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Abstract

Field emission devices have demonstrated several research and commercial applications in the
areas of flat panel displays, microwave power devices, imaging sensors and electron sources.
Recent work has shown the feasibility of using integrated MOSFETs to control and enhance field
emission stability and operating characteristics. This research effort investigates the integration
of vertical MOS transistors with field emitter arrays as a means to enhance field emission device
capabilities and range of applications. Vertical MOSFET device modeling was performed using
MEDICI, a commercially available electrostatic simulator. In addition, process modeling was
conducted using SUPREM to optimize design and layout sequencing for device fabrication.
Working devices were fabricated and tested in the Integrated Circuits Laboratory within the
Microsystems and Technology Laboratory at MIT. Techniques to achieve high-density field
emitter arrays necessary for integrated VMOS / FEA devices were also investigated. This study
determined that it is feasible to integrate and control field emitter arrays with vertical MOSFET
devices.
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Chapter 1 - Introduction

1.1. Background

With recent advancements in device fabrication technology and portable electronic devices, there has been a

growing demand for compact, energy-efficient information displays. For this reason there has been a large effort in

the past several years to develop and improve upon cold cathode field emission sources for flat panel display

applications. One of the most promising applications has been to use field emitter arrays to create thin, lightweight

cathodoluminescent displays with high luminous efficiency and low power consumption. In a typical cathode ray

tube (CRT) display an electron beam is electronically rastered across a large vacuum envelope to energetically

excite phosphors on the display screen. Spatially modulating the electron beam density causes pixels on the

phosphor screen to luminesce thereby creating the desired image [1]. CRT's have very high brightness and luminous

efficiency [2] however the large vacuum tube required for the display precludes it from being implemented in

portable electronic devices.

The liquid crystal display (LCD) is currently the dominant display technology for portable display applications [3].

Active matrix LCD's utilize a matrix-addressable set of cells filled with liquid crystal to create a display image. A

liquid crystal material is sandwiched between two transparent conducting electrodes and light polarizing elements.

By applying a voltage across an individual cell, the alignment of the liquid crystal molecules can be altered to

increase or reduce the light transmission through the cell. In this manner an image can be formed by selectively

addressing the desired cells [1,4]. It is essentially a spatial light modulator. While this addressing technique is very

powerful and makes a very compact display possible, the lower brightness and decreased efficiency due to low

transmission of the liquid crystal are the main drawbacks to liquid crystal displays.

The field emission display concept combines the benefits of both the CRT (cathodoluminescence, high luminous

efficiency, and brightness) and LCD (lightweight, compact, and matrix-addressable) technologies. The display

utilizes matrix-addressable arrays of field emitters to generate vertically traveling beams of electrons (Figure 1). A

typical FED sub-pixel consists of a field emitter array which is proximity focused onto a red, green or blue phosphor
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element. The FEAs are independently addressed and generate separate electron beams for each sub-pixel element.

By using a two dimensional array of FEAs, images can be formed on a phosphor screen with the high brightness and

luminous efficiency characteristics of a CRT. A very compact, lightweight and high brightness display can be

realized by using a matrix-addressing scheme for the field emitter arrays [5,6]. The field emission display described

above is essentially a very thin display based on the CRT concept. Matrix addressable field emission displays with

low voltage operation have been fabricated and demonstrated for their feasibility as a display technology [1,3,5,6,7].

Photons= Photons

Glass-

' edT hspo Blue Phosphor

Figure 1. Field Emission Display concept

Individually arrays, each containing several hundred field emitter devices, are addressed to generate
vertically traveling beams of electron. The electron beams are accelerated towards a phosphor
coated electrode and generate red, green, or blue light upon striking the respective phosphor.

1.2. Motivation

One of the main difficulties in creating viable field emission displays is the need to use large switching voltages in

order to generate electron beams from the field emitter tips. The first field emitter arrays of Spindt cones fabricated

at SRI had diameters of 1 .tm operated in the range of 100 - 150 V [8]. To turn the field emitter arrays on or off

would require switching these large voltages across each arrays' respective gate electrode. In addition to concerns

about oxide breakdown and device stability, the driver circuitry required to operate at these high voltages would be

prohibitively complex and financially non-viable. With advances in fabrication technology and lithographic

techniques field emission devices smaller than 200 nm with operating voltages as low as 15-20 V have been realized
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[9,10]. However even at these low voltages, power consumption of driver circuits for a 1,000 x 1,000 pixel array

would be rather large.

