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Abstract

Designing and optimizing complex systems generally requires the use of numerical
models. However, it is often too expensive to evaluate these models at each step of
an optimization problem. Instead surrogate models can be used to explore the design
space, as they are much cheaper to evaluate.

Constructing a surrogate becomes challenging when different numerical models
are used to compute the same quantity, but with different levels of fidelity (i.e., dif-
ferent levels of uncertainty in the models). In this work, we propose a method based
on statistical techniques to build such a multi-fidelity surrogate. We introduce a new
definition of fidelity in the form of a variance metric. This variance is characterized
by expert opinion and can vary across the design space. Gaussian processes are used
to create an intermediate surrogate for each model. The uncertainty of each inter-
mediate surrogate is then characterized by a total variance, combining the posterior
variance of the Gaussian process and the fidelity variance. Finally, a single multi-
fidelity surrogate is constructed by fusing all the intermediate surrogates. One of
the advantages of the approach is the multi-fidelity surrogate capability of integrat-
ing models whose fidelity changes over the design space, thus relaxing the common
assumption of hierarchical relationships among models.

The proposed approach is applied to two aerodynamic examples: the computa-
tion of the lift coefficient of a NACA 0012 airfoil in the subsonic regime and of a
biconvex airfoil in both the subsonic and the supersonic regimes. In these examples,
the multi-fidelity surrogate mimics the behavior of the higher fidelity samples where
available, and uses the lower fidelity points elsewhere. The proposed method is also
able to quantify the uncertainty of the multi-fidelity surrogate and identify whether
the fidelity or the sampling is the principal source of this uncertainty.

Thesis Supervisor: Karen Willcox
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Designing complex systems is one of the challenges of engineering: how to exploit

complicated physical phenomena and take advantages of the many interactions of

those systems in order to improve their design? Advances in computational power

are now allowing the engineer to partially answer this question by increasing the ca-

pabilities of numerical simulations. High-fidelity simulations are now used in analysis

to evaluate performance, often replacing experiments.

Ideally, these high-fidelity simulations would be used every time one needs to eval-

uate a quantity of interest, but their cost can be prohibitive. For instance, to compute

the drag of a wing, one would need to mesh the geometry of that wing and run a

computational fluid dynamics (CFD) simulation: this is an expensive procedure both

in terms of human resources (to create the mesh) and in terms of computational time.

In an optimization setting, one would need to run this high-fidelity simulation for a

large number of iterations to converge to an optimal solution, which can be expensive.

This leaves the engineer with the following question: while managing the un-

certainty at acceptable levels, how to reduce the cost of optimization? Techniques

such as multi-fidelity optimization and surrogate modeling aim at tackling this is-

sue. In the traditional setting, multi-fidelity optimization develops techniques that
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use models of different fidelities to drive the optimization process. The goal is to

leverage the cheap, but less accurate, simulation to speed up the convergence and

use the expensive, but accurate, simulation only when needed. Surrogate modeling

is another promising technique to alleviate the cost of optimization. The objective is

to construct an approximate model of the high-fidelity simulation based on previous

calculations and use it in lieu of the expensive code. To be useful, the surrogate

needs to be cheaper to evaluate than the high-fidelity simulation but still somewhat

accurate. It can then replace the expensive code in the optimization.

By combining those two techniques, the cost of optimization can be reduced.

However, there are some open questions.

e Constructing a single surrogate with data collected from different sources, and

with different level of fidelities is challenging. The construction of the surrogate

should use all the information available, but treat differently data of different

levels of fidelity (relying more on the high-fidelity information than on the low-

fidelity information). How do we incorporate several fidelities in a consistent

and mathematically rigorous way?

* Surrogate-based optimization often exploits the surrogate itself as well as its

uncertainty. Surrogates have inherent uncertainty stemming from the sparsity

of the data they are built with. By combining information of various fidelities

how can the uncertainty associated with the surrogate be quantified ?

1.2 Challenges in Multi-fidelity Modeling

1.2.1 Beyond the naive approach of Multi-fidelity

Model fidelity is often associated with model uncertainty; however there are multiple

forms of uncertainty. The type of uncertainty considered in this work is model inade-

quacy, a notion defined by Kennedy and O'Hagan [24] as the "difference between the

true mean value of the real world process and the code output at the true value of the

14



inputs". In particular, it represents the model inability to capture the full physical

phenomena for a given input. A model is said to be high-fidelity when it has a low

model inadequacy and low-fidelity when it has a high model inadequacy (this relation

will be made quantitative later on).

A low-fidelity model can be the result of using simplifying assumptions to solve a

set of equations. For example, in the fluid mechanics community, there is a clear hi-

erarchy of models including (from high-fidelity to low-fidelity) [32]: Direct Numerical

Simulation (DNS), Large Eddy Simulation (LES), Reynolds Averaged Navier-Stokes

(RANS), Euler equations. Another example of fidelity can be found in Alexandrov et

al.'s work [2]: solving the same equation on both a coarse and a fine mesh also results

in a low-fidelity and high-fidelity model.

Even before the formalization of multi-fidelity frameworks, engineers have tried

to take advantage of the several levels of fidelity available. Going from low-fidelity

to high-fidelity simulations is a natural strategy [32]. First, use a low-fidelity model

in the early design phase to evaluate many ambitious designs at a cheap cost. Then,

as decisions are made about a configuration, optimize in a narrower design space

with a medium-fidelity model. And finally do the fine adjustments using the highest

fidelity model available. This strategy of exploring the design space before allocating

expensive computations has limitations: if the low-fidelity model does not capture

physical phenomena (for instance flow separation, turbulence, stall) that considerably

deteriorate the performance of the design, it will only be noticed at a later phase of the

design, when some decisions about the configuration have already been frozen [32].

In those cases, the corrections necessary to fix a poor design are often expensive or

even impossible. Hence high-fidelity simulations need to be used earlier in the design

process and in parallel with low-fidelity simulations. The approach proposed in this

thesis intends to take advantage of such situations, when information of different

fidelities is available, making it a useful tool for multi-fidelity optimization.
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1.2.2 Gaussian Processes as Surrogate Models

Surrogate models can naturally be integrated in a multi-fidelity framework. A sur-

rogate is an approximation model, cheap to evaluate, constructed on a finite set of

evaluation points called data set. In this regard, surrogate models can incorporate

data computed by simulations of different fidelities and take advantage of a multi-

fidelity approach. A popular choice to construct surrogates is Gaussian Processes

(GP) [35], also known as Kriging in the geo-sciences community [29]. It has been used

extensively in optimization, including in multi-fidelity approaches (see [17] for a good

review of multi-fidelity optimization based on surrogates, and Kriging in particular)

and in multi-disciplinary optimization [37]. GP is a powerful nonlinear interpola-

tion technique that can be interpreted in different contexts: from supervised machine

learning to optimization of regularized networks.

