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Abstract

As the field of robotics continues to advance and the capabilities of robots continue
to expand, there is a strong incentive to introduce robots into traditionally human-
only domains. By harnessing the complementary strengths of humans and robots,
the human-robot team has the potential to achieve more together than neither could
alone. To allow for the paradigm shift from isolation to collaboration, however, tech-
nologies in support of close-proximity human-robot interaction must be developed.

The first contribution of this thesis is the development and evaluation of a real-time
safety system designed specifically for close-proximity human-robot interaction. The
developed safety system, which uses a continuously updated virtual representation of
the workspace for accurate human-robot separation distance calculation, is shown to
allow for safe human-robot collaboration at very small distances of separation and
with a very low latency. Furthermore, it is shown that this soft real-time system does
not require hardware modification, which makes it easy and inexpensive to deploy on
current industrial robots.

To understand how humans respond to adaptive robotic assistants, and whether
the response leads to efficient and satisfying interaction, a robot control architecture
capable of Human-Aware Motion Planning, a type of motion-level adaptation, is im-
plemented. This architecture is then used in a human-subject experiment in which
participants perform a collaborative task with the robot in two distinct motion plan-
ning modes: human-aware and standard. The fluency of the team in both modes is
then compared with the use of quantitative metrics like task execution time, amount
of concurrent motion, human idle time, robot idle time, and human-robot separa-
tion distance, as well as a subjective evaluation of the robot based on questionnaire
responses. It is shown that Human-Aware Motion Planning leads to improvements
across all quantitative metrics and to a more satisfied human co-worker.

Thesis Supervisor: Julie A. Shah
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

With the rapid progress of robotics related technologies in the recent years, robots

have become increasingly prevalent in a wide variety of domains. In the years 2000-

2011, the average increase in sales of industrial robots was 36.39%, with the total

number of industrial robots sold nearly doubling from 1.15 million to 2.28 million in

that decade. In the same year span, the average increase in sales of personal and

private service robots was even more impressive at 74.15%, growing from 112,500 to

13.4 million in the same year span. This boom in the beginning of the 21st century is

even more apparent in the fact that when considering the worldwide sales of robots

up to the end of 2011, 93.31% of all robots sold since 1961 were sold since the year

2000 [31].

While this huge boom is mostly due to the tremendous increases in sales of ser-

vice robots, the growth in deployment of industrial robots worldwide is also quite

substantial, as can be seen in Fig. 1-1. In many domains where industrial robots

are used today, however, robots are often deployed in complete isolation from people.

In these domains, the flow of work is designed specifically such that robots interact

with people as little as possible, with cages and barriers separating the two types of

agents.

While physical separation of people and robots can be an effective strategy for

15
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Figure 1-1: Total industrial robots sold (in millions of units) up to the end of given
years in the range of 2000 to 2011. Data from [31]

some applications, a lack of human-robot integration prevents robots from being

utilized in domains that stand to benefit from robotic assistance. The final assembly

of aircraft and automobiles, for example, is still mostly a manual operation with

minimal use of automation (SME Input, Boeing Company; SME Input, BMW), as

can be seen in Fig. 1-2.

While the capabilities of robotic systems are continuously expanding, many tasks

in such domains require a level of judgment, dexterity, and flexible decision mak-

ing that surpasses current robots' abilities, leading to the tasks becoming human-

dominated. While this is the case, there are also many non value-added tasks in

these domains that could be performed by robotic assistants. Allowing robots to

collaborate with people in shared workspaces and perform such tasks thus has the

potential to increase productivity and efficiency, providing a strong incentive for the

development of technologies that allow such collaboration.

1.2 Background

A significant amount of research has been done in the recent years in support of this

goal across a variety of complementary domains. The first step in creating robots that
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Figure 1-2: Examples of tasks which are done mostly manually: final assembly of
airplanes (left) and automobiles (right) [Boeing Company, BMW]

can successfully collaborate with people is allowing the robots to navigate the shared

workspace, requiring the development of specialized path planning algorithms and

frameworks designed with the human element in mind. Sisbot et. al. developed one

such framework, which utilizes parameters like human-robot separation distance, the

human's field of vision, and his or her stance to generate safe and socially-acceptable

robot paths [33]. An extension of this framework also reasons on task constraints and

human kinematics [32]. To further enhance human-robot co-navigation, Chung and

Huang investigated the development of a predictive path planning framework based

on pedestrian motion models trained via statistical learning methods [14]. Bennewitz

et. al. showed that a combination of clustering and Hidden Markov Models could

be used to learn and predict human motion patterns, which allows for improved co-

navigation [12].

Prediction can also be deployed on the task level, with a large variety of approaches

being investigated. Prior work has indicated that observing changes to the entropy

rate of a Markov Chain, produced from a task description encoded as a Markov De-

cision Process, could be utilized to encode the uncertainty of the robot about what

action the human will perform next [29]. Lenz et. al. used a high-level architecture

for joint human-robot action which could then be used to predict human tasks based

on knowledge databases and decision processes [24]. Alami et. al. approached this

17



problem by encoding discrete sets of human and robot actions, which allowed for the

incorporation of task-specific rules and preferences, which could then be utilized to

predict likely sequences of human actions [10]. Kwon and Suh showed how Bayesian

networks could be used for simultaneous inference on temporal and causal informa-

tion, allowing to predict what task a robot should take and also when it should do

it [23]. Hoffman and Breazeal, on the other hand, used a formulation based on a

first-order Markov Process, and showed it could be successfully used for anticipatory

action selection [20].

It has been shown that one can also make predictions on human actions without

specific task models, but instead by observing motion features of the human worker.

Mainprice and Berenson, for example, showed that early stages of human motion can

be used to predict what action a human is taking in a reaching task, and that those

predictions could be used to select tasks which avoid motion conflict [25]. In the

domain of advanced driver-assistance systems, Doshi and Trivedi showed that head

motion can be a useful factor in predicting human actions [16].

Conversely, allowing the human to be able to predict robot actions is also im-

portant. Legibility of robot trajectories, meaning their successfully portrayal of the

robot's intent, is often cited as of key importance for fluid human-robot interaction

[33, 32, 18, 17]. Dragan et. al. has shown, however, that legible robot trajectories

are often not the same as what the person would predict, making legibility and pre-

dictability contradictory properties of robot motion [18]. Indeed it has been shown

that there needs to be a careful balance between these two properties, as the benefits

of legibility suffered when robots moved beyond a "trust region" of expectation [17].

Being able to predict what action a robot is taking, however, is just one of many

aspects one must take into account when considering the effects robotic assistants have

on humans and the implications of these effects on the quality of the interaction. Arai

et. al. showed that several parameters, including separation distance, end effector

speed, and advance notice of robot motion, have a significant effect on the mental

strain of human operators as measured by skin potential response [11]. It can be

seen from the work by Meisner et. al., in an experiment evaluating a robot controller
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designed for human-friendly trajectories, that preventing collision between humans

and robots in a co-navigation task is not sufficient to maintain human comfort [27].

The effects of robotic assistants on people can also be seen in the work by Unhelkar.

et. al., who showed that there are significant differences in team dynamics in human-

robot and human-human teams as measured by interaction and idle times as well as

subjective evaluations of team fluency, situational awareness, comfort, and safety [35].

In terms of human response to adaptive robots, Hoffman and Breazeal showed that

human-robot teams in which participants worked with robots that anticipate their

actions performed a task more efficiently and had different perceptions of the robot's

contribution to the team's success [20].

While a significant amount of work has been done in a variety of domains in

support of human-robot collaboration at close distances of separation, the evaluation

of each work was limited to the particular components being developed (e.g. motion

planning, action prediction, etc.). This focused evaluation led to a lack of analysis of

an end-to-end system that incorporates the various components into a comprehensive

system. Additionally, some of the research was evaluated solely in simulation without

analyzing how real human co-workers respond to the proposed improvements. The

focus of this work, therefore, was the implementation and evaluation, through human-

subject experiments, of an adaptive robotic assistant that incorporated a functional

real-time safety system along with motion-level adaptation.

1.3 Real-Time Safety System for Human-Robot

Interaction

When dealing with close-proximity human-robot interaction, the primary concern

that must always be addressed first is safety. While a variety of research in compli-

mentary topics has been performed in support of this goal, no prior safety system

architecture was found to be capable of supporting continuous human-robot inter-

action at low distances of separation in a robust manner. Additionally, research in
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safety systems often focuses on developing specialized actuators or even entire new

robotic platforms, which does not provide a solution for enabling safe human-robot

interaction with currently deployed robots.

Consequently, the first contribution of this work, outlined in Chapter 2, focused on

the implementation of a real-time safety system which would allow for close-proximity

interaction with currently deployed industrial robots. In the first part of the chapter,

two distinct categories of safety are defined, physical and psychological, both of which

must be accounted for in a successful safety system implementation. Next, the current

state of formal safety standards for human-robot collaboration is discussed, along with

an examination of past research in human-robot safety systems. The implementation

details, both on the hardware and software sides, are then discussed.

The next sections of the chapter then focus on describing why the chosen imple-

mentation scheme, namely the use of a virtual environment constructed according to

the position of the human and robot in the workspace, is ideal for safe close-proximity

interaction. It is shown that psychological safety can be accounted for by adjusting

the tuning parameters of the robot's speed adjustment function, which provides flex-

ibility in defining the manner in which the robot reduces speed. Next, it is shown

that physical safety can be maintained as well, even at separation distances as low as

6 cm.

In the final sections of the chapter, work done in improving the latency of the

safety system is described, followed by a latency evaluation. It is shown that the

implemented safety system is soft real-time, with an average latency of 6.13 ms, and

with latencies expected to be below 9.64 ms with 95% probability, below 11.10 ms

with 99% probability, and below 14.08 ms with 99.99% probability.

1.4 Human-Aware Robot Control Architecture

While guaranteeing safety in human-robot interaction is necessary, ensuring safety

alone does not necessarily lead to efficient human-robot collaboration. Consequently,

a robot architecture which monitors the progress of a task and adjusts robot mo-
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tions to avoid motion conflicts was developed, as described in Chapter 3. First,

Human-Aware Motion Planning, an adaptive motion planning technique which uti-

lizes prediction of human actions and workspace occupancy to plan robot motions

which avoid motion conflict, is discussed. Next, the various sub-components of the

system architecture are described, including the safety system, human action track-

ing, action override, and robot control. The approach used for the generation of

human-aware robot trajectories is then discussed in detail. Finally, the efforts in

improving the robustness and latency of the architecture are described.

