity for comparing a current model to all

previous models is O(13V1 3N). Note that 13VI is user tunable, and for most domains a

size between 10-200 is sufficient. Hence, the GP-NBC algorithm is real-time computable,

even on resource constrained platforms.

3.2 Theoretical Contributions

This section prove bounds on the sample complexity of GP-NBC, specifically how many

mistakes (predictions with large error) it will make with high probability. The section

begins by reviewing fundamental results to motivate the use of hypothesis testing for non-

46

stationary model detection. In Section 3.2.1, the key theoretical results determine the max-

imum number of mistakes a GP can made when learning a single generating function by

determining a sufficient condition on the variance (Lemma 3.1) and the rate at which the

variance meets that condition (Theorem C.1). In Section 3.2.2, the nonstationary case is

analyzed by showing that if certain assumptions are met on the class of functions, the ex-

pected value of the LRT (Lemma 3.22) can be lower bounded, and given sufficiently large

m (Lemma 3.3), it is proven that GP-NBC will either detect a changepoint or predict accu-

rately in a bounded number of samples (Theorem 3.2).

Given any two hypotheses models HO and H 1, the theory of Large Deviations states

that if a set of m samples generated i.i.d. from H1 are observed, the probability that those

samples will appear to have been drawn from HO decays with exp(-mD(Hi IHo)). In the

case that the two models are known a priori and the true model is H1 , the LRT values will

tends towards the KL-Divergence D(H I IHo) exponentially fast. This implies that even a

small set of points will give good performance for identifying the correct hypothesis. In

online learning, H1 is not known a priori and must be approximated using a subset of the

current data, so the LRT will tend towards

E[LH1iHo(Y) = D(H1ilHo) - D(H111H1) (3.1)

which is the KL-divergence between the current model and the true distribution minus the

approximation error of using a model f 1 instead of H 1 .

The theory of large deviations depends on i.i.d. observations of yi, but the inputs may

not be i.i.d. Therefore, the expectation operator is conditioned on x such that if H1 is

implicitly a function of x, (3.1) holds for each x. It is further assumed that the output range

is bounded, Vm = ymax - ymin, the observable input locations belong to a compact domain

x c U c R', and the mean of the output distribution fi(x) = E[pi(y I x)] is Lipschitz

over x. Analysis in the stationary case holds for any arbitrary output distribution satisfying

these assumptions. In the nonstationary case, further restrictions are required.

The analysis assumes worst case inputs xt, i.e. samples are chosen adversarially to

maximize the number of possible mistakes, without distributional assumptions on the in-

47

puts. Hence, it is applicable to many real-life applications, such as pedestrian tracking and

reinforcement learning, which contain temporally correlated inputs that are ill suited for

the simpler i.i.d. setting.

3.2.1 Stationary GP Sample Complexity

The analysis begins by considering the number of mistakes, as defined in Section 1.2.1,

possible within a given phase without switching. This limits the rate at which GPs can

learn and therefore how frequent changepoints can occur while learning seperate models.

Sample complexity results for GPs under a stationary, i.e. without changepoints, setting are

derived using adversarial inputs, which is equivalent to worst case analysis. The following

lemma links the prediction variance of a GP to the probability that it will make a mistake

on a given input.

Lemma 3.1 Consider a GP trained on samples =[yi,... , yt] which are drawn from

pi(y I x) at input locations X [xl,... , xt], with E[p (y I x)] = fi(x); if the predictive

variance of the GP at x' E X is

~2(x) tol V2, log() (32

then a mistake at x' is bounded in probability: Pr {|p(x') - fi(x')I ;> (El 1-

Proof McDiarmid's Inequality states that

Pr{f (xi, ... , x.) - E[f (xi,. .. , x)]l < c} 2exp (- 2 2 (3.3)

where ci = sup f (x 1 ,. . . , Xi, ... , -. .11 . . , x,). I.e. replacing xi by some

other value ij can result in a change in the output f (x 1,. . . , x") no larger than ci. In the case

of an average of the variables, McDiarmid's Inequality becomes Hoeffding's Inequality.

Consider the general GP regression equations

(X) = K(X, X)(K(X, X) + WI)- 1 y (3.4)

48

where y E [0, Vm] and Var(y) < V2. K(X, X) is symmetric and positive semi-definite,

so its eigenvectors are orthonormal to eachother and all of its eigenvalues are nonnega-

tive. It can be shown that K(X, X) and (K(X, X) + W2)-1 have the same eigenvectors.

Performing eigendecomposition,

p(X) = QAQ TQ(A + W2 J- 1QT y (3.5)

p(X) = QA(A + W 2 I)-lQTy (3.6)

Consider performing prediction only at the first input location x1 by pre-multiplying using

a unit coordinate vector el = [1, 0, . . . , 0]T.

P(x1) = ef QA(A + W2I)-lQTy (3.7)

This is just a weighted sum of the observations y, with weights given by

1 QA(A + W 2I)-lQT (3.8)

It follows that Z c =fa|| V . Then,

ia|= eT QA(A + w!I)-Q T Q(A + I)-1 AQ T ei (3.9)

11a|2 qiA(A + w!I)~(A + I)- Aql (3.10)

where qi = [Q11 ... Qi] is the first row of Q. Therefore,

= q2(Ai) 2 (3.11)

However, by evaluating (3.8), the weight a1 which corresponds to (x 1 , yi) is given by

S = q (3.12)
ig ta e e+t h (3.1)

Since every term in (3.12) is greater than every respective term in the sum of (3.11), it

49

follows that,

11OZ|1 < a, (3.13)

In order to finish the proof, an upper bound a, is derived. Consider that a GP prediction is

equivalent to the MAP estimate of a linear Gaussian measurement model with a Gaussian

prior.

a (xI) W_2
IlMAP(X1) 0 Y + (2(X1) (3.14)

a2 + o(X1) a(72 Xi) + Cj

In this case, the prior mean puo(xi), and variance a2 (x 1) are given by the GP estimate before

including (x1 , yi), and the weight of the new observation is given by

O_'(X 1) U2(Xi)0i < (3.15)
W2 + -2(X1) - W2

Using this bound on a,, McDairmid's Inequality states that if

1 Vm log() (3.16)
012(x1) 2U)E2

then the prediction is within 1i of the expected value of the GP prediction with probability

1 - 6. This proves that the estimate of the GP concentrates around its expected value with

high probability. Since GPs are consistent estimators [102], it follows that the expected

value of the GP is the expected value of the distribution f(x). Therefore, it follows that if

(3.16) holds, then the estimate of the GP is within ci of f(x).

Lemma 3.1 gives a sufficient condition to ensure, with high probability, that the mean of

the GP is within cE of the fi(x). If the variance is greater than 0-2, then one cannot say

with certainty that the algorithm will not make a mistake at a point.

Theorem C.1 states that given a compact domain U, a GP can make erroneous pre-

dictions no more than n times before driving the variance below 1o7 everywhere. The

theorem uses definitions of the covering number of a set (adapted from [95]) and the equiv-

alent distance (Section 2.2)

50

Theorem 3.1 Consider a sparse GP model with linear independence test threshold

Etol= min{ 1, 'o%}, trained over a compact domain U C R n such that BV adequately

covers U, i.e. Vx c U, y(x) = k(x, x) - k(3V, z)TK(BV, BV)- k(BV, z) < ctoI. Let the

observations V = [Yi,... , yn] be drawn from pi(y I x), with E[pi(y I x)] fi(x), and x

drawn adversarially. Then, the worst case bound on the number of samples for which

Pr {IfA(x) - fi(x) I > CE} 1 ,VX C U (3.17)

is at most

n = (, log(- LBVI, (3.18)
CE

and the number of basis vectors IBVI grows polynomially with y, Vm for the Radial Basis

Function (RBF) kernel.

Proof Accounting for the sparsification error of using [34], ctoiVm < L, it is required that

a.2 < 10,, Vx E U. By partitioning the domain into the Voronoi regions around the set

BV, it can be shown using the covariance equation, that given nv samples in the Voronoi

region BVj, then a.2(X) < nvEtpI 2W everywhere in the region.

To show this, for all points x in the Voronoi region of point T E ANc, k(T, T) -

k(T, x)TK((x, x) -k(t, x) < ctol. Define the correlation coefficients between two points

as p = k(xi, xj). Using the linear independence test, ct is related to p as (t 1 -

Using bayes law, it can be shown that given a point T with prior uncertainty u = 1 and m

measurements at another location xi with correlation coefficient p, the posterior variance is

given by a 1 =I- . Therefore, in a Voronoi region, the slowest that the variance can

reduce at the center of the volume is given by,

2 <nWtol + W 2 flEtoI + W2 (3.19)n - + W 2 <- n(.9

Plugging in, "Vtol±W2 < I and solving for nv, nv = V2 log points drive
n V +W2 - 4 tot C2 lo i) ons rv

the variance at BV below uto . Therefore, the total number of points that can be sampled

anywhere in U before driving the variance below I 1 everywhere is equal to the sum of

points nv over all regions,I BVI.

51

It can now be proven that BV grows polynomially with y, Vm, for the RBF ker-

nel. The covering number gu(r(Ia'1)) can be bounded by loosely by creating a hyper-

parallelopiped which contains the entire state space X, with dimensions 11, 12, . .. , ld, where

d is the dimension of the space. The covering number is then loosely bounded by divided

the volume of the hyper-parallelopiped by hyper-cubes of dimension r(jl), which is a

strictly smaller than the true volume of each Voronoi region. Plugging in,

Afu(r(1U 2
2 . . . Id 3.20)

2 to r(1 o2)d

In the case of the RBF kernel k(x, x') = exp(- 11X-X), the equivalent distance map is

given by
2

r((tol) = 0 log (1)) . (3.21)

grows polynomially with -. Additionally, = 1o 2 2 (_) so it follows,1~tl itiona tl , 2 ~ tol W2 6 0iEflo s

A(U(r(oi)) ~ (fp(V2 , 1, log ())),where f() is some function bounded by a poly-

nomial of order p.

Note that in the adversarial setting, mistakes may occur at any time, but, Theorem C. 1

states that the cumulative sum of those mistakes may not exceed some value n which is

polynomial in relevant quantities.

3.2.2 Nonstationary Sample Complexity

Now that the number of mistakes using a GP has been bounded in the stationary case,

nonstationarity is introduced by having f(x) change between phases. Since the algorithm

is online, it must infer this change from nothing other than sequentially observed changed

outputs.

In the next lemma, the absolute distance between functions is related to the minimum

change in the KL-divergence between a GP, and the generating distribution. Intuitively,

this gives a lower bound on the expected change in LRT values given there is a changepoint.

The assumptions listed in Section 2.2 are used.

52

Lemma 3.2 Consider a GP, GP, trained on pi(y I x) with a'(x) < o, Vx E C, and

a set of distributions pj(y I x) E P satisfying Assumptions 2.1, 2.2, 2.3; then Vx E U, w.

p. 1 -

D(pj (y I x)IGPw) - D(pi(y x)IIGPw) > r (3.22)

where,
to (in - CE + log (in + (EF -CE) N (3.23)

2 2 +U 2 W\ ~2 a2

Proof The KL-divergence between two normal variables [96] is given by

I (2log 02 + i ______

D(pollpi) = - - (3.24)

The minimum that the first two terms can equal 1 is when ai = uo; the maximum is when

0 2 =W 2 + o2, and oo = w2. By minimizing the variance related terms in D(p2 (y

x) IGPw), maximizing the variance related terms in D(p1(y I x) IGP.), and bounding

Ifiw(x) - fi(x)I < E1, w. p. 1 - 61, equation (3.23) is obtained.

The expected value of the LRT is KL-divergence between the current distribution and

the working model, shifted by the approximation error of using a finite m. From As-

sumption 2.1, this value is bounded. Therefore, the problem of detecting a change in the

generating distribution can be reduced to determining the point in time where the mean of

the time series L(y) changes significantly. In GP-NBC, GLR algorithm is used to detect

changes. Given a probability of false detection or probability of missing a changepoint

6L, the next lemma gives conditions on the number of measurements m required to ensure

sufficient resolution of the LRT to achieve these specifications.

Lemma 3.3 Consider a, GP,,, trained on ni samples from p,(y I x). Consider a second

GP trained from a set of m < ni samples, which are drawn from P2(y I x) from region

U, with property, D(p2(y c I)IGPw) - D(pi(y I x)fGP) '9 + CDS, VX (E U. Then, in

order to determine if Lm(y) - L,,(y) > q, w. p. 1 - 6d - 6 L, the window size m must be

of length
,,V4 / N

_ log ni

M > (3.25)
2 8V log(4

53

or, for large ni
8V 4 (4'\

M > 8 log (- (3.26)
- 4 T4 2 6L

Furthermore, if these window size conditions are met, Algorithm 2 will detect a change-

point w. p. 1 - 6d - 6L.

Proof Hoeffding's inequality is used to bound the distance of the LRT from its expected

value. Since the output domain is bounded, it follows that the LRT values Li(y) are

bounded. To proceed, the maximal range of the LRT is bounded, and is given by

1 (lg02 (X,) + W2 +(y,_/.2 (y 1S2
L(y) =o(og+ - (3.27)

1 (2o () + W2 92 (X,) + W2 0(X,) + W2~S()+ \\Wx)w 2

The variance is not affected by y, so the first term is a constant. The last two terms are

bounded by the V 2
2 each. Therefore, it follows that the LRT Li(y) is bounded by ci

?2 . Therefore, using Hoeffding's Inequality, one can bound the distance of the averages

Lrn, L,, from their respective expected values, IL(.)(y) - (D(piIIGP") - D(piIIGPs))|

'(.) w. p. 1 - 6L/ 2 , for (.) E {m, ss}. Given ni and SL, cw can be determined, and the

required number of samples m to drive cs < y - cw can be solved for through algebraic

manipulation.

Lemma 3.3 states that if the generating function switches such that the current model GP"

no longer correctly models the data, then a set of observations built from the new dis-

tribution of size m will detect the change with high probability. However, the quantity

D(p 2 11GP.) - D(pi I IGPw) ;> r7 + (DS is implicitly a function of x. In order to determine

a maximum number of mistakes the algorithm may make before either detecting a change-

point or performing accurate predictions, the selection rule must be considered. Next,

consider the case where a local sliding window approach described in Section 3.1 is used.

Consider a KL-divergence change threshold q such that there is an associated abso-

lute error threshold (F < CEE Define UE ={x E Us.t.fi(x) - fj(x)l > EE}, and

UF = {x E Us.t. fi(X) - fy(X)l > EF}. The local sliding window Sx described in Section

3.1 is constructed by adding xi to Sx(dx). If there are more than m points in Sx(dx) such

that d(xi, xj) dx, then the point with the oldest timestamp in that region is discarded.

54

When a call is made to S.(dx) for x 1 , the m nearest points are returned for the LRT. The

next theorem bounds the number of mistakes that the algorithm can make after a change-

point before it either detects a changepoint and relearns the function or performs accurate

predictions with high probability with a number of mistakes proportional to the covering

number Nu(dx).

Theorem 3.2 Consider GP, built on samples from the generating distribution pi(y I
x). Assume that at some time instant k, there is a changepoint and the generating distribu-

tion switches to pj (y I x). Consider a local sliding window Sx(dx) with dx < -(CE - CF)

and m points per set S. Then, Algorithm 2 will detect a changepoint w. p. 1 - 61- L

or predict accurately. Furthermore, the total number of mistakes per phase is bounded by

n + (m - l)AuE (dx), w. p. 1 - 6d - 6L -

Proof The proof divides the input domain in which mistakes are made into three regions:

1) regions in which c2(x) < 1o2 and Ifi(x) - f2(x)I < CE, 2) regions which have

moderate variance, o-2 (x) > 1oQ2, but if samples from P2(Y I x) drive a.2 (x) < 1 0c2 then

IP. (X) -fj (x) < EE, and regions which have moderate variance, but samples satisfying the

previous condition do not guarantee I/-.(x) - fj(X) > CE. From Lemma C.I the number

of mistakes the GP can make before U2 (x) < 102 1 everywhere is n. Therefore, the GP

can make no more than n mistakes due to high variance across two successive generating

functions. Samples may be queried in an error region UE or an accurate region. However,

after querying m - 1 samples in each region of the covering set, the next sample will

give us m points from the new distribution satisfying (3.22) and Lemma 3.3 guarantees a

changepoint will be declared. The most mistakes the GP can make after the changepoint in

regions with low variance , is then bounded by (m - 1)JuE (dx). Therefore, combining

with the number of mistakes possible due to high variance, n, the total number of mistakes

per phase is ni +F (m - 1)AfuE (dx), w. p. 1 - ad - 6L It is enforced that (F < CE, since,

without it, points may be sampled arbitrarily close on either side of the boundary of the

region UE, and the nonstationary shift will not be detected.

55

3.3 Empirical Results

GP-NBC is empirically compared to several state-of-the-art techniques on simulated and

real-world datasets. The competing algorithms are: GP-CPD [106], the Dirichlet Process -

Gaussian Process (DP-GP) [105], and a MCMC - sampling based Chinese Restaurant Pro-

cess (MCMC-CRP) algorithm [113] which unlike DP-GP, samples new changepoint con-

figurations, rather than sampling over individual data samples. The results show GP-NBC

achieves similar or better performance to the batch algorithms in terms of classification

and prediction error even though it sequentially processes individual data-points online.

GP-NBC also outperforms the batch algorithms and GP-CPD in terms of speed by several

orders of magnitude. GP-NBC is compared to the other algorithms on one synthetic ex-

ample and two real domains. In the last domain, GP-NBC is combined with DP-GP and

it is shown that given a prior set of models output by DP-GP during a training phase, GP-

NBC's detection of new clusters leads to significant improvement over only using the prior

clusters.

3.3.1 Benchmark Experiments Over A Synthetic Dataset

The first experiment compares the ability of the different methods to differentiate between

two very similar functions: y 1(x) = x2 + E, and y 2 (x) =x 2 + c over the domain

X C [-1, 1], where c - A(0, 0.22) is Gaussian white measurement noise, and x are drawn

i.i.d. from a uniform distribution. In the second experiment, the functions are well sep-

arated, y 1 (x) = x2 + (, and y2(x) = -X 2 + 2 + (, with x drawn i.i.d. This results in

an easier problem for the changepoint detection methods, but highlights the downside of

using a naive sliding window approach instead of GP-NBC. In both experiments, the gen-

erating function switches from fi to f2 at some time -r drawn uniformly from (75,125), and

switches back to fi at some r drawn uniformly from (175,225). The run ends at t = 400.

Figure 3.3.1 shows these two functions plotted together. The GP-NBC parameters were set

to window threshold 0 = 1, detection parameter rj = 0.5, and ISI = 10. For GP-CPD,

the hazard function was set to represent a Poisson process with parameter a = 0.01. The

DP-GP concentration parameter was set to a = 0.1, which yielded the best performance

56

1.4 3

1.2 --K-..yt) 2.5- X 12X

wx x2-x
0 Xx
0.6- 1. x x x

S0.4- VA -

0.2 X - X 0.5 X

Figure 3-1: (left)fi (lower curve) and f2 for the first experiment and (right) fi (lower curve)

and f2 for the second experiment. In the both experiments, a GP is trained on 75 - 125

noisy samples from fi (x), the lower curve. The generating function is then switched to

f2 (x), the upper curve. After approximately 100 samples, the function is switched back.

Table 3.1: Errors, clusters and runtimes on Experiment 1
Mean Abs. Error St. Dev. Max Error Cluster No. Runtime (s)

GP-NBC 0.0484 0.0050 0.0624 2.00 t+0 3.16
GP-CPD 0.0679 0.0074 0.0848 - 108.4

DPGP 0.0802 0.0167 0.1109 3.066+0.47 217.5

MCMC-CRP 0.0647 0.0469 0.1369 1.88 ± 0.49 158.6
GP-Forget 0.0685 0.0055 - 0.0843 - 0.71

over a manual search. MCMC-CRP used concentration parameter oa = 1. A naive imple-

mentation of GP-regression with a forgetting factor, GP-Forget, is also compared.

Table 3.1 and Table 3.2 compare 75 runs of each algorithm on experiment 1 and 2,

respectively. GP-NBC produces the best mean prediction across both experiments and

correctly identifies the proper number of clusters (phases) more robustly than any of the

competing methods. In addition, the runtime of GP-NBC is between one to two orders of

magnitude faster than the batch methods. MCMC-CRP and DP-GP can achieve the lowest

error in the best cases; however, the average errors are very similar. This is because both

MCMC-CRP and DP-GP can converge to local optima. The GP-CPD algorithm does not

perform as well as GP-NBC since it cannot reuse models and also takes 30 times longer

to run. Finally, GP-Forget, runs quickly and performs fairly well on the first example.

However, the low error is an artifact of the functions being very close.

In the second example, aliasing due to the sliding window results in extremely large er-

rors for GP-forget while GP-NBC performs equally well in either case. To further demon-

57

Table 3.2: Errors, clusters and runtimes on Experiment 2
Mean Abs. Error St. Dev. Max Error Cluster No. Runtime (s)

GP-NBC 0.0436 0.0050 0.0662 2.00 ± 0 3.16
GP-CPD 0.0591 0.0044 0.0674 - 108.4
DPGP 0.0755 0.0156 0.1104 4.38 ± 0.70 217.5

MCMC-CRP 0.0403 0.0156 0.0835 3.8 1.61 158.6
GP-Forget 0.1556 0.022 0.2032 - 0.71

Averaged Error vs. Time Averaged Error vs. Time

GP-Siding Wioodowl -= GPSdo W, oo, 0
-GP-NBC -GP-N

0.7- 0.7

~0.5
06 08

Time Time

Figure 3-2: (Left) If the sliding window is too large, errors from changepoints will persist
for long times. (Right) If the sliding window is too small, changepoints will be accomo-
dated, but models will never be learned.

strate this problem, Figure 3-2 shows the error of GP-Forget, averaged over 50 trials, using

a different sliding window length. If the window is set too large, then transient errors from

a changepoint occurring will persist for a long time. Essentially, the algorithm must cy-

cle through a significant amount of outdated data points before the new data can be used

to make accurate predictions. Alternatively, if a short window is used, the error resulting

from a changepoint will be small, since the algorithm can throw out old data quickly, how-

ever, the algorithm will never actually learn a model of the environment, and will have high

steady state prediction error. On the other hand, GP-NBC is able to both learn the model,

resulting in low steady state error, and also detect changepoints, resulting in consistently

low prediction error when trained on nonstationary data.

In Figure 3-3, the performance of GP-NBC over various parameter settings from q E

[0.1, 2] and m E [3, 50] is analyzed. For 7 > 2, the changepoint does not trigger a change-

point, for 7 < 0.1, false positives start occurring. For reasonable values of j ~ 0.5,

m E [3,30] results in similar performance. This demonstrates the robustness of GP-NBC

to parameter selection.

58

1.6
1.5
1.4

1.3

1.2

0.10.5
0.4
0.3

3.3.2 eal Dtas. t

0.2
0.1

Figure 3-3: Heat map of the Mean Abs Error for various parameter settings for GP-NBC.
Green corresponds to better MAE than the optimal parameter settings off GP-CPD, black

to equivalent performance, and red to worse performance.

3.3.2 Real Datasets

In this section, GP-NBC is tested on two real datasets. The first dataset involves interac-

tion data between a robot controlled by a human and an autonomous robot whose behavior

changes at changepoints. The second dataset analyzes GP-NBC's ability to reidentify pre-

viously seen functions in a pedestrian trajectory prediction task.