1.2.3 Existing Multi-fidelity Strategies in Design Optimiza-

tion

Strategies to perform multi-fidelity optimization have been studied extensively. These

includes creating response surface surrogates using both low and high-fidelity model

evaluations [22], or computing higher fidelity model samples when the difference be-

tween two lower fidelity evaluations is larger than a threshold [8]. Multi-fidelity opti-

mization strategies can be divided in global and local approaches. Global approaches

try to find the best design in the entire feasible domain: existing strategies include

building an interpolation of the high-fidelity model as in Efficient Global Optimiza-

tion (EGO) [21]. A multi-objective version of EGO developed in [33, 34] combines

the use of a surrogate to both minimize the quantity of interest and explore uneval-

uated regions. In [23, 20], Gaussian processes are used to approximate the difference

between a high and a lower fidelity model, this surrogate is then incorporated in

the EGO framework . When gradients are available, Co-Kriging methods have been

developed to build multi-fidelity surrogates [9, 10, 18].

Local approaches, on the other hand, only search for local optimum. Booker et al.
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[7] developed a gradient-free pattern search algorithm for multi-fidelity optimization.

When gradients are available, trust region methods use a local approximation of the

high-fidelity function to perform the optimization. One significant extension of the

trust region method to multi-fidelity optimization is the work by Alexandrov et al.

[1, 2]. In particular, it proves that trust region methods converge to the optimum of

the high-fidelity model when used with certain surrogate models. These surrogates

are created based on the low-fidelity model in a way that satisfies the first-order

consistency condition, i.e., the equality of the value and gradient of the surrogate and

high-fidelity model at each trust region center. More recently, March and Willcox

developed a multi-fidelity trust-region approach in the derivative-free setting [27].

1.2.4 Toward Multi-fidelity Surrogates Handling Non-hierarchical

Fidelity Structures

Relaxing the Assumption of Hierarchy Among Models

A current limitation of surrogate modeling in the context of multi-fidelity, is the

assumption that there exists a clear hierarchy of models. For instance, one would

have a high-fidelity model fh, and a low-fidelity model f 1, and assume that fh has a

lower model inadequacy than f1 everywhere on the design space. In other words, there

is a hierarchical relationship among models. One way of constructing multi-fidelity

surrogates is to approximate the difference between a low-fidelity model and a high-

fidelity model. This correction, also known as calibration, clearly defines a hierarchy of

models [26, 16, 20, 33]. Another way of constructing multi-fidelity surrogates is to use

Co-Kriging [11, 18]. Co-Kriging is an extension of Gaussian Processes used to learn

several correlated functions when several data sets are available. The evaluations of

the low-fidelity model define a data set, and the evaluations of the high-fidelity model

defines another one. A common assumption for Co-Kriging in multi-fidelity contexts

is the auto-regressive assumption [23]. This imposes that, once a high-fidelity code

has been evaluated at a point, nothing can be learned from a lower-fidelity code at

this given point. This assumption is the only way fidelity is taken into account in Co-

17



Viscous (High Reynolds Number)
High Speed Boundary Layers with heat transfer

Adiabatic

M2 S Incompressible cv= - = 0

Low speed BLs p = constant High speed BLs
with heat transfer Low-speed isothermal BLs without heat transfer

Incompressible potential flows |sentropiC, Irrotational)

L Compressible potential flows

Figure 1-1: Aerodynamic flow categories. Drela [13]

Kriging and also imposes a hierarchy of models. However, in some situations there

might not be a clear hierarchy of model to exploit. For example, consider solving

an aerodynamic problem as illustrated in Fig.1-1. If one decides to use a solver for

incompressible potential flows, one would expect the results to be high fidelity in a

domain where viscous effects are negligible and at low Mach number. If one would use

the same solver at higher Mach number, compressibility effects would not be taken

into account, leading to a low-fidelity model.

Leveraging Information from every Fidelity

This motivates the new definition of the concept of fidelity proposed in our approach.

Instead of associating a level of fidelity to a model (a low-fidelity model, or a high-

fidelity model), we endow each model with a fidelity that varies across the design

space. Thus, the proposed approach extends the notion of fidelity and allows us

to handle non-hierarchical relationships among models. We also leverage our new

definition of fidelity to reduce uncertainty: all the data available will be combined

following Winkler [40]; the importance of each datum will depend on the function

that quantifies its fidelity.
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1.2.5 Assessing the Uncertainty of a Surrogate

Once quantified by a metric, the notion of fidelity can be integrated in a mathemati-

cally rigorous way to construct surrogates, allowing the uncertainty of the surrogate

to be assessed.

Quantifying uncertainty is essential to guarantee both the optimality and the

robustness of a design. Indeed, it is possible that the discrepancy between the per-

formances predicted by a surrogate with high uncertainty and the performances of

a real world process exceeds the confidence specifications given to the engineer. To

avoid this situation, it is thus crucial to certify the results predicted by the surrogate

by assessing its uncertainty.

Uncertainty quantification (UQ) is also a valuable tool for fidelity management.

Indeed, when confidence requirements are not met, it is essential to identify the

different sources of uncertainty. In the case of multi-fidelity surrogates, those sources

of uncertainty include: sparse sampling, and model uncertainty. If a lack of samples

(used to build a surrogate) is identified as the leading contributor to uncertainty, it is

possible to determine which sample should be evaluated next in order to update the

surrogate and reduce its variance [33]. This is the focus of the field of experimental

design. On the other hand, in the case where several sub-models (computing different

physical values) interact to evaluate a quantity of interest, if the uncertainty is driven

by the fidelity of one sub-model, techniques such as global sensitivity analysis (GSA)

[38, 36, 3] can determine which sub-model is the largest contributor to uncertainty.

Once identified, that sub-model can be replaced by another sub-model with higher

fidelity in the region of interest.

Finally, getting access to surrogate uncertainty quantification paves the way to

devising optimization algorithms that rely on trust regions [28], or surrogate uncer-

tainty (e.g., Efficient Global Optimization [21]) to explore the design space. Providing

a practical tool for multi-fidelity optimization is one of the end goals of multi-fidelity

surrogate modeling.
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1.3 Objectives

The primary objective of this research is to provide techniques to construct surrogates

that can be exploited in a multi-fidelity optimization. Specifically, we will propose

an extension of the notion of fidelity that covers a broader range of situations than

the traditional definition. The notion of fidelity will be made quantitative via a met-

ric given by expert opinion and treated as an input in this work. A new approach

to construct multi-fidelity surrogates will be proposed, combining several intermedi-

ate surrogates built with Gaussian processes and integrating several level of fidelity

information. And finally we will quantify the uncertainty associated with this new

surrogate.

To summarize, the research objectives are:

* to propose a richer definition of fidelity that admits non-hierarchical fidelity

relationships among models.

e to construct multi-fidelity surrogates that leverage all the information available

and can be used in multi-fidelity optimization.

* to quantify the uncertainty of that multi-fidelity surrogate with a metric that

accounts for the fidelity and the sampling quality.

1.4 Thesis Outline

This thesis is organized as follows. In Chapter 2, we start with a review of the math-

ematical background on Gaussian process modeling. Then, we present the method-

ology and the algorithm developed to construct multi-fidelity surrogates: we define a

new metric to quantify the uncertainty associated with fidelity and finally we explain

how several GP models can be combined into a single multi-fidelity surrogate. In

Chapter 3, the proposed method is applied to two examples. The first one is the

characterization of a NACA 0012 airfoil lift coefficient as a function of Mach number

and angle of attack using a panel code with boundary layer coupling (XFOIL) and an
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Euler solver (SU2). The second example focuses on the lift coefficient of a biconvex

airfoil with a supersonic panel code, a shock expansion theory model, and the inviscid

solver of XFOIL. Chapter 4 summarizes the results of this research and offers leads

for future work.
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Chapter 2

Multi-fidelity Surrogate Modeling

Methodology

This chapter presents the multi-fidelity surrogate modeling methodology proposed in

this thesis. Section 2.1 presents an overview of the proposed method. Section 2.2

reviews the mathematical background of Gaussian Processes. Finally, Section 2.3

presents the new approach that we propose.