1.5 Analysis of Effects of Human-Aware Motion

Planning

Once an architecture capable of supporting Human-Aware Motion Planning was de-

veloped, the next step of this work was to analyze the effects of this motion planning

technique on human-robot collaboration at low distances of separation, which is the

focus of Chapter 4. As mentioned in the beginning of this chapter, evaluation of tech-

nologies developed for human-robot collaboration is often carried out in simulation

and only for specific sub-components instead of for a full end-to-end system. As a

result, the developed robot architecture was used in a human-subject experiment in

which participants collaborated with an industrial robot to complete a task, and the

response of the human participants and effectiveness of the human-robot team was

evaluated.

The dependent measures considered in the experiment included the quantitative

team fluency metrics of task execution time, amount of concurrent motion, human

idle time, robot idle time, and human-robot separation distances, as well as subjec-

tive evaluation of participants' satisfaction with the robot as a teammate and their

perceived safety and comfort. The results indicate that Human-Aware Motion Plan-

ning leads to improvements in all of these categories when compared to a baseline,

shortest-path motion planning method. When working with a human-aware robot,
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participants completed the task 5.57% faster (p = 0.038), with 19.9% more concur-

rent motion (p <0.001), 2.96% less human idle time (p = 0.019), 17.3% less robot

idle time (p <0.001), and a 15.1% larger separation distance (p <0.001). In terms of

subjective evaluation, when describing the human-aware robot, participants agreed

more strongly with "I trusted the robot to do the right thing at the right time"'

(p <0.001), "The robot and I worked well together" (p <0.001), "I felt safe when

working with the robot" (p <0.001), and "I trusted the robot would not harm me"

(p = 0.008) and disagreed more strongly with "The robot did not understand how I

wanted to do the task" (p = 0.046), "The robot kept getting in my way" (p <0.001),

and "The robot came too close to me for my comfort" (p <0.001). The implications

of these results and a discussion of the statistical analysis is also described in Chapter

4.
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Chapter 2

Implementation and Evaluation of

a Real-Time Safety System for

Human-Robot Interaction

2.1 Introduction

In this chapter, we describe the development and evaluation a low-latency, real-time

safety system capable of turning a standard industrial robot into a human-safe plat-

form. The system ensures the physical safety and comfort of the user without the

need for specialized actuators or any other modification of the robot's hardware,

and is capable of supporting precise stopping thresholds that allow for human-robot

interaction (HRI) at low distances of separation.

2.1.1 Classifying Safety

As mentioned in the previous chapter, enabling humans and robots to work together

in close proximity to each other would not only allow for more efficient human-robot

collaboration in fields where humans and robots already coexist, but also for the

introduction of robots into many previously human-only domains. However, safety

will always be the primary concern in any application of HRI, and as various HRI
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technologies are researched, it is of the highest importance that methods guaranteeing

human safety during human-robot interaction are developed in parallel.

One can classify safety into two categories: The first, and most obvious, is phys-

ical safety. To maintain physical safety, all unwanted human-robot contact must be

prevented, and if contact is required by the task at hand or is inevitable for another

reason, the forces exerted by the robot on the human must fall below limits that could

cause discomfort or injury.

The second - and often overlooked - category is psychological safety. In the

context of human-robot interaction, this means ensuring that human-robot interaction

does not cause excessive stress and discomfort for extended periods of time. Take,

for example, a hypothetical robotic system capable of moving a sharp end effector at

very high speeds within centimeters of a human operator's arm. While the system

might be able to prevent unwanted injury via contact, a human working with such

a system is likely to be in a state of constant stress and discomfort, which can have

very negative long-term health effects [26].

2.1.2 Safety Standards for Collaborative Robots

In light of these categories of safety, it is therefore critical that methods ensuring both

physical and psychological safety are developed and designed to meet international

standards. Close-proximity interaction between humans and robots is still a fairly

new and developing interaction paradigm, and, as such, formal definitions of safety

within this context are still under development. Toward the goal of establishing

these definitions, the International Organization for Standardization (ISO) developed

the ISO 10218 international standard, entitled "Robots and robotic devices - Safety

requirements for industrial robots," which was most recently updated in 2011 [1].

A technical specification (ISO TS 15066), entitled "Robots and robotic devices -

Safety requirements for industrial robots - Collaborative operation," which provides

information and guidance on how to achieve the safety standards described in ISO

10218 specifically for collaborative robots, is still under development [5].

While specific safety standards are not yet fully defined, the National Institute of
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Standards and Technology (NIST) has provided guidance on the two main areas of

focus of the ISO TS 15066: speed and separation monitoring and power and force

limiting. In terms of the former, the guidance intends to enable collaborative robots

to track people within a workspace and adjust speed according to the distance of sepa-

ration between the human and robot. In the second area of focus, the aim is to enable

robots to moderate applied forces to ensure that they remain below biomechanical

limits. Additionally, the project is intended to develop performance measures to test

how well a robot conforms to the required standards [8]. This guidance provided

by NIST allowed us to pursue the development of an early implementation of the

forthcoming standards.

2.2 Background

The task of maintaining safety during human-robot collaboration is multidisciplinary

in nature, and thus has been approached in a variety of ways. In terms of the psy-

chological aspect of safety, it has been shown that providing physical safety through

collision avoidance is not sufficient to maintain human comfort [27]. Furthermore, it

has been shown that several parameters, including separation distance, end effector

speed, and advance notice of robot motion, have a significant effect on the mental

strain of human operators, even if there is no contact between the human and robot

workers. The same research also indicated that having grown accustomed to working

with robots does not necessarily diminish these effects [11].

These results illuminate the importance of not only maintaining physical safety,

but also ensuring that robot motions are comfortable for the humans interacting with

the robot. Prior work that has taken this point into consideration evaluated param-

eters including the human's field of vision, posture, and kinematics when planning

safe and comfortable robot paths [33, 32].

With regard to the physical aspect of safety, work has been done toward mini-

mizing the negative effects of human-robot collision, as well as preventing collision

from occurring altogether. Work on collision reaction control strategies has shown
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that switching to torque control with gravity compensation upon impact can greatly

reduce the force exerted on the human in the event of a collision [19]. New types

of actuators with variable impedance have been developed, and show great potential

in allowing for intrinsically safer robots by reducing joint stiffness when the robot is

moving quickly [34].

In the realm of collision prevention, innovation in 3D sensor fusion and the use of

dynamic safety zones appears to be a promising method [30]. The ability to predict

human actions also has the potential to prevent collision. On the human motion

level, recent work has shown that human actions can be predicted from early stages

of movement [25]. On the task level, prior work has indicated that observing changes

to the entropy rate of a Markov Chain, produced from a task description encoded as

a Markov Decision Process, could be utilized to encode the uncertainty of the robot

about what action the human will perform next [29]. In other work, the encoding

of discrete sets of human and robot actions allowed for the incorporation of task-

specific rules and preferences, which could then be utilized to predict likely sequences

of human actions [10].

Research and innovation in these various fields has led to the development of new,

inherently human-safe robots, such as the RethinkRobotics Baxter, which features

force sensors at each joint and Series Elastic Actuators that minimize the force of

impact [4]; or ABB's Dual Arm Concept Robot, which has built-in power and speed

limitation, as well as software-based collision detection [2]. Besides the creation of

brand-new robot designs, work in the field of robot safety has also led to the develop-

ment of add-on technologies, such as ABB's SafeMove, which provides programmable,

complex safe zones by monitoring robot speed and position [22].

While many of these works have yielded very promising results for maintaining

human safety in HRI, a great majority of them focus on technologies that can be

applied to new robot designs, rather than to existing robotic platforms. While uti-

lizing new robot designs like the Baxter and ABB's Dual Arm Concept Robot and

developing more human-safe robots with the technologies mentioned above can ensure

human safety in HRI, purchasing new robots or retrofitting existing robots with new
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hardware components can be cost-prohibitive or physically impossible. With an esti-

mated 1.2 to 1.5 million industrial robots already in use worldwide [3], there is great

incentive to design a solution that can turn these robots into human-safe platforms

without the need for hardware modification.

In the work mentioned above that does not explicitly require new actuators or

arrays of internal robot sensors, safety systems are often designed such that the robot

completely avoids a large region where the human is located, or uses approximations

of human and robot locations that are too coarse or uncertain to allow for the robot

and human to interact in close proximity to one another. As a great deal of industrial

work is still performed by humans - even in fields where robots have been successfully

integrated, such as the automotive and aerospace industries - many industrial appli-

cations stand to benefit from the introduction of robotic assistants that aid human

workers. However, this assistance will require close-proximity HRI, which makes the

development of a safety system capable of operating effectively at small separation

distances attractive.

The goal of the work presented in this chapter was, therefore, to build upon prior

work in the field in order to overcome the abovementioned drawbacks and create

a robot safety system capable of turning current, standard industrial robots into

human-safe platforms for close-proximity HRI, without the need for robot hardware

modification.

2.3 Required Functionality

In the context of this work, the functionality required by the safety system was

guided by its main application: to enable the use of a 6 DOF industrial robot (an

ABB IRB-120, see Section 2.4.1 for details) as a collaborative assistant for human

subject experiments in the Interactive Robotics Group. In order to achieve this

goal, the system was designed to ensure safe interaction by preventing unwanted

contact between the robot and experiment participants by following the ISO TS

15066 guidance given by NIST described in Section 2.1.2, specifically the adjustment
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of speed based on separation distance between the human and robot.

In terms of the second main area of focus of the ISO TS 15066, power and force

limiting, due to a lack of force sensors on the ABB IRB-120, it was decided that the

speed limiting would be set such that the robot stops completely before coming in

contact with the person. This effectively eliminated the need for force regulation,

as the robot would never come in contact with the person and thus would not be

exerting any force at all. This decision limited the types of tasks the robot could

collaboratively perform with a human to only those which do not require contact

between the human and robot, but this compromise was necessary due to a lack of

force sensors on the robot.

From a technical standpoint, the safety system has two important requirements.

First, the system has to be designed such that it can run as a separate process, inde-

pendent of any other programs that might be executed on the robot. This allows for

the safety system to be deployed on the robot for virtually any experiment involving

the ABB IRB-120 robot without interfering with, and conversely getting interference

from, robot control software developed for a particular experiment or task. This was

achieved through a multithreaded software design described in Section 2.4.2.

The second important technical requirement was that a low latency needed to be

achieved for the safety system to work effectively and robustly. Several challenges

were met in ensuring low system latency, and the various improvements which ad-

dressed these challenges are described in Section 2.4.4 and the analysis of the latency

performance of the system is described in Section 2.5. Additional latency challenges

caused by the integration of the robot control software used in our experiments and

the solutions are also described in the next chapter, in Section 3.3.2.
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2.4 Implementation

2.4.1 Hardware

The robot used in the implementation and evaluation of the safety system described

in this work is the ABB IRB-120. This is a standard industrial robot with no built-in

safety systems for HRI and noncompliant joints, capable of moving at speeds as high

as 6.2 m/s [21]. Without an additional safety layer, this type of robot is required

to operate within a safety cage - which, when opened, stops the robot immediately.