Robot Interaction

The second experiment demonstrates the ability of GP-NBC to robustly identify multi-

ple models on a real data set. In this experiment, a demonstrator drives a remote con-

trolled iRobot Create, denoted GPUC-1. A second autonomous Create (GPUC-2) reacts to

GPUC-1 in a one of four manners: 1) attempting to encircle GPUC-1 clockwise or 2) coun-

terclockwise, 3) attempting to follow GPUC-1, or 4) tracking a point im behind GPUC-1.

Position and heading measurements of the robots are collected at 5Hz using a VICON mo-

tion capture system, and robot velocities are calculated using a fixed point smoother. Every

200 seconds, the behavior of GPUC-2 changes to a new behavior or a previously exhib-

59

Model Identification for Robot Interatction
5

4.5- - - Estimated Model
- Actual Model

4--

4 ~III3.5--

3--

C2.5-

0.5-

0

0 200 400 600 800 1000 1200 1400 1600 1800
Time (s)

Figure 3-4: GP-NBC detects changepoints as well as reclassifying old models of robot

interaction dataset.

ited behavior. The difference in the (x, y) position between GPUC-1 and GPUC-2, and the

heading of GPUC-1 is used as the input to the algorithms, and the velocity of GPUC-2 is

the output. Figure 3-4 shows a plot in which GP-NBC robustly identifies changepoints in

GPUC-2's behavior as well as reclassifies previously seen behaviors. The GP-NBC algo-

rithm took 2.9min to run and had a mean error of 0.0661; GP-CPD took 6.8h and had mean

error 0.0785. GP-NBC outperforms GP-CPD since it is able to reuse previous models.

MCMC-CRP and DP-GP were stopped after 6 hours. GP-NBC outperformed GP-CPD in

terms of regression error as well as taking two orders of magnitude less time.

Pedestrian Behavior Classification

The final experiment demonstrates the ability of GP-NBC to utilize prior models while

simultaneously detecting anomalous (new) functions. This capability is relevant to intent-

aware prediction [6, 45] where a set of observed training behaviors may be given to an

agent, but other unobserved behaviors may be unmodeled. The algorithm is able to ro-

bustly reclassify these anomalous behaviors when seen repeatedly, as demonstrated in the

experiment. The setting consists of modeling pedestrian behaviors at an intersection, mod-

eled after work by [6]. Real data of a pedestrian walking along one of four trajectories

indoors was collected using LIDAR, as seen in Figure 3-5. The algorithm is trained on

60

I

0

-1

-2

-3

-4

-5

-6

a a ~''-*'' a44-

t &

4~. EEl-h,
-2 -1 0

x

1

0

-1

-2

-3

-4

-5

-6

1 2

&ia

..

a'7' V&

4 r''

a a'

Vi
-2 . -15 -05 0 05 1 ,15 2

x
25

-2 -1 0 1 2

Figure 3-5: Top: Training data. Left: Test data. Right: Output of GP-NBC on test data.
GP-NBC detects the new behavior and successfully reclassifies it.

three of the four behaviors (all but the teal trajectories) in batch using DP-GP. In the testing

phase, a pedestrian may follow one of the three previously observed trajectories, or may

follow a new trajectory, as seen in Figure 3-5 (left). Five trajectories, with an average of

only 600 samples per trajectory, were tested with GP-NBC for each behavior. The pedes-

trian location and velocity were used as GP inputs, and the velocity at the next time step is

used as the GP output. Figure 3-5 shows that GP-NBC correctly identifies when a pedes-

trian deviates from a behavior learned in the training phase and reclassifies the anomalous

behavior as the fourth model.

The one-timestep ahead and ten-timestep ahead predictions of the pedestrian's location

from GP-NBC are compared with DP-GP given the three training clusters. Prediction

error is computed as the root mean square (RMS) difference between the true position

and mean predicted position, where the mean position is the GP mean that incorporates the

61

1

0

-1

-2

-3

-4

-5

-6

uncertainty in previous predictions at each time step [48]. Prediction errors for each cluster

are averaged across all trajectories at each time step. The prediction error computed by both

algorithms for trajectories within the three training clusters was similar (mean difference

of 10.25% and 2.47% for one and ten timesteps ahead), but GP-NBC reduced the error in

the new fourth cluster by 27% and 44% for the one and ten timestep ahead predictions.

As expected, using GP-NBC greatly improves the prediction capabilities of the algorithm,

whereas simply using the original clusters from training fails to predict pedestrian behavior

when new behaviors are observed. Besides providing better prediction error, GP-NBC

fundamentally addresses the problem of dealing with new pedestrian trajectories that are

observed in testing but not in training. This requirement is necessary for any sort of system

that needs to predict different regression values for different operating behaviors that need

to be identified online.

3.4 Conclusions

This chapter presented a computationally efficient algorithm with theoretical guarantees,

GP-NBC, for GP regression in the presence of changepoints. GP-NBC acts orders of

magnitude faster than other methods for nonstationary GP regression, making it capable

of accurate prediction in real-time, which is essential in many online prediction, decision

making, and control applications. GP-NBC also has strong theoretical guarantees, making

it well suited to applications which require complexity or safety guarantees. These re-

sults significantly advance the state-of-the-art in non-stationary online predictive modeling

and have significant implications for GP based autonomous decision-making algorithms,

as well as regression over nonstationary generative models. Future steps in this project

include developing methods for online hyperparameter optimization as well as making the

algorithm robust to the selection of hyperparameters.

62

Chapter 4

Nonstationary Reinforcement Learning

This chapter presents the UCRL-GP-CPD algorithm. UCRL-GP-CPD is a multi-task

reinforcement learning algorithm for continuous state spaces and discrete action spaces.

First, the chapter introduces the basic UCRL-GP algorithm for single task learning which

is inspired by the UCRL [5] and MBIE [116] algorithms. In Section 4.2.1, it is shown that

the UCRL-GP algorithm is PAC-MDP, an important class of algorithms which learn the

optimal policy in a polynomial number of exploratory steps. The results are among the first

PAC-MDP results for continuous RL, following the work of C-PACE [95] and DGPQ and

GP-Rmax [52].

Most PAC-MDP algorithms utilize a notion of "optimism in the face of uncertainty" to

guide exploration to areas with low certainty. The UCRL and MBIE algorithms work by

maintaining an optimistic upper bound on the reward function and the Q function using

probabilistic error bounds. Other PAC-MDP algorithms, such as Rmax, maintain optimism

by assuming that a state has a maximal value Q(s, a) = Vmax until enough data points

have been observed in that state action pair such that the reward and transition estimates

are highly accurate. GP-Rmax [60] is a previously proposed algorithm which generalizes

Rmax to continuous domains by modeling the Q function with a GP and assuming that

Q(s, a) is Vmax if the variance of the GP is too high. GP-Rmax was tested extensively

empirically in [60], and it was proven in [52] that GP-Rmax is PAC-MDP.

In the worst case, UCRL-GP has the same complexity bounds as GP-Rmax when the

reward function is equal everywhere. In practice, UCRL-GP will learn the optimal policy

63

in fewer steps than GP-Rmax because it uses the uncertainty in a more subtle way. Unlike

GP-Rmax, which only uses reward and transition function information once it is highly

accurate, UCRL-GP maintains an optimistic upper bound which is a function both of the

uncertainty and the current reward estimate. For example, given two regions, one with

high reward and one with low reward, GP-Rmax will explore both regions equally until

the reward function is highly accurate everywhere. UCRL-GP, on the other hand, will stop

exploring the region with low reward once the reward estimate is just accurate enough to

differentiate that one region has higher reward.

After establishing sample complexity bounds in the single task learning case, UCRL-

GP is extended to nonstationary reward functions UCRL-GP-CPD in Section 4.1 by run-

ning a modified version of GP-NBC at each step of the algorithm. It is proven that, in com-

bination with a periodic exploration strategy, GP-NBC will detect changes in the reward

function with high probability. UCRL-GP will then learn the new MDP. In order to identify

previous MDPs and transfer previous model knowledge, the GP-NBC model reclassifica-

tion step is modified, and it is proven that, with high probability, UCRL-GP-CPD will not

transfer an incorrect model.

4.1 UCRL-GP Algorithm

This section first presents UCRL-GP for single task RL in Algorithm 4. Then, a modi-

fied version for multi-task RL, UCRL-GP-CPD, is proposed in Algorithm 6 which uses a

modified version of GP-NBC as well as a periodic exploration strategy (Algorithm 8) to

guarantee changepoint detection.

Similar to the presentation of GP-Rmax, the representation of the value function is left

general in the analysis, but a specific form is proposed in Algorithm 5. For example, GP-

Rmax uses GPs to model the reward and transition functions, but approximates the value

function by discretizing the input space into a grid and performing Bellman updates at these

discrete points. Bilinear interpolation is used to estimate the value function in between grid

points. In UCRL-GP, Bellman updates are performed at discrete locations as well, however,

these locations are chosen to be the Basis Vectors from the sparse GP representation. By

64

Algorithm 4 UCRL-GP
1: Input: GP reward, transition, and value function kernels k,(., -), kt(-, -), kq(-, -), En-

vironment Env, Actions A, initial state so, discount -y, performance measures 6, C,

maximal output range of the reward function Vm

2: for a E A do
3: Initialize all reward GPs GPa = GP.init(p = Rmax, kr(-,))
4: Initialize all transition GPs GPt = GP.init(0, kt(,))
5: Initialize all value functions Q(s, a) = Rmax

6: end for
7: for each timestep t do
8: Act greedily with respect to current model: at = arg maxa Q(s, a)

9: Take action: (rt, st+i) = Env.takeAct(at)

10: Update transition and reward models: GPar.update(st, rt), GPht.update(st, st+i)

11: Learn new value functions Q(s, a) using optimistic value iteration algorithm (Algo-

rithm 5)
12: end for

choosing basis vectors dynamically as opposed to using a fixed grid, fixed point operations

are not performed in locations of the state space that are not accessible by the agent. It also

provides an automatic way to determine the appropriate resolution of the points based on

approximation error [34]. In addition, one does not need to manually make the mesh grid

finer or coarser to control resolution.

In order to perform interpolation, a GP is used in a method similar to GP-DP [40].

At each iteration of the value iteration algorithm (Algorithm 5), a GP is trained using the

values at the basis vectors. However, unlike GP-DP, instead of performing updates at every

observation location, only the sparse basis vectors are used. This alleviates computational

issues as the number of data points increases.

There are two keys differences between the standard Bellman update and the fixed point

operation performed in Algorithm 5. In Line 10, an optimistic upper bound on the reward is

calculated using Lemma 3.1 instead of using the mean of the GP. In Line 11, the maximum

is taken over the value function plus an optimism bonus which accounts for error due to

regularization.

In order to detect changes in the environment and transfer past models, two additional

steps are added to UCRL-GP. This results in UCRL-GP-CPD, presented in Algorithm 6.

Similar to the assumptions of GP-NBC, it is assumed that there are sufficient samples in

65

Algorithm 5 Optimistic Value Iteration

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

Input: Input locations BV, reward and transition GP models GPr, GP, performance
measure Sv1 , range of reward function Vm, convergence threshold cvi, Lipschitz con-
stant LQ
for a c A do

Initialize value function GPs [GPa]o = GP.init(p , k(-,))
end for
k = 0
while |[GP:]k+ - [GP:jklo > cv, do

for s c BV do
for a c A do

Get next state after taking action a, s' = GPa.Predict(s)

V2 log(f)GPa.var(s)
r(s, a) = GPa.mean(s) + 2

GP ,,Var(s)
Ya(s, a) = r(s, a) + y maxa' ([GP,.mean(s')]k + L LQ

if ya > Vma, then

Ya = Vrnax
end if
Replace value function GP with new GP: [GPa.update(s, Ya)lk+1

end for
end for
k = k+1

end while

66

between changepoints. This assumption allows the decoupling of the problems of plan-

ning, changepoint detection, and model transfer. The key distinctions between UCRL-GP-

CPD and UCRL-GP are given in the lines of Algorithm 6: Line 9, a set of least likely

points is maintained to identify nonstationary phenomena, Line 10, an array of GP mod-

els is saved to allow reverting back to previous models in the case of a changepoint, Line

13, Changepoints are tested for using (Algorithm 2), in Line 14, a modified version of the

Model Transfer Algorithm is run (Algorithm 7).

Lastly, in order to guarantee that changepoint will be detected, the state space must be

explored periodically. In Line 9 of Algorithm 6, exploration is performed until either a

changepoint has been detected or enough of the state space has been explored to declare

with high probability no changepoint has occurred.

In order to prove that UCRL-GP-CPD will transfer models without negative transfer, a

modified version of the model transfer algorithm is proposed (Algorithm 7). This algorithm

works similarly to [14, 74]. In those algorithms, a set of candidate models is maintained

which are similar to the current reward function. At each step, optimistic and pessimistic

bounds are calculated for each model and the current model. If the lower bound of the

candidate model is greater than the upper bound of the working model at any location,

then with high probability, the algorithm knows that the current reward function is not the

same as the candidate model (Line 6 of Algorithm 7). In this case, the candidate model

can be removed from future comparison. Conversely, if the upper bound of the candidate

model is less than the lower bound of the working model at any location, this candidate

model can also be removed from consideration for transfer. Note, the model is not deleted

from memory, but it is simply removed from consideration for model transfer. Lastly, if

the confidence bounds of the candidate model are sufficiently close to those of the working

model at all locations, the candidate model is transferred (Line 13 of Algorithm 7).

In [14], all of the models are available during a training phase, so the transfer algorithm

is guaranteed to transfer the correct model with high probability. In [74], the models are

not available a priori, but are determined at the beginning of each episode using a clustering

method after an exploratory period. In UCRL-GP-CPD, it is assumed that reward functions

are well-separated by some known quantity, and so if the current model looks sufficiently

67

Algorithm 6 UCRL-GP-CPD
1: Input: GP reward, transition, and value function kernels k,(-, -), kt(-, -), kq(-, -), En-

vironment Env, Actions A, initial state so, discount 'y, performance measures 6,6,
maximal output range of the reward function Vm, changepoint detection parameters

R, m, 6CP, CP, EE F-
2: for a E A do
3: Initialize all reward GPs GP = GP.init(p = Rmax, kr(,))
4: Initialize all transition GPs GP' = GP.init(O, kt(,))
5: Initialize all value functions Q(s, a) = 1

-- y

6: end for
7: for each timestep t do
8: if Exploratory flag then
9: Run exploratory algorithm such as Algorithm 8

10: else
11: Act greedily with respect to current model: at = arg maxa Q(s, a)

12: Take action: (rt, st+i) = Env.takeAct(at)

13: Update transition and reward models: GPa,.update(st, rt), GP,.update(st, st+,)

14: Add (st, rt) to least likely set S according to rules in Sec 3.1
15: Save GP to array {[GP;)]t,... [GP]t-m}
16: for a E Ado
17: if GP has > R measurements then
18: Call Changepoint Detection Algorithm (Algorithm 2)

19: Call Modified Model Transfer Algorithm (Algorithm 7)
20: end if
21: end for
22: Learn new value functions Q(s, a) using optimistic value iteration (Algorithm 5)

23: end if
24: end for

68

Algorithm 7 Modified Model Transfer
1: Input: Basis vectors BV., current working model GP., library of candidate models,

model gap F, performance measures aMT.

2: Calculate optimistic upper bound on current reward function at Basis Vector locations:

V2 log(6)GP2.Var(s)
rUCB(BV,) = GP.mean(s) + "24

3: Calculate pessimistic lower bound on current reward function at Basis Vector locations:

V)og2)GP.Var(s)

(CBV,) = G P.mean(s) - 24

4: for Each model j in candidate library do

5: Calculate optimistic and pessimistic bounds on reward function at basis vector loca-

tions using lines 2-3: rUCB (BVw),jrCB(BVw)

6: if Is c BVw, s.t. r3 CB(BV) > ru B(BV) then

7: Remove model j from candidate library. Continue to next model.

8: end if
9: if]s E BVw, s.t. rUCB(BC) <r §B(BVw) then

10: Remove model j from candidate library. Continue to next model.

11: end if
12: if Vs c BVw, |rCB(BV) rUCB(BVw)I < F and IrT5CB(BVw) -rLCB(BVw)I < F

then
13: Transfer Model: Delete current model and set GPw = GP

14: end if
15: end for

close to an old model, the algorithm knows that the reward functions are not well separated,

so they must be the same.

If a change occurs along the trajectory the agent follows, then UCRL-GP-CPD will

detect the change. However, if a change occurs somewhere else in the environment, the

agent must periodically explore. This concept was first introduced in [2] as afog of war

function. In UCRL-GP-CPD, the exploratory policy is left to be general, but a specific

policy is proposed in Algorithm 8. Additionally, in the algorithm statement and analysis,

the issue of when to explore is left general. In the experiments, a simple counter since the

last exploration period is used. This is a nafve approach, but satisfies the conditions for

determining if a changepoint occurs in Lemma 4.7.

Ideally, an exploration policy would investigate uncertain regions of the state space

initially, and if the agent observes an anomalous point, the agent should explore this region

further to determine if the reward function has truly shifted. This thesis takes a targeted

exploration approach based on this principle in Algorithm 8. The algorithm initializes

69

Algorithm 8 Exploration Algorithm

1: Input: Current reward model GP, Error threshold CE

2: Initialize new temporary reward functions GP" = GP.init(t = Rmax, k(,))

3: Solve for Qex(s, a) using reward function ea(s) from Algorithm 9, transition dynamics

model GPa, y = 1, and using standard value iteration.

4: for each timestep t do
5: Act greedily with respect to exploration model: at = arg maxa Qea(s, a)

6: Take action: (rt, st+1) = Env.takeAct(at)

7: Update transition and reward models: GPa,.update(st, rt), GPa,.update(st, st+)

8: Update temporary reward models: GP .update(st, rt)

9: Add (st, rt) to least likely set S according to rules in Sec 3.1

10: Save GPa to array {[GPa]t,. .. [GP]'"}
11: for a c Ado
12: if GPa has > R measurements then

13: Call Changepoint Detection Algorithm (Algorithm 2)

14: Call Modified Model Transfer Algorithm (Algorithm 7)

15: if Changepoint Detected then

16: Return
17: end if
18: end if
19: end for
20: end for

a new temporary estimate of the reward function. At each step, a new MDP is defined

using a error reward ea(s) (Algorithm 9), and solved to find the optimal path. After each

observation, both the temporary reward models and the working reward model are updated.

The function ea(s) acts as a binary error signal, in which the reward is 1 if the temporary

reward model disagrees with the current model, and 0 is the temporary model is sufficiently

close to the temporary model. Initially, the exploration algorithm will explore all regions

of the state space. If a point is anomalous with regard to the working reward model, then

the temporary model will update its mean to be close to the anomalous point. If this case,

there will still be a large difference between the temporary model and the working model,

so the agent will receive a reward for exploring this region further. If, on the other hand,

the observed point is similar to the working model, the reward models will be similar, so

no reward will be given for further exploring this region.

70

Algorithm 9 Function: Binary Error Signal

1: Input: Current reward model GP", temporary reward model GPa, model gap F, prob-

ability of failure 6BE, state action pair (s, a)

2: Am = GP].mean(s) - GPl.mean(s)I

vlog()GPr.var(s) V log)GPr.Var(s)
3:2w2 2

4: Return ea(s) = 1, if Am + As > F, and ea(s) = 0, o.w.

4.2 Theoretical Results

This section presents sample complexity results for UCRL-GP and theoretical results about

negative transfer and successful detection of changepoints for UCRL-GP-CPD.

4.2.1 Stationary Learning

In order to prove that UCRL-GP is PAC-MDP, it is proven that UCRL-GP maintains all of

the requirements to invoke Theorem 2.3 (originally from [114]): 1) optimism, 2) accuracy

of known states, and 3) the total number of updates of action-value estimates, i.e. number

of updates before all states are known, can occur is bounded by a polynomial function

First, it is proven that UCRL-GP remains optimistic with high probability. Pazis and

Parr [95] prove that for the exact Bellman operator BQ(s, a), if Q(s, a) is initialized opti-

mistically, and a fixed-point operation with termination threshold cvi is used, the resulting

Q(s, a) will be optimistic as well. This lemma is reproduced below.

Lemma 4.1 Let c > 0 be a constant such that V(s, a) e (S, A), BQ(s, a) < Q(s, a) +

cvI, where BQ(s, a) denotes the exact Bellman operator. Then,

V(s, a) C (S, A), Q*(s, a) < Q(s, a) + (4.1)

In the next lemma, it is proven that by setting the parameters 6vI and Cv, properly, then

with high probability, UCRL-GP will remain optimistic during the value iteration stage.

Lemma 4.2 Setting =vi By"||AI, CVI = (1 - -y), UCRL-GP will remain optimistic

71

with high probability 1 - 6

V(s, a) G (S, A), Q*(s, a) < Q(s, a) + c, w.p. 1-6 (4.2)

Proof Let BQ(s, a) denote the exact Bellman operator and $Q(s, a) denote the approxi-

mate Bellman operator in Algorithm 5. If 3Q(s, a) BQ(s, a), V(s, a) at each iteration,

it follows from Lemma 4.1 that UCRL-GP remains optimistic. It is said that the value

iteration has failed, if](s, a), s.t. $Q(s, a) < BQ(s, a).

In order to maintain optimism, Algorithm 5 uses an optimism bonus in the reward

function to account for stochasticity in the reward function as well as an optimism bonus in

performing Bellman updates using the location s' = T(s, a), when the transition function

is unknown. In particular,

BQ(s, a) - BQ(s, a) = Ar(s, a) + -yAQ(s, a) (4.3)

where

!V2 log () GPa.Var(s)Ar(s, a) GPa.mean(s) + 2w2 - i (s, a) (4.4)

G P,.Vart s)AQ(s, a) max ([GP,.mean(s')]k + GP 2 LQ - Q(T(s, a), a) (4.5)
a/ W~

If Ar(s, a), AQ(s, a) 0, V(s, a), it follows that Algorithm 5 remains optimistic, so

UCRL-GP remains optimistic during the value iteration phase. Therefore, the error con-

tributed by each term is analyzed separately.

Since the dynamics are deterministic, the error in AQ(s, a) is due to performing a

backup at some state s' 7 T(s, a) due to generalization error. The maximum error of

propagating Q(s', a') instead of Q(T(s, a), a') is given by |Hs' - T(s, a) II|,LQ, which is

the distance from s' to the true transition point, multiplied by the Lipschitz constant LQ.

The distance Is' - T(s, a)|11, is upper bounded by the regularization error GP , ar(see

Section A.2). Therefore, AQ(s, a) > 0.

V2 log(2)GPr,.Var(s)
From Lemma 3.1, the probability that IGPa.mean(s)-I(s, a) I > I 2o24~

72

for any individual point is 3vj. The probability of the operation failing is upper bounded by

the sum, or union bound, of the probabilities of an update failing at any location. Setting

yVI -BV=IAI , the total probability of failure is given by 6. Therefore, with probability

1 - 6, $Q(s, a) > BQ(s, a), V(s, a), completing the proof.

In order to prove accuracy of a known state in Lemma 4.3, the following definition is

used for a known state.

Definition 4.1 During the execution of UCRL-GP, a state action pair (s, a) is said to

be known if
2w 2 C2 (1 -2

GP.Var(s) < n - (4.6)
- V2log(2

and

GP[.Var(s) < K

where CK 2 and 6K 2IBVIAl

In the next lemma, Lemma 4.3, it is proven that a known state maintains highly accurate

estimates of the reward and transition functions.