It is possible to decrease the operating voltage of FEAs by an order of magnitude, to only 2-3 volts. This can be

done by tying a transistor structure in series with an array of field emitting devices. In this arrangement the field

emitter gate electrode can be held at a constant (necessarily higher) voltage while the MOSFET device is used as a

switch to open or close a conduction path for electrons. When the MOSFET is turned on, electrons can flow to the

array and be subsequently emitted from the tips through the field emission process. By reducing the gate voltage of

the MOSFET below the device threshold, the conduction channel is removed and the field emitter tips do not emit

electrons. In this manner the field emission process can be controlled through the use of a low-voltage, CMOS-

compatible MOSFET process.

Anode FEA
Current Decreasing tip radius

V FEA
gate 

Increasing VG MOSFET load
Emitter array

VMOS

gate

gVFEA VGate-FEA

Figure 2. MOSFET / FEA concept

Integrated devices would allow low voltage, matrix-addressable switching capability for each field
emitter array. The MOSFET device would act as a voltage controlled current source allowing stable
device operation at a given load voltage (Vmos) even with variations in emitter tip radius.

Another important issue in field emitter operation is that the emission current is a highly sensitive function of the

surface potential barrier. The shape of the potential barrier is determined by several factors including the material

work function, surface states, tip geometry and applied voltage on the gate electrode. Due to the small device

geometries, small fluctuations in the FEA gate voltage can cause significant changes in the emitted current resulting

9
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in non-stable operation. In addition, non-uniformity of field emitter tip geometry due to variability in the fabrication

process can also result in large differences in output current characteristics and noisy device operation.

These issues can be alleviated also with the integration of a MOSFET / FEA device. Conceptually, the MOSFET

acts as a voltage controlled current source (VCCS) in series with the field emitter devices. The VCCS in series with

the FEA allows the emission current to be independent of small variations of barrier height or width (i.e. variance in

work function, tip radius, or gate voltage).

The goal of integrating the two devices is to control the FEA output current characteristics through the use of a

series VCCS provided by the MOSFET. It also has the added benefit of reducing the switching voltage and dynamic

power consumed by the driver circuitry. Previous work has demonstrated the feasibility of implementing a

MOSFET / FEA device structure [11]. It has been shown that integrated MOSFET / FEA devices not only provide

more stable operation but also that low switching voltages and even MOSFET logic operations can be realized

[12,13]. The goal of this work is to investigate using a vertical MOSFET structure for integration with a field emitter

array.

1.3. Problem Statement

The output current of field emission devices is exponentially dependent on the electric field at the device tip. Slight

variations (-1-5 nm) in device geometry or gate voltage can significantly alter emission current and device stability.

In addition power consumption in electronic devices is quadratically dependent on the voltage swing used to switch

the device on or off. For field emitter devices, large gate voltages (50-100V) are typically needed to initiate the field

emission process and generate electron beams of sufficient current density for display applications. By

implementing an integrated MOSFET / FEA structure to create a voltage controlled current source in series with the

field emitter devices, increased stability in device performance and low voltage switching can be realized [11-13].

1.4. Objectives and Approach

It is the objective of this work to analyze an integrated MOSFET / FEA device structure and to create a vertical

transistor to be integrated with a field emitter array. A vertical structure is desirable so that each addressable field
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emitter array can be controlled independently without sacrificing device density or display resolution capability.

Electron conduction in the field emission and transistor processes will also be examined to determine the

requirements needed to implement the integrated device.