Consequently, it is not capable of safe HRI in its stock form.

A PhaseSpace motion capture system was utilized to sense the position of the

human worker within the workspace. This type of active motion capture system pro-

vides accurate human localization that is robust to temporary occlusions. While this

type of system might not be a viable tracking solution in factory environments, the

developed safety system can be utilized with any sensing system capable of provid-

ing accurate localization data. As advancements are made in the field of computer

vision and new 3D sensing hardware is introduced, the motion capture system may

be replaced by a less-intrusive option, if necessary.

The computer platform used to run the safety system software was a standard

Windows 7 machine with a Core i7-3610QM 2.3GHz processor.

2.4.2 Software

The software implementation of the safety system consists of several subsystems that

exchange information in a coordinated, low-latency fashion: the core program, the

motion capture software, the robot software running on the ABB IRB-120's controller,

and a virtual workspace.

* Core Program: The core program serves as the main logic of the system. It

connects to the other sub-components and relays information between them via

TCP sockets. The core program also performs some geometrical calculations

used by other sub-components and logs data for system analytics.
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" Motion Capture Software: This sub-component is responsible for capturing the

most recent position of the human. The software takes in raw data from the

motion capture system, transforms it into the correct coordinate frame, and

relays it to the core program.

" Robot Software: This portion of the system software resides on the robot's

controller. It continuously monitors the robot's configuration and relays this

information to the core program. The software is also responsible for adjusting

the robot's speed according to separation distance data received from the core

program. The code runs as a secondary task on the robot's controller, com-

pletely independent of the primary task used to command the robot's motions.

Consequently, the safety system can run in the background of any task given to

the robot, making it easy to use for virtually any task the robot is programmed

to perform with a human co-worker.

" Virtual Workspace: This sub-component is responsible for constructing a vir-

tual representation of the workspace shared by the human and robot, based

on information received from the motion capture system and robot controller,

using OpenRAVE, a robot simulation environment [15]. The current robot po-

sition is translated into the virtual workspace based on the known position of

the robot's base, its 3D CAD model, and the joint angles received from the

robot's controller. In the particular workspace in which the robot and safety

system were tested, the only portion of a human worker the robot was able to

reach was the right arm and hand. Consequently, the position of the human

in the virtual workspace was approximated by two concentric cylinders: one

cylinder for the forearm and one larger-diameter cylinder for the hand. The

length of the -forearm cylinder was adjusted to the particular user's arm length

based on information received from the motion capture system. The diameters

of the two cylinders were such that the virtual cylinders completely enclosed

the user's arm and hand. A sample workspace configuration and corresponding

virtual representation are depicted in Fig. 2-1. Once the configuration of the
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human and robot is updated in the virtual environment, the separation distance

between them is accurately calculated and relayed to the core program, which

in turn relays this information to the robot's controller for speed adjustment.

Figure 2-1: Real workspace (top) and corresponding virtual representation (bottom)

2.4.3 Implementation Discussion

The decision to use this type of implementation scheme - a virtual environment

constructed according to the position of the human and robot in the workspace -

as opposed to, for example, a purely vision-based approach, was made in order to

fully leverage the known robot configuration, rather than approximate it via another

method. Since the position of the human is also accurately known, the virtual en-

vironment implementation scheme allows for very accurate separation distance mea-
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surements in real-time, resulting in precise robot speed control. The robot's speed

was adjusted according to a function of the form:

{ - 0(d-dstop)0 j {d I dsto, d dslow}

a (d) = {d I d > dslow}

1 {d I d < dsto}

In the above form, a represents the percentage reduction in the robot's speed

expressed as a decimal, d is the current separation distance between the human and

robot, dto, is the distance at which the robot should be stopped, d,,1 , is the distance

at which the robot's deceleration begins, and / and y are tuning parameters that

define the behavior of the speed reduction function; for example, how quickly the

speed should drop off and whether the bulk of the reduction should occur near dt,

or dlow.

The ability to precisely control the speed of the robot as a continuous function

of separation distance allows the safety system to be effective at very low separation

distances. At moderate robot speeds and with the proper choice of parameters in the

speed reduction function, the safety system is effective with the tested hardware at

dstop values as low as 6 cm. This means that the human and robot can safely perform

tasks in very close proximity to one another, which is not possible with other safety

systems that incorporate coarse, discretized workspace occupancy approximations or

discrete safety zones.

An additional benefit of precise robot speed control based on separation distance

is that the system can be tuned such that the deceleration of the robot occurs at a

rate comfortable for the human. By properly tuning the parameters, we can have

the robot ease to a stop gently and smoothly, as opposed to stopping abruptly or

using coarse "slow" and "stop" zones that cause sudden changes in robot speed. Fig.

2-2 depicts three possible modes of speed reduction based on the tuning of # and

7 in the speed reduction equation, with d,,.=15 cm and d.,to=6 cm. The green

dashed line in the figure represents the strategy of reducing speed slowly when the

slow-down threshold is passed, then quickly reducing speed to zero when the stop
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threshold approaches. The red dotted line represents the opposite strategy: rapidly

decreasing speed once the reduction threshold is passed, then gradually easing to a

stop. The blue solid line represents a balanced approach between these two modes.

Which mode is appropriate is left for the end user to determine, as their choice

might depend on the robot's speed, the tool it is holding, or other task-dependent

parameters. The freedom to finely tune the deceleration behavior of the robot allows

the user to adjust it so that the interaction is comfortable and stress-free, even at

small distances of separation.

Another key benefit of this type of implementation scheme is that it does not re-

quire any robot hardware modification. While other systems require special actuators

or the retrofitting of robots with force and torque sensors, this implementation can be

utilized with standard, unmodified industrial robots. This makes our safety system

easy and cheap to implement for organizations that already own industrial robots,

as they are able to turn their previously dangerous industrial robots into human-safe

platforms capable of close-proximity HRI at a very low cost.

5 6 7 8 9 10 11
Separation Distance (cm)

12 13 14 15

Figure 2-2:
distance

Three possible modes of speed reduction as a function of separation
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2.4.4 Latency Improvement

A key requirement for the robustness of this type of safety system is low latency. This

means that the amount of time necessary to perform a complete cycle of the safety

system, from sensing to robot speed adjustment, must be very low. Consequently,

several measures were taken to improve the latency of the described system.

First, to decrease the amount of time needed to perform minimum distance cal-

culations, the CAD model of the robot was reduced in quality. An increase of 0.75

mm in the maximum deviation of the model reduced the number of polygons in the

CAD model quite drastically (~50% reduction in file size). This led to significantly

faster separation distance calculation at a very low penalty to model accuracy.

The second key improvement in latency resulted from network optimization. The

various subsystems described in 2.4.2 reside on different physical machines, and so

they must communicate with each other via an internal LAN. In order to ensure

that all pertinent data is delivered successfully and in the correct sequence, Trans-

mission Control Protocol (TCP) sockets were chosen as a mode of connection and

transmission. While User Datagram Protocol (UDP) sockets can provide faster com-

munication, this protocol does not guarantee successful delivery or correct sequence

and is not supported by the RAPID programming language used to program ABB

robots [7].

Due to the design of the system, very small packets of data are continuously

sent over the TCP sockets, and each successive transmission must finish before the

next one begins. This led to slow transmission speeds due to Nagle's Algorithm, a

network optimization algorithm designed to prevent network congestion by chunking

small packets together and sending them all at once [28]. Instead of sending a small

packet immediately upon generation, Nagle's Algorithm instructs the program to wait

for more data to send, reducing bandwidth at a cost to latency. As the continuous

transmission of small packets is required by the safety system, Nagle's Algorithm was

disabled for all socket connections, leading to significant improvements in latency.
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2.5 System Latency Evaluation

While our safety system is capable of robot speed adjustment in real-time, there are

no hard guarantees for latency (i.e., it is not "hard real-time"). Consequently, it is

desirable to evaluate the latency based on collected performance data to ensure that

latency, on average, is at a sufficiently low level to yield consistent performance. To

allow for such evaluation, the safety system was utilized during an array of human-

subject experiments involving the ABB IRB-120 robot.

Safety system latencies were recorded for a total of 174 experiment runs, result-

ing in approximately 1.8 million latency measurements over the course of 3 hours.

The average latency was 6.13 ms, with a maximum latency of 389.6 ms. While the

maximum latency was substantially higher than the average, large deviations from

the average happened very rarely. Based on statistical analysis of the collected data,

assuming the distribution is normal with a mean of 6.13 ms and a standard deviation

of 2.14 ms, latencies are expected to be below 9.64 ms with 95% probability, below

11.10 ms with 99% probability, and below 14.08 ms with 99.99% probability.

In order to visualize these results, a histogram of latencies was constructed. Fig.

2-3 depicts the overall histogram of latencies, indicating a very large peak around the

average latency and only sporadic high latency jumps. The source of these jumps is

not known, but they may be caused by infrequent network connection drops. Fig.

2-4 shows a zoomed-in view of the histogram near the average latency.

While no hard guarantees on latency are made by the current implementation

of the system, based on these results, we can say with high confidence that the

average latency is very low and the sporadic jumps in latency do not occur often

enough to significantly degrade system performance. In fact, with the robot used

in this implementation, there is an inherent delay of 300-500 ms from the time the

robot is ordered to reduce speed until it begins to execute the order [7], making

the approximately 6 ms latency of the safety system an insignificant contribution to

overall system latency. Since the frequency of high latencies is low and the sporadic

jumps do not jeopardize the performance of the system, the system is classified as soft
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real-time according to the definition of the IEEE Technical Committee on Real-Time

Systems [9].
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Figure 2-3: Histogram of system latencies. Note the very low number of high latencies
on the right side of the graph.

2.6 Conclusions and Future Work

In this chapter, we described a novel implementation of a real-time safety system

capable of turning a standard industrial robot into a human-safe platform. We showed

that this implementation does not require any robot hardware modifications, such

as special actuators or internal force and torque sensors, making our safety system

inexpensive and easy to implement in domains where robots are already present.

By leveraging known robot joint angles and utilizing accurate human localization, we

showed that we can construct a virtual representation of the workspace that allows for

the calculation of accurate separation distance data in real-time. We then described

how this information can be used to precisely control robot speed, allowing for safe

HRI at distances of separation as low as 6 cm, as well as for robot deceleration

comfortable for the human worker. Finally, we demonstrated the benefit of deploying

various latency improvement strategies, which resulted in system latencies falling
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Figure 2-4: Portion of histogram of system latencies shown in Fig. 2-3 near the
average latency

below 9.64 ms with 95% probability, below 11.10 ms with 99% probability, and below

14.08 ms with 99.99% probability.