Lemma 4.3 During the execution of UCRL-GP, the estimate of the reward function

and transition dynamics of a known state action pair (s, a) is highly accurate (within EK)

with high probability 1 - 6K:

Pr {IGP.mean(s) - E[r(s, a)] ; CK 6K (4.8)

Pr {IGP,.mean(s) - T(s, a) CK} < K (4.9)

Proof The first statement follows immediately from Lemma 3.1. The second statement

follows from upper bounding the error due to regularization, given in Section A.2.

While Lemma 4.3 proves that the estimates at individual state action pairs are highly

accurate, extra steps are required to prove that during the value iteration stage, this results

in an estimate of the value function which is consistent with the current MDP model. The

reader is referred to Section 2.5 for certain definitions from [114]. In particular, the notion

73

of known states K and the known state-action MDP MK is used (Definition C.3). In the

next definition, Event Al is defined to be the event in which the value function of all known

states is highly accurate given the current MDP.

Definition 4.2 (Event Al) For all stationary policies 7r, timesteps t, and states s during

execution of the UCRL-GP algorithm on some MDP M, I V7, (s) - VZ (s) I <

Lemma 4.4 If UCRL-GP is executed on any MDP M, using the definition of a known

state from Definition 4.1, then Event Al will occur will probability 1 - 6.

Proof Event Al occurs if UCRL-GP maintains a close approximation of its known state-

action MDP. By Lemma 9 and Lemma 12 of [114], it is sufficient to obtain an ((1 - y)

approximation of the reward and transition functions to ensure I VzA< (s) - V' (s) I

(. From Lemma 4.3, UCRL-GP maintains a (-y) approximation of the reward and

transition functions at each state action pair with probability 1 - 6K. Applying a union

bound over the probability of failure of any location, it holds that with probability 1 - 6,

UCRL-GP maintains a c(1 - -y) approximation everywhere.

Lastly, a bound on the number of events in which a new state action may become known

is derived.

Lemma 4.5 Given an MDP M, with state action space S x A, the maximum number

of times that a state-action pair may become known is given by

ASxA (r (a1)) , (4.10)

where

2 = K (4.11)
Vlog()

Proof Following the proof of Theorem C. 1, the state space can be partitioned into Voronoi

regions around the covering set. If the variance of a point drops below 0Q,2, then every state

within the Voronoi region of the covering set element satisfies the property GPl.Var(s) <

20, . From Definition 4.1, if the variance at a point is below 20,2,, it is defined as known.

74

Therefore, the maximum number of points that can become known is given by the number

of Voronoi regions, i.e. the covering number.

Now that the key properties of optimism, accuracy, and bounded number of events in

which a new state action pair may become known have been established, the general PAC-

MDP Theorem of [114] is invoked.

Theorem 4.1 If UCRL-GP is executed on any MDP M, then with probability 1 - 5,

UCRL-GP will follow a 4E-optimal policy from its current state on all but

V/, 6) 1 1
O(6 log -log C(- (4.12)

timesteps, with probability at least 1 - 26, where

(C, 3) 4c(Q -log 2 S.A(//t) A[SxA (r (~0)) (4.13)

4.2.2 Non-Stationary Reward Functions

This section considers the analysis of non-stationary reward functions. The assumptions of

separability and well-behavedness are as presented in Section 2.2. An additional assump-

tion on the magnitude of the model gap between reward functions is added:

Assumption 4.1 For all ri, rj E R, 3U, s.t. |ri - rj I > F where F = 2cK.

This assumption states that the magnitude of changes in the reward function is at least

twice the resolution of a known state. Otherwise, the resolution of a known state is not fine

enough to detect changes or transfer past models.

In this section, it is proven that if there is a changepoint and the reward function changes

by some F over at least one Voronoi region of the covering set, UCRL-GP-CPD will detect

this change or predict accurately, provided there is a sufficient number of samples between

changepoints. To do this, it is first proven that if the UCRL-GP-CPD receives m samples

from a region in which there is a change in the reward function, UCRL-GP-CPD will

detect the change or predict accurately in a bounded number of samples (Lemma 4.6).

75

It is then proven that given the exploration strategy presented in Section 4.1, UCRL-GP-

CPD will collect m such samples (Lemma 4.7) with high probability. Lastly, it is proven

that the modified model transfer Algorithm 7 will not transfer an incorrect model with high

probability.

In the following lemma, it is proven that UCRL-GP-CPD will detect a changepoint

or predict accurately if it receives m samples in a region in which the reward function has

changed by at least F.

Lemma 4.6 Consider UCRL-GP-CPD using GP-NBC with threshold 'q and window

size m, defined below, trained on samples of MDP i with reward function ri(s, a). If a

changepoint occurs at some time t, and the reward function switches to rj (s, a) satisfying

the assumptions in Section 2.2 and Assumption 4.1, with region of separability U, then if

the agent collects
8V~ 4~

M > " log (4.14)
-- W4T 2 6CP

where

r i = +- + log + 4 (4.15)
2 W2 + (72 4uw2 W2 } 4o,2 w 2

samples from U, then with probability 1 - 3 cp, either UCRL-GP-CPD will declare a changepoint

or predict accurately IGP .mean(s) - rj (s, a)I < rK

Proof Substituting F -= E, 61 ~ cK, 61 - 6cp into (3.25) and (3.23) yields the above

equations. The result follows immediately from Lemma 3.3.

In the next lemma, it is proven that if a changepoint occurs and the exploration Algo-

rithm 8 is executed, UCRL-GP-CPD will collect m samples with high probability.

Lemma 4.7 Consider an execution of UCRL-GP-CPD with estimate of the reward

functions GPI.mean(s) trained on all data since the last changepoint, and newly initialized

estimates of the reward functions GP .mean(s). If at time tC, a changepoint occurs, and the

reward function switches to rj (s, a) satisfying assumptions in Section 2.2 and Assumption

4.1 and exploration strategy (Algorithm 8) is executed at time t > tC, then UCRL-GP-

CPD will declare a changepoint or predict accurately IGPa.mean(s) - r(s, a)I < F with

probability 1 - 6cp within m(Vsx A(r(o2 1)))D steps, where D is the MDP diameter.

76

Proof Exploration Algorithm 8 terminates when UCRL-GP-CPD declares a changepoint

or when the confidence bounds of the new reward model GPa become sufficiently close to

the old reward model GPr. If a changepoint has occurred, the current GP model may either

successfully learn the new reward function if insufficient samples were seen previously in

a region, or the model will continue to predict inaccurately, IGP.mean(s) - T(s, a)I > F.

The difference between the outer confidence bounds of these two models is given from

(4) to be Am+As. That is, Am-+As represents the maximum distance between the current

reward function and the reward model, with high probability. Therefore, the distance will

fall below the error threshold, Am + As < F with probability 6CP, and the exploration

algorithm will terminate without predicting a changepoint. The probability that Am +

As > F for all regions that changed is 1 - 6cp. The exploration will not terminate unless

Am + As < F for all (s, a), so the exploration algorithm will collect m samples from

regions that are well separated. By Lemma 4.6, GP-NBC will then declare a changepoint.

The expected maximum number of samples before the algorithm collects m samples from

the region of interest is given by the covering number of the space .NS A to4l)) multiplied

by m multiplied by the diameter of the MDP D.

Lastly, it is proven that the modified model transfer Algorithm 7 will not transfer a

model which is inaccurate.

Lemma 4.8 Consider an execution of UCRL-GP-CPD with estimate of the reward

functions GPj.mean(s) trained on all data since the last changepoint, and set of previ-

ous models [GPa]j. Algorithm 7 will not transfer a previous model which is inaccurate

with high probability 1 - SMT, i.e.

IGPa.mean(s) - T (s, a)| F , Vs, a (4.16)

Proof Model Transfer Algorithm 7 transfers a model when the maximum distance between

the confidence bounds of the current model and the past model differ by no more than

F anywhere. Therefore, the past model differs no more than F from the current reward

function with high probability 1 - 6MT.

77

4.3 Empirical Results

This section presents empirical results comparing UCRL-GP to state of the art RL algo-

rithms for continuous state spaces with stationary reward functions as well as empirical

results for UCRL-GP-CPD for various nonstationary reward domains.

4.3.1 Stationary Reward Functions

UCRL-GP is compared against several state of the art RL algorithms for continuous state

spaces. One of the primary contributions of UCRL-GP is efficient (PAC-MDP) exploration

in continuous state spaces using flexible nonparametric function approximation. UCRL-GP

is compared to the only existing PAC-MDP algorithms for continuous state spaces in the

literature: CPACE [95], an instance based algorithm which uses local averages to represent

the Q function directly, DGPQ [52], a model-free algorithm which uses GPs, and GP-Rmax

[60], a model-based algorithm which uses GPs. The algorithms are tested on two synthetic

domains: puddle world [9] and a cart-pole balancing task [72].

In the first domain, puddle world, an agent must navigate a continuous planar world

S : [0, 1]2 from one corner to another while avoiding a puddle. The agent receives a reward

of - 1 for every step it takes, and receives an additional negative reward for stepping in the

puddle proportional to the distance to the center of the puddle. A graphic of the puddle

world domain is shown in Figure 4-1. At each step, the agent takes a step in one of the

cardinal directions with magnitude 0.1 + 71, where 77 - Af(O, 0.012) is white Gaussian

noise. The agent starts in the corner [0, 0]T and ends when the agent reaches within 0.15

L1 distance of the goal [1, 1]T or when the episode length exceeds 200 steps.

In Figure 4-2, the performance of each PAC-MDP algorithm is compared on puddle

world. All of the model-based approaches, GP-Rmax, CPACE, and UCRL-GP learn the

optimal policy in a similar number of episodes, while the model-free approach, DGPQ,

takes substantially more samples. This is due to the inherent trade-off between computa-

tional efficiency and sample efficiency. DGPQ only performs a maximum of one Bellman

update per iteration, resulting in computational efficiency, but at the cost of sample effi-

ciency.

78

Reward for Puddle World

.1

-2

.3

.4

1

0.9

0.7

C0.6

01:.

0
X0 0.2 0.4 0.6
X posiion

.6

.7

a

0.8 1

Figure 4-1: 2D depiction of the reward function for puddle world.

Steps vs. Episode for Puddle World

- GPa

200

180

160

140

o 120

100

0
2 80
U,

60

40-

20

0 50 100 150 200 2N M 300 350 400
Episode Number

Steps vs. Episode for Puddle World

ACPAC E
GP-RMaX
-UCRL-GP

0 5 10 15
Episode Number

20 25

Figure 4-2: Learning curves for various PAC-MDP algorithms on the puddle world domain
(number of steps to reach the goal vs. episode number. The optimal policy take approx-
imately 20 steps to reach the goal. (left) The learning curve of all algorithms is visible.
(right) The axes are enlarged to compare the speeds of the model-based methods.

79

180

160

140

120

100

a 0 s
60
40

20

C
C)
CZ

CL

CZ)

E

0-o
CD,

700-

600-

500-

400-

300-

200-

100

01

Suboptimal Steps Taken vs. Episode for Puddle World

- DGPQ
CPACE

- GP-Rmax
- UCRL-GP

5
Episode Number

10 15

Figure 4-3: Number of suboptimal (exploratory) steps taken by various PAC-MDP algo-

rithms to determine the optimal policy. UCRL-GP takes approximately 35% fewer steps

than CPACE and 66% fewer steps than GP-Rmax.

Although Figure 4-2 shows similar performance in terms of the number of episodes

to the optimal policy, UCRL-GP takes substantially less exploratory steps than the other

algorithms. Figure 4-3 shows that UCRL-GP takes about 35% fewer suboptimal steps

than CPACE and 66% fewer steps than GP-Rmax. While GP-Rmax treats uncertainty in

the reward and transition functions as binary "known" or "unknown", UCRL-GP treats

the uncertainty in a more nuanced fashion, which results in less suboptimal exploration

steps. Additionally, C-PACE and DGPQ require tuning the Lipschitz constant which can

dramatically affect the learning speed of these algorithms.

On the second domain, cart-pole balancing, the agent attempts to balance an inverted

pendulum attached to a cart. The agent may apply a force of F = { -1, 0, 1 }N left or right

on the cart in order to balance the pendulum. The parameters of the cart are mass of the

cart M = 0.5 kg, mass of the pendulum, m = 0.2 kg, moment of inertia of the rod I =

0.006 kg M2 , and viscous damping 0.2!. The reward signal is r = -1 + cos(6), where 6

is the angle of the pole relative to the vertical line. The episode starts with the pole at 6 = 0

and ends when the height of the pole falls below ir/4 radians below the horizontal, or when

the episode length exceeds 400 timesteps. This system has four continuous dimensions cart

80

Steps vs. Episode for Puddle World Steps vs. Episode for Puddle World
400 400-

350 350-

300 - 300-

a0250 250 -

200 200-

5 150 0i 150 CP E

-~~ GP-Am60100 --- 600 00 ---- UC04-G

50 GOP-Rma
-UCRL-GP

Episode Number Episode Number

Figure 4-4: Learning curves for various PAC-MDP algorithms on the cart-pole balancing

domain (number of steps that the algorithm can keep the pole from falling vs. episode

number). The UCRL-GP algorithm can be seen to outperform the other methods by orders

of magnitude in terms of learning speed. (left) The learning curve of all algorithms is

visible. (right) The axes are enlarged to show the learning curve of UCRL-GP and GP-

Rmax.

position x, velocity ,i, pendulum angle 6, and angular rate 0. At each step the velocity ij

and angular rate 6 are perturbed with white Gaussian noise K(0, 0.01). The results of this

are shown in Figure 4-4.

In this domain, UCRL-GP outperforms all of the methods even more dramatically than

in the puddle world domain. Balancing the pole is a substantially more difficult control task

than puddle world, and it is shown that while UCRL-GP starts learning the policy within

the first few episodes, C-PACE and DGPQ takes hundreds of episodes. GP-Rmax starts

learning the policy early on as well, but the learning speed is still substantially slower. Ad-

ditionally, UCRL-GP is the only algorithm that is able to consistently balance the pole for

the full length of the episode. The cart-pole domain is difficult because the system is highly

unstable. Therefore, if an algorithm makes an incorrect action at any time instant, it may

be difficult to recover and there is a high probability that the pole will fall. Additionally, to

learn how to balance is made more difficult by the fact that in order to learn, the agent must

explore more unstable regions of the state space in which the pole is close to falling.

4.3.2 Nonstationary Reward Functions

In this section, UCRL-GP-CPD is tested on two nonstationary reward function domains:

puddle world with a moving puddle and a UAV pedestrian avoidance path planning prob-

81

lem. UCRL-GP-CPD is also compared to standard UCRL-GP to demonstrate the problem

with using a simple stationary RL algorithm when there is non-stationarity in the reward or

transition function. In the first application, the reward function changes everywhere such

that it is sufficiently easy to detect a change in the environment without exploration. In

the pedestrian avoidance application, however, the changes are more local, requiring an

exploration strategy to see if anything has changed in the environment.

Simulated Domain: Nonstationary Puddle World

This experiment considers a variant on the puddle world experiment described in Section

4.3.1. The agent must again navigate a continuous planar world S : [0, 1]2 from one corner

s = [0, O]T to another s = [1, 1]T while avoiding a puddle. At each step, the agent takes

a step in one of the cardinal directions with magnitude 0.1 + 1, where 7 - K(0, 0.012) is

white Gaussian noise. The agent starts in the corner [0, 0] and ends when the agent reaches

within 0.15 L 1 distance of the goal [1, 1] or when the episode length exceeds 200 steps. In

this case, the penalty associated with stepping in the puddle is modeled by a Radial Basis

Function (RBF) r = -2exp (- _9_j1), where s is the current position of the agent, and

- is the center of the puddle. There are 4 MDPs in this world, with puddles at respective

positions p- E {[1, 0 .5]T, [0.5, I]T, [0, 0. 5]T, [0.5, O]T}. Every 20 episodes, the puddle moves

to the next location, effectively switching the MDP.

UCRL-GP-CPD is able to identify changepoints quickly and reliably in this domain,

as seen in Figure 4-5. This leads to improved learning speed overly naively relearning an

MDP from scratch on every episode. As also seen in Figure 4-5, simply using a stationary

RL algorithm, such as UCRL-GP, results in poor performance across many tasks. UCRL-

GP is able to learn the optimal policy for task 1 (episodes 1 - 20, 81 - 100, and 161 - 180),

but performs quite poorly on the other tasks. The algorithm is unable to learn the new

reward function, and learns a suboptimal policy as a result.

UCRL-GP-CPD is better suited to this sort of problem than Bayesian methods since

the MDPs are not drawn i.i.d. from a distribution. That is, there is a strong correlation

between receiving a MDP of one type and encountering it the next episode as well. This

strong correlation makes Bayesian methods ill-suited for two main reasons. Firstly, if the

82

Steps vs. Episode for Nonstationary Puddle World Reward vs. Episode for Nonstationary Puddle World
120

-- UCRL-GP-C- C

UCRL-GP-10

100 a-Changepoint

- 800

03

ao dx0 4

0 72

Epistozedea t umber Eftskprwifs MP1arn oeNedFrex pef

Fige 4-5:utes to gpioaleft)m a reward (rigt)per he pisodebfotynonstiofnry pud

dlewrldg for UCD-P-CsPDP an U)R=-G, wUCRL-GP-CP tyiale to aommdaef

changepos, ahnd usge priuse mol. Ths, ret bs inbecangeypitclt detenan

transer of pranevious model tloireaelerispneds odew MDhes.m UCL-P-SCPnDis

priryensinmt stdt over ~ sestimatecrey thentherobability of cobsoervngtse askth

mgoaes toierta the number of tpskds drawn from MDP 1 Baea euterd. Forn texDampleti

poe eincontes 100 epsodmaeth frome sigl DPstypoe tasks probabilt ensty funtio ofn

oberngialr newla MDeis w(ith) difrn tas whberecpcal e un auso

14orless Exherusinte rieutspir hs tbcmsicesnlifclodtr

Bayeianmthd tenditoUCR verestDimat hentred meprifaMDy or compa-oetlogrith-

cllyrt with the mberfeisoes [8]Thatms, BystesiLan method usin tkhem Dirihte

Uiey.In this section,, aratono UCRL-GP-CPD is deosrtdepiialsna eal-orlnse-u Uimne

Aerial Systems (UAS) pedestrain avoidance problem. These results were originally pub-

83

lished in [2]. With loosening regulation from the FAA, UAS are expected to be deployed

for several civilian applications, including package delivery, law enforcement and outdoor

monitoring. However, most UAS are equipped with sensors such as cameras, which lead to

growing concerns among the public that UAS on missions that require flying over inhabited

areas could invade privacy by taking pictures of humans in private locations (see e.g. [46]).

Human-aware UAS path planning algorithms that minimize the likelihood of a UAS flying

over areas with high human density could potentially address this issue. Such algorithms

would also be useful for covert military applications for conducting tactical missions with-

out being detected, and in household robotics tasks for ensuring that robots do their jobs

without interfering in human activity.

In order to create a human-aware UAS path, the UAS must be able to plan in anticipa-

tion of where humans could be. A naive way of planning such paths might take into account

available datasets of human population concentration as a function of built-up space, such

as census maps maintained by counties or openly available maps such as those available

from Google. However, such publicly available data may not be up to date and may not

provide sufficient resolution to accurately predict population densities. Moreover, this ap-

proach fails to take into account the fact that human concentration is uncertain, and is often

a function of the time of the day or the season.

Therefore, rather than relying solely on historic datasets, it is beneficial that the UAS

maintain a real-time updated model of the population density. Such a model will inherently

be non-stationary to account for time-dependent variations. Additionally, human behavior

and density patterns often recur. For example, business districts in a city are busier on

workdays. Ideally, if the UAS encounters a density pattern that it has seen before, it should

be able to reclassify it as a previously-seen model and leverage a policy that it has already

computed.

The problem is formulated as a nonstationary MDP, and a variation of UCRL-GP-

CPD is used to solve the path planning problem. This variation does not use optimistic

value iteration for exploration but still uses GP-NBC's changepoint detection and model

transfer. This variation is referred to as GPC throughout this section. GPC learns and

maintains a separate model for each distinguishable distribution of human density. While

84

in section 4.1, a simple counter is used to determine when to run an exploration strategy,

a function called the fog of war is used is this section to determine when to explore. The

addition of the fog of war function encourages the UAS to explore regions which it has not

explored recently. This addition is crucial to ensure that the agent is able to detect changes

in the environment.

In order to perform exploration, a new MDP is created using an exploration reward fes:

e, (x) = Zt, (x) + Tt, (x), (4.17)

where Ztt (x) is the covariance of the GP over S, and Tt, is the fog of war function. The

latter increases the predictive variance as a function of time, so as to induce a tunable for-

getting factor into (4.17). This functional is defined in this manner for maximal generality;

a very simple choice however, and the one used in this section is Tt, (x) := max(Cf o 1 (t -

ta), Cfow 2), where t, is the last time the model switched, and Cfow1 , Cfow 2 E R+ are user-

defined constants. In order to determine when to switch to exploration, the quantity

Se(ti) = r - (D) et, (4.18)
vol(D D

is computed, where r, is the largest value of the variance (1 for the Gaussian kernel) and

D c S. The quantity s, is a measure of the space explored at an instant ti. If this is above

a certain threshold, the agent should only exploit its knowledge of S instead of exploring.

The use of predictive variance for exploration is similar to "knownness" based model-free

MDP solvers [11] and information entropy maximizing active sensor placement algorithm

[71].

Description of the Experiment

The mission scenario is for the agents to go from a predefined ingress location to a prede-

fined egress location (referred to as the goal location) in the domain. The agent is free to

choose the optimal path over the domain to perform its mission. Each path planning and

execution instance is termed as a run. A large-scale experiment with a total of 5, 500 runs

85

across the environment is performed. During the experiment, the agents face four different

population densities. The population densities switch periodically every 200 runs for the

first 4 times for each model, and then randomly. The agents do not have an a-priori model

of the underlying human population densities, nor do they know that these are expected to

switch or know the total number of underlying models. Furthermore, stochasticity in tran-

sitions is induced by any tracking error the Quadrotor controller may have. The rewards

samples are stochastic draws from the corresponding GP.

The urban arena is split into grids of dimension 50 x 50, and the agent action set consists

of a decision to move to any directly adjacent grid. An efficient policy-iteration based

planner [18] is used to compute the value function at the beginning of each run using the

learned reward model. The resulting policy is further discretized into a set of waypoints,

which are then sent to the agent as the desired path. To accommodate a large-number of

runs (5, 500), simulated UAV agents are used in the experiment. The first four times the

population density model is switched, 15 runs are performed by the real-UAV. Hence, the

real UAV performs a total of 75 runs across the domain, with each run taking around 2

minutes from take-off to landing. Furthermore, since these runs are early in the learning

phase of each model, the paths flown by the UAV are exploratory, and hence longer. The

data collected by each agent is assumed to be fed to a centralized non-stationary MDP based

planner, which does not distinguish between real and simulated agents. The simulated

agents use physics based dynamics model for a medium sized Quadrotor and quaternion

based trajectory tracking controllers [36, 55]. The real-UAVs fly in an experimental testbed;

the testbed area is 16 x 12 ft and it is equipped with the Optitrack motion capture system and

is designed to conduct real-time testing in an emulated urban-environment. The Optitrack

cameras have a optical range between 18in to 433in, thus allowing an estimation volume of

11 x 11 x 4 ft. The testbed consists of wooden buildings and several cars (all cars not shown

in figure) that can move around, allowing us to simulate different population densities. The

Optitrack is a set of ten infra-red cameras that collect data based on the markers attached

to the body. The testbed further includes a monitoring facility with a Mobotix Q24 fish

eye camera. The UAV used in this experiment is the a AR-Drone Parrot 2.0 Quadrotor

controlled by a client program using the Robot Operating System (ROS) [101].