2.1 Overview of the Method

The proposed approach uses Gaussian Processes (GP), often used for regression, to

construct multi-fidelity surrogates. The idea is to construct an intermediate surrogate

for each model available using GP, but assign them uncertainty that takes into account

the fidelity of the model. To be able to handle non-hierarchical relationships between

models, the uncertainty of each model is quantified by a function that varies across

the design space. Based on this metric for uncertainty, the intermediate surrogates are

combined into a single multi-fidelity surrogate that gives more weight to intermediate

surrogates with lower uncertainty.

The algorithm consists of three steps:

e construct an intermediate surrogate for each model fm using GP. This allows

us to compute a posterior mean pm, used as the intermediate surrogate, and a
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posterior variance orP, associated with the GP.

" use expert opinion to quantify the fidelity of each model across the design space

in the form of variance function a 2. A total variance O2 can then be defined,

taking into account both the uncertainty associated with the GP and the fidelity

uncertainty.

* combine the intermediate surrogates of each model into a single surrogate jE,

with variance -2, using fusion of information.

2.2 Gaussian Process - Background Review

This section gives a review of the mathematical background of GP. The first subsection

is dedicated to the definition of GP and to fundamental results of inference with GP.

The second subsection reviews results of regularized approaches and offers a different

interpretation of the intermediate surrogate as the solution of a minimization problem.

The third subsection gives a brief overview of hyper-parameter and kernel selection.

Finally, a practical algorithm to compute the GP posterior statistics is reviewed.

2.2.1 Gaussian Process Regression

Problem statement

We illustrate the problem we intend to solve using GP. As described in the overview

of the method, the first step of the algorithm is to construct a surrogate for each

model available. First, consider only one of those models, fm (the mt' model). This

model fm maps the design space to a real-value quantity of interest or performance

metric. Formally:

:X cR Rd R
fin: CI~d(2.1)

x y

where d is the dimension of the design space X.

The deterministic model f, is endowed with a Gaussian Process that defines a

random variable for every design of X. Those random variables are used to build
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a surrogate and quantify its uncertainty. The function fm is only known at a finite

number N of designs (also referred to as samples or data points): the ith evaluated

design xi is associated with a performance yi and the set SN = {xi, yi i 1 is called the

data set or training data. The data set is then used to train the GP. The objective

is to compute the posterior mean ytm(X*) of the GP and use it as a surrogate for

fm(x*), for any unevaluated design x* of the design space. One of the features of

Gaussian Processes is the quantification of their uncertainty with a posterior variance

oUP,m(x*). Formal definitions of Gaussian Processes, posterior mean and variance of

a GP are reviewed in the following section. The problem to solve is illustrated in

Fig. 2-1 in the case of a one dimensional design space.

4 1 1

- - - Model fm
0 Model Samples

1 2 - GP posterior mean Am

S

S-3

-4 -3 -2 -1 0 1 2 3

x (Design variable)

Figure 2-1: The blue dashed line is the model fm to be recovered, the blue circles
represent the data set, the solid black line is the posterior mean pAm of the GP and
the shading represents plus or minus three times the standard deviation associated
with the GP.

Definition of Gaussian Processes - Function-space view

Several approaches can be used to describe and explain Gaussian Processes. Ras-

mussen and Williams [35] offer a complete review of GP in the context of machine

learning. In this section, we present the key elements necessary to understand GP

using the function-space view. This consists of defining a prior over a functional
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space, and doing inference on that same functional space. An equivalent approach

(not covered in this thesis), the weight-space view, can be found in [35].

A Gaussian Process is a special case of a stochastic process. A stochastic process

can be defined as follows [25]. Let X be the design space and (Q, E, P) a probability

space (with Q a sample space, E a --algebra over Q, and P a probability measure).

The function

S: Xx -+ R

(x, w) - S(x, w) (2.2)

is a stochastic process if for every fixed x E X, the function S(x,.) :w C Q -+ R is a

random vector on (Q, E, P).

A stochastic process S is a Gaussian Process if, for any N E N, and any N designs

x1, XN, the random vector g defined by

Vi E [1..N], gi =S(xi, .) : w (E Q R (2.3)

9 [91 ...-9N ]T(2.4)

has a joint Gaussian distribution. A Gaussian Process 9 is fully determined by a

mean function m(x) and covariance function k(x, x') defined as:

m(x) =E[9(xw)] (2.5)

k(x, x') =E,[(g(x, w) - m(x))(g(x', w) - m(x'))]. (2.6)

A realization of a GP is a function fGP (hence the function-space view) and can be

written:

fGP(x) ~ GP(m(x), k(x, x')). (2.7)

Inference on Gaussian Processes

Gaussian Processes are powerful tools to construct surrogates: by updating the prior

with information gained with the training points, the posterior mean of the GP can
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be used as a surrogate of the original model. Three elements need to be specified

before inference can occur:

" A prior mean for the GP: this represents the a priori mean of the function to

be recovered. This can be any function, but in the rest of the section this will

be set to zero for ease of notation, without loss of generality.

" A covariance function: this determines how strongly correlated are two values

fGP(x) and fGp(x') of a realization !GP of the GP.

* A data set: to train the GP, or equivalently to condition the posterior of the

GP on the data.

Consider a training set SN = {X, y}z=, composed of N evaluated designs. The

performances {yi}Ni can be written in a more compact way using a vector nota-

tion: y a N x 1 vector. The designs {x}f_1 can also be written X E dxN where

X = [x1, - , XN]. Define g = [gi,..- , gN T where gi is the random variable used to

represent f(xi) at the evaluated design xi. Now, define g, as the random variable as-

sociated with the unevaluated design x* (test point). Before seeing the performances

of the evaluated designs, under the Gaussian Process assumption, these random vari-

ables g and g, have a joint Gaussian distribution and can be written:

g ~ N 0, K(X, X) K(X, x*) (2.8)
K(x*, X) K(x*, x*)J

where K(X, X) is the N x N matrix of the covariance evaluated at all pairs of training

points X. Similarly, K(x*, X) is the 1 x N matrix of covariance evaluated at all pairs

of test point (x*) and training points (X). This is the prior distribution of the GP

that reflects the state of knowledge before seeing data.