While the latency is low compared to the inherent delay between speed adjustment

commands and the execution of those commands by the robot used in this work, the

lack of formal guarantees on system latency means that this is not a "hard real-

time" system. In the future, we plan to incorporate a middleware solution, such as

OROCOS RTT [6], to allow for hard real-time operation. The addition of middleware

will also add a level of platform independence, making it easier to apply the system

to a variety of robots and 3D sensors.

The inherent delay between speed adjustment commands and the execution of

those commands by the robot utilized in this work can be expected with other indus-

trial robots. As such, there is a substantial delay that cannot be removed through

latency improvement within the safety system. We must overcome this limitation in

order to improve system performance and allow for even closer HRI or higher robot

speeds.

Consequently, another future direction of our work is to augment the safety system
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through the prediction of future locations of the human and robot. If robot trajec-

tories are known and we can accurately model where a human might move to in the

next 300-500 ms using current motion or previously learned motion models, we can

attempt to look a few hundred milliseconds "into the future" and adjust robot speed

based on this information. Such an approach would help to overcome the limitation

imposed by the inherent speed adjustment delays, but would be highly dependent on

the accuracy of the future location prediction.
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Chapter 3

Design of a Human-Aware Robot

Control Architecture

3.1 Introduction

As described in the previous chapter, ensuring human safety during human-robot

interaction is of the highest importance. While providing methods which guarantee

physical and psychological safety is necessary, these methods alone do not allow for

efficient human-robot collaboration. In tasks with significant potential for motion

conflicts, simply slowing down and stopping the robot when the two agents approach

each other can result in very inefficient teamwork. As a result, the next step of this

work was to develop a robot control architecture which would monitor the progress of

a task and adjust the robot's motions to actively avoid motion conflict. This chapter

describes the requirements of this type of architecture, its development and structure,

as well as well as some insights on improving the latency of the system based on the

hardware used.

3.1.1 Human-Aware Motion Planning

In order to generate motions which avoid motion conflict, we implemented an adaptive

motion planning technique that we call Human-Aware Motion Planning. In this
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motion planning technique, the system attempts to predict the next human action,

and then approximate what portion of the shared workspace the human worker will

be using in the upcoming moments based on an appropriate motion model. The

system then uses this prediction to modify the robot's motions to avoid this portion

of the shared workspace in an attempt to eliminate motion conflicts.

Figure 3-1: Illustration of Human-Aware Motion Planning. The left panel depicts a
shared workspace in which a human and robot are working on placing and sealing
screws, respectively. The right panel shows a standard, shortest path motion (blue)
and a human-aware motion (green) that the robot could take given the expected
human workspace occupancy represented by the red cylinder.

To illustrate this technique, consider the shared workspace depicted in Fig. 3-1.

The left side of the figure shows a shared workspace in which a human and robot work

together by placing screws and applying a sealant, respectively. If we can predict with

high accuracy that the human worker will place a screw at the third hole from the

left, beside the two screws already placed, we can then approximate what portion

of the shared workspace will be used by the human worker in the next moments.

A simple and effective motion model for this particular task is to approximate the

predicted workspace occupancy of the human with a cylinder that encompasses the

worker's arm as he or she completes the placing task, as this is the only part of the

human the robot can reach. This cylinder is shown in the virtual representation of the

workspace depicted in the right side of Fig. 3-1. Once the robot has a prediction of

human workspace occupancy, it can adapt its motion planning by selecting a path to

its own goal, in this case the second screw from the left, which avoids where it predicts

the human will be. This human-aware motion is shown as the green line in the figure,
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while the simple, shortest-path motion the robot would have taken otherwise is shown

in blue.

Human-aware motion planning allows for the robot to actively avoid motion con-

flicts as it completes its own tasks. Since these types of motions are less direct and

take more time to complete, it is important that they are used only when neces-

sary. One can see that the human-aware motion planning method described above

indeed fulfills this requirement. Using the example from before depicted in Fig 3-1,

if the robot's action was still to move to the second screw from the left but the next

predicted human action changed to be at the location all the way on the right, the

predicted workspace occupancy would shift to that location, and there would be no

potential for motion conflict. Consequently, the robot would select the more direct

path depicted in blue. In this manner, the human-aware robot will select efficient,

shortest-path motions when no predicted motion conflict exists, and only adapt its

motions to be less direct if it is necessary.

3.1.2 Required Functionality

In order to provide the desired functionality of producing human-aware robot motions

appropriately in real time, the system had several key requirements. First, the robot

had to have the capability of tracking human actions to determine what actions

have been taken thus far and what actions can be taken in the future. The robot

then needed to be able to use this information to predict what action the human

will take next and use an appropriate motion model to predict what portion of the

shared workspace will be used by the human worker. With this knowledge, the robot

then needed to be able to produce risk-aware motions as described in the previous

section with an appropriate motion planning algorithm. Finally, in order for the

system to function as desired, all of these sub-routines needed to be implemented in

a software architecture that supported concurrency among the safety system, human

action prediction, and robot action execution, requiring a multithreaded approach.

Section 3.2 describes how these sub-components were implemented in detail.
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3.2 System Architecture

As mentioned in the previous section, multiple sub-systems contribute to a functional

implementation of a human-aware robotic assistant. This section describes these sub-

systems in detail and explains how each was implemented.

3.2.1 Safety System for Human-Robot Interaction

The most important component of the system is a robust safety system that ensures

the interaction between the human and robot agents is safe. This system must run in

the background continuously without any interaction with other systems in order to

ensure that it does not get interrupted by an unexpected failure of another sub-system.

For this purpose, the safety system described in the previous chapter was utilized.

For details on its implementation and evaluation, see Chapter 2. The implemented

safety system is a soft real-time system that allows for close-proximity interaction

that is both physically and psychologically safe.

3.2.2 Human Action Tracking

In order to aid the system in predicting what action the human worker might take

next, it is useful to keep track of what actions have been taken by the human so far.

In our implementation, the system continuously tracks the position of the human

worker's hand with the use of a PhaseSpace motion capture system. While the same

motion capture system is being used to track the position of the human in the safety

system implementation, the two tracking programs are implemented independently

of one another. The two programs are both clients to the PhaseSpace system's server,

but due to their being independent processes, the failure of the action tracking pro-

cess does not cause a failure of the safety system process, which is one of the key

requirements mentioned previously.

In our implementation of the action tracking sub-system, we assume that actions

are executed at specific locations in the shared workspace. Using this assumption, we

then assign an action volume to each action which represent the volume of space in
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which a human worker's hand will fall when he or she is taking that specific action. For

simplicity of implementation, the current system utilizes spheres as action volumes.

To allow for some flexibility and tuning, the diameter of these spheres is adjustable

independently for each action. Figure 3-2 depicts what these action volumes might

look like for an example task.

Figure 3-2: An example of what a set of action volumes for a task might look like. This
particular implementation utilizes spheres of equal diameter for each task, depicted
in green.

The manner in which the system recognizes if an action has been taken is based

on penetration of these action volumes. If the user's hand transitions into an action

volume, the system begins to track how long it has stayed within this volume. Once

the user's hand leaves the action volume, if the time elapsed within the volume

surpasses a specified threshold, the system marks that action as performed. If the time

falls below the threshold, we assume the user did not perform the action and instead,

for example, was simply moving his or her arm next to the task location. Just as with
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the action volumes, the time thresholds are adjustable for each action independently.

When marking the action as performed, the action detection sub-system accesses a

shared data structure which defines which actions have been performed and which

ones have not. This is a simple binary array of length equal to the number of actions

in the task. For each action, the array takes on a 0 if the action has not been

performed yet and a 1 if it has. As other sub-systems also access this data structure,

as will be discussed in the following sections, we ensure that no two sub-systems

attempt to access it simultaneously by making use of appropriate Java libraries and

functionalities (e.g., the synchronized keyword).

While this implementation is very simple and works well for tasks such as the one

shown in figure 3-2, it is not suitable for all types of tasks or situations. Due to the

multithreaded nature of the implementation, however, the action tracking component

can be swapped out with a more complex system, with additional sensors or more

sophisticated algorithms, without requiring changes in other the sub-systems.

3.2.3 Action Override

While the action tracking sub-system described in the previous section works rela-

tively well in practice, it is prone to some error if the user acts in an unexpected

manner. For example, a user might move toward an incorrect task location and start

performing the task only to stop and move to the correct location. In this instance,

the incorrect task was not performed, but it will be marked as such by the system. In

order to allow for correction of such errors during task execution, a separate action

override sub-system runs as an independent thread within the system. In the cur-

rent implementation, the action override is a simple text based interface that allows

one to modify the data structure holding information about which tasks have been

performed thus far, as described in the previous section.
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robotControl(A, -r, r)

1: Arem +- A
2: while Arem 7 0 do
3: arobot +- null
4: ahuman - null
5: while arobt = ahuman do
6: ahuman +- getNextHumanAction(A, lrhuman, T)
7: arobot +- getNextRobotAction(Arem, Irobot, 7)
8: end while
9: 7 +- getRobotTrajectory(ahuman, arobot, r)

10: executeTrajectory(y)
11: Arem +- Arem \ {arobot}
12: end while

Figure 3-3: Simplified pseudo-code describing the algorithm of the human-aware
system for selecting and performing actions in a human-robot collaborative task

3.2.4 Robot Control

The final component of the human-aware robot system is the component which con-

trols what actions the robot performs, when they are performed, and which paths

the robot takes when performing them. In our implementation, the robot control

sub-system utilizes the algorithm shown in Fig 3-3 while the other sub-components

simultaneously run in the background.

In the parameters of this algorithm, A = (ai, a2 ,... , an) represents the set of all

possible joint actions the human and robot could perform in the given task. A joint

action is one in which both agents must complete a portion of the action for the action

as a whole to be completed. The second parameter, -r, is a binary vector of length n

= JAI which specifies whether or not the human operator has completed each action

(as described in Section 3.2.2). Finally, r = (71,1, 71,2, ... ,7 Yn,n) represents a set of

robot trajectories for all possible combinations of human action ai and robot action

a,.

Let us now go into more detail about the meaning and implementation of the steps

defined by Algorithm 3-3. The first step (line 1) is to create a data structure which

keeps track of the remaining robot actions, Arem C A. While there are robot actions

left to perform (line 2), we check what action the human and robot should perform
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next. This is done by the getNextHumanAction and getNextRobotAction

functions, respectively (lines 6 and 7). Both of these functions take as parameters

sets of actions available, a decision policy 7r and, the information about human actions

taken thus far stored in r. The policies rhuman and Irrobot can be derived in a wide

variety of ways, for example modeling the task as an MDP [29], PDDL [10], or another

method. In the simplest case, the sequence of actions for the human and robot can

be preset, in which case lrhuman and 7robt are to simply execute the next action in

the sequence that has not been executed yet.