86

UAV Automated RC cm Overhad 024 FksI-eve Camera

Figure 4-6: The flight-test bed at the DAS lab at OSU emulates an urban environment and
is equipped with motion capture facility.

Discussion of Results

In the experiments, GPC is compared to RL using a GP representation but without any

changepoint detection or model transfer. This algorithm is referred to as GPR (GP Regres-

sion). Figure 4-7 presents the average reward accumulated and its variance by both the

planners for each of the four models. The horizontal axis indicates the number of times

each model is active and the vertical axis indicates the cumulative reward the agent has

accumulated over the time the underlying model was active. In model 1, both algorithms

perform very similarly. One reason for this parity is that GPR tends to learn model 1

quickly as this is the model it was initialized in. In fact, the GPR predictive co-variance

reduces heavily while learning this model for the first time, and even with the fog-of-war

forgetting, the co-variance does not increase again. This results in the GPR (falsely) being

confident in its model, and even though it is updated online with new reward samples, its

estimate is highly biased towards the first model. However for models 2, 3, and 4, the

clustering based GPC algorithm is clearly seen to have a better performance characterized

by the consistency over which the GPC based planner finds the near optimal policy. Indeed

it can be observed by noticing that total reward accumulated over the entire duration are

87

nearly constant, with the small variations being attributed to the stochasticity in the reward.

Figure 4-8 indicates total reward accumulated by the agent in each iteration, when the

underlying reward model is changing. Figure 4-9 shows the performance of the GPC algo-

rithm. It can be seen that the algorithm rapidly learns the underlying model, and quickly

identifies whether the underlying model is similar to one it has learned before. As a result,

the agent's estimate of the reward model converges quickly for each model. Furthermore,

because the agent can recognize a previous model that it has already learned before, it does

not have to spend a lot of time exploring. The net effect is that the agent obtains consis-

tently high reward, and a long-term improvement in performance can be seen. Whereas,

when the agent follows the non clustering based traditional GPR approach, it takes a longer

time to find the optimal policy leading to a depreciation in its total accumulated reward

over each model.

Exploration of the domain is required by any reinforcement learning algorithm to ensure

that it obtains sufficient information to compute the optimal policy [15]. In this architecture,

the exploration strategy is to compute a policy that guides the agents to areas of the domain

with high variance, rather than using the estimate of the GP reward model. However,

relying on the GP variance is not enough, because the GP variance updates do not take into

account the non-stationarity in the domain. The fog of war forgetting introduced in (4.17)

adds another metric on learned model confidence by ensuring that the agent revisits parts

of the domain that it has not recently visited. However, exploration is costly, because this

is when the agent is likely to accumulate negative reward. Therefore, the optimal long-

term strategy should be to minimize exploration and maximize exploitation by identifying

similarities in the underlying models. It becomes clear therefore that the performance of the

GPC-based planner is superior because the GPC algorithm is able to cluster the underlying

reward model with ones that it has seen before, and hence does not need to explore as

much. The estimation performance of the GPC algorithm is visible by comparing the real

and estimated models in Figures 4-10. This plot indicates that the algorithm did not spend

time exploring areas where it cannot perform optimally. Furthermore, Figure 4-11 plots

the value of the exploration reward (4.18) and the exploitation threshold (0.85). This figure

shows that the GPC planner spends less time exploring. In fact, the dips in Figure 4-11

88

550-

500

450-

E 400'

350,-

sU6 1 2 3 4 5 6 7
Number of time Model appears

(a) Model I

ModJ 3
400

200

0

-Without Clustering
-200 -Clustering

-400-

-600-

-800-

-1000
0 1 2 3 4 5 6 7 8

Number of time Model appears

(c) Model 3

800

- 700
CO

0 600

> 500-

= 400E
300-

200[

- Without Clustering
-Clustering

10 0 1 2 3 4 5 6 7 E
Number of time Model appears

(b) Model 2

M.d" 4

200

V
-00

0
ca -200

> -600

E -1000
0

-1200

-1400 --Without Clustering
-Clustering

-0 1 2 3 4 5
Number of time Model appears

(d) Model 4

Figure 4-7: Comparison between Total Rewards for each model

89

-Without Clustering
- lCustering

:

E

mo" 2

6

1000 200 300
Iterations

- Model 1
- Model 2

Model 3
Model 4

400 50 60

(a) Cumulative Reward without Clustering

- modsl I
- Mode: 2
- model 3

-Mode: 4

500 1000 1500 2000 250 3000 3500 4000 4500
Oweatoos

5000

(b) Cumulative Reward with Clustering

Figure 4-8: Comparison of the accumulated rewards of GP clustering versus GPRegression;
the agent accumulates more positive rewards when clustering models.

90

101

6

0

-10

10

-5

A&h

500

Changes in model

3.5I-I- Actual
- - Estimated

E

1.5

10 500 1000 1500 2000 2r5 o 00 X 35OO 40LOO 4500 5000

Figure 4-9: Plot indicating the actual model being tracked by the estimated model. At the
2001h and 4001h run new models are introduced, the algorithm quickly detects them after
a brief misclassification. Note that the algorithm clusters the underlying reward model
quickly and reliably afterwards.

match the times when the agent encounters a new model for the first time. These step dips

are desirable, because they indicate that the algorithm has detected that a new model has

been encountered, and that it is likely to sufficiently explore the domain to learn that model.

In contrast, only one such dip is seen at the beginning for the GPR based planner.

4.4 Conclusions

This chapter investigated the problem of RL when the reward function is non-stationary,

i.e. may experience changepoints. First, Section 4.1 introduces the UCRL-GP algorithm

for continuous RL with stationary reward functions. It is proven in Section 4.2.1 that the

UCRL-GP algorithm is PAC-MDP, one of the first continuous RL algorithms with sample

complexity guarantees. In Section 4.3. 1, UCRL-GP outperforms state of the art RL algo-

rithms in terms of sample complexity on several RL domains. This section secondly in-

troduces the UCRL-GP-CPD algorithm for nonstationary reward functions. Section 4.2.2

proves that UCRL-GP-CPD will detect changes in the environment with high probability

and that it is theoretically guaranteed against negative transfer. Section 4.3.2 demonstrated

91

(a) Model I Actual

(e) Model 3 Actual

030

(b) Model I Estimated

400

(d) Model 2 Estimated

(f) Model 3 Estimated

(c) Model 2 Actual

(g) Model 4 Actual

0 20

(h) Model 4 Estimated

Figure 4-10: Estimated and actual mean of a Gaussian Process reward generative model.

92

0.7 0.7

0.8 0.8

0.7 0.7

O0.6 0.4

X. - 0.3
w wi

0.2 0.2
CL0.4 0.4

00.3 00.3
.O

0.21 0.2

0.1 0.1

I0 1000 2000 3000 4000 5000 0b 1000 2000 3000 4000 5000
No of Iterations No of Iterations

(a) Space Explored GPR (b) Space Explored GPC

Figure 4-11: Space Explored by each planner indicative of the variance

UCRL-GP-CPD empirically on a simulated and real-life domain.

Future work will aim at extending UCRL-GP to domains with stochastic dynamics.

Planning in continuous spaces with stochastic dynamics is extremely difficult as it 1) re-

quires taking the expected value of a continuous function with respect to an arbitrary dis-

tribution and 2) requires modeling an arbitrary p.d.f. which is parameterized by continuous

variables. However, if certain structural assumptions are made on the transition dynamics,

such as Gaussianity, it is possible to perform 1) in closed form with a Gaussian process

representing the reward function [37]. Thus, while it is possible to perform planning with

stochastic dynamics, the future steps are non-trivial.

93

il-

94

Chapter 5

Conclusions and Future Work

The first part of this thesis introduces a novel algorithm, GP-NBC, for online prediction

and learning in the presence of nonstationary data using Gaussian Processes. It was proven

that GP-NBC is theoretically justified and will make a bounded number of erroneous pre-

dictions per phase, a property not shared by other algorithms using GPs. It was shown

in several synthetic as well as real-life domains that GP-NBC requires orders of magni-

tude less computation than existing state of the art methods, while still providing accurate

predictions. Additionally, unlike existing online methods, GP-NBC is capable of learning

models and transferring past model knowledge when it becomes applicable again. The

ability of GP-NBC to learn models and make accurate predictions in real-time makes it

well-suited for application domains in Reinforcement Learning (RL), Adaptive Control,

and decision making.

The second part of this thesis utilizes GP-NBC in a novel RL algorithm for continuous

domains, UCRL-GP-CPD. First, an algorithm for stationary reward functions, UCRL-GP,

is introduced. It is proven that UCRL-GP will learn an c-optimal policy in a polynomial

number of steps, i.e. it is PAC-MDP. UCRL-GP is one of the first algorithms for continuous

RL which has been proven to be PAC-MDP. In the empirical section, it was shown that

UCRL-GP learns the optimal policy in fewer exploratory steps than the state of the art RL

algorithms for continuous domains.

GP-NBC is then combined with UCRL-GP to make a new algorithm, UCRL-GP-CPD,

which is capable of detecting changes in the reward function and determining a policy when

95

necessary. Since changes in the reward function may be local, UCRL-GP-CPD employs

a periodic exploration strategy to check to see if anything has changed in the environment.

Using this periodic exploration, it was proven that if a changepoint occurs in the envi-

ronment, UCRL-GP-CPD will detect it will high probability. Unlike existing algorithms,

UCRL-GP-CPD does not make any distributional assumptions about the class of problems

it may encounter, is capable of detecting changes in the environment at arbitrary points in

time, and does not require a training phase in which all problems must be previously en-

countered. In the empirical section, UCRL-GP-CPD is tested on several domains such as

a puddle world with moving puddle and UAV path planning while avoiding pedestrians. It

was shown than UCRL-GP-CPD can successfully detect changes in the environment and

transfer past model knowledge when applicable.

5.1 Discussion and Future Work

While a significant number of algorithms for nonstationary data have been recently pro-

posed using Bayesian problem formulations, nonBayesian algorithms have been signifi-

cantly less researched. Bayesian algorithms have theoretic and intuitive foundations, but

the computation required to compute posterior distributions is often prohibitive for applica-

tions which require real-time decision making. Additionally, Bayesian algorithms require

a prior belief over the distribution of changepoints. If a process has a well-defined transi-

tion structure that can be garnered from first principles, such as the Poisson process, then a

Bayesian method will work well. However, in many applications, such as fault detection or

pedestrian behavior analysis, it may be expensive or impossible to delineate a good prior

function. As a result, this lack of a good prior often leads to ad-hoc feature selection, which

can lead to poor performance.

NonBayesian algorithms, on the other hand, do not require a prior distribution, and are

formulated instead on a notion of the probability of detecting an event and the probability

of a false detection, which can be determined from the observation model alone. This

reformulation results in a hard decision rule on changepoint detection rules instead of a

soft posterior distribution. While there are some losses associated with hard decision rules,

96

a nonBayesian test for changepoints results in a scalable solution which takes orders of

magnitudes less computation. A more thorough analysis and experimentation of Bayesian

and nonBayesian methods in changepoint detection would be helpful to delineate what

kinds of problems are better handled by one algorithm over another. In applications where

changes are frequent or in which the changepoint times are known, it is likely that the

Bayesian methods will perform better. However, in applications in which the changes are

infrequent, this may violate the i.i.d. assumptions of the Bayesian formulation and cause

problems.

Lastly, the theoretical guarantees derived in this thesis are based on the PAC framework,

which is closely related to frequentist approaches. These bounds, however, are notoriously

loose, and are more interesting for asymptotic analysis and theoretical justification of al-

gorithms rather actual use in practice. PAC-Bayesian [80] is a class of methods which

employ priors and perform posterior inference, making them Bayesian, but also employ

some aspect of PAC proofs to theoretically prove that an algorithm is correct. It would be

interesting to develop PAC-Bayesian versions of the GP-NBC and UCRL-GP-CPD algo-

rithms to leverage the benefits of both schools of statistics.

97

98

Appendix A

Proofs

A.1 KL-divergence between estimated model and new dis-

tribution

In the case of online learning, H1 is not known a priori and must be approximated using a

subset of the current data. In this case, the LRT will not tend towards the KL-divergence of

the true distributions, but rather it will tend towards,

IE[LHflHo(Y)] = D(HiljHo) - D(H1 ||H 1) (A.1)

which is the KL-divergence between the current model and the true distribution minus the

approximation error of using a model H1 instead of H 1.

Proof

IELLHulHo(Y)] f p(y I H1) log
p(yjH1)

J(yIH1) py ilo
=D(H 1 ||H0) - D(H1f|

p(y IH)

p(y| Ho)

A~y 1 '(1) +
p(y I H 1) Ip(ylHl)

k 1)

p(y I H1)p(y | HI) log(H0)
p(y HO)

99

A.2 Role of the Prior in Lemma 3.1

This section describes the affect of the GP prior on the learning result in Lemma 3.1.

While priors may improve early model performance, they may also slow learning if

the initial estimate is far from the actual value. In order to consider the effect of the prior

on GP inference, we examine the bias versus variance properties of the GP estimator for

properties of the model. The mean function of a GP is equivalent to the MAP estimate of a

linear combination of Gaussian beliefs, given by,

2
p= 2 f(yi, ... ,yn) + 2 21O (A.2)

where yo, go are the prior mean and variance, respectively. f(-) is a function which maps

the observations to a estimate. In the single variable case, this corresponds to an average.

In Lemma 3.1, this corresponds to the function p(x') = f (xi,. . ., x,) which was analyzed.

Therefore, the total error induced by using a GP is given by the sensitivity of f(-) to noise,

which was analyzed in Lemma 3.1, and the error induced by having a prior bias. Here, we

show that this bias-error is small, and can be effectively ignored in analysis.

The maximum error due to regularization is given by the upper bound on the second

term

EPr
2 + (2 m (A.3)

Plugging in Utol from Lemma 3.1,

(= f(A.4)
we + 1V 2 log()0-2

Defining r =0,

Ep mr (A.5)
I1+ r V2log()

Interestingly, the role of the prior decreases as Vm, 1, and increase. This is due to the

fact that the variance required to average out noise scales as V. whereas the error induced

by bias of the prior scales Vm. The effect of the prior increases as the ratio r decreases,

i.e. our initial variance is very low, or the measurement noise is high. We argue that by

100

increasing r, we can make the error due to regularization arbitrarily small without effecting

the reliability of our estimate. For example, by increasing o0- arbitrarily large, we have,

2
j (7~ 2 f(y. . . ,yU) (A.6)

,2 + ,fJ

Effectively, by making the prior variance arbitrarily large, we have turned the GP into a

function approximator which does not rely on any prior information. Therefore the guar-

antees still hold from the previous section. By creating a large prior variance, one might be

concerned that the rate at which u2 decays will be slowed down. However, consider that

the covariance at a point after a single observation is given by o- = (a-2 +w- 2)2

Thus, for any o > > W2 , the effect of the prior variance does not matter much. Since we

can set r arbitrarily large by scaling the kernel function, we can therefore scale e, to be

arbitrarily small. Therefore, we neglect the role of the prior in all future analysis.

A.3 Proof that the variance decreases in the Voronoi re-

gion: Theorem 1

An cet-volume around a point z is defined as the set of all points which satisfy the following

distance metric as {ct - Vol : x E S I k(, ,T) - k(T, x)TK(x, x)-k(T, x)}. Define the

correlation coefficients between two points as p = k(xi, xj). Using Bayes law, it can be

shown that given a point 1 with prior uncertainty o-2 = l and m measurements at another

location xi with correlation coefficient p, the posterior variance is given by o 1 - .

Using the linear independence test, we relate ct to p as Et = 1 - p2 . Therefore, we have

that in an cet-volume, the slowest that the variance can reduce at the center of the volume E

is given by,
o2 <nt + W2 <net + W2 (A.7)

n + W2 - n

The Et-volume around a point T is identical to the voronoi region around a point in the

covering set. et < or2 1 by the definition of the covering number.

101

102

Appendix B

Experimental Validation of Bayesian

Nonparametric Adaptive Control using

Gaussian Processes

This appendix presents a framework for Model Reference Adaptive Control (MRAC) us-

ing Gaussian Processes as well as extensive empirical results using this framework on a

quadrotor. This work was initially published in [49] and represents work that I have done

during my Masters which did not fit in thematically with the main text of the thesis.

B.1 Abstract

Many current model reference adaptive control (MRAC) methods employ parametric adap-

tive elements in which the number of parameters are fixed a-priori and the hyperparameters,

such as the bandwidth, are pre-defined, often through expert judgment. As an alternative to

these methods, a nonparametric model using Gaussian Processes (GPs) was recently pro-

posed. Using GPs, it is possible to maintain constant coverage over the operating domain

by adaptively selecting new kernel locations as well as adapt hyperparameters in an online

setting to improve model prediction. This work provides the first extensive experimen-

tal flight results using GP-MRAC. Experimental results show that GP-MRAC outperforms

traditional MRAC methods which utilize Radial Basis Function (RBF) Neural Networks

103

(NNs) in terms of tracking error as well as transient behavior on trajectory following using

a quadrotor. Results show an improvement of a factor of two to three over pre-existing state

of the art methods.

Additionally, many MRAC frameworks treat the adaptive element as being known ex-

actly, and do not incorporate certainty of the prior model into the control policy. This

appendix also introduces the notion of a Bayesian scaling factor which scales the adap-

tive element in order to incorporate the uncertainty of the prior model and current model

confidence. The stability and convergence are proven using the Bayesian scaling factor in

closed loop.

B.2 Introduction

In several aerospace and mechanical applications, it is often difficult or infeasible to obtain

an exact model of the system dynamics, either due to cost or inherent model complexity.

Model Reference Adaptive Control (MRAC) is a widely studied adaptive control methodol-

ogy for Aerospace applications which aims to ensure stability and performance in presence

of such modeling uncertainty. MRAC has been implemented on several experimental and

in-service aerospace flight platforms, including the Georgia Tech GT-MAX [58], the J-

DAM guided munition [110], F-36 aircraft [111], the X 33 launch vehicle [59]. It has also

been used for fault-tolerant adaptive control research in the context of adaptive control in

presence of loss of lifting surface or actuator uncertainties [22].

Several active directions in MRAC research exist, such as [17, 31, 73, 91, 108, 130],

and a central element of these and many other MRAC architectures is a parametrized adap-

tive element, the parameters of which are tuned online by the MRAC architecture to capture

the modeling uncertainty. A common approach for synthesizing the adaptive element is to

use a deterministic weighted combination of a set of basis functions to estimate the as-

sociated parameters online. This approach has the benefit that it allows the designer to

encode any physical knowledge about the modeling uncertainty within the MRAC frame-

work. However, in many aerospace or mechanical problems of interest, the exact form of

the adaptive element may not be available a priori, especially when the underlying uncer-

104

tainties are a result of highly stochastic effects such as unsteady aerodynamics, or nonlinear

dynamics such as actuator limitations. To handle such "unstructured uncertainties" authors

have previously proposed Neural Network based approaches. Indeed, following the pio-

neering work by Sanner and Slotine [107], Radial Basis Function Networks (RBFNs also

referred to as RBF-Neural Networks) are perhaps the most widely used adaptive elements

when a basis for the modeling uncertainty is unknown [67, 88, 120]. Unlike multi-layer

perceptron Neural Networks [67, 75], the RBFNs are linear-in-parameters universal func-

tion approximators. The accuracy of an RBFN representation, however, greatly depends on

the choice of RBF centers [93]. Typically, authors have assumed that the operating domain

of the system is known and have pre-allocated a fixed quantity of Gaussian RBF centers

over the presumed domain [23, 67, 88, 94, 125]. However, if the system operates outside

of the domain of the RBF kernel's centers [93], or if the bandwidth of the kernel is not

correctly specified [86, 109, 117], the modeling error will be high and stability cannot be

guaranteed globally. In fact, RBFN based stability results require that the system operate

enforce constraints such that the system does not leave a pre-specified compact domain.

Another key limitation or RBFNs, and other NN based universal approximators, is that

the update laws assume a deterministic representation of the uncertainty, when available

measurements are actually stochastic. It is well-known that without a projection opera-

tor, gradient based update laws subject to noisy measurements can result in model error

growing unbounded. Even with a projection operator, noisy measurements can result in

over-learning or oscillatory behavior. Additionally, without a probabilistic representation

of the uncertainty, it is difficult to gage the level of confidence of the adaptive element for

use in a control law.

To overcome the aforementioned limitations of RBFNs and other fixed-parameter adap-

tive elements, Gaussian Process (GP) Bayesian nonparametric adaptive elements are used

[20, 27, 28], creating a new class of BNP adaptive control in an architecture called GP-

MRAC. Unlike traditional MRAC, GP-MRAC is nonparametric and makes no assumptions

about the operating domain. Using only data available online, GP-MRAC is able to dynam-

ically choose new kernel locations to maintain domain coverage as well as learn relevant

kernel hyperparameters. The main benefits of GP-MRAC Bayesian nonparametric adap-

105

tive controllers include: no prior knowledge of the operating domain of the uncertainty

is required, measurement noise is explicitly handled, and parameters such as the centers

of RBFs need not be pre-allocated. GPs utilize a Bayesian framework which models un-

certainties as a distributions overfunctions, which differs from the traditional determinis-

tic weight-space based approaches [67, 68, 88, 125]. Furthermore, Bayesian inference in

GP-MRAC overcomes the shortcomings of the standard gradient based MRAC parameter

update laws, such as the lack of convergence guarantees and the possibility of bursting

(parameters growing unboundedly) in presence of noise [4, 10, 87]. Efficient "budgeted"

online algorithms were presented that ensure tractable computational complexity for on-

line inference and efficient methods for optimizing hyperparameters online while ensuring

stability. Furthermore, it was shown that GP-MRAC can be used for adaptive control in

presence of time varying uncertainties[26].

This work presents results from an extensive flight-test study of GP-MRAC on a Quadro-

tor UAV in different flight conditions. Several trajectory following experiments demon-

strate that GP-MRAC significantly outperforms traditional MRAC using fixed-parameter

RBF-NNs in terms of tracking error, transient performance, and learning model uncer-

tainty. GP-MRAC is also compared with the previously flight-tested Concurrent Learning

MRAC (CL-MRAC) algorithm [24, 25, 30], as well as a variant of GP-MRAC which au-

tomatically learns hyperparameters in an online setting. The experiments show that the

ability to dynamically place new kernel centers enables GP-MRAC to maintain excellent

tracking performance even when the system operates outside the expected domain. On the

contrary, it is shown that when using traditional RBF-NN adaptive elements, if the system

leaves the intended operating domain due to overshooting or stochasticity, instability can

arise.

Furthermore, this work present a novel modification to GP-MRAC called the Bayesian

scaling factor which weighs the relative confidence of the prior model with that of the

adaptive element model. This results in an learning-focused MRAC scheme which trusts

the baseline conservative controller more when first learning the model uncertainty and en-

tering into new regions of the operating domain, and trusts the representation of the adaptive

element more when the confidence of the learned model, based on the GP predictive vari-

106

ance, is high. This represents a fundamental shift from many traditional adaptive control

policies which assume that the adaptive element is a known deterministic quantity when

feeding it back into the control policy. Using a Bayesian scaling factor, the relative con-

fidence in multiple sources of information is weighed appropriately, and a control policy

is computed relative to this confidence. The combined effect is a smoother transition from

conservative baseline control to aggressive adaptive control based on the learned model. It

should be noted that preliminary flight test results over a limited experiment were presented

in a conference paper [19].