Using the data set, the prior knowledge can be updated to take into account all

the information available. Mathematically, this consists of conditioning the prior on

the training points:
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Figure 2-2: The blue dots are the training set, the solid black line is the posterior
mean pm of the GP , and the grey shading represents plus or minus three times UGP,m-
The red shading represents the distribution of the random variable at an unevaluated
design x* conditioned on the training set: it is a Gaussian distribution with mean
pm (x*) and variance U2Pm(x*)

9* 1y, X ~ Al(pm (x*), aGPm (x*) (2.9)

The posterior is still a random variable with a Gaussian distribution. However, the

posterior mean ym(x*) and variance oGP,m(X*) are different from the prior. They

have a closed form defined as:

Pm(X*) =K(X, x*)TK(X, X)-ly (2.10)

GSP,m(X*) =K(x*, x*) - K(X, x*)TK(X, X)-K(X, x*). (2.11)

There are a few interesting things to note about the posterior statistics. For

instance, the mean -m(x*) is the scalar product of the vector K(x*, X) with the

vector a = K(X, X)-ly. Once a has been computed, evaluating pm at a new design

x* only requires O(N) work. This is an important statement as pm will be used to

construct a surrogate that needs to be cheap to evaluate. It can also be noted that
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the posterior mean can be written as a linear combination of the covariance function:

N

P-m(x*) = aik(x*, xi). (2.12)
i=1

where ac E R is the ith component of a. Hence, the choice of the covariance function

(or kernel) decides which classes of function are admissible for the posterior mean.

Moreover, the posterior variance can be decomposed into two terms: the prior vari-

ance minus a second term that encompasses the knowledge learned by conditioning

on the training set and reduces the posterior variance.

Even if the model fm used to evaluate training points is deterministic, it is common

to consider that there exists a discrepancy between a model evaluation fm(x) and the

true output y(x) [17]. The discrepancy can be modeled by additive Gaussian noise:

y(x) = fm(x) + E(x) (2.13)

c (x) ~ M (0, A), (2.14)

with A the variance of the noise. This additive noise leads to a smoother posterior

mean pm, with fewer oscillations. It also reduces the risk of over-fitting the data (the

situation when the posterior mean pm agrees well with the model fm on the training

set but not on unevaluated points). This additive noise also ensures the positive

definiteness of the covariance matrix which is necessary to compute its inverse (or its

Cholesky decomposition).

Assuming that the noise at each training point is independent, the covariance

function is now:

k(x, x') + 6(x, x')E(x), (2.15)

leading to the prior

9 ~ N 0, K(X, X) + AI K(X, x*) .(2.16)
g9 L K(x*, X) K(x*, x*)
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The previous results for the posterior statistics still hold replacing the matrix K(X, X)

by K(X, X) + Al:

pm(x*) =K(X, x*)T [K(X, X) + AI]-1y

oPam(X*) =K(x*, x*) - K(X, x*)T[K(X, X) + AI]-K(X, x*).

(2.17)

(2.18)

The posterior mean [tm of the GP can then be used as an intermediate surrogate

for fin. Even if it is not the case in general, pm often interpolates the training set SN

in situations when the data is sparse in the design space X (which typically occurs

in an optimization setting).

2.2.2 Parallel with Regularized Approach

Interpreting , as the solution of a minimization problem

The posterior mean pm computed using properties of Gaussian Processes can be

derived from a different equation, leading to an additional interpretation of what the

posterior mean represents. It can be shown [19] that ym is actually the solution of a

minimization problem, in a particular space R:

pM = argminIs[f] + Aflffl1,
f EW

(2.19)

where N is a Reproducing Kernel Hilbert Space (RKHS), I, is the empirical risk, A

a regularizing term and 11ff1- is the norm of f induced by the inner product defined

on W (also called penalizing term).

The empirical risk is defined with respect to a training set SN = {Xz, yi} gen-

erated by f,. It is the sum over every training point of a loss function. In this

particular case, the loss function is the square error. Hence, the empirical risk can be

written as
N

= (yi - f (xi))2 . (2.20)
i=1

The solution of the minimization problem can thus be interpreted as the element of
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W that has a low error on the training set, but also has a low norm in N. For spe-

cific spaces R (e.g., RKHS induced by Gaussian reproducing kernel), this norm can

be related to the Fourier decomposition of the solution, and thus to its smoothness.

Imposing a condition on the norm is necessary to ensure well-posedness of the prob-

lem. Without this regularizer term, multiple functions could have a zero empirical

risk. The relative importance between the empirical risk and keeping a low norm is

balanced by A.

Reproducing Kernel Hilbert Space properties

Solving Eq. (2.19) is difficult, as N can be infinite dimensional (e.g., with space of real

function on R). However, if 71 is a RKHS, some properties allow simplification of the

problem. A Hilbert space N of real-valued functions on X is said to be a Reproducing

Kernel Hilbert Space if for all x E X the linear map L. : f H-4 f(x) from N to R is a

bounded operator. Then, the Riesz representation theorem allows unique definition

of an element Kx C N such that:

Vx E X, !Kx E N, Vf c N, f (x) = L.(f) = (K., f)w. (2.21)

Since K,, is also an element of N, it can also be written as:

Vy E X, A!Ky C N, Kx(y) = (Kx, Ky)N. (2.22)

The function k : X x X - R,

k:XExX-e
(2.23)

(x, y) (Kx, Ky)-,

is the reproducing kernel of N. It can be shown that a RKHS uniquely defines a

reproducing kernel, and any symmetric positive definite kernel uniquely defines a

RKHS (Moore-Aronszajn Theorem) [4].
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Simplification to a finite dimensional problem

The fundamental mathematical result that allows solving the minimization problem

(2.19) is known as the Representer theorem [39]. It states that, for any RKHS X7, the

minimizer of Eq.(2.19) satisfies:

N

-la E RN S.t. Vx* E X ,pm(X*) =c ik(x*, xi), (2.24)
i=1

where ac E R the ith component of a and {xi}_ 1 the training samples. This result

is key to solving the minimization problem as it reduces the solution space from an

infinite dimensional space to a space of dimension N. The original problem is now

simplified to [19]:

pm = argmin |ly - K(X, X)a|$ + AaTK(X, X)a (2.25)
aCRN

where y = [Yi, , YN T , and K(X, X) is the N x N matrix whose ijth entry is

k(xi, xj).

The solution of (2.25) is derived from the KKT conditions:

Pm(X*) =K(X, x*)T [K(X, X) + AI]-ly, (2.26)

with K(X, x*) the N x 1 vector whose ith entry is k(xi, x*). This result is similar to

Eq.(2.17), replacing the covariance function by the reproducing kernel.

Insight gained from the regularized approch

As stated in the beginning of this section, the regularized approach allows us to inter-

pret the posterior mean of a Gaussian Process pm as the solution of a minimization

problem. One interesting feature is that it is not just the minimizer of the empirical

risk: in particular, pm does not necessarily interpolate the training points. Indeed,

pIm minimizes a weighted sum of the empirical risk and its norm in N. In the special
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case where the kernel is a Gaussian with variance o2 , the norm can be written [15]:

1 o F(w)Iexp ( W )dw, (2.27)

which directly relates the norm If 117 to the Fourier transform of f and penalizes

high frequencies. This can be viewed as minimizing the error on the training set

while keeping pm smooth. The relative importance of those two terms is controlled

by the regularizer term A, which plays the same role as the variance of the noise in

the GP framework.

Again, the choice of the reproducing kernel, the equivalent of the covariance func-

tion in the GP framework, defines on which space 'R the minimizer should live, and

thus imposes the form of the solution to satisfy Eq.(2.24). The important role that

the kernel, or covariance function, plays in the quality of the solution pm motivates

the following discussion about its selection.

2.2.3 Kernel and Selection of Hyper-parameters

The Square Exponential Kernel

In the previous section, the framework of Gaussian Processes has been presented,

yielding a closed form of the posterior mean pm that can be computed based on a

training set. The form of this posterior mean is strongly dependent on the covariance

matrix K(X, X) defined by the matrix of the covariance function (also refered to as

the kernel) evaluated at the training points.