In our formulation, we assume that in a joint action the human agent must perform

his portion of the action first. Consequently, once we select ahuman and arobot we first

check if the two actions are the same (line 5). If they are, it indicates that neither

agent has completed their portion of the next joint action, and so the robot has

to wait until its partner finishes the first part of the task. Once the human worker

completes his part of the joint action, -r will be updated, which will result in a different

action being returned by getNextHumanAction. When this happens, ahuman will

no longer be the same as arobot, terminating the inner loop and allowing the algorithm

to progress to the next steps.

Once the actions for the two agents are calculated and verified to be different, we

retrieve the appropriate human-aware trajectory yij E F using our getRobotTra-

jectory function (line 9). This function can be implemented to either generate an

appropriate human-aware motion plan on-line or to utilize a pre-computed database

of trajectories. In our implementation, we utilized the latter approach, which is de-

scribed in more detail in Section 3.2.5. Once we generate a human-aware trajectory,

we have the robot execute the action (line 10), after which we remove this action from

the set of remaining robot actions, Arem (line 11).

This process of calculating next human and robot actions and executing robot

actions at the appropriate time continues until the robot executes all actions, resulting

in Arem = 0.
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3.2.5 Generation of Human-Aware Robot Trajectories

[Note: For definitions of variables used in this section, refer to the robot control

algorithm and its description in Section 3.2.4]

One of the most important aspects of a human-aware robotic system is its ability

to generate robot motion plans that actively evade expected human locations. Once

we know what action the human worker will be taking and we select the action the

robot should execute, we need to be able to create a motion plan which uses both

of these pieces of information to create a human-aware robot trajectory. Towards

this goal, we developed a human-aware motion generation tool with the use of the

OpenRAVE robotic simulation environment (for more information on OpenRAVE,

see [15]).

In this tool, we first define the shared workspace in order to construct its virtual

representation, similarly to what was done in creating the safety system described

in Chapter 2. Once we define all the objects in our workspace and the location,

3D CAD model, and kinematics of the robot, we define a set of robot transforms

Q = (w1 , w2 , . - - , wn) for all actions a E A. These transforms contain information

about both the position and orientation of the robot's end effector when performing

each task. Similarly, based on an appropriate motion model, we define the positions

of the human while performing each action as the set %F = (01, 02, ... , 0,). Once

all of these parameters are defined for a particular task, the human-aware motion

generation tool follows the algorithm depicted in Fig. 3-4.

In this algorithm, we can see that along with the human and robot transform

sets, xI and , we pass two additional values as parameters: d8to, and d,8 1 . These

values define the distances at which our safety system orders the robot to stop and

begin decelerating, respectively (see Section 2.4.3 for details about the safety sys-

tem implementation). Once we provide all the parameters, the human-aware motion

generation tool loops through all combinations of human and robot actions, ai I

i = 1...n and a3 I j = 1...n, where i # j (lines 2 and 3). For each action pair,

we call generateVirtualEnvironment(oi, d') to create a virtual environment con-
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generateHumanAwareMotions(4L, D, dtp, dslow)

1: L'+-0
2: for i = 1 to I'1 do
3: for j = 1 to I QIdo
4: if i# j then
5: d' +- d,,,,
6: approved +- FALSE
7: while approved = FALSE do
8: success +- FALSE
9: while success = FALSE do

10: generateVirtualEnvironment (oi, d')
11: 7i,, success +- runMotionPlanner(wj)
12: d'<- d- J
13: end while
14: approved +- validateMotionPlan(d', dttp)
15: end while
16: F +- r U {i,j }
17: end if
18: end for
19: end for

Figure 3-4: Pseudo-code describing the algorithm of the human-aware motion gen-
eration tool

taining a model of the human in the correct configuration for that particular action

based on the transform for that action, 4'i E 'F (line 10). We also take into account

d' which represents the buffer distance by which we extend the expected workspace

occupancy in order to create motion plans which avoid not only the location of the

human himself, but also as much of the safety system's robot deceleration region as

possible.

Fig. 3-5 depicts a sample virtual environment generated by the tool. In the left

side of the figure, we see the human workspace occupancy, defined by the transform

4, represented by the two cocentric, green cylinders. In the right side of the figure,

the volumes shown in red depict the buffer distance d' by which we are extending the

occupancy model in order to avoid the robot deceleration region of the safety system

when planning our human-aware motions.

After the tool generates the virtual environment, it then calls runMotionPlanner(wj)

to actually generate a human-aware robot motion (line 11). In our implementation,
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Figure 3-5: Sample virtual environment generated by the human-aware trajectory
maker tool. The left side of the figure depicts the expected human workspace occu-
pancy as two green cylinders. The right side of the figure shows the extension of this
region to the safety system's deceleration region.

we utilize the Constrained BiDirectional Rapidly-exploring Random Tree (CBiRRT)

algorithm from the Constrained Manipulation Planning Suite (CoMPS) [13]. The

motion planner attempts to find a solution which results in the robot configuration

described by the transform wj while avoiding the expected human workspace occu-

pancy extended by the slow down buffer d'. If the planner succeeds, we set the value

of success to TRUE and store the generated trajectory in -Yj. If no valid solution

can be found, we decrease the slow down buffer d' by J (line 12) and try again, as

this indicates that there is no possible path the robot could take to its goal which

avoids the entire robot deceleration region. By decreasing d' by a small value during

each iteration, the tool attempts to find a human-aware motion plan which has the

shallowest penetration into the robot deceleration region possible. While this method

allows for generated motions to guide the robot closer to the human worker than d, 1,,

it will never produce a motion which penetrates the expected human workspace oc-

cupancy, as the size of this region (depicted in green in Fig. 3-5) does not change

with decreasing values of d'.

Once the planner succeeds in finding a solution, we call validateMotionPlan(d',

d,t,) to determine if the motion plan is acceptable (line 14). First, the function

verifies that the buffer distance by which we are extending the human workspace oc-

cupancy, d', did not fall below the safety system's stop distance threshold d,to,. Next,
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the candidate motion plan is displayed to the user. Utilizing an RRT based algorithm

allows the tool to generate motion plans very quickly, but due to its nondeterministic

nature, the motion planner can return many different paths for the same configura-

tion. The motion planner can, therefore, return motion plans which are unnecessarily

indirect or complicated. Additionally, some motion plans might lead to robot mo-

tions which would be uncomfortable for a human co-worker (e.g., the solution might

cause the robot to move too close to the human worker's head). By displaying the

computed motion plan to the user in simulation, we allow the user to decide whether

or not the candidate motion plan appears acceptable. If the user approves of the

candidate motion plan yij, the value of approved becomes TRUE, and we exit the

outer loop of the algorithm. We then add 7i, to our set of motion plans F (line 16)

and move on to the next combination of human and robot actions. If the user does

not approve of a candidate motion plan, the tool generates a new trajectory for the

same action pair until a satisfactory solution is found.

3.3 Improving Robustness and Latency of the Robot

Control System

Although the robot control system described in the previous sections of this chapter

resulted in a functional human-aware robot, the particular hardware utilized caused

some problems with robustness of the robot control system and latency of the safety

system. This section describes these issues and the solutions developed to overcome

them.

3.3.1 Trajectory Downsampling

The first problem encountered in the implementation of the system described in the

previous section was that the trajectories generated by the CBiRRT algorithm could

not be successfully executed by the ABB IRB-120 robot robustly. CBiRRT returns

trajectories as time series of robot joint angles for the robot to move through. Occa-
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sionally, the robot would fail to follow the path defined by the trajectory and throw

an error indicating that the target configuration is too close to the current configura-

tion. To address this issue, we developed a simple downsampling function that takes

the robot trajectory y generated by CBiRRT and a sampling rate s as parameters

and returns a new trajectory that takes every sth set of joint angles from the original

trajectory. In order to ensure we do not lose track of the final robot configuration,

the sampling is done by starting at the final joint angle configuration in -y and mov-

ing backwards through the time series. By setting the sampling rate s sufficiently

high, we were able to generate robot trajectories that could be executed by our robot

robustly.

3.3.2 System Latency Improvements

Another problem encountered in our implementation was related to the safety sys-

tem's latency. It was noted that while the robot control system and safety system

were running simultaneously, the latency of both systems was significantly higher

than if either system was executed alone. While great effort was made to completely

decouple the safety system from the robot control system, and the two systems are in-

deed completely independent software-wise, components of the two systems inevitably

reside on the same physical robot hardware. After extensive troubleshooting, it was

discovered that this, in fact, was the root of the problem. A simple test program

was created which would connect the robot controller to the main computer used to

host the core program. The program would perform a send and receive cycle 10,000

times and record how long each cycle took. When the program was running on a

single robot process, it would take, on average, 0.35 ms/cycle. When two instances

of the program were executed on two separate robot processes, however, this number

increased to 13.66 ms/cycle for one of the tasks, which is nearly 40 times slower.

Upon consulting the documentation for the ABB IRB-120 robot, it was discovered

that there are differences in how various tasks on the robot's controller are prioritized.

When defining parallel tasks to be executed on the controller, only one task, called

the "motion task," can be utilized to send movement commands to the robot. When
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running multiple tasks simultaneously on a robot's controller, the task designated as

the motion task gets priority in network communication. This prioritization scheme

resulted in the aforementioned latency problems.

In our implementation, two tasks resided on the controller: the robot control al-

gorithm, and the safety system. Since the robot control algorithm is the one sending

movement commands to the robot, it was designated as the motion task. Due to

the network prioritization scheme described above, the robot control task's commu-

nication with the core computer caused the safety system task's latency to increase

significantly. Upon further investigation and testing, it was found that the most sig-

nificant increases in safety system latency occurred when the motion task was awaiting

a message on a network socket. This phenomenon is depicted in Fig 3-6. The first

graph in the figure, graph (a), shows the latency of the safety system while a modified

robot control algorithm is running on the second task. In this modified version, the

robot performed only a single action. In this figure, one can see a region of initially

high latency (mean of 57.03 ms), followed by a drop to a lower latency (mean of 17.75

ms). This discontinuity is caused by the robot control task waiting for a command to

execute the action, as this requires waiting for a message on a network socket. Since

this graph was produced by a modified task in which only one action was executed,

the region of high latency occurs only once. In the full, unmodified version, however,

this increase in safety system latency occurs before every single robot action execu-

tion, making it a serious hindrance. The second graph in the figure, graph (b), shows

what the latency of the safety system looks like when it is executed alone, without

the motion task taking priority of network communication. One can see that there

is no initial region of high latency, and that the latency hovers around its mean of

20.87 ms. This discrepancy in safety system performance when running alone or with

the robot control task in parallel was unacceptable, and thus a solution needed to be

developed.