B.3 Approximate Model Inversion based Model Reference

Adaptive Control

AMI-MRAC is an approximate feedback-linearization based MRAC method that allows the

design of adaptive controllers for a general class of nonlinear plants (see e.g. [16, 58]). The

GP-MRAC approach is introduced in the framework of AMI-MRAC, although it should

be noted that it is applicable to other MRAC architectures (see e.g. [4, 57, 89, 121]). Let

x(t) = [xf(t), x j(t)]T E Dx C R", such that xi(t) c R"s, x 2 (t) E Rns, and rt 2ni.

Let 5 c D6 c R', and consider the following multiple-input controllable control-affine

nonlinear uncertain dynamical system

:zi(t) =X2(0), (B.l)

2 (t) = f(x(t)) + b(x(t))6(t).

The functions f(0), f(0) = 0 and b are partially unknown functions assumed to be Lip-

schitz over a domain D and the control input 6 is assumed to be bounded and piecewise

continuous, so as to ensure the existence and uniqueness of the solution to (B.1) over D.

Also assume that 1 < n, (while restrictive for overactuated systems, this assumption can be

relaxed through the design of appropriate control assignment [42]). Further note that while

the development here is restricted to control-affine systems, sufficient conditions exist to

convert a class of non-affine in control nonlinear systems to the control-affine form in (B.1)

107

(see Chapter 13 in [65]), and the AMI-MRAC framework can also be extended to a class

of non-affine in control systems [64, 66].

The AMI-MRAC approach used here feedback linearizes the system by finding a pseudo-

control input v(t) c Rn, that achieves a desired acceleration. If the exact plant model in

(B. 1) is known and invertible, the required control input to achieve the desired acceleration

is computable by inverting the plant dynamics. Since this usually is not the case, an approx-

imate inversion model f(x) + b(x)3, where b chosen to be nonsingular for all x(t) E Dx,

is employed.

Given a desired pseudo-control input v E R n a control command 6 can be found by

approximate dynamic inversion:

6 = b I(x)(v - (X)) (B.2)

Let z = (xT. 3T)T E Rn+1 for brevity. The use of an approximate model leads to modeling

error A for the system,

i2 = V(Z) + A(z), (B.3)

with

A(z) f(x) - f(x) + (b(x) - b(x))6. (B.4)

Were b known and invertible with respect to 3, then an inversion model exists such that the

modeling error is not dependent on the control input S. A designer chosen reference model

is used to characterize the desired response of the system

Xlrm = X2, (B.5)

, 2rn = frm(xrm, r),

where frm(xrm, r) denotes the reference model dynamics, assumed to be continuously dif-

ferentiable in Xrm for all Xrm E Dx C R". The command r(t) is assumed to be bounded

and piecewise continuous. Furthermore, frm is assumed to be such that Xrrr is bounded for

a bounded command.

Define the tracking error to be e(t) = Xrm(t) - x(t), and the pseudo-control input v to

108

be

1/ = 1/rm + 11pd - Vad, (B.6)

consisting of a linear feed-forward term ==rm =2rm a linear feedback term Vpd = [K 1 , K 2] e

with K 1 c Rfl Xl' and K 2 E RlX "s, and an adaptive term Vad(z). For Vad to be able to

cancel A, the following assumption needs to be satisfied:

Assumption B.1 There exists a unique fixed-point solution Vad = A(x, Vad), Vx E D,.

Assumption B. 1 implicitly requires the sign of control effectiveness to be known [66].

Sufficient conditions for satisfying this assumption are available in [66].

Using (B.3) the tracking error dynamics can be written as

2rm - (B.7)

0 I 0
Let A B where 0 E R"sx" and I E Rfls ""- are the zero and

-K1 -K2 I
identity matrices, respectively. From (B.6), the tracking error dynamics are then,

e = Ae + B[Vad(z) - A(z)1. (B.8)

The baseline full state feedback controller Vpd is chosen to make A Hurwitz. Hence, for

any positive definite matrix Q E R"'X, a positive definite solution P E R' n exists for the

Lyapunov equation

0 = ATp + PA + Q. (B.9)

B.4 Adaptive Control using Gaussian Process Regression

Traditionally in MRAC, it has been assumed that the uncertainty, A(z), is a (smooth) de-

terministic function. This work offers an alternate view of modeling the uncertainty A(z)

in a probabilistic framework using the a Gaussian Process (GP) Bayesian Nonparametric

model. A GP is defined as a collection of random variables, any finite subset of which has

109

a joint Gaussian distribution [102] with mean m(x) and covariance k(x(t'), x(t)). For the

sake of clarity of exposition, it is assumed that A(z) C R; the extension to the multidimen-

sional case is straightforward. Note also that z C R"6 as before. Hence, the uncertainty

A(z) here is specified by its mean function m(z) = E(A(z)) and its covariance function

k(z, z') = E[(A(z) - m(z))(A(z') - m(z'))], where z' and z represent different points in

the state-input domain. The following notation is used:

A(z) g rP(m(z), k(z, z')) (B.10)

Ref. [102] provides a complete analysis of the properties of GPs.

B.4.1 GP Regression

See Section 2.1 for equations relating to GP regression.

B.4.2 Online Budgeted Inference

In general, traditional GP inference does not scale well with number of data points because

it requires that a kernel center be added for every data point seen [104]. Hence, in order to

enable efficient GP inference online on resource constrained platforms, modifications must

be made that can ensure online tractability. The matrix inversion required for prediction

scales with the number of data points n as 0(n3). Csato [34] provides recursive, rank

1 updates for the weights a and covariance (B.13). However, even with rank-1 updates,

prediction computation grows as 0(n), where n is the number of kernel points. Instead

of creating a kernel at every data point, a restricted set of points referred to as the active

basis vector set is used. Furthermore, the size of this set is limited by a user selectable

"budget". When the number of points stored exceed the budget, new points can only be

added by removing an existing point in a way that further enrich the active basis set. In

order to determine the novelty of a new point, a linear independence test is performed [34]

110

as,

-r+i = k*1 - kzj, a1c. (B.11)

If -y 1 exceeds some threshold Etol, then the point is added to the data set. If the budget

is exceeded, a basis vector element must be removed prior to adding another element.

For this purpose, the KL divergence based scheme presented by Csato [34] is used. This

scheme efficiently approximates the KL divergence between the current GP and the (t + 1)

alternative GPs missing one data point each, then deletes removes the data point with the

least score. To compute the updates in an online fashion, define the scalar quantities

q(T+l) - - cZTk,,(q+1) _ y-T k' (B. 12)
2k+ kTC,, + k*'

r(T+) = - (B.13)
2k+ kTCkx, + k*'

where aT, kx,, and C. are defined in (B.12) and (B.13). Let e,+1 be the (r + 1) coordinate

vector, and let T.+1 (-) and UT+1 (.) denote operators that extend a T-dimensional vector and

matrix to a (-r + 1) vector and (T-+ 1) x (T + 1) matrix by appending zeros to them. If T+1

exceeds Etol, the GP parameters can be solved recursively by using the equations

ar+1 = Tr+l(aT) + q(T+1 Br+1,

CT+1 = UT+1(Cr) + r(T+1)s T+sl (B.14)

ST+1 = TT+1(CTkxT) + e-H4.

If the threshold Etol is not exceeded, the point is not added to the budget, in which case the

update equations are given by

a,+1 aT + -1(+1)

CT+1= + (B.15)

ST+1 = CTkx,+l + K(Z, Z)~'k(Z, ZT+ 1).

111

The inverse of the Gram matrix, dentoed by P, needed to solve for -Y,+ is updated online

through the equation

PT+1 = Ur+1(PT)
(B.16)

+ -Y-+1I (Tr+l(6r+) - e,+l) (T,+i(sr+-1) -

where 6+ := Pkz+. Finally, in order to delete an element, one computes the model

parameters with the (T + 1)-th point, and chooses the basis vector with the smallest score

measure, given by

ar+1()| .(B. 17)

Alternatively, other methods for determining which basis vector should be deleted can be

used, such as deleting the oldest basis vector [26]. Let t be the basis vector chosen to be

discarded by the score (B.17). Then the deletion equations are given by

& *
q*
p*p*T 1

C C + C* q*2 _I [p*C*T + C*P*T] (B.18)

P P-' P* P*T

q*

where a* is the tth component in the vector a'+1, and (v' represents the remaining vector.

Similarly, C-' (P-') represents the r x r submatrix in the (r + 1) x (T + 1) matrix Cr'+

(P,+1) associated to the basis vectors being kept, c* (q*) represents the (t, t) index into the

matrix chosen by the score measure, and C* (P*) is the remaining r-dimensional column

vector.

B.4.3 GP nonparametric model based MRAC

This section describes GP-MRAC with online hyperparameter optimization. Let (^) denote

a kernel with estimated hyperparameters. The adaptive element Vad is modeled as

Vad(z) - -N(fn(z), tz(z)), (B. 19)

112

where fn(z) is the estimate of the mean of A(z) at the current time instant [20]. In this

case, one can choose Vad = i(z) or draw from the distribution in (B.19). It follows that if

one chooses Vad = n(z), then |HVad - All is bounded by the square root of the right hand

side of (B.13) within one standard deviation.

B.4.4 Hyperparameter Optimization

This section presents methods for optimizing kernel hyperparameters online. An overview

of hyperparameter optimization is presented to make the results intelligible to the reader,

but for further details and proofs, the reader is referred to [50]. Regression using GPs

requires the use of a kernel function k(., .), which typically has some hyperparameters that

correspond to smoothness properties of the function as well as sensor noise levels. For

example, consider one of the most popular choices of kernel functions, the radial basis

function (RBF),

k (xi, xj) = exp li- Xj 2p2) (B.20)

In this case, p is a hyperparameter which controls how correlated points are within the

operating domain. A large p results in smooth function approximation which may lose fine

details, whereas a small t will capture more fine details, but will also be more sensitive

to noise. GPs may perform poorly if the design hyperparameters are far from the optimal

values, and as such to ensure robust performance, hyperparameters should be optimized

online Additionally, if the uncertainty is time varying, the optimal hyperparameters may be

time varying, as well.

Traditionally in the GP literature, the hyperparameters are optimized in GPs by maxi-

mizing the likelihood, or equivalently, the log likelihood, of the data given the hyperparam-

eters, 0. Taking the derivative with respect to 0 yields

log P(y 10, Z) = -tr ((T -1) (B.21)
00o 2 aa0)

where Ez = (K(Z, Z) + w2I) and d = Ezy. Using the closed form of the gradient,

one can then choose any gradient based optimization method for maximization of the data

113

likelihood. Typically, optimization is performed in batch setting. Due to matrix inversion,

gradient operations scale poorly with the number of data points, and performing hyperpa-

rameter optimization in an online setting using all of the data becomes intractable quickly.

Instead, a subset of data is intelligently selected to alleviate computation costs while en-

suring convergence to meaningful hyperparameters. Choosing the observations at the basis

vectors yz as well as using current observations at each time instant i, y, provides good

performance as well as facilitates convergence analysis. Therefore, the hyper parameter

update laws are,

a
Oj[i + 1] = Oj[i] + b[i] a log P(yz, Yi+1 Z, Zj+1, 0) (B.22)

0

with the following two candidate functions for b[i],

b[i + 1] = b[i] (B.23)
i + I

b[i + 1] = (1 - 6)b[i] + 77 (B.24)

where b is a dynamic variable which controls the learning rate of Oj, and 7 < and 6 < 1

are parameters chosen by the user to control convergence. (B.23) converges almost surely

to a local optima of the modified likelihood function, while (B.24) will not converge, and

is better suited to time-varying systems.

The budgeted GP regression algorithm [20, 34] assumed static hyperparameters. As the

hyperparameter values are changed by the update equations, the values computed from the

linear independence test (B. 11) no longer reflect the current model. Therefore, some basis

vector points which were previously thought to be roughly independent are now sufficiently

correlated in the new model, and should be removed. However, naively recomputing the

linear independence test requires O(IBVI3) operations, so as an alternative, the algorithm

checks to see if the conditional entropy between two points is below a certain threshold

which requires O(I3VI2) operations. In the specific case of an RBF kernel, this can be

reduced to a distance calculation. These point-wise considerations will never remove too

114

Algorithm 10 Generic Gaussian Process-Model Reference Adaptive Control (GP-MRAC)

1: while new measurements are available do

2: Call Algorithm 11
3: Given zt+i, compute 7t+1 by (B.11)

4: Compute yt+i = X2t - Vt+1

5: if 7t+1 > 6toI then
6: Store Z(:, t + 1) = z(t + 1)
7: Store yt+l1 = 2 (t + 1) - V(t + 1)
8: Calculate K(Z, Z) and increment t + 1

9: end if
10: if IBVI > Prnax then
11: Delete element in BV based on methods in Section B.4.2

12: end if
13: Update a recursively per methods in Section B.4.2

14: Calculate k(Z, z(t + 1))
15: Calculate fn(z(t + 1)) and E(zt+i) using (B.12) and (B.13)

16: Set Vad - fa(z(t))

17: Calculate pseudo control v using (B.6)

18: Calculate control input using (B.2)

19: end while

many points. After the budget is updated, the weights are re-initialized to

a Ezly (B.25)

to account for the new hyperparameter and kernel function values.

Lastly, it is undesirable to recalculate the weights and kernel matrices if the hyperpa-

rameters change only slightly. Therefore, the constraint is added in practice that the model

hyperparameters are only updated if the change exceeds some designated percentage. For

example, in the experiments presented in Section B.6, a threshold of 5% was used. The

GP-MRAC algorithm with hyperparameter update is presented in Algorithm 10.

B.5 Control Policy using Bayesian Inference

Typically in AMI-MRAC architectures, the control law v = VUm + Vpd - Vad is used.

At every time step, the algorithm queries the function approximator, such as a NN, and

uses the output value as the adaptive element without regard for confidence levels of the

115

Algorithm 11 Update Hyperparameters

1: Calculate the derivative of the log likelihood per (B.21)

2: Vj, Update Oj [i + 1] and b[i + 1] per (B.22)
3: if HO0[i + 1] - Oj[i1II/IO3{[i]| then
4: Update 0a
5: for all zi, z E 13 V do

6: Calculate tj

7: if t 1jj < cto, then
8: Delete zi,yi

9: end if
10: end for
11: Recalculate covariance Ez and weights o =z1y

12: end if

function approximator. This control policy assumes that the vad is well known and models

A(z) sufficiently well. In fact, the NN does not readily provide any confidence metric on

how well it has learned the modeling uncertainty. Hence, while this assumption might be

true in the limit as time tends to infinity and sufficient data is presented to the NN through

persistent excitation of the system, the assumption is typically not valid when little data has

been received or if the data is not very rich. Therefore, in transient periods, it is desirable

to take into account the confidence that the algorithm has on what it has learned to decide

how much to trust the predictions from the adaptive element. The GP-MRAC framework

presents an elegant and efficient way of handling transient learning.

In order to proceed, it is assumed that at each point (x, u), the value of f(x, u) can be

obtained through a draw from a normal distribution with an expected value of the approxi-

mate model f(x, u), and associate a confidence at each point in space o(x, U).

f(X, IU) = N(X, U), o-' (X, U)) (B.26)

Thus, for every pair z = (x, u), the expected estimate of f(x, u) is f(x, u), but one expects

that the true system may deviate from f(x, u) with some variance o'(x, u) in practice.

Using this formulation allows us to define regions in which one has high certainty or low

confidence in the model f(x, u), and weigh the adaptive control element appropriately.

Using a prior confidence over the model, one can formulate the maximum a posteriori

116

(MAP) estimate of the true dynamics f(x, u) using Bayes law. In particular, given a es-

timate p(x, u) of ± = f(x, u) from some model with a normal distribution and variance

2 (x, U), the MAP estimate of f(x, u) is given by

U_ (X, U) a 2 (x, U)
fMAp (x, U) f(X, U) + f(x, u) (B.27)

0o2 (X, U) + 01-2(X, U) 0-2 (X, U) + U2 (X, U)

which leads to the MAP estimate of the modeling error,

AMAP(x, U) = U) (P(x, u) - f(x, U)) (B.28)

The Bayesian scaling factor is defined as, PMAP = .,)* Plugging in, the control

law becomes

S= Vrm + 1 pd - PMAPVad (B.29)

In practice, PMAP may jump around as the estimates of x are noisy. For this reason, instead

of using PMAP directly, a low pass filtered version is used

o-2(x, U)
PMAP[t+ 1] = PMAP[t] +6 ~ PMAP[t] (B.30)

2 (X, U)+ U2 (X,U)

where c E [0, 1) is some constant which determines filtering properties. If the confidence in

the initial model is high or if the confidence in the measurement g(x, u) is low, PMAP(X, U)

will be small, so the adaptive element will be small, and the algorithm will rely on the prior

model more. However, as the confidence in p(x, u) increases, PMAP(X, u) ~ 1, which

results in the original MRAC law. Conveniently, GPs provide an estimate of predictive

variance as well as a mean value, making them a suitable candidate for such posterior in-

ference. As the GP model receives more measurements in a certain region, the variance

o (x, u) decays and the algorithm rely on the adaptive element more than at the beginning.

If the system starts to venture into new regions of the operating domain, or if the hyperpa-

rameters change, the variance of onx, u) becomes large again, and the control policy falls

back to the prior model. It is worth noting that since PMAP E [0, 1], all proofs which es-

tablish boundedness when using Vad also hold for the case when using pMAPVad. Formally,

117

Theorem BA Consider the system in (B.1), the reference model in (B.5), the control

law of (B.6) and (B.2). Let the uncertainty A(z) be represented by a Gaussian process

as in (B.10), then GP-MRAC (Algorithm 1) and the adaptive signal Vad(Z) = PMAPT(z)

guarantees that the system is mean square ultimately bounded a.s. inside a compact set.

Proof Define ad = PMAPrn(z). From Lemma 3 in Ref. [50], IV"adH is bounded for all

time. Therefore, i'ad is bounded for all time. From Theorem 2 in [27, 28], if |A(z) - Vad I
is bounded, then the tracking error is mean square uniformly ultimately bounded inside

of a compact set almost surely. If IIA(z) - in(z)II is bounded for all time, it follows that

IA(z) - pMupri'(z) is bounded. Therefore, since 'A(z) - PMAPrn(z) is bounded for all

time, the tracking error is mean square uniformly ultimately bounded inside of a compact

set almost surely.

Theorem 1 states that including a Bayesian scaling factor in GP-MRAC will not destabilize

the closed loop system. This is significant, because it allows for a natural and elegant

method in which the predictive confidence of the adaptive element can be used to scale the

adaptive input while maintaining boundedness.

B.6 Experimental Results

This section validates the GP-MRAC architecture through an extensive set of flight results.

The results are evaluated through three separate experiments with multiple trials to ensure

statistically significant finding. The tracking performance of GP-MRAC is compared with

two variants of RBFN-MRAC as well as GP-MRAC with hyperparameter optimization.

In all cases, GP-MRAC shows a significant performance advantage over traditional fixed

parameter RBFN-MRAC and Concurrent-Learning based MRAC. The experiments are per-

formed in the Aerospace Control Laboratory's RAVEN test environment at MIT [56]. The

RAVEN test environment uses a motion capture system to obtain accurate estimates of the

position and attitude of autonomous vehicles . Accelerations and angular rates were cal-

culated using a fixed interval smoother. Position measurements are differentiated twice to

118

Figure B-1: Two MIT quadrotors equipped to fly in the ACL Real Time Indoor Au-
tonomous Vehicle Test Environment (RAVEN) [54]. The baseline controller on both
quadrotors is PID. The small quadrotor uses gains and thrust mappings from the bigger
one, resulting in relatively poor trajectory tracking performance.

obtain accelerations, which leads to increased noise. The motion capture environment does

provide high fidelity position measurements, which balances the noise introduced through

numeric differentiation. However, it was observed that the GP was fairly robust to any

noise introduced through numeric differentiation. In environments in which sensor noise

levels are larger, the noise term w' can be increased accordingly. This will result in the GP

learning the model error slower and a Bayesian mixing factor which increases slower.

B.6.1 Hardware Details

The flight experiments in this work were performed on the smaller of the two quadrotors

shown in Figure B-1. This vehicle weighs 96 grams without the battery and measures

18.8 cm from motor to motor. Both quadrotors utilize standard hobby brushless motors,

speed controllers, and fixed-pitch propellers, all mounted to custom-milled carbon fiber

frames. On-board attitude control is performed on a custom autopilot, with attitude com-

119

mands being calculated at 1 kHz. Due to limitations of the speed controllers, the smaller

quadrotor motors only accept motor updates at 490 Hz. More details on the autopilot and

attitude control are in [35, 36].

B.6.2 Augmentation of baseline linear control with adaptation

The outer loop (position and velocity) of the baseline proportional-integral-derivative con-

troller (PID) on the quadrotor was augmented with AMI-MRAC adaptive control. The

outer loop of the baseline controller generates desired acceleration to track a spline-based

trajectory, these desired accelerations are then mapped to thrust and desired attitude (quater-

nion) commands [36]. The inner loop attitude controller is implemented onboard the ve-

hicle and was left unaltered. The outerloop runs at 100 Hz on an off-board computer, and

the inner loop attitude control runs at 500 Hz. It is assumed that the attitude control is

sufficiently fast compared to the outer loop controller.

The experiments are performed in a rapid control transfer setting. In particular, the well

tuned PID inner-loop and outer-loop controller from the larger quadrotor are implemented

directly on the smaller quadrotor. The inner loop controller is not altered, while the outer

loop controller is augmented in the framework of AMI-MRAC using GP-MRAC and other

methods. The large differences in size and mass between the two quadrotors results in rel-

atively poor position and velocity tracking with the small quadrotor when it uses the gains

from the bigger quadrotor. In addition, the lack of knowledge of the mapping from unit-less

speed controller commands to propeller thrust for the small quadrotor requires significant

input from the altitude integral PID term and leads to poor vertical and horizontal position

tracking. In the AMI-MRAC implementation, the inversion law is very approximate, with

modeling errors on the order of 2- 6 during experiments. Additionally, the PID are tuned

only to achieve stability and moderate performance. Hence, any gains in performance over

the baseline controller are due to the adaptive law.

In these experiments, a baseline model and controller is used which is qualitatively

similar to the true model, albeit with scaling differences. It should be noted that since a GP

is a nonparametric function approximator, the form of the model error does not matter. A

120

GP will learn the model error equally well regardless if the baseline model is qualitatively

similar. This is different from parametric approaches to adaptive control, in which if the

parameterization of the model error is incorrect, the learning capabilities of the adaptive

element itself will be hindered. A similar baseline controller and PID law will, however,

improve the initial tracking capabilities in either case.

In the following discussion, baseline PID refers to the outer-loop PID controller on the

smaller quadrotors with gains directly transferred from the larger (well-tuned) quadrotor.

MRAC refers to augmentation of the baseline law with a RBFN adaptive element and CL-

MRAC refers to Concurrent Learning - MRAC, a learning-focused version of MRAC with

RBFNs and gradient based updates which uses recorded and current data concurrently for

adaptation and learning [21, 23, 30]. For details on how the adaptive element vad is calcu-

lated using MRAC and CL-MRAC, the reader is referred to [30]. GP-MRAC will refer to

a controller of the form (B.6) with Vad = pMAPfin(z), in which hyperparameters are static,

and GP-MRAC-HP will refer to a controller of the same form in which hyperparameters

are updated online. In MRAC and CL-MRAC, a projection operator was used to ensure

robustness, although the limit of the projection operation was not reached in experiments.