1.5. Thesis Outline

The second chapter in this thesis will present a background on electron emission from both metal and semiconductor

materials, while electron transport and analytical models of MOSFET devices are derived in Chapter 3. In Chapter 4

the fabrication process used to create the vertical transistor structures is outlined and compared to process simulation

results. Device simulation and experimental results are shown in Chapter 5. Integration of the vertical MOSFET

structures and field emitter arrays are explored in Chapter 6, conclusions are presented Chapter 7.
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Chapter 2 - Field Emission Theory

2.1. Electron Emission from a Surface

Field emission can be defined as the emission of electrons from one condensed phase to another phase through the

action of an external electric field. Field emission is fundamentally a quantum mechanical phenomenon wherein an

applied electric field allows electrons to tunnel through the potential barrier at a material interface. The field causes

a deformation in the surface potential which, if large enough, allows electrons to have an appreciable tunneling

probability (Figure 3). This phenomenon is fundamentally different from thermionic or photoemission in which

sufficient energy to overcome a material's work function is directly transferred (through lattice vibrations or

photons) to an electron.

Ef

V(x) = - e~x

x-1 X-

x~1-2 nm

' V(x)=- eEx e2

4x

-n E

x~1-2 nm

4- Metal - : -Vacuum-* 4- Metal - : -Vacuum-+-

Figure 3. Field Emission through Electron Tunneling

Potential barrier without (a) and with (b) image charge effects

In the case of thermionic emission, the emitting material is heated such that there is an increase in the proportion of

electrons that have sufficient energy to surmount the surface barrier (work funtion). In photoemission, energy is

transferred to an electron by an incident photon and the electron is ejected from the material (Figure 4).

12
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E

T
kT

q- Metal - : -Vacuum--p

hv

E MV

SMetal -:-Vacuum-0

Figure 4. Thermionic and Photo Emission of Electrons

In the case of field emission, the electron is transmitted through the potential barrier while in the thermionic or

photoemission, the electron is given enough energy to go over the potential barrier.

2.2. Fowler-Nordheim Tunneling

Much work has been done to describe the underlying physical phenomena of field emission. As early as the 1920's

[14]. R.H. Fowler and L.W. Nordheim developed a theoretical model of field emission which consists of quantum

mechanical tunneling through a potential barrier. In their derivation they directly solved Schrodinger equation for a

one-dimensional potential barrier using Bessel and Hankel wavefunction solutions. A simplification of the Fowler-

Nordheim result based on a WKB approximation was carried out by Good and Mueller [19] and is outlined below.

The F-N tunneling current is based on emission from a metal surface where the electrons are assumed to form a free

electron gas within the surface and obey Fermi-Dirac statistics. The emitted current density is given by

J(E, E) = eJN(Ex)T(E,,6)dEx (1)

where E, is the electron energy normal to the surface, N(Ex) is an electron supply function, T(ExE) is the

transmission probability through the potential barrier, and E is the surface electrostatic field [15]. If the material

temperature is relatively low (corresponding to a sharply defined Fermi-Dirac distribution), most of the emitted
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electrons originate from a small energy interval around the Fermi level of the metal [16]. The supply function is

found by combining the electronic density of states and carrier distribution normal to the surface (x-direction) to

yield

4mnnkbT ( '(E1 -E E
N(E,)= lnj + exp kh (2)

h 3kbT

By using the WKB approximation for the transmission through the potential barrier shown in Figure 3b the

transmission coefficient is given by [17]

fX 8M(V(x) - E) dTWKB (E,, C)= exp - ) dx (3)

where the potential due to the applied electric field E, and x,x 2 are the classical turning points in the potential

barrier. The image charge (caused by the emitted electrons above the metal surface) is given by

2

V(x) =-e x-e (4)
4x

where the zero for energy is set equal to the vacuum level (Figure 3). Without the image charge correction term, the

transmission probability through a triangular potential barrier is readily solved [15] to be

TWKB(Ex )=exp - h(p-GE -E 2F (5)
3ee h

The exponential dependence that is characteristic of tunneling phenomena has been well verified in field emission

experiments [18].
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I ~ - ~ ~- - ~-- - -

Vacuum level
- ----------- V(x)

(P electron energy
distribution, f(E) ;;

2
eEx- e

4x

N(x)T(E 
X

4 Metal - -Vacuum--

Figure 5. Energy diagram for Field Emission from a Metal Surface

Electron energy perpendicular to the metal surface, Ex, is dependent on the Fermi-Dirac distribution f(E).
Emitted electron energy distribution is also shown as a function of energy by N(Ex)T(E,,E)dE,.