To address this problem, the robot control algorithm was modified such that it

would not block and wait for a message on a network connection for extended periods

of time. In this new algorithm, we added an extra communication step between the
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Figure 3-6: Illustration of the effects of robot task prioritization on the safety system
task's latency. Figure (a) depicts the latency of the safety system while the robot
control task is running simultaneously before the fix was applied. Figure (b) shows
what the latency looks like when the safety system is running alone. Figure (c) depicts
what the latency looks like while both tasks are running after the implemented fix
was applied.
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main program and the robot's controller each time the system checks whether the

next action should be executed or whether the next human and robot actions are the

same and the robot should wait (line 5 in 3-3). Instead of simply waiting for the next

action to be received, we added a loop to the robot controller's code which waits for

messages indicating whether or not the next action is ready, pausing for 100 ms before

each check. If the next action is ready to be executed, the system sends a message to

the robot indicating this; if it is not, we send a different message. As a result, instead

of having the robot continuously waiting for a message on a socket connection while

it is waiting for the next robot action, the robot checks in only once every 100 ms,

avoiding blocking the network connection and using it only momentarily. The result

of this fix can be seen in the last graph of Fig. 3-6. This graph, labeled (c), shows the

latency of the safety system while both it and the robot control task are active. We

see that the period of high latency in the beginning is gone, and the latency plot looks

much more similar to graph (b), in which the robot control task was not active at all.

The latency is also similar to that shown in (b), averaging to 20.01 ms. It should be

noted here that this latency was further improved later, as discussed in the previous

chapter in section 2.4.4, to an average of 6.13 ms through further improvments and

optimizations.

3.3.3 Final Robot Control Algorithm

After the implementation of the two fixes discussed in this section, the algorithm

of the robot control system, first shown in Fig. 3-3, was changed to the final algo-

rithm shown in Fig. 3-7. We can see the addition of the downsampling function,

downsampleTrajectory(y) on line 12, which stores the downsampled trajectory to

be executed in the new variable y'. We can also see the addition of the notifications

sent to the robot controller, used to inform the robot whether or not the next action

is ready, on lines 6 and 10.
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robotControl(A, -r, r)
1: Arem +- A
2: while Arem -$ 0 do
3: arobot +- null
4: ahuman +- null
5: while arobot = ahuman do
6: notifyController(false)
7: ahuman +- getNextHumanAction(A, lrhuman, T)
8: arobot +- getNextRobotAction(Arm, 7rrobot, T)
9: end while

10: notifyController (true)
11: 7 +- getRobotTrajectory(ahuman, arobot, r)
12: 17' +- downsampleTrajectory(-y)
13: executeTrajectory(7')
14: Arem +- Arem \ {arobot}
15: end while
Figure 3-7: Extended simplified pseudo-code describing the algorithm of the human-
aware robot for selecting and performing actions in a human-robot collaborative task
which implements fixes for robustness of trajectory execution and latency improve-
ment

3.4 Conclusions and Future Work

In this chapter, we presented the design and implementation of a human-aware robot

control architecture. Human-aware motion planning uses prediction of human actions

together with human motion models to generate predictions of human workspace oc-

cupancy and plan robot motions which actively avoid conflict with these regions. We

discussed how this type of system requires several sub-systems working in parallel,

including a safety system, action detection, action override, and robot control. Af-

ter discussing how each of these components was implemented, we discussed some

improvements made to the system to make it more robust and operate with a lower

latency.

Several improvements could be made to various aspects of our implementation

in the future. As discussed in Section 3.2.5, our implementation utilizes an off-line

human-aware motion planning technique. This requires a priori knowledge of action

locations and appropriate human motion models for these actions. Such an off-line

implementation makes it difficult to implement our architecture in a more dynamic
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system, where, for example, motion models are updated throughout task execution

or action locations can change in between task executions. As a result, our system

stands to benefit from an on-line human-aware motion planning approach. In or-

der to make such an implementation possible, our system would require a motion

planning algorithm that produces appropriate motions consistently. As discussed in

section 3.2.5, the current implementation uses an RRT based motion planner and

occasionally returns motions that are overly complicated or indirect. As a result, in

the current approach, our motion planning tool requires candidate robot trajecto-

ries to be approved by the user before being stored in the database. This type of

pre-approval is impossible in an on-line approach, and, therefore, the current mo-

tion planning algorithm must either be augmented to produce appropriate motions

consistently or replaced with a deterministic planner with an appropriately designed

cost-function.

Another improvement which could be made in the motion planing component is

to introduce additional factors geared toward making the motions comfortable for

the human co-worker. Prior work in human-robot co-navigation has utilized factors

such as the human's field of vision, posture, and positioning when planning paths

for a robotic assistant [33] [32]. While these were previously used for path planning

and not for close-proximity interaction, it would be interesting to investigate if these

factors could prove useful in the latter domain as well.
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Chapter 4

Analyzing the Effects of

Human-Aware Motion Planning on

Close-Proximity Human-Robot

Collaboration

4.1 Introduction

A majority of the prior work mentioned in Chapter 1 aimed at bringing humans

and robots closer together and allowing for close-proximity interaction focuses on

the development of frameworks or algorithms without evaluating human response

to these technologies. The developed systems were, for the most part, either eval-

uated only in simulation or with very limited experimentation with actual human

participants. Without fully evaluating human response to adaptive robotic assistants

through human-subject experimentation, however, it is impossible to predict whether

the technologies would lead to improvements in team efficiency or human satisfaction.

It is possible, for example, that the decreased predictability of an adaptive robot could

cause human workers to trust it less than a robot which is preprogrammed, leading

to decreased team efficiency.
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From the works mentioned above which did evaluate human response to robotic

assistants, they either did not deal with adaptive systems at all, or only considered

adaptation on the task level. Motion-level robot adaptation, however, is critical for

true close-proximity interaction, and to the author's knowledge there has been no

work thus far aimed at evaluating human response to this type of robot adaptation.

The main contribution of the work presented in this chapter, therefore, was to utilize

the human-aware robot architecture described in Chapter 3, and evaluate, through

human-subject experimentation, whether this type of adaptation leads to more effi-

cient teamwork and a more satisfied human co-worker.

4.2 Method

In order to investigate human response to robot adaptation on the motion planning

level, we devised a human-subject experiment in which participants worked coopera-

tively with a robot on a collaborative task within a shared workspace. Human-Aware

Motion Planning was used as the motion-level adaptation technique (see Section

3.1.1 for details). The particular robot used in our experiment was the ABB IRB-

120, which is a standard 6 DOF industrial robot shown in Figure 4-1. A PhaseSpace

motion capture system was used to track the human within the workspace and detect

what actions he or she is taking. A real-time safety system was deployed on the robot

to adjust the robot's speed based on the separation distance between the human and

robot, gradually decreasing the robot's speed to a complete stop, as necessary (see

Chapter 2 for details).

The robot was programmed such that it could operate in two motion planning

modes: standard and human-aware. As described in Section 3.2.5, a database of

robot motions was computed off-line for every possible combination of human and

robot action using the Constrained BiDirectional Rapidly-exploring Random Tree

(CBiRRT) algorithm from the Constrained Manipulation Planning Suite (CoMPS)

[13]. The decision to generate robot motion plans off-line was made to ensure the robot

motions were consistent throughout the experiment, since the CBiRRT algorithm is
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based on the Rapidly-Exploring Random Tree (RRT) algorithm, which inherently

may produce different motions each time. Both human-aware and standard motions

were planned with the CBiRRT algorithm.

4.2.1 Task

The task used in the experiment is depicted in Figure 4-1. In this task, participants

placed eight screws at designated locations on a table while the robot pretended to

apply a sealant to each screw by dipping a brush in a centrally positioned container

and then moving the brush over the screw. Each participant was instructed to twist

the screw one full rotation before moving on to the next one.

Figure 4-1: Photograph of the task setup used in the human-subject experiments.

The screws were placed by the participants in a predefined order. This, in effect,

simulated perfect human action prediction, which allowed for the measuring of the

effects of motion adaptation independent of the accuracy of action prediction. The

screws were split into two groups by color: yellow and red. The participants first

placed the four red screws, after which they were instructed to wait for a sound cue
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before proceeding with the yellow set of screws. Splitting the screw placement in this

manner allowed us to control what types of motion conflicts the subject would expe-

rience by not allowing for him or her to work too fast and get out of synchronization

with the robot.

Numbering the screws in sequence from left to right, the particular sequence in

which the screws were placed was 1, 3, 8, 6, 2, 4, 7, 5. This sequence was chosen

due to its balance of conflicting and non-conflicting motion. For example, after the

human worker places screw #1, the robot moves across from the centrally positioned

container to this screw while the human worker moves to place screw #3. This creates

a potential motion conflict, as the shortest-distance route to screw #1 from the sealant

container goes above screw #3. After placing this screw, however, the human worker

places screw #8 next while the robot begins working on sealing screw #3. In this

case, a motion conflict does not exist. By examining the rest of the sequence in a

similar fashion, one can see that the chosen screw placement order results in equal

numbers of conflicted and non-conflicted motions.

4.2.2 Participants

The participant pool consisted of 20 Massachusetts Institute of Technology affiliates,

including undergraduate and graduate students, postdoctoral associates, and visiting

students. Of the 20 participants, 7 were female and 13 were male. The ages ranged

from 19 to 39 (M = 27.1, SD = 6.24).

4.2.3 Procedure

The experiment was a repeated-measure design consisting of two randomly selected

groups of subjects: those who worked with a human-aware robot first (n = 11) and

those who worked with a robot using standard motion planning first (n = 9). The

subjects were not informed what the two conditions were or what the experiment was

attempting to measure prior to the experiment's completion.

The procedure for the experiment is depicted in Figure 4-2. First, in order to get
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Training round (no aint

Work with human co-worker

Train with human-aware robot (2x) Train with standard robot (2x)

Work with human-aware robot (ix)

First Questionnaire

Train with standard robot (2x)

Work with standard robot (1x)

First Questionnaire

Train with human-aware robot (2x)

Work with standard robot (1x) Work with human-aware robot (x)

Second Questionnaire Second Questionnaire

Figure 4-2: Diagram depicting the experimental procedure. The group on the left
represents the "human-aware first" condition, while the group on the right represents
the "standard first" condition.

accustomed to the task and practice placing the screws in the designated sequence,

participants in both groups executed a training round in which they placed the screws

without an assistant applying the sealant. Next, all participants performed the task

with a human assistant. This was done to implicitly prime our subjects to work

with a robot in subsequent task executions in a way similar to when working with a

person. In order to prevent any unintentional bias from the experimenter, who acted

as the human co-worker in this portion of the experiment, this first task execution

was done in a double-blind fashion, with the experimenter unaware of which of the

two conditions the participant was assigned to as well.