The projection operator is not required for GP-MRAC and GP-MRAC-HP [20].

The controllers were separated into three different loops corresponding to x, y, z posi-

tions. The input to the RBF for MRAC was given by zt [±, y, , q~. The input to the GP

was z= [q, , i, , v]. In [19], the input to the GP was given by zt = [±, y, , q. In this

work, the pseudo-input v is added to the GP input, which in practice reduced the tracking

error significantly. It was attempted to add v to the RBFN-MRAC, however, it was found

that performance was degraded. One possible reason for this is the fact that it is difficult to

preallocate RBF centers over the commanded signals v, since it is not entirely known how v

will behave. Additionally, the number of RBFs needed to uniformly cover the input domain

increases exponentially with the number of dimensions of the input. While GP-MRAC is

able to dynamically allocate centers over only active regions of the input domain, MRAC

with fixed centers cannot adequately cover the domain without an exponential number of

centers.

Several different values of learning rates for RBFN-MRAC, and CL-MRAC were an-

121

alyzed through simulation and preliminary flight testing for MRAC. Note that GP-MRAC

and GP-MRAC-HP do not use a learning rate. The results presented here correspond to

values that resulted in good performance without over-learning. The best initial MRAC

learning was found to be Fw = 2, and the learning rate of the adaptive law that trains on

recorded data was found to be Fwb = 0.5. Theoretically, MRAC and CL-MRAC learn-

ing rates can be kept constant in adaptive control, however stochastic stability results [79])

indicate that driving the learning rates to zero is required for guaranteeing convergence in

presence of noise. The problem with this approach is that the effect of adaptation would be

eventually removed. Therefore, in practice, the learning rate is set to decay to a small con-

stant to avoid unstable or oscillatory behaviors. Learning rates for MRAC and CL-MRAC

were decayed by dividing it by 1.5 for Fw and 2 for Fw each 20s. The decay limit of these

learning rates are Fw = 0.5 and F wb = 0.001.

For MRAC and CL-MRAC 100 RBF centers were generated using a uniform random

distribution over a domain where the states were expected to evolve. The centers for the

position and velocity for the x,y axes were spread across [-2, 2]. For the vertical z axis,

the position and velocity were spread across [-0.5, 0.5] and [-0.6, 0.6] respectively. The

centers for quaternions were placed within [-1, 1]. The bandwidth for each radial basis

function is set to pi = 1. For GP-MRAC, centers are assigned dynamically by the algorithm

itself (see Section B.4.2), and it not required to assign them a priori. The budget for the

online dictionary of active bases was set to 100 and ctol = 0.0001. An RBF kernel was used

with initial bandwidth p = 2.2 and noise w,, = 2. These values were obtained by running

GP-MRAC-HP for one trial and taking the final estimated optimal hyperparameters. For

GP-MRAC-HP, the adaptation parameter b[O] = 0.02 was used. In each of the experiments,

the initial bandwidth p was varied in order to show that the performance of GP-MRAC-HP

was not greatly affected by prior choice of p. For the Bayesian mixing parameter, E = 0.002

was used, corresponding to a rise time of 5s. As the number of data points in a region

increases, the variance of the GP decreases and the GP changes less with successive points

in those regions. As opposed to the RBFN based approaches, one does not need to specify

learning rates manually with GP-MRAC in order to avoid over fitting or oscillations.

122

TrafectM: CL-MRAC
25

D-W

-3

35

4

45

-5

TraJdory: GP MRAC

X PosonP (m) X POPWW (.~) P P .~P ()

Figure B-2: Sample trajectories of the quadrotor following a figure eight pattern. The blue

indicates the commanded path and the red indicates the actual path flown by the quadrotor.

On the left, baseline PID is shown, in the middle, CL-MRAC, on the right, GP-MRAC. GP-
MRAC follows the trajectory best in terms of both tracking error and qualitatively matching

the shape of the figure 8 trajectory.

B.6.3 Flight-Test results

Figure 8 maneuvers

The quadrotor performed 5 trials consisting of 20 "figure 8" maneuvers with a period of

6.28s, taking approximately 125s per trial. In the case of GP-MRAC with hyperparameter

estimation, the initial bandwidth was set to p = 0.55, 1.1, 2.2, 4.4, 8.8 for trials 1, 2, 3, 4, 5,

respectively. In figure B-2 a plot of the trajectory in space is presented. Using the initial

PID controller, the quadrotor is unable to track the figure 8. CL-MRAC performs better,

although it overshoots at points, resulting in sharp corners. Lastly, GP-MRAC performs

the best in terms of tracking error as well as qualitatively matching the figure eight shape.

GP-MRAC is also the most consistent of the controllers, producing little variation between

iterations of the figure 8 shape.

Figure B-3 shows the windowed tracking error of each algorithm as a function of time.

The baseline PID controller does not perform well in terms of tracking error. Due to a poor

approximate model, the feed forward component of the control signal does very little in

ensuring good tracking, and the majority of trajectory tracking performance is due to the

feedback, leading to high error. RBFN-MRAC performs better over time, but the conver-

gence rate is quite slow due to a lack of persistency of excitation (PE). CL-MRAC does not

require PE and converges relatively quickly with less tracking error than traditional MRAC.

However, GP-MRAC outperforms all three previously mentioned controllers substantially

in terms of tracking error. GP-MRAC reduces the steady state error from the PID controller

123

Tree~y PIO

Averaged Tracking Error over 24.2s

0.
0.8 ...--.. PID

MRAC
E 0.7 CL-MRAC

--- GP-MRAC

W. -- GP-MRAC-HPI

0.5

0.4-

0.3 - -.. ..

0.2 --. ..

0.1

0
20 30 40 50 60 70 80 90 100 110

Time (s)

Figure B-3: GP-MRAC outperforms traditional MRAC in terms of RMSE tracking error
for a figure 8 trajectory.

by approximately 85%, outperforms RBFN-MRAC by over a factor of three, and outper-

forms CL-MRAC by over a factor of two. GP-MRAC-HP with initial suboptimal band-

width selection still performs well, although not as well as GP-MRAC. As GP-MRAC-HP

adapts the hyperparameters, the certainty in the model decreases, leading to a lower PMAP

and a higher tracking error. As time tends to infinity, GP-MRAC-HP will converge to

the optimal hyperparameters, leading to the same performances as GP-MRAC with initial

optimal hyperparameters.

In figure B-4, the windowed RMSE of the difference |lA(z) - Vadfl is plotted. GP-

MRAC models the error |IA(z) - VadII substantially better than RBFN-MRAC and CL-

MRAC. GP-MRAC outperforms RBFN-MRAC by over a factor of three. This improve-

ment in characterizing the uncertainty J|A(z) - VadII is what fundamentally leads to the

lower tracking error of GP-MRAC.

Pseudo Random Sum of Sines

In this experiment, the quadrotor tracked a pseudo random sum of sines signal. The fre-

quencies used were aperiodic so that the resulting signal never repeats itself. The desired

124

Averaged Modeling Error over 24.2s
4.5 -

-- MRAC

4 - - --.......... CL-MRAC
-- GP-MRAC

3.5 - GP-MRAC-HP

for a igure a trjctr.

2.5

1

0.5 -- - -

01
20 30 40 50 60 70 80 90 100 110

Time(s)

Figure B-4: GP-MRAC outperforms traditional MRAC in terms of RMSE modeling error

for a figure 8 trajectory.

trajectories were given by xrm(t) = 0.7sin(t) + 0.35 sin(0.33t), yrm(t) = 0.7sin(1.lt +

7r/2)+0.35 sin(2.11t), and zrm(t) = 0.1725 sin(1.33t)+0.0875 sin(1.76t). A total of three

trials were performed for each algorithm. GP-MRAC-HP was initialized using the band-

widths y = 1.1, 2.2, 4.4. Even when the signal is non repetitive, GP-MRAC can still learn

the uncertainty better than MRAC and reduce tracking error reliably. Figure B-5 shows a

plot of the trajectory in space. Figure B-6 shows the tracking performance of GP-MRAC

and CL-MRAC in each dimension for a single trial.

Figure B-7 shows the windowed tracking error of each algorithm as a function of time.

In figure B-8, the windowed RMSE of the difference I|A(z) - V1 a|dl is plotted. Similar to

the figure eight trajectory, MRAC and CL-MRAC improve the performance of the baseline

controller, however both variants of GP-MRAC perform the best. In this case, the track-

ing performance of GP-MRAC and GP-MRAC-HP are nearly identical. GP-MRAC again

outperforms MRAC by over a factor of 3.5 and outperforms CL-MRAC by about a factor

of 2.5. In terms of model learning, GP-MRAC reduces the modeling error, IIA(z) - Vad 11,

by a factor of 3-5 times over the RBFN adaptive element. Figure B-10 shows the GP pre-

diction of the model uncertainty and the resulting control signal. These experiments show

the superior capabilities of GPs to capture very fine variations in the model error while

125

Trajectory: Pseudorandom Sum of Sines

1.4-

1.3-

-1.2-

C 1.1
0

Q.
N 0.9-

0.9-

0.7
-31

-3.5 0.5
-4 0

-4.5 -0.5 0
-5 -

-5.5 -1.5
Y Position (m) X Position (m)

Figure B-5: Commanded pseudo-random sum of sines trajectory

simultaneously rejecting sensor noise.

Operation Outside Expected Operating Domain

In many cases, it is difficult to a priori designate the operating domain over which a system

will operate. If the system leaves the domain covered by the adaptive element, than the

system will not track the trajectory well and can cause instability. Even if a-priori bounds

are known on the maximum flight envelope as estimated by experts, it is still possible that

due to noise, external disturbances, or PID overshoot that the system will exit the covered

domain. This experimental scenario demonstrates how overshooting can lead to instability

in the case of fixed center RBFN-MRAC, and show that the ability of GP-MRAC to dynam-

ically allocate centers and to use a Bayesian mixing factor ensure that the adaptive element

is completely trusted only in high confidence regions of the state space, which ensures sta-

bility and good performance. In order to demonstrate this idea, a fictitious "training and

testing" experiment is created. In this experiment, the adaptive element is trained on a

pseudo-random sum of sines for 60 s, followed by a 10 s rest, followed by a test of 60 s of

flying in a circle. During the testing period, the adaptive element is continuously learning.

Fig B- 11 shows the velocity plot of CL-MRAC tracking the circle. In theory, the com-

manded trajectory is within the operating domain of MRAC and CL-MRAC, so the system

should remain stable. In practice, on this experiment, fixed-center CL-MRAC consistently

entered into a cycle of unstable oscillations leading to a crash. As seen in figure B- 11,

126

X Position

00s

20 40 6 o 10 I
Tm" (0)

Y Positon
-4 0

-- Dwe

5.)ooWo

20 4 0 0 2

S
1

Figure B-6: Tracking performance in each dimension using CL-MRAC on the left and GP-
MRAC on the right. While CL-MRAC improves performance through model learning, the

improved model learning of GP-MRAC leads to even better tracking performance and very
small tracking error over time.

Averaged Tracking Error over 24.2s

-PID

-MRAC

- CL-MRAC
- GP-MRAC

- GP-MRAC-HP

-J

20 30 40 50 60 70 so 90 100 110
Time (s)

Figure B-7: GP-MRAC outperforms traditional MRAC in terms of
for a random trajectory.

RMSE tracking error

127

X Posit1on

06

IM 'M(s

Y Position

02
0 -d

Time (a)

0.7

0.6
E
o 0.5

0.4

0.3
U)

02

0.1

Averaged Modeling Error over 24.2s

- MRAC
- ..-... CL-MRAC

-GP-MRAC
- GP-MRAC-HF

20 30 40 50 60 70 80 90 100 110
Time(s)

Figure B-8: GP-MRAC
for a random trajectory.

I
S

I

outperforms traditional MRAC in terms of RMSE modeling error

X Adtaptive 18t OandModelling Enrix

0048058 0~d~s48Ao(s)

6 - - --- - - - - -

Tiffle (8808505l)

00 1 o10 10 10
Z Adaptive lnpuA and Modelling Entor

00

I s

3
I

0
1
£

I

7 4

so as 70 75 W 5 as o
nn crmens)

- - - -a I 88

Figure B-9: GP-MRAC is able to reject sensor noise and produce a smooth control signal.

Figure B-10: GP-MRAC is able to characterize very fine variations in the model error
which leads to superior tracking performance over standard RBFN-MRAC. However, GP-
MRAC is still able to reject sensor noise and produce a smooth control signal.

128

4.5

4

3.5

2.5

2

1.5U,

0.5

fixed-center CL-MRAC begins to lag the trajectory in the y direction and lead in the x di-

rection. Eventually the PID correction terms lead to overshooting at t = 125s which moves

the system outside of the RBFN coverage in the z direction. This leads to oscillations re-

sulting in the quadrotor crashing at t = 126s. The quadrotor crashes into a net which is

why the velocity in the x, y directions are zero but the z velocity is non-zero immediately

after the crash. Note that the instability is due to the inability of CL-MRAC to dynami-

cally allocate centers, and not the parameter update law of CL-MRAC. A dynamic center

allocation version of CL-MRAC, known as BKR-CL-MRAC[68] may perform better in

this scenario. However, it was not tested since previous results [30] show that CL-MRAC

outperforms BKR-CL-MRAC in terms of tracking performance when operating over the

expected operating domain.

On the contrary, GP-MRAC is able to accommodate the overshooting by leveraging a

combination of dynamic center allocation as well as the Bayesian mixing factor. Figure B-

12 shows an example velocity plot from GP-MRAC. GP-MRAC overshoots at times t = 75

as well as t = 85 in the y direction as well as at t = 71 in the z direction. After the system

overshoots, GP-MRAC is able to place new centers at the new locations. Additionally, since

GP-MRAC begins operating in a new part of the input domain, the associated covariance

of the adaptive element in that part of the operating region is large. This results in a lower

PMAP and conservative control which relies on the baseline PID controller more. After a

few cycles, the system settles down and reaches steady state around t = 91s.

B.7 Conclusion

Gaussian Process Model Reference Adaptive Control (GP-MRAC) architecture builds upon

the idea of using Bayesian nonparametric probabilistic framework, such as GPs, as an alter-

native to deterministic adaptive elements to enable adaptation with little or no prior domain

knowledge [20]. GPs allow for dynamic allocation of kernel centers as well as automatic

tuning of the hyperparameters. This work introduced the notion of a Bayesian mixing fac-

tor which scales the adaptive input by weighing the relative certainty in the prior model

as well as the model of the adaptive element in a Bayesian manner. The main contribu-

129

X Velocity

- - - Reference
- Actual

0

10 112 114 116 118 120 1 124 1 1 1
Time (seconds)

Y Velocity

0 112 114 116 118 120 122
Time (seconds)

Z Velocity

124 128 128 1

112 114 116 118 120 122 124 126 128 130
Time (seconds)

Figure B-11: CL-MRAC with fixed RBFN bases initially overshoots the trajectory at t =
125s. After overshooting, the system leaves the coverage of the RBF centers leading to

unstable oscillations.

130

E

78

--- Reference
- Actual

- -

- 0.5

0

>-0.5

--- Reerwen ce
-- cual

0

124 12 128 1

101

'0 75 80 85 90 95 100 105

Time (seconds)

Y Velocity

- - - Reference
- Actual

- . t - -I I

70 75 80 5 90 95 100 105
Time (seconds)

Z Velocity

75 80 85 90 95
Time (seconds)

100 105

Figure B-12: GP-MRAC overshoots the trajectory at several points in the beginning, but
is able to reallocate centers to maintain domain coverage. Additionally, as new centers are
created, the model covariance increases, leading to a smaller PMAP which results in a more
conservative controller.

131

E

8D

3

2

0
>1

-2

0.6

0.4

0.2

4- 0

-0.2

-0.4

-0.6

-- - Reference

Actual

70

3

2

1

0

-2

3

tion of this work was the first extensive flight results comparing the tracking performance

of GP-MRAC to traditional neural network MRAC as well as neural network MRAC us-

ing concurrent learning (CL-MRAC). This work presented the first experimental results of

online hyperparameter optimization in a closed loop control setting. Results show that GP-

MRAC outperforms traditional MRAC by approximately a factor of three, and CL-MRAC

by a factor of two, in terms of tracking error as well as characterization of the model error

in this domain. Lastly, it was demonstrated that the ability of GP-MRAC to dynamically

allocate RBF centers allowed it to maintain domain coverage, thus avoiding crashing.

132

Appendix C

Sample Efficient Reinforcement

Learning with Gaussian Processes

This appendix presents sample complexity results for Gaussian Processes in RL. This work

presents the first provably efficient model-free RL algorithm for continuous spaces, DGPQ.

This work was initially published in [52] and represents work that I have done during my

Masters which did not fit in thematically with the main text of the thesis.

C.1 Abstract

This work derives sample complexity results for using Gaussian Processes (GPs) in both

model-based and model-free reinforcement learning (RL). It is shown that GPs are KWIK

learnable, proving for the first time that a model-based RL approach using GPs, GP-Rmax,

is sample efficient (PAC-MDP). However, it is then shown that previous approaches to

model-free RL using GPs take an exponential number of steps to find an optimal policy,

and are therefore not sample efficient. The third and main contribution is the introduc-

tion of a model-free RL algorithm using GPs, DGPQ, which is sample efficient and, in

contrast to model-based algorithms, capable of acting in real time, as demonstrated on a

five-dimensional aircraft simulator.

133

C.2 Introduction

In Reinforcement Learning (RL) [118], several new algorithms for efficient exploration in

continuous state spaces have been proposed, including GP-Rmax [61] and C-PACE [95].

In particular, C-PACE was shown to be PAC-MDP, an important class of RL algorithms

that obtain an optimal policy in a polynomial number of exploration steps. However, these

approaches require a costly fixed-point computation on each experience, making them ill-

suited for real-time control of physical systems, such as aircraft. This work presents a series

of sample complexity (PAC-MDP) results for algorithms that use Gaussian Processes (GPs)

[103] in RL, culminating with the introduction of a PAC-MDP model-free algorithm which

does not require this fixed-point computation and is better suited for real-time learning and

control.

First, using the KWIK learning framework [77], this work provides the first-ever sample

complexity analysis of GP learning under the conditions necessary for RL. The result of

this analysis actually proves that the previously described model-based GP-Rmax is indeed

PAC-MDP. However, it still cannot be used in real time, as mentioned above. The second

contribution is in model-free RL, in which a GP is used to directly model the Q-function.

It is shown that existing model-free algorithms [32, 43] that use a single GP may require

an exponential (in the discount factor) number of samples to reach a near-optimal policy.

The third, and primary, contribution of this work is the introduction of the first model-

free continuous state space PAC-MDP algorithm using GPs: Delayed-GPQ (DGPQ). DGPQ

represents the current value function as a GP, and updates a separately stored value function

only when sufficient outlier data has been detected. This operation "overwrites" a portion

of the stored value function and resets the GP confidence bounds, avoiding the slowed

convergence rate of the nafve model-free approach.

The underlying analogy is that while GP-Rmax and C-PACE are generalizations of

model-based Rmax [11], DGPQ is a generalization of model-free Delayed Q-learning

(DQL) [114, 115] to general continuous spaces. That is, while early PAC-MDP RL al-

gorithms were model-based and ran a planner after each experience [77], DQL is a PAC-

MDP algorithm that performs at most a single Bellman backup on each step. In DGPQ, the

134

delayed updates of DQL are adapted to continuous state spaces using a GP.

It is proven that DGPQ is PAC-MDP and shown that using a sparse online GP imple-

mentation [33] DGPQ can perform in real-time. The empirical results, including those on

an F-16 simulator, show DGPQ is both sample efficient and orders of magnitude faster in

per-sample computation than other PAC-MDP continuous-state learners.

C.3 Background

Background material on Reinforcement Learning (RL) and Gaussian Processes (GPs) are

now presented.

C.3.1 Reinforcement Learning

The RL environment is modeled as a Markov Decision Process [99] M = (S, A, R, T, -y)

with a potentially infinite set of states S, finite actions A, and 0 < -Y < 1. Each step

elicits a reward R(s, a) F-> [0, Rmax] and a stochastic transition to state s' - T(s, a). Every

MDP has an optimal value function Q*(s, a) = R(s, a) + - fs, T(s, a, s')V*(s') where

V*(s) = maxa Q*(s, a) and corresponding optimal policy ir* : S -+ A. Note the bounded

reward function means V* C [0, Vmax].

In RL, an agent is given S,A, and y and then acts in M with the goal of enacting 7r*.

For value-based methods (as opposed to policy search [63]), there are roughly two classes

of RL algorithms: model-based and model-free. Model-based algorithms, such as KWIK-

Rmax [77], build models of T and R and then use a planner to find Q*. Many model-based

approaches have sample efficiency guarantees, that is bounds on the amount of exploration

they perform. This work uses the PAC-MDP definition of sample complexity [114]. The

definition uses definitions of the covering number of a set (adapted from [95]).

Definition C.1 The Covering Number Afu(r) of a compact domain U C R" is the

cardinality of the minimal set C {ci..... , CNc } st- Vx c U, 3cj c C s.t. d(x, cj) K r,

where d(., -) is some distance metric.

135

Definition C.2 Algorithm A (non-stationary policy At) with accuracy parameters C

and 6 in an MDP of size JVsA(r) is said to be Probably Approximately Correct for MDPs

(PAC-MDP) if, with probability 1-6, it takes no more than a polynomial (in (KASA(r), ', 1)

number of steps where VA (st) < V*(st) -

By contrast, model-free methods such as Q-Learning [128] build Q* directly from expe-

rience without explicitly representing T and R. Generally model-based methods are more

sample efficient but require more computation time for the planner. Model-free methods are

generally computationally light and can be applied without a planner, but need (sometimes

exponentially) more samples, and are usually not PAC-MDP. There are also methods that

are not easily classified in these categories, such as C-PACE [95], which does not explicitly

model T and R but performs a fixed-point operation for planning.

C.3.2 Gaussian Processes

This work uses GPs as function approximators both in model-based RL (where GPs rep-

resent T and R) and model-free RL (where GPs represent Q*), while showing how to

maintain PAC-MDP sample efficiency in both cases. For information on GPs, the reader is

directed to Section 2.1.

C.3.3 Related Work

GPs have been used for both model-free and model-based RL. In model-free RL, GP-Sarsa

[43] has been used to model a value function and extended to off-policy learning [29], and

for (heuristically) better exploration in iGP-Sarsa [32]. However, it is proven in Section

C.5.1 that these algorithms may require an exponential (in I.) number of samples to

reach optimal behavior since they only use a single GP to model the value function.

In model-based RL, the PILCO algorithm trained GPs to represent T, and then de-

rived policies using policy search [39]. However, PILCO does not include a provably effi-

cient (PAC-MDP) exploration strategy. GP-Rmax [61] does include an exploration strategy,

specifically replacing areas of low confidence in the (T and R) GPs with high valued states,

but no theoretical results are given in that paper. In Section C.4, it is shown that GP-Rmax

136

actually is PAC-MDP, but the algorithm's planning phase (comparable to the C-PACE plan-

ning in the experiments) after each update makes it computationally infeasible for real-time

control.

REKWIRE [76] uses KWIK linear regression for a model-free PAC-MDP algorithm.

However, REKWIRE needs H separate approximators for finite horizon H, and assumes

Q can be modeled as a linear function, in contrast to the general continuous functions

considered in this work. The C-PACE algorithm [95] has already been shown to be PAC-

MDP in the continuous setting, though it does not use a GP representation. C-PACE stores

data points that do not have close-enough neighbors to be considered "known". When it

adds a new data point, the Q-values of each point are calculated by a value-iteration like

operation. The computation for this operation grows with the number of datapoints and so

(as shown in the experiments) the algorithm may not be able to act in real time.