Through the use of elliptical integrals [19] it is possible to solve for the transmission coefficient with the image

charge correction term by introducing a parameter y, to yield

TWKB(EX, )
4 2mE

=exp - v(y)

where v(y) is essentially a correction term to the WKB approximation given by

v(y) = - 1+1-y with k2 2 1-y 2

1+ 1-y 2

L(k) and K(k) are complete elliptical integrals of the first and second kinds

L(k)= f 1-k 2 sin 2 6 d6 K(k)=r2 d6
Jo 1-k2 sin 2 0

with (6)
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The above solutions for N(E,) and TWKB (E, -E ) can then be combined to give the current density

J (Em ndE, = N(Ex)T ( Ex, E E)

47ankbT InI 'x Ef, - EX
= 3n 1+ xp

4 2mIE7| v(y)

e 3heE

By assuming that the electrons are emitted from an energy near Ef , the exponential factor in TWKB (E, 9E ) can be

approximated with a Taylor series expansion about E,= E

4 2m|E|
3heeE vy

_ 4 2m|<p|3  E - E
- v(y) + 2 2mqp E - t(y)

3heE heE

t(y) = 2 dv(y)
3 dy

A further approximation in the low temperature limit can be made for the supply function N(Ex) to estimate that

E- E
kT In 1+ exp( E ~ 0

kE-E
k T In 1+ exp Ej ~b Ef - EX

when EX > Ef

when EX < E, '

With the above assumptions, for Ex < E, the current density can then be expressed as

J(Ex,E) dEx
4mnkbT 4 2m|qp- EX - E.

h 3  exp- v(y) + 22m X t(y) (E, - E)S3hee hee

(7)

with

and

(8)

(9)
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Integrating the above expression over all possible energies from E, to Ef it is possible to derive the Fowler-

Nordheim expression for current density under cold field emission conditions as

e' 3 .E 2 '8. (2-m .)29OY
J(E, P) = -exp -v(y) (10)

where e is the electronic charge, h is Planck's constant and t2(y) and v(y) are the functions of the aforementioned

Nordheim elliptical integrals which take into account image charge effects. The integration does assume that the

conduction band energy E, is far below the Fermi energy and can therefore be approximated by -- in the lower limit

of the integral.

Their values are well approximated by t2(y) = 1.1 and v(y) = 0.95 - y2 [20]. As compiled by Spindt, the

simplification and further manipulation of above equation yields

A E2 ' O Y2

J(E,#) = Pt2()-eXP - B 'F y) (11)

Numerical factors in the above equations are given by A = 1.54 x 10-6, B = 6.87 x 107, y = 3.79 x 10-4 E1/2/0

Including the previous approximations for t2(y) and v(y), the change from current density to current and E-field to

voltage can be expressed as

I = J(E, 5)dy = aJ and E=/AV (12)

where cx and P are fitting factors that are meant to roughly correspond to the emitting area is the local field

conversion factor at the emitter surface. Actual computation of the emitting current involves determining the electric

field everywhere on the tip surface which can be done numerically. However due to the complex geometry of the

emitter tip region, the ac and P coefficients are used to arrive at a somewhat simplified analytical equation for the

emission current.
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LJ ~ -

If these approximations are used the modified Fowler-Nordheim equation is given by

I = aFN 2exp FN

where:

OAQ82 B(I.44 X 10-7 )aFN= 1.13 exp B p 2 - a bFN 0.95By 1p'

/3

The parameters a1j, and bn can be found from the slope and intercept of the Fowler Nordheim plot of IN 2 vs. IN as

shown in Figure 6. Fowler-Nordheim theory of electron field emission has been widely accepted due to its good

correlation to experimental data.