A popular choice for the covariance function is the square exponential kernel. It

is defined as follows:

k: XxX R

(x,x') - C exp (- IJXjII2  (2.28)

where C is the maximum covariance, and L is a characteristic length scale. This choice

of kernel implies an assumption of continuity for the solution pm and any realization
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fGP of the GP. Recalling that the covariance function is also used to evaluate

k(x, x') =E[(fGp (x) - m(x))(fGp (x') - m(x'))] = Cov [fGp (x), fGp (x'), (2.29)

this means that the covariance of fGP (x) and fGP (x') is only a function of the distance

between x and x', with a maximum covariance reached when x and x' are equal.

The square exponential kernel imposes more than continuity, it imposes smoothness.

Indeed, the kernel is infinitely differentiable, leading to an infinitely mean-square

differentiable process [35]. As previously mentioned, the square exponential kernel

also leads to a norm in the 'N space that penalizes high frequencies.

In the case where a different characteristic length scale exists for each dimension

of the design space X C Rd, it is possible to use a different kernel:

k: XxX R

(x, x') ' C exp (L
2_ -X ) (2.30)

where x) is the ith component of the vector x, and Li is the characteristic length

scale associated with dimension i of the design space.

Hyper-parameters

Choosing the Values for Hyper-parameters

Since the choice of the hyper-parameter values is important, one might want to have

systematic way of selecting them. There are several standard methods for selecting the

hyper-parameters [35] including cross validation and maximum marginal likelihood.

Cross validation consists of dividing the available data into two sets. One set is

used to train the Gaussian Process while the other set is used as a reference to quan-

tify the quality of the inference. The hyper-parameters that lead to the best average

performance on the test set are kept. One popular technique of cross validation is

the Leave One Out Cross Validation (LOOCV) which only uses one data point as the

test set.
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The maximum marginal likelihood method consists of finding the hyper-parameters

that maximize the probability of observing the training set. The marginal likelihood

of y conditioned on X (marginalizing over the functions f),

p(yIX) = J p(f IX)p(yl f, X)df, (2.31)

is the integral of the prior of f conditioned on X times the likelihood of y given

f, conditioned on X.

likelihood are known:

Under the Gaussian Process assumption, the prior and the

(2.32)

(2.33)y f ~j\(f, AI).

This yields a closed form of the marginal likelihood, often expressed as the log

marginal likelihood:

(K(X, X) + Al) y -
1
- log IK(X, X)
2

N
+ A-1- Nlog 2-r.

2

(2.34)

The derivative of the log marginal likelihood with respect to the hyper-parameters is

also known in closed form, allowing for an efficient optimization. In the rest of this

work, the hyper-parameters are selected using maximum marginal likelihood.

2.2.4 Algorithm to Compute the Gaussian Process Posterior

Mean and Variance

Inputs:

* Training set : X = [x, -- ,XNI, y [yl,- ' YN]

" Test point : x* E X

" Covariance function : k : X x X -+ R
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2.3 Multi-fidelity Surrogate Modeling - Proposed

Approach

We now introduce the proposed approach for constructing multi-fidelity surrogates.

This consists of the three steps outlined in the overview of the method (Section 2.1).

Those steps are explained in detail in the following sections.
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1. Compute the hyper-parameters 0 = {C, A, Li} using the maximum marginal

likelihood method

2. Compute

" K(X, X) the N x N matrix whose ijth entry is k(xi, xj)

* K(X, x*) the N x 1 vector whose ith entry is k(xi, x*)

" K(x*, x*) = k(x*, x*)

3. Compute the Cholesky decomposition L of K(X, X) + Al

L = Chol[K(X, X) + AI]

4. Compute the vector a - (LT) 1 (L- 1 y)

5. Compute the posterior mean at x*:

p(x*) = K(X, x*)T a

6. Compute the posterior variance:

v = L--K(X, x*)

Gi, =K(x*, x*) - vTv



2.3.1 Building an Intermediate Surrogate with Gaussian Pro-

cesses

We consider the case where we have M models available fi, , fM, all mapping

from X C Rd - R. The Mth model has a training set SN,m with Nm training points

written in matrix form as Xm E RdxNm and Nm performances written in vector form

as Ym E RNm. The first step in our approach is to construct an intermediate surrogate

for each model fm using Gaussian Processes (GP). As explained in Section 2.2, the

posterior mean pm and variance ajPm of each GP can be computed in closed form

and used as a surrogate of fm. For each model, a covariance function km and its

matrix form Km are defined.

2.3.2 Sources of Uncertainty in Building a Multi-fidelity Sur-

rogate

There are different sources of uncertainty that arise in the construction of the proposed

multi-fidelity surrogate. In this section, we briefly describe those uncertainties and

provide some insight into their meaning.

Variance Associated with Gaussian Process

For each model fm, after conditioning the Gaussian Process with the training data

SN,M, the prior statistics are updated and a posterior variance a 2 can be computed

everywhere on the design space. The prior variance is reduced where training data is

available, forming uncertainty bubbles (Fig. 2-3). Note that the posterior variance

is not necessarily 0 at a training point xi C SN,m. Recalling the formula to compute

the posterior variance:

OUP,m(X*) =Km(x* x*) - Km(Xm, x*)T[Km(X, X) + AI]- 1 Km(Xm, x*), (2.35)

one should notice that, for a given covariance function k., aP,m does not depend on

the model output y, but only on the designs X. In some sense, when the training
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Figure 2-3: The blue dots are the training set, the solid black line is the posterior
mean pm of the GP of frn , and the grey shading represents plus or minus three times
OGP,m-

points are sparse in the design space, it is an indicator of the quality of the sampling.

Variance Associated with Fidelity

Recalling the definition of fidelity (Section 1.2), we consider a second source of uncer-

tainty to be that inherent to the model used to produce the data set. This uncertainty

is the model inadequacy defined by Kennedy and O'Hagan [24] as the "difference be-

tween the true mean value of the real world process and the code output at the true

value of the input". The model inadequacy cannot be computed as it requires to know

the true mean value of the real process. Instead, we associate model inadequacy with

fidelity and quantify it for model fm with a variance U2,. Unlike the traditional view

of multi-fidelity, we consider the fidelity to be free to change across the design space,

by letting cYm(x) be a function of the design variable x E X. This function is specific

to each model fm and is assumed to be provided as an input by an expert.

Total Variance Associated with a Model

To quantify the uncertainty of each intermediate surrogate in a way that takes account

of the uncertainty in the Gaussian Process and the uncertainty stemming from the

fidelity of the model, we propose the definition of a total variance (Tm for the model
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Vx E X, Om(X) = 2 pm(X) + O ,m(X),

where oPm(x) and um(x) are respectively the variance associated with the GP and

the fidelity of model fm.

The total variance o1 m is bounded below by the fidelity variance o-,m which means

that, no matter how many samples are used to compute the intermediate surrogate,

the uncertainty cannot be reduced below the uncertainty of the model itself. Fig. 2-4

illustrates how the intermediate surrogate is built for a given model fm.

2.3.3 Building a Multi-fidelity Surrogate: Fusion of Informa-

tion

Once the intermediate surrogates and the total variance have been computed for each

of the M models, a single multi-fidelity surrogate can be built combining all the

information available.