C.4 GPs for Model-Based RL

In model-based RL (MBRL), models of T and R are created from data and a planner

derives 7r*. Here the KWIK-Rmax MBRL architecture, which is PAC-MDP, is reviewed. It

is then shown that GPs are a KWIK-learnable representation of T and R, thereby proving

that GP-Rmax [61] is PAC-MDP given an exact planner.

C.4.1 KWIK Learning and Exploration

The "Knows What it Knows" (KWIK) framework [77] is a supervised learning framework

for measuring the number of times a learner will admit uncertainty. A KWIK learning

agent is given a hypothesis class H : X F-> Y for inputs X and outputs Y and parameters

E and 6. With probability 1 - 6 over a run, when given an adversarially chosen input xt,

the agent must, either (1) predict Qt if IIyt - t < c where yt is the true expected output

(E[h*(x)] = yt) or (2) admit "I don't know" (denoted 1). A representation is KWIK

learnable if an agent can KWIK learn any h* E H with only a polynomial (in IH1,))

number of 1 predictions. In RL, the KWIK-Rmax algorithm [77], uses KWIK learners to

model T and R and replaces the value of any Q*(s, a) where T(s, a) or R(s, a) is I with

137

a value of Vmax =R"x. If T and R are KWIK-learnable, then the resulting KWIK-Rmax

RL algorithm will be PAC-MDP under Definition C.2. It is now shown that a GP is KWIK

learnable.

C.4.2 KWIK Learning a GP

First, a metric for determining if a GP's mean prediction at input x is c-accurate with high

probability is required. Lemma 3.1 gives such a sufficient condition to ensure that, with

high probability, the mean of the GP is within ci of E[h*(x)]. A KWIK agent can now

be constructed that predicts I if the variance is greater than oQ, and otherwise predicts

-t = p(x), the mean prediction of the GP. Theorem C.1 bounds the number of - predictions

by such an agent, and when 61 = , establishes the KWIK learnability of GPs.

For ease of exposition, the definition of the equivalent distance is used from Section 2.2.

Theorem C.1 Consider a GP model trained over a compact domain U C R' with

covering number .U(r(Pi-i)). Let the observations 7 =[yi,... , y] be drawn from p(y I
x), with E[y I x] = (x), and x drawn adversarially. Then, the worst case bound on the

number of samples for which

Pr {I(x) - f(x) ;> el} <; 61,Vx E U (C.1)

and the GP is forced to return I is at most

m = log - u (r (oY). (C.2)

Furthermore, Au (r (jou)) grows polynomially with y and V, for the RBF kernel.

Proof sketch The proof is identical to that of Theorem C. 1.

Intuitively, the KWIK learnability of GPs can be explained as follows. By knowing the

value at a certain point within some tolerance i, the Lipschitz smoothness assumption

means there is a nonempty region around this point where values are known within a larger

tolerance c. Therefore, given sufficient observations in a neighborhood, a GP is able to

138

generalize its learned values to other nearby points. Lemma 3.1 relates the error at any

of these points to the predictive variance of the GP, so a KWIK agent using a GP can use

the variance prediction to choose whether to predict I or not. As a function becomes less

smooth, the size of these neighborhoods shrinks, increasing the covering number, and the

number of points required to learn over the entire input space increases.

Theorem C.1, combined with the KWIK-Rmax Theorem (Theorem 3 of [77]) estab-

lishes that the previously proposed GP-Rmax algorithm [61], which learns GP representa-

tions of T and R and replaces uncertainty with Vmax values, is indeed PAC-MDP. GP-Rmax

was empirically validated in many domains in this previous work but the PAC-MDP prop-

erty was not formally proven. However, GP-Rmax relies on a planner that can derive Q*

from the learned T and R, which may be infeasible in continuous domains, especially for

real-time control.

C.5 GPs for Model-Free RL

Model-free RL algorithms, such as Q-learning [128], are often used when planning is in-

feasible due to time constraints or the size of the state space. These algorithms do not store

T and R but instead try to model Q* directly through incremental updates of the form:

Qt+l(s, a) = (1 - a)Qt(s, a) + a (rt + -yV*(st+1)). Unfortunately, most Q-learning vari-

ants have provably exponential sample complexity, including optimistic/greedy Q-learning

with a linearly decaying learning rate [44], due to the incremental updates to Q combined

with the decaying a term.

However, the more recent Delayed Q-learning (DQL) [115] is PAC-MDP. This algo-

rithm works by initializing Q(s, a) to Vmax and then overwriting Q(s, a) = Z= 1 '+±V(st)

after m samples of that (s, a) pair have been seen. In section C.5.1, it is shown that using a

single GP results in exponential sample complexity, like Q-learning; in section C.5.2, it is

shown that using a similar overwriting approach to DQL achieves sample efficiency.

139

C.5.1 Nalve Model-free Learning using GPs

It is now shown that a naive use of a single GP to model Q* will result in exponentially

slow convergence similar to greedy Q-learning with a linearly decaying oz. Consider the

following model-free algorithm using a GP to store values of Q = Qt. A GP for each action

(GPa) is initialized optimistically using the prior. At each step, an action is chosen greedily

and GPa is updated with an input/output sample: (xt, rt + y maxb GPb(st+1)). The worst-

case performance is analyzed through a toy example and show that this approach requires

an exponential number of samples to learn Q*. This slow convergence is intrinsic to GPs

due to the variance reduction rate and the non-stationarity of the Q estimate (as opposed to

T and R, whose sampled values do not depend on the learner's current estimates). So, any

model-free algorithm using a GP that does not reinitialize the variance will have the same

worst-case complexity as in this toy example.

Consider an MDP with one state s and one action a that transitions deterministically

back to s with reward r = 0, and discount factor 'y. The Q function is initialized optimisti-

cally to 0o(s) = 1 using the GP's prior mean. Consider the naYve GP learning algorithm

described above, kernel k(s, s) = 1, and measurement noise w2 to predict the Q-function

using the GP regression equations. The behavior of the algorithm can be analyzed using

induction.

Consider the first iteration: Qo = 1, and the first measurement is y. In this case, the GP

prediction is equivalent to the MAP estimate of a random variable with Gaussian prior and

linear measurements subject to Gaussian noise.

2 22

Q1 2 1 + "± 7 (C.3)

2 22

Recursively, Qi+1= (+ -)Qi where a? = jis the GP variance at iteration

i. Substituting for o and rearranging yields a recursion for the prediction of Qi at each

iteration,

Qi+1 = 0i (C.4)
W2 + Of(i + 1)

From [44], a series of the form -i+1 = Qi will converge to c exponentially slowly in

140

Action taken for 2 Action MDP

1.5

0.5- Greedy GP
0 50 100 150 200 250 300

(D 2.5C

01

-2 -- E-Greedy G P
0 50 100 150 200 250 300

2.5

1.5-

-DGPQ
0.5

0 50 100 150 200 250 300
Step

Figure C-1: Single-state MDP results: DGPQ converges quickly to the optimal policy while
the naive GP implementations oscillate.

terms of and . However, for each term in the series,

W+ +' j> (C.5)
(+i+1 i+1

The modulus of contraction is always at least as large as the RHS, so the series convergence

to c (since the true value is 0) is at least as slow as the example in [44]. Therefore, the naive

GP implementation's convergence to c is also exponentially slow, and, in fact, has the same

learning speed as Q-learning with a linear learning rate. This is because the variance of a

GP decays linearly with number of observed data points, and the magnitude of GP updates

is proportional to this variance.

Additionally, by adding a second action with reward r = 1 - 'y, a greedy naive agent

would oscillate between the two actions for an exponential (in 11,) number of steps, as

shown in Figure C-1 (blue line), meaning the algorithm is not PAC-MDP, since the other

action is not near optimal. Randomness in the policy with E-greedy exploration (green

141

line) will not improve the slowness, which is due to the non-stationarity of the Q-function

and the decaying update magnitudes of the GP. Many existing model-free GP algorithms,

including GP-Sarsa [43], iGP-Sarsa [32], and (non-delayed) GPQ [29] perform exactly

such GP updates without variance reinitialization, and therefore have the same worst-case

exponential sample complexity.

C.5.2 Delayed GPQ for model-free RL

This section proposes a new algorithm, inspired by Delayed Q-learning, that guarantees

polynomial sample efficiency by consistently reinitializing the variance of the GP when

many observations differ significantly from the current Q estimate.

Algorithm 12 Delayed GPQ (DGPQ)
1: Input: GP kernel k(-, -), Lipschitz Constant LQ, Environment Env, Actions A, initial

state so, discount -y, threshold 4o'i, Ei
2: for a E Ado
3: Qa = 0
4: GPa = GP.init(p = , k(., -))
5: end for
6: for each timestep t do
7: at = arg maxa Qa(st) by Eq C.6
8: rt, St+1) = Env.takeAct(at)
9: qt = rt + 7 maxa Qa(St+1)

10: a = GPa,. variance(st)
11: if or > o0, then
12: GPat.update(st, qt)
13: end if

214: U2 = GPa,.variance(st)

15: if o > o, ;> U2 and
Qat(St) - GPat.mean(st) > 2 ci then

16: Qa.update(st, GPat.mean(st) + 6i)

17: Va E A, GPa = GP.init(p = Qa, k(.,))
18: end if
19: end for

Delayed GPQ-Learning (DGPQ: Algorithm 12) maintains two representations of the

value function. The first is a set of GPs, GPa for each action, that is updated after each step

but not used for action selection. The second representation of the value function, which

stores values from previously converged GPs is denoted Q(s, a). Intuitively, the algorithm

142

uses Q as a "safe" version of the value function for choosing actions and retrieving backup

values for the GP updates, and only updates Q(s, a) when GPa converges to a significantly

different value at s.

The algorithm chooses actions greedily based on Q (line 7) and updates the correspond-

ing GPa based on the observed rewards and Q at next the state (line 9). Note, in practice

one creates a prior of Qa(St) (line 17) by updating the GP with points zt = qt - Qa(st) (line

12), and adding back Qa(St) in the update on line 16. If the GP has just crossed the con-

vergence threshold at point s and learned a value significantly lower (2ci) than the current

value of Q (line 15), the representation of Q is partially overwritten with this new value

plus a bonus term using an operation described below. Crucially, the GPs are then reset,

with all data erased. This reinitializes the variance of the GPs so that updates will have a

large magnitude, avoiding the slowed convergence seen in the previous section. Guidelines

for setting the sensitivity of the two tests (o% and E1) are given in Section C.6.

There are significant parallels between DGPQ and the discrete-state DQL algorithm

[114], but the advancements are non-trivial. First, both algorithms maintain two Q func-

tions, one for choosing actions (Q), and a temporary function that is updated on each step

(GPa), but in DGPQ specific representations have been chosen to handle continuous states

and still maintain optimism and sample complexity guarantees. DQL's counting of (up to

m) discrete state visits for each state cannot be used in continuous spaces, so DGPQ instead

checks the immediate convergence of GPa at st to determine if it should compare Q(st, a)

and GPa(st). Lastly, DQL's discrete learning flags are not applicable in continuous spaces,

so DGPQ only compares the two functions as the GP variance crosses a threshold, thereby

partitioning the continuous MDP into areas that are known (w.r.t. Q) and unknown, a

property that will be vital for proving the algorithm's convergence.

One might be tempted to use yet another GP to model Q(s, a). However, it is difficult

to guarantee the optimism of Q (Q > Q* - :) using a GP, which is a crucial property

of most sample-efficient algorithms. In particular, if one attempts to update/overwrite the

local prediction values of a GP, unless the kernel has finite support (a point's value only

influences a finite region), the overwrite will affect the values of all points in the GP and

possibly cause a point that was previously correct to fall below Q*(s, a) - c.

143

In order to address this issue, an alternative function approximator for Q is used which

includes an optimism bonus as used in C-PACE [95]. Specifically, Q(s, a) is stored using

a set of values that have been updated from the set of GPs, ((si, ar), Af) and a Lipschitz

constant LQ that is used to find an optimistic upper bound for the Q function for (s, a):

Q(s, a) = min min f i+LQd((s, a), (si, a)), Vmax (C.6)
(si,a)EBV

The set (si, a) is referred to as as the set of basis vectors (BV). Intuitively, the basis

vectors store values from the previously learned GPs. Around these points, Q* cannot be

greater than fj + LQd((s, a), (si, a)) by continuity. To predict optimistically at points not in

BV, the algorithm searches over BV for the point with the lowest prediction including the

weighted distance bonus. If no point in BV is sufficiently close, then Vrrax is used instead.

This representation is also used in C-PACE [95] but here it simply stores the optimistic Q-

function; DGPQ does not perform a fixed point operation. Note the GP still plays a crucial

role in Algorithm 12 because its confidence bounds, which are not captured by Q, partition

the space into known/unknown areas that are critical for controlling updates to Q.

In order to perform an update (partial overwrite) of Q, the algorithm adds an element

((si, at), Af) to the basis vector set. Redundant constraints are eliminated by checking if

the new constraint results in a lower prediction value at other basis vector locations. Thus,

the pseudocode for updating Q is as follows: add point ((si, at), f%) to the basis vector set;

if for any j, pi + LQd((si, a), (sj, a)) pj, delete ((sj, aj), A) from the set.

Figure C-1 shows the advantage of this technique over the nafve GP training discussed

earlier. DGPQ learns the optimal action within 50 steps, while the naifve implementation as

well as an e-greedy variant both oscillate between the two actions. This example illustrates

that the targeted exploration of DGPQ is of significant benefit compared to untargeted

approaches, including the c-greedy approach of GP-SARSA.

C.6 The Sample Complexity of DGPQ

In order to prove that DGPQ is PAC-MDP a proof structure similar to that of DQL [114] is

adopted and referred to throughout. First the DQL definition of a "known state" MDP MK,

144

is extended, i.e. states containing state/actions from Q that have low Bellman residuals.

Definition C.3 During timestep t of DGPQ's execution with Q as specified and V(s)

maxa Q(s, a), the set of known states is given by K = {(s, a)jQ(s, a) - (R(s, a) +

-y f,, T(s'|s, a)f(s')ds') < 3c1}. MK contains the same MDP parameters as M for (s, a) E

K and values of Vmax for (s, a) V K.

Three sufficient conditions for proving an algorithm with greedy policy values V is PAC-

MDP are repeated here (from Theorem 10 of [114]) (1) Optimism: t(s) > V*(s) - (for

all timesteps t. (2) Accuracy with respect to MKt's values: Vt(s) - V7/I (S) < C for all t.

(3) The number of updates to Q and the number of times a state outside MK is reached is

bounded by a polynomial function of (.Ns(r), , ,)).
The proof structure is to develop lemmas that prove these three properties. After defin-

ing relevant structures and concepts, Lemmas C.1 and C.2 bound the number of possible

changes and possible attempts to change Q. The "typical" behavior of the algorithm is

defined in Definition C.5 and show this behavior occurs with high probability in Lemma

C.3. These conditions help ensure property 2 above. After that, Lemma C.4 shows that the

function stored in Q is always optimistic, fulfilling property 1. Finally, property 3 is shown

by combining Theorem C. 1 (number of steps before the GP converges) with the number of

updates to Q from Lemma C. 1, as formalized in Lemma C.6.

An "update" (as well as "successful update") to Q is now defined, which extends defi-

nitions from the original DQL analysis.

Definition C.4 An update (or successful update) of state-action pair (s, a) is a timestep

t for which a change to Q (an overwrite) occurs such that Qt(s, a) - Qt+1(s, a) > c1. An

attempted update of state-action pair (s,a) is a timestep t for which (s, a) is experienced

and GPa,.Var(s) > a>o GP-a,t+1.Var(s). An attempted update that is not successful

(does not change Q) is an unsuccessful update.

The total number of updates to Q is now bounded by a polynomial term K based on the

concepts defined above.

145

Lemma C. The total number of successful updates (overwrites) during any execution

of DGPQ with ci = (1 - -Y) is

K = AIs (-Y) 3Rmax +) (C.7)
3LQ (I - _j)2E

Proof The proof proceeds by showing that the bound on the number of updates in the

single-state case from Section C.5.1 is, + 1) based on driving the full function

from Vmax to Vmin. This quantity is then multiplied by the covering number and the number

of actions. See the Supplementary Material of [52].

The next lemma bounds the number of attempted updates. The proof is similar to the DQL

analysis and shown in the Supplementary Material of [52].

Lemma C.2 The total number of attempted updates (overwrites) during any execution

of GPQ is JAlA/s (1--)) (1 + K).

Define the following event, called A2, to link back to the DQL proof. A2 describes the

situation where a state/action that currently has an inaccurate value (high Bellman residual)

with respect to Q is observed m times and this causes a successful update.

Definition C.5 Define Event A2 to be the event that for all timesteps t, if (s, a) Kk,

and an attempted update of (s, a) occurs during timestep t, the update will be successful,

where k, < k2 < ... < km = t are the timesteps where GPa,.Var(sk) > o21 since the last

update to Q that affected (s, a).

One can set an upper bound on m, the number of experiences required to make GPa,.Var(st) <

, based on m in Theorem C. 1 from earlier. In practice m will be much smaller but unlike

discrete DQL, DGPQ does not need to be given m, since it uses the GP variance estimate

to decide if sufficient data has been collected. The following lemma shows that with high

probability, a failed update will not occur under the conditions of event A2.

Lemma C.3 By setting

2 = (C.8)
0t 9R 2 22log(§Arc (1 Y))

146

it is ensured that the probability of event A2 occurring is > 1 - 6/3.

Proof The maximum number of attempted updates is fc (-) (1+ r) from Lemma

C.2. Therefore, by setting 1 = , = lf(1 - y), and Vm = R ,ax Lemma
Mr, (I+l),(3LQ)-

3.1 states that during each overwrite, there is no greater than probability 61 = 6 of
(3LQ

an incorrect update. Applying the union bound over all of the possible attempted updates, the total

probability of A2 not occuring is .

The next lemma shows the optimism of Q for all timesteps with high probability A. The

proof structure is similar to Lemma 3.10 of [95]. See supplemental material of [52].

Lemma C.4 During execution of DGPQ, Q*(s, a) < Qt(s, a) + 2 holds for all (s, a)

with probability (.

The next Lemma connects an unsuccessful update to a state/action's presence in the

known MDP MK.

Lemma C.5 If event A2 occurs, then if an unsuccessful update occurs at time t and

GPa.Var(s) < o at time t + 1 then (s, a) E Kt+1 .

Proof The proof is by contradiction and shows that an unsuccessful update in this case

implies a previously successful update that would have left GPa.Var(s) ;> 0-. See the

Supplemental material of [52].

The final lemma bounds the number of encounters with state/actions not in Kt, which

is intuitively the number of points that make updates to the GP from Theorem C.1 times

the number of changes to Q from Lemma C. 1. The proof is in the Supplemental Material

of [52].

Lemma C.6 Letq = As E(Q -). If event A2 occurs and Qt(s, a) ;> Q*(s, a) - 2

holds for all t and (s, a) then the number of timesteps (where (st, at) Kt is at most

m AITI RmA" + 1 (C.9)

(1 -7)

147

where

m log ('IA1(1 + r))A 7 (C.10)
(/)-4() 6

Finally, the PAC-MDP result is stated for DGPQ, which is an instantiation of the Gen-

eral PAC-MDP Theorem (Theorem 10) from [114].

Theorem C.2 Given real numbers 0 < c < 1 and 0 < 3 < 1 and a continuous MDP

M there exist inputs o-2 (see (C.8)) and ci = (-) such that DGPQ executed on M

will be PAC-MDP by Definition C.2 with only

Rmax2 log log ((C.11)
e(1 - y)2 j \e(l -y)/

timesteps where Qt(st, at) < V*(st) - c, where (is defined in Equation (C.9).

The proof of the theorem is the same as Theorem 16 by [114], but with the updated lem-

mas from above. The three crucial properties hold when A2 occurs, which Lemma C.3

guarantees with probability (. Property 1 (optimism) holds from Lemma C.4. Property 2

(accuracy) holds from the Definition C.3 and analysis of the Bellman Equation as in Theo-

rem 16 by [114]. Finally, property 3, the bounded number of updates and escape events, is

proven by Lemmas C.1 and C.6.

C.7 Empirical Results

The first experiment is in a 2-dimensional square over [0, 1]2 designed to show the com-

putational disparity between C-PACE and DGPQ. The agent starts at [0, 0 with a goal of

reaching within a distance of 0.15 of [1, 1]. Movements are 0.1 in the four compass direc-

tions with additive uniform noise of t0.01. The L, distance metric is used with LQ = 9 and

an RBF kernel with 0 = 0.05, W2 = 0.1 for the GP. Figure C-2 shows the number of steps

needed per episode (capped at 200) and computational time per step used by C-PACE and

DGPQ. C-PACE reaches the optimal policy in fewer episodes but requires orders of mag-

nitude more computation during steps with fixed point computations. Such planning times

of over 10s are unacceptable in time sensitive domains, while DGPQ only takes 0.003s per

step.

148

200
-CPACE

150 -DGPQ 100

o E10
)- 1 0~

0

100 2~0

2. 0

L : -CPACE

041 _--DGPQ

0 100 200 300 0 1000 2000 3000 4000
Episode Step

Figure C-2: Average (10 runs) steps to the goal and computation time for C-PACE and
DGPQ on the square domain.

In the second domain, DGPQ stabilizes a simulator of the longitudinal dynamics of

an unstable F16 with linearized dynamics, which motivates the need for a real-time com-

putable policy. The five dimensional state space contains height, angle of attack, pitch

angle, pitch rate, and airspeed. Details of the simulator can be found in [112]. The reward

r = -Ih - hdJ/100ft - h I /I00ft/s - I JI is used, with aircraft height h, desired height hd

and elevator angle (degrees) 6e. The control input was discretized as ,C f -1, 0, 1} and

the elevator was used to control the aircraft. The thrust input to the engine was fixed as

the reference thrust command at the (unstable) equilibrium. The simulation time step size

was 0.05s and at each step, the air speed was perturbed with Gaussian noise X(0, 1) and

the angle of attack was perturbed with Gaussian noise .A(0, 0.012). A RBF kernel with

6 = 0.05, w = 0.1 was used. The initial height was hd, and if Ih - hdj > 200, then the

vertical velocity and angle of attack were set to zero to act as boundaries.

DGPQ learns to stabilize the aircraft using less than 100 episodes for LQ = 5 and

about 1000 episodes for LQ = 10. The disparity in learning speed is due to the curse of

dimensionality. As the Lipschitz constant doubles, Ke increases in each dimension by 2,

resulting in a 25 increase in A',. DGPQ requires on average 0.04s to compute its policy

at each step, which is within the 20Hz command frequency required by the simulator.

While the maximum computation time for DGPQ was 0.11s, the simulations were run in

MATLAB so further optimization should be possible. Figure C-3 shows the average reward

of DGPQ in this domain using LQ = {5, 10}. C-PACE was also run in this domain but its

149

Reward per Episode

U,

C

0
-o
CD
CD
cz

CO

a)

0

-100

-200

-300

-400

-500

-600

-700
C 200 400 600 800 1000

Episode

Figure C-3: Average (10 runs) reward on the F16 domain.

computation time reached over 60s per step in the first episode, well beyond the desired 20

Hz command rate.