After performing the task with a human co-worker once, the participants per-

formed the same task with a robotic assistant. The participants in the "human-aware

first" condition worked with the robot in the human-aware motion planning mode

while those in the "standard first" condition worked with the robot in the standard

motion planning mode. Each participant performed two training task executions with

the robot in order to practice working with a robotic assistant and build a mental
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model of its behavior. After two training executions, the task was performed one

more time, followed 'by an administration of the first questionnaire.

In the next phase of the experiment, the mode of the robot was switched to

the opposite of what each participant experienced thus far. Prior to continuing,

participants were informed the robot would move differently in the second phase

in order to allow the participants to expect a change in motion so that the new

robot behavior would not startle them. To avoid revealing to the participants the

robot's modes are linked to whether it adapts its motions or not, the participants

were simply told that a "few robot motion parameters were changed." After informing

the participants of the change, they performed another set of training rounds with

the robot and a final task execution. At this point, the participants filled out a

second questionnaire that directly compared the robot behavior in the second mode

experienced by each participant to that of the first mode.

4.2.4 Dependent Measures

The dependent measures considered for the evaluation of human response to human-

aware motion planning, and the possible derived benefits, were split into two main

groups: quantitative metrics of team fluency and subjective evaluation by the par-

ticipants. The first group of metrics was based on those proposed by Hoffman and

Breazeal [20] and expanded to consider additional measures. These metrics include:

task execution time, amount of concurrent motion, human idle time, robot idle time,

and human-robot separation distance.

The quantitative team fluency metrics were precisely defined as follows:

e Task Execution Time: The amount of time, in seconds, elapsed from the

beginning of the first human motion toward placing the first screw until the

robot finishes applying the sealant to the last screw.

* Amount of Concurrent Motion: The percentage of the time in which con-

current motion was observed during times in which concurrent motion was pos-

sible. Times in which concurrent motion was possible include the time span

62



from the beginning of the first robot motion to the end of the last human mo-

tion, with the exception of the time the human spends waiting for the sound

cue indicating he or she can begin placing the second set of screws.

e Human Idle Time: The percentage of time during which the human worker

was not moving when he or she still had actions left to perform. The time

spent idle while waiting for the sound cue was, once again, removed from con-

sideration. Additionally, any time spent not moving while twisting a screw was

not considered idle time, as the person was actively working on performing the

action even though his or her hand was not translating.

9 Robot Idle Time: The percentage of time during which the robot was not

moving while it still had actions left to perform. This includes both time spent

waiting for the human worker to perform their portion of the joint action as

well as time spent not moving due to motion conflict.

e Human-Robot Separation Distance: The average shortest distance, in cm,

between any part of the human worker's hand or lower arm as depicted by the

two cocentric cylinders of the safety system (see Chapter 2 for details) and the

robot's end-effector. To prevent diluting the separation distances with large

values when the human is not performing any action, only separation distances

when the human passes a threshold which puts him or her within the reach of

the robot (the "interaction threshold") were considered.

The second group of metrics was based on subjective evaluation of the robotic

assistant based on questionnaire responses. The questions asked attempted to extract

each participant's satisfaction with the robot as a teammate as well as their perceived

safety and comfort. The questionnaire items are shown in Table 4.1.

Each of the questions was asked on a 5-point Likert scale ranging from "Strongly

Disagree" to "Strongly Agree" in the first questionnaire and "Much Less" to "Much

More" in the second questionnaire.
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Table 4.1: Questionnaire Items

Satisfaction with robot as a teammate:

1. I trusted the robot to do the right thing at the right time.
2. The robot did not understand how I wanted to do the task.
3. The robot kept getting in my way.
4. The robot and I worked well together.

Perceived Safety and Comfort:

5. I felt safe when working with the robot.
6. The robot moved too fast for my comfort.
7. The robot came too close to me for my comfort.
8. I trusted the robot would not harm me.

4.2.5 Hypotheses

Based on the dependent measures described in the previous section, the two main

hypotheses in this experiment were:

" H1. Utilizing human-aware motion planning will lead to more fluent human-

robot teamwork, including shorter task execution time, more concurrent mo-

tion, lower human idle time, lower robot idle time, and a larger human-robot

separation distance, when compared to standard motion planning.

" H2. Participants will be more satisfied with the human-aware robot's perfor-

mance as a co-worker and feel more comfortable and safe working with it when

compared to a robot that uses standard motion planning.

4.3 Results

4.3.1 Quantitative Team Fluency Metrics

When comparing the participants' performance working with a human-aware robot

to their performance when working with a robot using standard motion planning,

significant differences were found for all quantitative team fluency metrics with the use

of paired t-tests. When working with a human-aware robot, participants completed

the task 5.57% faster (p = 0.038), with 19.9% more concurrent motion (p <0.001),
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2.96% less human idle time (p = 0.019), 17.3% less robot idle time (p <0.001), and a

15.1% larger separation distance (p <0.001). The mean values of both robot modes

for each of these metrics along with error bars depicting standard error of the mean

are shown in Figure 4-3.
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of the five team fluency metrics considered. The group of participants which worked

with the human-aware robot completed the task with 15.0% more concurrent motion

(p = 0.028), 14.6% less robot idle time (p = 0.021), and a 17.3% larger separation

distance (p <0.001). The mean values of both groups of participants for each of

these metrics along with error bars depicting standard error of the mean are shown

in Figure 4-4.
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of (a) percent of concurrent motion, (b) robot idle time, and (c) average separation
distance between the human and robot for groups of participants working with the
standard and human-aware robots prior to exposure to the second robot type

4.3.2 Subjective Evaluation

As one can see from Figure 4-2, the first questionnaire used for the subjective as-

sessment of the robotic assistant was given prior to each participant's exposure to

the second robot mode, regardless of whether they were in the "human-aware first"

or "standard first" condition. As a result, we can treat the responses of these ques-

tionnaires as coming from two independent populations: one that worked with the

human-aware robot, and one that worked with a standard robot. We therefore used

the Mann-Whitney-Wilcoxon Test to determine whether these two groups provided
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significantly different responses to the questions listed in Table 4.1. Using the num-

bers shown in this table, significant differences (at a = 0.05) were found for three of

the questions. The participants exposed to the human-aware robot disagreed more

strongly with statements #2 (p = 0.012), #3 (p <0.001), and #7 (p = 0.05).

After being exposed to both conditions, the participants were asked to directly

compare the robot in the first mode to the robot in the second mode. Since "first

mode" and "second mode" signified different modes depending on whether a partici-

pant was in the "human-aware first" or "standard first" condition, we could once again

treat the two groups as independent, and test whether the responses of these groups

were significantly different using the Mann-Whitney-Wilcoxon Test. All of the ques-

tions produced significantly different results with the exception of "The robot moved

too fast for my comfort." In the "human-aware first" condition, participants agreed

more strongly with "I trusted the robot to do the right thing at the right time" (p

<0.001), "The robot and I worked well together" (p <0.001), "I felt safe when work-

ing with the robot" (p <0.001), and "I trusted the robot would not harm me" (p =

0.008) and disagreed more strongly with "The robot did not understand how I wanted

to do the task" (p = 0.046), "The robot kept getting in my way" (p <0.001), and

"The robot came too close to me for my comfort" (p <0.001).

4.4 Discussion

4.4.1 Differences in Team Fluency

The results presented in the previous section provide strong support for both of our

hypotheses. The significant differences in favor of human-aware motion planning in

all quantitative metrics of team fluency show that this type of motion planning indeed

leads to more effective human-robot teamwork (H1). The major significance of this

result is that these improvements can be achieved with participants who were never

previously exposed to a robot capable of human-aware motion planning. After only

two practice task executions and without any explanation of the system's capability
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to adapt its motion planning, participants were able to take advantage of the robot's

adaptive techniques and form a more effective team with the robot. This result

suggests that given even minimal demonstration of the robot's ability to avoid motion

conflicts, human workers inherently begin to exploit this capability, just as they would

when working with a human assistant who performs this type of adaptation implicitly.

In light of previously mentioned research, which found some participants expect a

robot to adapt on the task level just like a human would [20], it is possible that a

similar expectation is placed on motion-level adaptation, and that a lack of adaptation

not only leads to inefficient teamwork, as was shown by the quantitative metrics, but

also an unsatisfied human worker, as discussed next.

4.4.2 Differences in Perceived Safety and Comfort

Even before exposure to both robot modes, as shown by the results of the first ques-

tionnaire, we already saw significant differences in satisfaction with the robot as a

teammate. This can be seen from the fact that our participants disagreed more with

statements like "The robot did not understand how I wanted to do the task" and

"The robot kept getting in my way" when working with the human-aware robot.

Additionally, we saw that participants were less comfortable with the robotic assis-

tant which used standard motion planning, with more participants agreeing with the

statement "The robot came too close to me for my comfort."

Once the participants finished working with both the human-aware and standard

robots and filled out the comparison questionnaire, these results were even more

pronounced. In addition to the three questionnaire items which yielded significant

differences in the first questionnaire, when directly comparing the two robot modes,

participants agreed more with "I trusted the robot to do the right thing at the right

time,""The robot and I worked well together," "I felt safe when working with the

robot," and "I trusted the robot would not harm me" when describing the human-

aware robot. The first two of these questionnaire items once again indicates that

our participants found the human-aware mode to result in a more satisfying interac-

tion. The last two items indicate the participants also felt more comfortable and safe
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when working with the human-aware robot. Collectively, these results provide strong

support for our second hypothesis (H2).

The only item on the questionnaire that did not yield significantly different results

was "The robot moved too fast for my comfort." This is, in a way, an expected result,

as the base speed of the robot was the same in both conditions. The safety system

mentioned in the beginning of Section 4.2 did slow down and stop the robot if the

distance between the human and robot workers fell bellow certain thresholds, but this

behavior was identical in both conditions as well.

Since the safety system was running identically in both conditions, the higher

perceived safety and comfort ratings when working with a human-aware robot are an

interesting phenomenon. In terms of physical safety, participants in both conditions

were equally at a very low risk of unwanted contact with the robot due to the use

of the safety system. However, due to the robot taking evasive maneuvers in the

human-aware condition, and thus having to rely less on the safety system to avoid

collision, the participants were exposed to less sudden robot stops. We hypothesize

that participants felt safer when working with the human-aware robot for this reason.

While physical safety was the same in both conditions, having higher perceived safety

is an important result, as low perceived safety can be a high stress situation for a

human worker, and continuous exposure to stress has been shown to have negative

long-term effects on health [26].

4.4.3 Human and Robot Idle Time

Another interesting observation can be made by comparing the percentages of human

and robot idle time. As one can see from Figure 4-3, the average human idle time was

far lower than robot idle time for both conditions. These differences were analyzed

with a paired t-test, and statistical significance was shown for both the difference

between human idle time and robot idle time for when participants worked with the

standard motion planning robot (p <0.001) and the human-aware robot (p <0.001).