For design x* E X, and each model fm, we define a random variable h",m, repre-

senting the intermediate surrogate pm(x*), with the following distribution

hm ~ (lm(X*), Ol m(X*)) (2.37)

where pm(x*) and oaim(X*) are defined as in the previous section. For x* E X, it is

possible to fuse the random variables h*,1 , ... ,h*,M into a single random variable H,

assuming that they are independent (this hypothesis will be discussed in Chapter 4)

[40] to obtain:

H* ~ V(-(x*), -62 (x*)), (2.38)
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with ft(x*) and - 2 (x*) given by:

M 1 -1

52(x*) = 2: .m(x*)

2m(x=
M=1

(2.39)

(2.40)

The fused model T can then be used as a multi-fidelity surrogate of the original

quantity of interest. Fig. 2-5 illustrates this notion.

4

3

2

0

-2

ML- Model 1

- Model 2
Model Fused

-31

_.0 0.2 0.4 0.6 0.8 1.0

pdf

Figure 2-5:
the GP of

At a given design x*, the random variable h*,1 and h*,2 associated with
model 1 and 2 have the distributions represented by the blue and red

shadings. The black shading is the distribution of the random variable H. after
fusion: a normally distributed random variable of mean ft(x*) and variance - 2 (X*).

Example 1

We demonstrate the approach through a simple illustrative example. In this example,

we are interested in constructing a multi-fidelity surrogate for a performance metric

y. The design space X is one-dimensional, and there are M = 2 models available to

compute y: fi and f2. Expert opinion characterizes the fidelity of each model through

the variances a 2, and a 2

For the first example, the model fi has been sampled evenly on X = [-4,4] with

15 samples. The posterior statistics of the GP are computed, providing pi and a p,1.

41



Since the sampling covers the entire design space of interest, the variance of the GP

is negligible compared to the fidelity variance af', provided by the expert opinion.

The total variance is then computed and at', 1 1. Fig. 2-6 (top panel) shows the

intermediate surrogate p1 for model fi and ± 3ut,1. As mentioned, the total variance

(and thus the standard deviation) is dominated by the fidelity variance: additional

sampling of fi would not lead to uncertainty reduction for the intermediate surrogate

of model 1.

Model 2 has only been evaluated twice. Thus the training data is sparser than

for model 1; however, each of the two evaluations of f2 has a higher fidelity. As a

result, the variance of the GP collapses to zero at the training data (Fig. 2-7). The

total variance for model 2 increases where there is no data point and reduces to the

fidelity variance at the training points. The uncertainty of the intermediate surrogate

for model 2 , illustrated by the grey shading on Fig. 2-6 (middle panel), could be

reduced with more samples.

Fig. 2-6 (bottom panel) shows the surrogate after fusion of the two intermediate

surrogates. The multi-fidelity surrogate ft provides estimates that are close to the

samples of model 2 (red dots), because the uncertainty of model 2 is low at those

points. However, the multi-fidelity surrogate follows the trend of model 1 where

the uncertainty of model 2 increases. The overall uncertainty 52 of the multi-fidelity

surrogate is reduced everywhere on the design space X with respect to the uncertainty

(i and ot2) of each intermediate surrogate, due to the information fusion step in

our approach.

Example 2

In this second example, model 1 is identical to the first example (Fig. 2-8 top panel).

Model 2, however, has been evaluated at different designs compared to the first ex-

ample. The designs evaluated with f2 are concentrated in X = [-3.3, -3]. Therefore,
the uncertainty of the intermediate surrogate for model 2 is low in X = [-4, -2]

but increases steeply away from the samples (Fig. 2-8 middle panel). This leads

to an intermediate surrogate with low uncertainty in X = [-4, -2], but very little
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information in X = [-2,4].

Fig. 2-8 (bottom panel) shows the multi-fidelity surrogate after fusion of the two

intermediate surrogates. The result is a smooth transition from the intermediate

surrogate A 2 of model 2 in X = [-4, -2] to the intermediate surrogate pi of model

1 in X = [-2, 4]. The uncertainty in the multi-fidelity surrogate takes advantage of

the best part of each intermediate surrogate: the uncertainty of j7 collapses to the

uncertainty of A2 in X = [-4, -2], and to the uncertainty of p, in X = [-2,4].

In the next chapter, we apply this approach to a more realistic aerodynamic

analysis problem.
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Chapter 3

Application of Multi-fidelity

Surrogate Modeling to

Aerodynamic Examples

Estimating the lift and drag coefficient of an airfoil, a wing, or an entire aircraft is

necessary to assess the quality of an airplane design and evaluate its performances.

Since the dynamics of the fluid are governed by the Navier-Stokes equations, which

are difficult to solve, simplified equations have been developed to solve this problem

(e.g., Reynolds Averaged Navier-Stokes equation, Euler equations). These simplified

equations are typically derived using additional assumptions and are valid in given

regimes. This extended set of equations available to solve the same problem leads to

information of multiple fidelity. The fidelity depends not only on the equations used,

but also on the design tested, since the assumptions used to derive the equations

could be valid in certain regimes but not in others. This motivates the new definition

of fidelity proposed in Chapter 2, which no longer associates a unique fidelity to

a model, as in the traditional setting, but extends the notion allowing the fidelity

of a model to vary across the design space. In addition, the computational cost of

solving the models can vary from a fraction of second to days, which motivates the

use of surrogates, in particular multi-fidelity surrogates, especially in an optimization

context.
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This chapter demonstrates the multi-fidelity surrogate approach developed in

Chapter 2 on three aerodynamic cases. Those three problems consist of characteriz-

ing the lift coefficient CL of an airfoil. The first example is a NACA 0012 airfoil in

the subsonic regime, the second example a is a biconvex airfoil in both subsonic and

supersonic regimes, and the third example extends the second one by adding extra

expert knowledge to improve the multi-fidelity surrogate.

3.1 Subsonic Airfoil - NACA 0012 - Case 1

The NACA 0012 airfoil (Fig. 3-1) is part of the four-digit airfoils series designed by

the National Advisory Committee for Aeronautics (NACA), and is often used as a

test case for Computational Fluid Dynamics (CFD) codes. The NACA 0012 is a

symmetrical airfoil (no camber) and can be described by its half thickness, for which

the equation is given by the 4-digit series:

= --y 0.2969 -- - 0.1260- - 0.3516 - + 0.2843 ( - 0.1015 - ,

(3.1)

with c the chord, the position along the chord, r the half thickness and t the

maximum thickness to chord ratio (for the NACA 0012, t 0.12).

0.3-

0.2-

0.1 -

0

-0.1

-0.2-

-0.3 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3-1: NACA 0012 airfoil profile.
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In this first example, the quantity of interest is the lift coefficient CL of the airfoil,

the design space X is two dimensional: X = IM x I, where IM = [0, 1] is the range of

the Mach number M and I, = [0, 120] is the range of the angle of attack a. There are

two models available: fi is the lift coefficient computed by XFOIL [12] with viscous

terms, and f2 is the lift coefficient computed by SU2 [30] using Euler equations. These

models are described in the following subsections.