C.8 Conclusions

This work provides sample efficiency results for using GPs in RL. In section C.4, GPs are

proven to be usable in the KWIK-Rmax MBRL architecture, establishing the previously

proposed algorithm GP-Rmax as PAC-MDP. In section C.5.1, it is proven that existing

model-free algorithms using a single GP have exponential sample complexity, connecting

to seemingly unrelated negative results on Q-learning learning speeds. Finally, the devel-

opment of DGPQ provides the first provably sample efficient model-free (without a planner

or fixed-point computation) RL algorithm for general continuous spaces.

150

LQ =5

-- L =10
'I

Bibliography

[1] Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detec-

tion. arXiv preprint arXiv:0710.3742, 2007.

[2] Rakshit Allamaraju, Hassan Kingravi, Allan Axelrod, Girish Chowdhary, Robert

Grande, Jonathan P. How, Christopher Crick, and Weihua Sheng. Human aware uas

path planning in urban environments using nonstationary mdps. In Proceedings of

the IEEE International Conference on Robotics and Automation, 2014.

[3] John Asmuth, Lihong Li, Michael L Littman, Ali Nouri, and David Wingate. A

bayesian sampling approach to exploration in reinforcement learning. In Proceed-

ings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages

19-26. AUAI Press, 2009.

[4] Karl Johan Astrim and Bjorn Wittenmark. Adaptive Control. Addison-Weseley,

Readings, 2nd edition, 1995.

[5] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for

reinforcement learning. In NIPS, pages 89-96, 2008.

[6] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David Hsu, Wee Sun

Lee, and Daniela Rus. Intention-aware motion planning. In Algorithmic Foundations

of Robotics X, pages 475-491. Springer, 2013.

[7] Michele Basseville and Igor V. Nikiforov. Detection of abrupt changes: theory and

application. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[8] David M. Blei and Michael I. Jordan. Variational inference for dirichlet process

mixtures. Bayesian Analysis, 1(1): 121-144, 2006.

[9] Justin Boyan and Andrew Moore. Generalization in reinforcement learning: Safely

approximating the value function. In Neural Information Processing Systems 7,

pages 369-376, 1995.

[10] Stephan Boyd and Sankar Sastry. Necessary and sufficient conditions for parameter

convergence in adaptive control. Automatica, 22(6):629-639, 1986.

[11] Ronen Brafman and Moshe Tennenholtz. R-Max - A General Polynomial Time

Algorithm for Near-Optimal Reinforcement Learning. Journal of Machine Learning

Research (JMLR), 3:213-231, 2002.

151

[12] Ronen I. Brafman and Moshe Tennenholtz. R-max-a general polynomial time al-

gorithm for near-optimal reinforcement learning. The Journal of Machine Learning

Research, 3:213-231, 2003.

[13] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael

Jordan. Streaming variational bayes. In Advances in Neural Information Processing

Systems, pages 1727-1735, 2013.

[14] Emma Brunskill and Lihong Li. Sample complexity of multi-task reinforcement

learning. arXiv preprint arXiv:1309.6821, 2013.

[15] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforce-

ment Learning and Dynamic Programming Using Function Approximators. CRC

Press, 2010.

[16] A. Calise, N. Hovakimyan, and M. Idan. Adaptive output feedback control of non-

linear systems using neural networks. Automatica, 37(8):1201-1211, 2001. Special

Issue on Neural Networks for Feedback Control.

[17] Chengyu Cao and N. Hovakimyan. Design and analysis of a novel adaptive con-

trol architecture with guaranteed transient performance. Automatic Control, IEEE

Transactions on, 53(2):586 -591, march 2008.

[18] Iadine Chads, Guillaume Chapron, Marie-Jose Cros, Frdrick Garcia, and Rgis Sab-

badin. Markov decision processes (MDP) toolbox. http: / /www7 . inra. f r/
mia/T/MDPtoolbox/MDPtoolbox. html, 2012.

[19] G. Chowdhary, H. Kingravi, R.C. Grande, J.P. How, and P. Vela. Nonparametric

adaptive control using gaussian processes. In AIAA Guidance, Navigation, and Con-

trol Conference (GNC). IEEE, 2013.

[20] G. Chowdhary, H. Kingravi, J.P. How, and P. Vela. Nonparametric adaptive control

using gaussian processes. In IEEE Conference on Decision and Control (CDC).
IEEE, 2013.

[21] Girish Chowdhary. Concurrent Learning for Convergence in Adaptive Control With-

out Persistency of Excitation. PhD thesis, Georgia Institute of Technology, Atlanta,

GA, December 2010.

[22] Girish Chowdhary, Eric Johnson, Rajeev Chandramohan, Scott M. Kimbrell, and

Anthony Calise. Autonomous guidance and control of airplanes under actuator fail-

ures and severe structural damage. Journal of Guidane Control and Dynamics, 2013.
accepted.

[23] Girish Chowdhary and Eric N. Johnson. Concurrent learning for convergence in

adaptive control without persistency of excitation. In 49th IEEE Conference on

Decision and Control, pages 3674-3679, 2010.

152

[24] Girish Chowdhary and Eric N. Johnson. Concurrent learning for improved param-

eter convergence in adaptive control. In AIAA Guidance Navigation and Control

Conference, Toronto, Canada, 2010.

[25] Girish Chowdhary, Eric N. Johnson, Rajeev Chandramohan, Scott M. Kimbrell, and

Anthony Calise. Autonomous guidance and control of airplanes under actuator fail-

ures and severe structural damage. Journal of Guidance Control and Dynamics,

2012. in-press.

[26] Girish Chowdhary, Hassan Kingravi, Jonathan P. How, and Patricio Vela. Bayesian

nonparametric adaptive control of time varying systems using Gaussian processes.

In American Control Conference (ACC). IEEE, 2013.

[27] Girish Chowdhary, Hassan Kingravi, Jonathan P. How, and Patricio A. Vela. Non-

parameteric adaptive control of time varying systems using gaussian processes.

Aerospace control laboratory technical report, Massachusetts Institute of Technol-

ogy, http://hdl.handle.net/1721.1/71875, March 2013.

[28] Girish Chowdhary, Hassan Kingravi, Jonathan P. How, and Patricio A. Vela.

Bayesian nonparametric adaptive control using gaussian processes. IEEE Trans-

actions on Neural Networks, 2013 (submitted).

[29] Girish Chowdhary, Miao Liu, Robert C. Grande, Thomas J. Walsh, Jonathan P. How,

and Lawrence Carin. Off-policy reinforcement learning with gaussian processes.

Acta Automatica Sinica, To appear, 2014.

[30] Girish Chowdhary, Tongbin Wu, Mark Cutler, and Jonathan P. How. Rapid trans-

fer of controllers between UAVs using learning based adaptive control. In IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2013.

[31] Girish Chowdhary, Tansel Yucelen, Maximillian Mifhlegg, and Eric N Johnson.

Concurrent learning adaptive control of linear systems with exponentially conver-

gent bounds. International Journal of Adaptive Control and Signal Processing,

2012.

[32] Jen Jen Chung, Nicholas R. J. Lawrance, and Salah Sukkarieh. Gaussian processes

for informative exploration in reinforcement learning. In ICRA, pages 2633-2639,

2013.

[33] L. Csat6 and M. Opper. Sparse on-line gaussian processes. Neural Computation,

14(3):641-668, 2002.

[34] Lehel Csat6 and Manfred Opper. Sparse on-line gaussian processes. Neural Com-

putation, 14(3):641-668, 2002.

[35] Mark Cutler. Design and Control of an Autonomous Variable-Pitch Quadrotor Heli-

copter. Master's thesis, Massachusetts Institute of Technology, Department of Aero-

nautics and Astronautics, August 2012.

153

[36] Mark Cutler and Jonathan P. How. Actuator constrained trajectory generation and
control for variable-pitch quadrotors. In AIAA Guidance, Navigation, and Control

Conference (GNC), Minneapolis, Minnesota, August 2012.

[37] Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on

Machine Learning (ICML-I]), pages 465-472, 2011.

[38] Marc Peter Deisenroth. Efficient reinforcement learning using Gaussian processes.

PhD thesis, Karlsruhe Institute of Technology, 2010.

[39] Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and

data-efficient approach to policy search. In ICML, pages 465-472, 2011.

[40] Marc Peter Deisenroth, Carl Edward Rasmussen, and Jan Peters. Gaussian process

dynamic programming. Neurocomputation, 72(7-9):1508-1524, March 2009.

[41] Thomas Desautels, Andreas Krause, and Joel W. Burdick. Parallelizing exploration-
exploitation tradeoffs with gaussian process bandit optimization. In ICML, 2012.

[42] W. Durham. Constrained control allocation. AIAA Journal of Guidance, Control,
and Dynamics, 16:717-772, 1993.

[43] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes.
In International Conference on Machine Learning (ICML), 2005.

[44] Eyal Even-Dar and Yishay Mansour. Learning rates for q-learning. Journal of Ma-
chine Learning Research, 5:1-25, 2004.

[45] Sarah Ferguson, Brandon Luders, Robert Grande, and Jonathan How. Real-time
predictive modeling and robust avoidance of pedestrians with uncertain, changing
intentions. In Workshop on Algorithmic Foundations of Robotics. Springer, 2014

(submitted).

[46] Peter Finn. Domestic use of aerial drones by law enforcement likely to prompt

privacy debate. Washington Post, 22, 2011.

[47] Roman Garnett, Michael A Osborne, Steven Reece, Alex Rogers, and Stephen J
Roberts. Sequential bayesian prediction in the presence of changepoints and faults.

The Computer Journal, 53(9):1430-1446, 2010.

[48] Agathe Girard, Carl Edward Rasmussen, Joaquin Quintero-Candela, and Roder-

ick Murray-smith. Gaussian process priors with uncertain inputs - application to

multiple-step ahead time series forecasting. In Advances in Neural Information Pro-

cessing Systems, pages 529-536. MIT Press, 2003.

[49] Robert Grande, Girish Chowdhary, and Jonathan How. Experimental validation

of Bayesian nonparametric adaptive control using Gaussian processes. Journal of

Aerospace Information Systems, 2014.

154

[50] Robert Grande, Girish Chowdhary, and Jonathan P. How. Nonparametric adaptive

control using Gaussian processes with online hyperparameter estimation. In IEEE

Conference on Decision and Control (CDC). IEEE, 2013.

[51] Robert C. Grande, Thomas J. Walsh, Girish Chowdhary, Sarah Ferguson, and

Jonathan P. How. Online regression for data with changepoints using Gaussian pro-

cesses and reusable models. In Conference on Uncertainty in Artificial Intelligence,

pages 19-26. AUAI Press, 2014 (Submitted).

[52] Robert C. Grande, Thomas J. Walsh, and Jonathan P. How. Sample efficient rein-

forcement learning with Gaussian processes. In International Conference on Ma-

chine Learning (ICML), 2014.

[53] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American statistical association, 58(301):13-30, 1963.

[54] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-time indoor autonomous

vehicle test environment. IEEE Control Systems Magazine, 28(2):51-64, April 2008.

[55] Jonathan P. How, Emilio Frazzoli, and Girish Chowdhary. Handbook of Unmanned

Aerial Vehicles, chapter Linear Flight Contol Techniques for Unmanned Aerial Ve-

hicles. Springer, 2012.

[56] J.P. How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-Time Indoor Autonomous

Vehicle Test Environment. IEEE control systems, 28(2):51-64, 2008.

[57] Petros A. Ioannou and Jung Sun. Robust Adaptive Control. Prentice-Hall, Upper

Saddle River, 1996.

[58] Eric Johnson and Suresh Kannan. Adaptive trajectory control for autonomous heli-

copters. Journal of Guidance Control and Dynamics, 28(3):524-538, May 2005.

[59] Eric N. Johnson and Anthony J. Calise. Limited authority adaptive flight control for

reusable launch vehicles. Journal of Guidance, Control and Dynamics, 2001.

[60] Tobias Jung and Peter Stone. Gaussian processes for sample efficient reinforcement

learning with RMAX-like exploration. In Machine Learning and Knowledge Dis-

covery in Databases, pages 601-616. Springer, 2010.

[61] Tobias Jung and Peter Stone. Gaussian processes for sample efficient reinforcement

learning with RMAX-like exploration. In European Conference on Machine Learn-

ing (ECML), September 2010.

[62] Tobias Jung and Peter Stone. Gaussian processes for sample efficient reinforcement

learning with rmax-like exploration. In European COnference on Machine Learning

(ECML), 2012.

155

[63] Shivaram Kalyanakrishnan and Peter Stone. An empirical analysis of value function-

based and policy search reinforcement learning. In Proceedings of The 8th Interna-

tional Conference on Autonomous Agents and Multiagent Systems - Volume 2, pages

749-756, 2009.

[64] Suresh Kannan. Adaptive Control of Systems in Cascade with Saturation. PhD

thesis, Georgia Institute of Technology, Atlanta Ga, 2005.

[65] H. K. Khalil. Nonlinear Systems. Macmillan, New York, 2002.

[66] Nakawan Kim. Improved Methods in Neural Network Based Adaptive Output Feed-

back Control, with Applications to Flight Control. PhD thesis, Georgia Institute of

Technology, Atlanta Ga, 2003.

[67] Y. H. Kim and F.L. Lewis. High-Level Feedback Control with Neural Networks,

volume 21 of Robotics and Intelligent Systems. World Scientific, Singapore, 1998.

[68] H. A. Kingravi, G. Chowdhary, P. A. Vela, and E. N. Johnson. Reproducing kernel

hilbert space approach for the online update of radial bases in neuro-adaptive control.

Neural Networks and Learning Systems, IEEE Transactions on, 23(7):1130 -1141,

july 2012.

[69] Jens Kober and Jan Peters. Movement templates for learning of hitting and batting.

In Learning Motor Skills, pages 69-82. Springer, 2014.

[70] George Konidaris, Scott Kuindersma, Andrew G. Barto, and Roderic A. Grupen.

Constructing skill trees for reinforcement learning agents from demonstration tra-

jectories. In NIPS, volume 23, pages 1162-1170, 2010.

[71] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements

in gaussian processes: Theory, efficient algorithms and empirical studies. Journal of

Machine Learning Research (JMLR), 9:235-284, June 2008.

[72] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of

Machine Learning Research (JMLR), 4:1107-1149, 2003.

[73] E. Lavretsky. Combined/composite model reference adaptive control. Automatic

Control, IEEE Transactions on, 54(11):2692 -2697, nov. 2009.

[74] Alessandro Lazaric, Emma Brunskill, et al. Sequential transfer in multi-armed ban-

dit with finite set of models. In Advances in Neural Information Processing Systems,

pages 2220-2228, 2013.

[75] F. L. Lewis. Nonlinear network structures for feedback control. Asian Journal of

Control, 1:205-228, 1999. Special Issue on Neural Networks for Feedback Control.

[76] Lihong Li and Miachael L. Littman. Reducing reinforcement learning to KWIK

online regression. Annals of Mathematics and Artificial Intelligence, 58(3-4):217-

237, 2010.

156

[77] Lihong Li, Michael L. Littman, Thomas J. Walsh, and Alexander L. Strehl. Knows

what it knows: a framework for self-aware learning. Machine Learning, 82(3):399-

443, 2011.

[78] Lihong Li, Michael L. Littman, Thomas J. Walsh, and Alexander L. Strehl. Knows

what it knows: a framework for self-aware learning. Machine learning, 82(3):399-

443, 2011.

[79] L. Ljung. Analysis of recursive stochastic algorithms. Automatic Control, IEEE

Transactions on, 22(4):551 - 575, aug 1977.

[80] David A McAllester. Some PAC-Bayesian theorems. In Proceedings of the eleventh

annual conference on Computational learning theory, pages 230-234. ACM, 1998.

[81] Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics,

141(1):148-188, 1989.

[82] Bernard Michini, Mark Cutler, and Jonathan P. How. Scalable reward learning from

demonstration. In Robotics and Automation (ICRA), 2013 IEEE International Con-

ference on, pages 303-308. IEEE, 2013.

[83] Jeffrey W Miller and Matthew T Harrison. A simple example of dirichlet process

mixture inconsistency for the number of components. In Advances in Neural Infor-

mation Processing Systems, pages 199-206, 2013.

[84] Claire Monteleoni and Tommi Jaakkola. Online learning of non-stationary se-

quences. In Advances in Neural Information Processing Systems (NIPS), 2003.

[85] K.-R. Muller, S. Mika, G. Rstsch, S. Tsuda, and B Scholkopf. An introduc-

tion to kernel-based learning algorithms. IEEE Transactions on Neural Networks,

12(2):181-202, 2001.

[86] Flavio Nardi. Neural Network based Adaptive Algorithms for Nonlinear Control.

PhD thesis, Georgia Institute of Technology, School of Aerospace Engineering, At-

lanta, GA 30332, nov 2000.

[87] K. S. Narendra and A. M. Annaswamy. Robust adaptive control in the presence of

bounded disturbances. IEEE Transactions on Automatic Control, AC-31(4):306-

315, 1986.

[88] K.S. Narendra. Neural networks for control theory and practice. Proceedings of the

IEEE, 84(10):1385 -1406, oct 1996.

[89] Kumpati S. Narendra and Anuradha M. Annaswamy. Stable Adaptive Systems.

Prentice-Hall, Englewood Cliffs, 1989.

[90] Jerzy Neyman and Egon S Pearson. On the problem of the most efficient tests of

statistical hypotheses. Springer, 1992.

157

[91] Nhan Nguyen. Asymptotic linearity of optimal control modification adaptive law

with analytical stability margins. In Infotech@AIAA conference, Atlanta, GA, 2010.

[92] Ronald Ortner, Daniil Ryabko, et al. Online regret bounds for undiscounted contin-

uous reinforcement learning. In NIPS, pages 1772-1780, 2012.

[93] J. Park and I.W. Sandberg. Universal approximation using radial-basis-function net-

works. Neural Computatations, 3:246-257, 1991.

[94] D. Patino and D. Liu. Neural network based model reference adaptive control sys-
tem. IEEE Transactions on Systems, Man and Cybernetics, Part B, 30(l):198-204,

2000.

[95] Jason Pazis and Ronald Parr. PAC optimal exploration in continuous space Markov

decision processes. In AAAI, 2013.

[96] WD Penny and SJ Roberts. Bayesian multivariate autoregressive models with struc-

tured priors. Technical report, Oxford University, 2000.

[97] Fernando Pirez-Cruz, Steven Van Vaerenbergh, Juan Jos6 Murillo-Fuentes, Miguel

Lizaro-Gredilla, and Ignacio Santamaria. Gaussian processes for nonlinear signal

processing. arXiv preprint arXiv:1303.2823, 2013.

[98] Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution to

discrete Bayesian reinforcement learning. In Proceedings of the 23rd international

conference on Machine learning, pages 697-704. ACM, 2006.

[99] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Inc., New York, NY, 1994.

[100] Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-

gramming, volume 414. John Wiley & Sons, 2009.

[101] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A.Y. Ng. Ros: an open-source robot operating system. In ICRA Workshop on Open

Source Software, volume 3, 2009.

[102] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT

Press, Cambridge, MA, 2006.

[103] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT

Press, Cambridge, MA, 2006.

[104] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processesfor Machine

Learning. The MIT Press, December 2005.

[105] Carl Edward Rasmussen and Zoubin Ghahramani. Infinite mixtures of gaussian

process experts. Advances in neural information processing systems, 2:881-888,
2002.

158

[106] Yunus Saatgi, Ryan D Turner, and Carl E Rasmussen. Gaussian process change point

models. In Proceedings of the 27th International Conference on Machine Learning

(ICML-10), pages 927-934, 2010.

[107] R.M. Sanner and J.-J.E. Slotine. Gaussian networks for direct adaptive control. Neu-

ral Networks, IEEE Transactions on, 3(6):837 -863, nov 1992.

[108] M. A. Santillo and D. S. Bernstein. Adaptive control based on retrospective cost

optimization. AIAA Journal of Guidance Control and Dynamics, 33(2), March-April

2010.

[109] Praveen Shankar. Self-Organizing radial basis function networks for adaptive flight

control and aircraft engine state estimation. Ph.d., The Ohio State University, Ohio,

2007.

[110] Manu Sharma, Anthony J. Calise, and J. Eric Corban. An adaptive autopilot de-

sign for guided munitions. In AIAA Guidance, Navigation, and Control Conference,

number 4490, Boston, MA, aug 1998.

[111] Manu Sharma, Anthony J. Calise, and Seungjae Lee. Development of a reconfig-

urable flight control law for the X-36 tailless fighter aircraft. In AIAA Guidance,

Navigation and Control Conference, number 3940, Denver, CO, aug 2000.

[112] B.L. Stevens and F.L. Lewis. Aircraft Control and Simulation. Wiley-Interscience,

2003.

[113] Florian Stimberg, Andreas Ruttor, and Manfred Opper. Bayesian inference for

change points in dynamical systems with reusable states - a chinese restaurant

process approach. Journal of Machine Learning Research - Proceedings Track,

22:1117-1124, 2012.

[114] Alexander L. Strehl, Lihong Li, and Michael L. Littman. Reinforcement learning in

finite mdps: Pac analysis. Journal ofMachine Learning Research (JMLR), 10:2413-

2444, December 2009.

[115] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L.

Littman. PAC model-free reinforcement learning. In ICML, pages 881-888, 2006.

[116] Alexander L Strehl and Michael L Littman. A theoretical analysis of model-based

interval estimation. In Proceedings of the 22nd international conference on Machine

learning, pages 856-863. ACM, 2005.

[117] N. Sundararajan, P. Saratchandran, and L. Yan. Fully Tuned Radial Basis Function

Neural Networks for Flight Control. Springer, 2002.

[118] R. Sutton and A. Barto. Reinforcement Learning, an Introduction. MIT Press, Cam-

bridge, MA, 1998.

159

[119] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning. MIT

Press, 1998.

[120] Johan A.K. Suykens, Joos P.L. Vandewalle, and Bart L.R. De Moor. Artificial Neural

Networks for Modelling and Control of Non-Linear Systems. Kluwer, Norwell, 1996.

[121] Gang Tao. Adaptive Control Design and Analysis. Wiley, New York, 2003.

[122] Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for

model-based reinforcement learning. In Machine Learning and Knowledge Discov-

ery in Databases, pages 488-505. Springer, 2008.

[123] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning

domains: A survey. The Journal of Machine Learning Research, 10:1633-1685,

2009.

[124] Nina Vaits and Koby Crammer. Re-adapting the regularization of weights for non-

stationary regression. In Proceedings of the 22nd international conference on Algo-

rithmic learning theory, pages 114-128, 2011.

[125] Kostyantyn Y. Volyanskyy, Wassim M. Haddad, and Anthony J. Calise. A new neu-

roadaptive control architecture for nonlinear uncertain dynamical systems: Beyond

o- and e-modifications. IEEE Transactions on Neural Networks, 20(11):1707-1723,
Nov 2009.

[126] Zhikun Wang, Katharina Malling, Marc Peter Deisenroth, Heni Ben Amor, David

Vogt, Bernhard Schdlkopf, and Jan Peters. Probabilistic movement modeling for in-

tention inference in human-robot interaction. The International Journal of Robotics

Research, 2013.

[127] C. J. Watkins. Q-learning. Machine Learning, 8(3):279-292, 1992.

[128] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,

8(3-4):279-292, 1992.

[129] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforce-

ment learning: a hierarchical bayesian approach. In Proceedings of the 24th inter-

national conference on Machine learning, pages 1015-1022. ACM, 2007.

[130] Tansel Yucelen and Anthony Calise. Kalman filter modification in adaptive control.

Journal of Guidance, Control, and Dynamics, 33(2):426-439, march-april 2010.

160