This suggests that in a human-robot team where motion conflict prevents both agents

from performing their tasks simultaneously, people prefer to perform their task and
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make the robot wait over waiting for the robot to perform its task first. This result is

similar to that observed by Unhelkar et. al. [35], in whose experiment it was shown

that human workers are more likely to make a robotic assistant wait for them than

doing the same to a human assistant. In the present experiment, we showed that

human workers prefer to make the robot wait over themselves, and thus it appears,

based on the results of the present study and the one by Unhelkar et. al., that people

consider human time, whether one's own or another's, more valuable than that of a

robot.

4.5 Conclusion

In this chapter, we described a human subject experiment aimed at studying human

response to human-aware motion planning and quantifying its potential benefits, in-

cluding quantitative team fluency metrics as well as subjective evaluation of satis-

faction, safety, and comfort. Through the results of this experiment, it was shown

that people learn to take advantage of human-aware motion planning even with novel

tasks, with very limited training, and with no indication that the robot's motion

planning is adaptive. It was shown that participants working with a human-aware

robot form a more effective team, performing a collaborative task in less time, with

more concurrent motion, less human and robot idle time, and while maintaining a

larger separation distance. Furthermore, qualitative evaluations showed human work-

ers were more satisfied with the human-aware robot as a teammate, and perceived

it to be more comfortable and safe to work with. This signifies that human-aware

motion planning leads to satisfying human-robot interaction.

The fact that human-aware motion planning leads to higher perceived safety, and

thus less potential for stress-related health problems, while simultaneously improving

team fluency, is a very important result. Being able to show simultaneous improve-

ment in efficiency and human worker satisfaction and well-being makes human-aware

motion planning a highly desirable tool for close-proximity human-robot interaction.

These results bring us one step closer toward successful introduction of robotic as-
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sistants into previously human-only domains domains, as we can show that close-

proximity interaction is not only possible, but can also be made efficient and satisfying

with the help of human-aware motion planning. Furthermore, by showing human-

aware motion planning is effective with actual human-subject experiments instead

of simulations as was done before, we can strongly motivate future research in all

the facets that would make a real-time human-aware system possible, including ac-

tion prediction algorithms, development of rapid motion planning techniques, human

motion model development, and many others.

One important point to consider, however, is that the improvements presented in

this paper were obtained with the robot having perfect knowledge of what action the

human will take next, since the sequences of actions were preset, as was mentioned

in the 4.2.1 section. Consequently, the improvements shown through our experiment

should be viewed as an upper bound of possible increases in team fluency and hu-

man worker satisfaction. As one might imagine, these improvements would not be as

pronounced with imperfect action prediction, and would depend very highly on its

accuracy. Nonetheless, the improvements shown in this paper are highly significant,

leading us to believe that substantial improvements can be derived even with imper-

fect action prediction. Evaluating how performance of a team utilizing a human-aware

robot changes with varying levels of action prediction accuracy is very important, and

is a planned future avenue of research.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

With the rapid expansion of the use of robots in the recent decades, especially since

the turn of the century, robots have been successfully deployed in a wide variety of

domains. Despite this fact, we still see many tasks in these domains being done in a

purely manual fashion with no robotic assistance. Due to a necessity for a high level

of judgment, dexterity, and flexible decision making that surpasses current robots'

abilities, this subset of tasks requires human operators for successful completion. As

such, there is a significant incentive for the development of technologies which could

enable robots to safely and efficiently collaborate with people in shared workspaces.

5.1.1 Real-Time Safety System for Human-Robot Interac-

tion

While a significant amount of research has been done in support of enabling safe

human-robot interaction, the prior safety systems were found to be not capable of

supporting continuous interaction at low distances of separation. These systems either

required new, specialized hardware, such as new actuators or even entire robotic plat-

forms, or used methods which utilize coarse discretizations or large "safety regions"

which are incompatible with continuous, close-proximity interaction.
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The first contribution of this thesis, described in Chapter 2, thus became the

development and evaluation of a real-time safety system specifically designed for

close-proximity human-robot interaction. This safety system, based on the use of a

virtual representation of the shared workspace that is continually updated, leverages

accurately known human position information from an external sensor with precise

robot configuration data from the robot's controller to allow for precise calculation

of separation distance in real time. The real-time separation distance is then fed to a

robot speed adjustment function, whose flexible parameters can be tuned to modify

the speed reduction behavior of the robot as needed for a particular application.

This safety system scheme was shown to be capable of providing safe human-robot

interaction even when the stopping threshold of the system was adjusted to just 6

cm, allowing for true close-proximity interaction.

The latency of the system was also greatly reduced through various methods,

including CAD model adjustment and network optimization, resulting in an average

latency of 6.13 ms. A statistical analysis of the latency measurements collected for

the safety system showed that system latencies are expected to fall below 9.64 ms

with 95% probability, below 11.10 ms with 99% probability, and below 14.08 ms

with 99.99% probability. These data allowed us to classify our safety system as soft

real-time.

An important aspect to consider when reviewing these results is that this safety

system performance was derived with the use of a standard industrial robot without

any specialized actuators, new robot sensors, or any other robot hardware modifica-

tion. This indicates that the developed safety system can be deployed on currently

used industrial robots, which makes it a very simple and cost effective solution, as it

does not require replacing the robots with new designs or difficult, or even impossible,

retrofitting with new actuators or sensors.

5.1.2 Human-Aware Robot Control Architecture

The second main contribution of this thesis was the development of an end-to-end

system to be used for human-robot collaboration, as described in Chapter 3. The

74



architecture uses a multithreaded structure, with several sub-components running

in parallel. The first component, human action tracking, uses flexibly defined task

volumes and time intervals to track what actions have been performed by a human

worker. Next, an action override thread is used to provide a manual override for the

detected actions in case the automatic detection fails. Another main thread is used

to control what actions the robot should take and what motion plans it should use,

which is based on what actions the human has taken thus far and what action he or

she is expected to take next. Finally, the safety system, described in Chapter 2, runs

as a separate thread as well.

The robot trajectories used by robot control thread are generated based on a

motion planning technique we call Human-Aware Motion Planning. In this technique,

the system predicts what action the human will take next, and then, based on an

appropriate motion model, predicts what portion of the shared workspace the human

will use while taking this action. The robot then picks a path to its goal which

avoids this location. To ensure consistency and predictability of robot motions, the

human-aware trajectories were constructed off-line with the use of a specially designed

trajectory maker tool.

Due to some problems with robustness and latency caused by the particular hard-

ware used, additional steps were taken to improve the system. First, trajectory

downsampling was utilized in order to allow the ABB IRB-120 robot to follow paths

generated by the trajectory maker tool consistently. Next, the issue with the latency

of the safety system increasing when the robot control task is running was fixed by

ensuring that socket communication in the main task on the robot's controller did

not interfere with the safety system task. The implementation of these fixes resulted

in a robust, low latency, end-to-end system capable of supporting human-robot col-

laboration with motion-level adaptation at low distances of separation.

5.1.3 Analysis of Effects of Human-Aware Motion Planning

The final major contribution of this thesis was presented in Chapter 4. In this chapter,

the human-aware robot architecture was used in a full-scale human-subject experi-
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ment (n = 20) aimed at analyzing the effects of motion-level adaption on human-robot

collaboration. Through the experiment, which involved working with a robot on a

joint task of placing screws and applying sealant, it was shown that people respond

well to motion-level robot adaptation, even with very limited training and with no

indication of the robot's capability to adapt. When compared to a baseline motion

planing method of using shortest-path motions, when working with the robot which

used human-aware motion planning, participants completed the task 5.57% faster

(p = 0.038), with 19.9% more concurrent motion (p <0.001), 2.96% less human idle

time (p = 0.019), 17.3% less robot idle time (p <0.001), and a 15.1% larger separation

distance (p <0.001).

In terms of subjective evaluation, when describing the human-aware robot, par-

ticipants agreed more strongly with "I trusted the robot to do the right thing at the

right time" (p <0.001), "The robot and I worked well together" (p <0.001), "I felt

safe when working with the robot" (p <0.001), and "I trusted the robot would not

harm me" (p = 0.008) and disagreed more strongly with "The robot did not under-

stand how I wanted to do the task" (p = 0.046), "The robot kept getting in my way"

(p <0.001), and "The robot came too close to me for my comfort" (p <0.001).

5.2 Future Work

While the results of this thesis are very promising, the current implementation and

evaluation is restricted to application on one specific industrial robot. In order to

allow for greater flexibility in deploying the architecture designed in this work to other

robots and domains, a modular design could be utilized with the use of a middleware

such as Orocos RTT or ROS. Providing the information about the state of the human

and robot could then be implemented as interchangeable nodes, independent of the

source of information, making it possible to use a wide variety of robots and sensors

with the architecture developed in this work.

Since the evaluation of human-aware motion planning done in this work was fo-

cused on pulling out potential benefits of this motion planning technique independent
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of the accuracy of action prediction, an action prediction capability was not imple-

mented. In order to incorporate the human-aware motion planning techniques and

take advantage of their benefits, however, an effective method of predicting human

intent must be developed. Based on prior work in this topic, it appears that a mul-

timodal approach is advisable. The first layer would be based on modeling human

tasks and actions in order to extract and utilize task-level knowledge for prediction

purposes. One possible method is to model the tasks and actions with a MDP struc-

ture similar to [29]. In this model, we define a set of states S, a finite set of actions

A, a state transition probability function T, which for every state and robot action

gives a probability distribution of future world states, and a reward function R. The

robot could then calculate an optimal policy with the use of dynamic programming.

By formulating the system in this manner, we can incorporate prior knowledge of

task sequences to generate the initial transition probability and reward functions,

and then continuously update these as new sequences are observed. This formulation

also allows us to derive a quantitative metric for the robot's uncertainty about the

human's next action by calculating the entropy rate of a Markov Chain given by

setting a specific robot policy ir. One challenge with using this method is that as the

number of possible states increases, the amount of data needed to teach the robot to

effectively learn how people might like to perform tasks increases greatly. Therefore,

a new, creative method will need to be developed to properly guide the evolution of

the transition and reward functions in a more efficient way.

The second layer of modeling human intent could be based on analyzing human

motion and speech. An approach similar to the one described in [25] could be utilized,

where early motion is used to predict what action the person is taking. This could be

done by passively recording subjects in a lab as they perform their tasks and collecting

motion data, which can then be utilized to train Hidden Markov Models (HMMs) to

be used for action classification. In order to enhance the accuracy of the system, new

parameters, like head orientation and gaze direction, could be incorporated as new

features used to train the model. Finally, research on natural language processing

(NLP) could be used to analyze verbal cues that convey intent. All of these various
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modalities, including both task-level information and human motion and speech, will

then need to be combined to generate an effective human intent prediction system.
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