3.1.1 XFOIL

XFOIL is a solver for the design and analysis of airfoils in subsonic regime. It couples

a panel method with the Karman-Tsien compressibility correction for the potential

flow with a two equations boundary layer code. The laminar-turbulent transition is

governed by an eN envelope criterion. More about the XFOIL framework can be found

in [12], the boundary layer treatment is described in [14], and a general overview of

the panel method used can be found in [13].

The design space X is sampled and evaluated densely except in the region of

Mach number lower than 0.3 and angle of attack lower than 5' (Fig. 3-2a) for a

Reynolds number Re = 105. Based on this data set SN,1, the posterior mean A1

of the intermediate surrogate for model 1 is computed (Fig. 3-2b) as well as the

posterior variance a2 1 . Fig. 3-2c shows the posterior standard deviation of the GP

for XFOIL. One can notice that the uncertainty of the GP is low (O-GP,1 ~ 0-001)

where samples are available, but increases elsewhere, i.e. at Mach number larger

than 0.9 and especially in the low Mach, low angle of attack region. This means that

the intermediate surrogate p1 has a low uncertainty except in the aforementioned

regions.

XFOIL is a solver for subsonic airfoils, and the compressibility correction used

is only valid for relatively low Mach number, hence the lift coefficient computed

at high Mach number (M > 0.65) has a low fidelity. Similarly, for high angle of

attack, physical phenomena such as separation are expected, and cannot be handled

by XFOIL, leading to a low fidelity calculation of CL for a > 5. This is illustrated

in Fig. 3-2d, where the standard deviation of the fidelity of,i is low at low Mach
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number and low angle of attack, but increases in regions where XFOIL is not trusted

to capture the physics.

The total variance at' of the intermediate surrogate of XFOIL can be computed

and is shown on Fig. 3-2e. The uncertainty is dominated by the fidelity uncertainty

at high Mach number and high angle of attack, but dominated by the uncertainty of

the GP in the low Mach number and low angle of attack area.

3.1.2 SU2 Euler

Stanford University Unstructured (SU2) suite is a collection of software for the anal-

ysis of partial differential equations (PDEs) and the optimization of PDE-constrained

problems. We use SU2 to solve the Euler equations on a NACA 0012 airfoil using a

finite volume scheme. Details about the equations solved and their implementation

can be found in [30]. Because, SU2 is more expensive to evaluate than XFOIL, the

design space is sampled uniformly on X but more sparsely (Fig. 3-3a). Those evalu-

ations define a second data set SN,2 used to construct the intermediate surrogate for

f2 (Fig. 3-3b).

The posterior variance orp,2 exhibits the bubble behavior shown in Section 2.3.2,

but only in one direction of the design space 3-3c. This can be explained by the dif-

ferent characteristic length-scales of this problem: the variations of the lift coefficient

with respect to the angle of attack have a longer length scale than the variations of

CL with respect to the Mach number. Hence, the sampling in the axis of the Mach

number appears sparser than the sampling in the axis of the angle of attack a, leading

to uncertainty bubbles in the Mach number axis.

Because the Euler equations do not account for viscous terms, the fidelity variance

of SU2 is low only at low Mach number and low angle of attack (Fig. 3-3d). In this

region, 07f, 2 > f,l because XFOIL has a better representation of the physics than the

Euler equation solved by SU2.

The total variance Uo2 of the intermediate surrogate for f2 is dominated by the

fidelity variance at high Mach number and high angle of attack, and is dominated

by the variance of the GP in the low Mach number, low angle of attack region (Fig.
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3-3e).

3.1.3 Combining Intermediate Surrogates

Fig. 3-4 shows the results after combining the two intermediate surrogates A1 and p2:

the multi-fidelity surrogate pt exhibits the behavior of pi (respectively P2 ) in region

where the uncertainty of p1 (respectively p 2 ) is low (Fig. 3-4e). In some sense, the

multi-fidelity surrogate uses XFOIL where data is available, and pads with data from

SU2 elsewhere. The uncertainty in the multi-fidelity surrogate is high in the region

where neither of the model has a high fidelity (high Mach number and high angle of

attack), but has been reduced in the low Mach number, low angle of attack region

where model 1 (XFOIL) is lacking samples (Fig. 3-4f) but model 2 has been sampled

uniformly.

3.2 Supersonic Biconvex Airfoil - Case 2

In this second example, we consider a supersonic airfoil: a biconvex airfoil with a

5% thickness Fig. 3-5. The quantity of interest is the lift coefficient CL and the

design variables are the Mach number M E IM = [0, 2] and the angle of attack

a E 1, = [0, 60]. There are three models available: the two first models are valid

in the supersonic regime [28], fi is a shock expansion code, f2 is a supersonic linear

panel code. The third model f3 is XFOIL in inviscid mode for the subsonic regime.

3.2.1 Shock Expansion Theory

The shock expansion (SE) method solves the pressure at the surface of the airfoil

based on geometry changes using non-linear equations. The lift coefficient CL is then

computed by integrating the local pressure coefficient on the surface of the airfoil.

The design space is sampled densely in the supersonic regime Fig. 3-6a. However,
the shock expansion code does not return any result for some designs, which are

removed from the data set SN,i shown on Fig. 3-6b. The posterior mean p, and
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Figure 3-5: Biconvex airfoil profile.

posterior variance oGI are computed using the proposed approach (Fig. 3-6c and

Fig. 3-6d). Wherever the shock expansion method cannot provide results, the fidelity

variance 0-7,1 is set to a high value (Fig. 3-6e). The total variance t' can be computed

and leads to a high uncertainty in the surrogate model where there is no data available.

The uncertainty where samples are available is approximately the uncertainty due to

fidelity (Fig. 3-6f).

3.2.2 Panel code

The panel code (PC) also computes the pressure on the surface of the airfoil but

assumes a linear relationship between the changes in the geometry and the changes

in the local pressure. The lift coefficient is then computed by integrating the pressure

coefficient.

Since the panel code is only valid in supersonic regime, the design space is only

sampled for Mach numbers M > 1. The data set SN,2 is once again used to compute

the intermediate surrogate A 2 and the posterior variance orp,2. It can be noticed

that UGP,2 steeply increases in the subsonic region, because no sample is available

(Fig. 3-7c). The fidelity variance -2 is set to be low in the supersonic region and

high in the subsonic region (Fig. 3-7d). The results are shown in Fig. 3-7.
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3.2.3 XFOIL

XFOIL is used in inviscid mode. Since XFOIL is only valid in subsonic regime, the

design space X is sampled for Mach number M e [0, 1]. The data set is shown on

Fig. 3-8a: because of the sharp leading edge of the biconvex airfoil, we expect that

the computation will lead to flows with unrealistic high velocities around that leading

edge, and invalid compressibility corrections, which explain the noisy evaluations at

high Mach number. This corresponds to a common situation where models are used

outside of their range of validity; the proposed approach accounts for such situations

by allowing to increase the fidelity variance in regions where the model is invalid.

With this data set SN,3 (Fig. 3-8a), the intermediate surrogate A3 is computed

(Fig. 3-8b) as well as the posterior variance 07P 3 (Fig. 3-8c). The noisy measure-

ments lead to a posterior mean p3 that poorly approximates the lift coefficient and the

posterior variance o- , is relatively high. Recalling that, for given hyper-parameters,

the posterior variance only depends on the location of the samples (not on the val-

ues of the samples), this results can seem surprising because the sampling is quite

uniform. However, the hyper-parameters are computed to maximize the marginal

likelihood, which depends on the observations. Hence, the noisy measurements lead

to a regularizer hyper-parameter A (or noise hyper-parameter) larger than if the data

were not noisy. The regularizer hyper-parameter enters directly in the calculation of

the variance through the covariance function, which explain how noisy measurements

yield high posterior variance a,
As previously mentioned, the results are not expected to capture reality for high

Mach number, hence the fidelity variance g2' is set to steeply increase when the com-

pressibility correction is not valid (Fig. 3-8d). Finally, the total variance is computed

(Fig. 3-8e).

3.2.4 Combining Intermediate surrogates

The intermediate surrogates and the multi-fidelity surrogate are shown in Fig. 3-9

and their uncertainty in Fig. 3-10. After fusion of the three intermediate surrogates,
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of the three models (SE, PC,

the multi-fidelity surrogate is in good agreement with the data of SN,1 and SN,2,

but poorly approximates the subsonic behavior. In the supersonic region, the two

intermediate surrogates p, and p 2 have a low uncertainty, thus P3 has little influence

on j7 in that region. In the subsonic region, both pi and p2 have high uncertainty.

The multi-fidelity surrogate is dominated by p3 and its uncertainty is driven by the

uncertainty of the GP of model 3 at low Mach number and by the uncertainty of the

GP and the fidelity of model 3 in the transonic region. Since the uncertainty is mostly

explained by model 3, the solution to reduce the variance in the subsonic regime would

be to sample the transonic region with a model valid in transonic regime and improve

the GP of model 3 in the low Mach number region (for instance by restricting its

evaluation to the domain where the compressibility correction is valid).
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3.3 Supersonic Biconvex Airfoil: Incorporating Ad-

ditional Expert Information - Case 3

We now consider the same example as Section 3.2, but bring additional expert knowl-

edge to the data set produced by XFOIL. As previously mentioned, because of the

sharp leading edge of the biconvex airfoil, we expect that the computation will lead

to flows with unrealistic high velocities around that leading edge, and invalid com-

pressibility corrections. This motivates the choice to remove from the data set SN,3

noisy points (caused by numerical effects). We go further to ensure a "clean" data

set: we remove from SN,3 any point with a lift coefficient CL > 0.5. This could be

considered as information given by an expert on what realistic values should be.

With this data set SN,3 (Fig. 3-11a), the intermediate surrogate P3 is computed

(Fig. 3-11b) as well as the posterior variance U2P,3 (Fig. 3-lic). The results are not

expected to capture reality for high Mach number, hence the variance of the fidelity

is set to steeply increase when the compressibility correction is not valid (Fig. 3-11d).

Finally, the total variance is computed (Fig. 3-11e).

Combining Intermediate Surrogates

The intermediate surrogates and the multi-fidelity surrogate are shown in Fig. 3-12

and their uncertainty in Fig. 3-13. After fusion of the three surrogates, the multi-

fidelity surrogate is in good agreement with the data of each data set (SN,1, SN,2 and

SN,3). This improvement is explained by the additional expert knowledge incorpo-

rated that significantly improved the intermediate surrogate /13 and reduced its total

variance oQ, to the fidelity variance u 3. In the transonic region (where no samples

are available), )7 is dominated by the intermediate surrogate p3 (Fig. 3-12d). The

uncertainty of the multi-fidelity surrogate is high in the transonic region, indicating

that the values of 7 should be used with caution in that area (Fig. 3-13d). Since

the uncertainty is mostly explained by the lack of samples rather than evaluations of

low fidelity, the solution to reduce the variance in the transonic regime would be to
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Figure 3-11: Case 3. XFOIL data set SN,3 and posterior mean /p3 and standard

deviation OGP,3, fidelity standard deviation Jf,3 and total standard deviation Ot,3.
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Figure 3-12: Case 3. Intermediate surrogate of the three models (SE, PC, XFOIL)
and multi-fidelity surrogate after fusion.

sample the transonic region with a model valid in the transonic regime.
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Chapter 4

Conclusions

4.1 Summary

One of the objectives of this work is to construct a multi-fidelity surrogate able to

handle non-hierarchical relationships among models. This is achieved by proposing a

new quantitative definition of fidelity based on variance. This definition allows us to

extend the notion of fidelity beyond the simple classification of low and high fidelity.

By doing so, we are able to quantify by how much the fidelity of two models differs

for a given design. This point is crucial in creating a multi-fidelity surrogate

that incorporates all the data available, giving more weight to high fidelity

information compared to lower fidelity information. The variance that quantifies the

fidelity of a model is characterized by expert opinion and can vary over the design

space. This allows us to handle non-hierarchical relationships among models.

Finally, a variance-based definition of the fidelity yields a quantification of the

uncertainty of the multi-fidelity surrogate.

The proposed approach is applied to two aerodynamic cases. In the NACA 0012

case, the multi-fidelity surrogate is shown to improve the surrogate prediction and

to reduce uncertainty in regions where one model is lacking samples but the other is

densely evaluated. This is an interesting feature especially in a multi-fidelity opti-

mization setting. Indeed, it is common that an expensive model is sparsely evaluated,

while a cheaper model is used to sample the design space more densely. In that situ-
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ation the multi-fidelity surrogate mimics the behavior of the available higher fidelity

samples , and uses the lower fidelity points elsewhere.

The biconvex airfoil case highlights how the multi-fidelity surrogate is able to

identify regions where the predictions have a high uncertainty. With our approach,

it is possible to pinpoint the source of uncertainty: either the fidelity of the model

is too low, or the uncertainty due to sparse sampling is too high. This diagnostic is

essential to devising strategies regarding which model should be evaluated next, and

where. This second case also illustrated how expert opinion can be added to improve

the characterization of each model's uncertainty and thus improve the quality of the

multi-fidelity surrogate.

4.2 Future Work

Exploiting Model Relatedness

The proposed approach aimed at leveraging information of all available fidelities.

This was achieved by constructing an intermediate surrogate for each model and

fusing the information into a single multi-fidelity surrogate. This effort toward taking

advantage of all data available could be developed further by exploiting the existing

structure between models. Given that every model represents the same quantity of

interest, these models are likely to be related in some way. In the proposed approach,
this structure is not explicitly exploited. We plan on addressing this point by using

machine learning techniques such multi-task learning (e.g., [5, 6]) that learn every

model at the same time by jointly using their data sets . It has been shown that this

can improve the learning process when several models are well correlated [31].

Relaxing the Independence Assumption of the Fusion Step

If the relationship between two models is learned in the form of a covariance [6],
additional improvement can be made to the proposed approach. Specifically, in the

fusion step of the algorithm, the assumption of independence of the random variable
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h*,m representing the intermediate surrogate of model fm can be relaxed to fully

integrate the covariance terms [40]. This would result in a more realistic estimation

of the variance of the multi-fidelity surrogate, avoiding over-confident predictions.

Optimization

Future work also includes developing optimization strategies leveraging multi-fidelity

surrogates. These strategies needs to address two possibly competitive goals:

* exploring the design space to find the optimum of the quantity of interest

" sampling designs that will improve the multi-fidelity surrogate in a sequential

manner

The challenge is to devise algorithms that not only select a design to evaluate, but

also suggest which model should be used for the evaluation based on its fidelity.
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