0

10

20

30

40

50

60

70
0.0 0.2 0.4 0.6 0.8 1.0

1N

Figure 6. Fowler-Nordheim I-V Characteristic

Typical Fowler-Nordheim field emission characteristics plotted as log (IN2) versus 1N

2.3. Field Emission from Semiconductors

There has been a concerted effort to use semiconductor or insulator-based field emitters for display, sensor and

microwave applications [21,22,23]. One motivation for this work is the ability to selectively control the material's

electronic band structure through epitaxial growth, chemical vapor deposition or implant doping techniques. By

18
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using these methods, the field emission characteristics can be modified or controlled to exhibit enhanced

performance. While conceptually similar to tunneling from metals, electron emission from semiconductors must

take into account a material's electronic band structure, field penetration within the material, and interface surface

states to accurately describe the underlying physical processes. To this end, several assumptions made in the Fowler-

Nordheim derivation must be reviewed with greater scrutiny.

For a band gap material, the Fermi energy level is no longer located above the conduction band minimum as in the

case of a metal. It lies in most cases somewhere between the valence and conduction bands. In addition the large

electric fields that are generated for field emission can significantly alter the electronic band structure near the

surface thereby changing the conduction characteristics of the device (Figure 7).

Vacuum level

V(x) = - eex

xsi

EC
E, -----------

E

Semiconductor Vacuum

Figure 7. Field Emission from a Semiconductor Surface.

Band bending caused by the external electric field results in an accumulation layer to form near the
surface of silicon. Image charge correction to the potential V(x) is not shown.

Comparing the energy diagrams for metal (Figure 3) and silicon field emission (Figure 7), it is apparent that the

surface electron concentrations are quite different. In the case of a metal, the supply of electrons is assumed to be

very large such that there is almost no electric field penetration into the material. The electric field is therefore

terminated very close to the surface by a surface charge. In the case of a semiconductor however, the electron

concentration inside the material can be altered by the electric field and at the surface there will be a corresponding

shift of the conduction band with respect to the Fermi energy.
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Conceptually under high electric fields the silicon surface can appear metallic-like from an electronic point of view.

This is because under high field conditions, a two-dimensional Fermi sea of electrons or holes is created to form a

surface inversion or accumulation layer. Thus while the Fermi level is below the conduction band minimum in the

bulk, at the surface it is above the conduction band and the very high concentration of carriers makes it behave

somewhat like a metal surface.

In the derivation of field emission in Section 0, the most general expression for the emitted current density can be

expressed as

J(E,,E) = eJN( E)T(EE)dE

where again Ex is the electron energy normal to the surface, N(Ex) is an electron supply function, T(Ex) is the

transmission probability through the potential barrier, and E is the electric field at the surface. It was also seen that

for low temperatures the emitted electrons originate from a small energy interval around the Fermi level. The supply

function is found by combining the electronic density of states and carrier distribution normal to the surface (x-

direction) to yield

N(x-4mnkT InI+ pEf - E,
h 3 kT

Investigations have been done in which modified Fowler-Nordheim equations are derived for field emission from

silicon [16,24,], however these derivations focus mainly upon the fact that the electron distribution may not be

sharply peaked about E consequently resulting in a broader energy distribution of emitted electrons. In addition,

more rigorous analyses of the electron energy distribution and its impact on the transmission probability have been

carried out [25] but often they become mathematically cumbersome and obscure the underling physics to some

degree. The focus in the subsequent sections will be to examine the electron supply function, N(Ex), and

transmission probability, T(Ex, E), to ascertain how they are affected in silicon-based field emission.
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2.3.1. ELECTRON SUPPLY FUNCTION IN SILICON EMISSION

In the case of a metallic surface the Fermi energy, E1, lies at the top of the conduction band and was taken to be

equal to the material work function, (p, with respect to the vacuum level. For a semiconductor a similar procedure for

deriving the field emission current density may be followed however the material work function must now be

modified to

(si = Zsi + (E, - E, ) (14)

where XL is the silicon electron affinity (Figure 7). In general it is difficult to determine the location of the Fermi

level in a silicon field emission device. A simple model is proposed however, in which the silicon field emitter is

represented analogous to a metal-oxide-semiconductor system. The motivation for this approach draws from the

similarity between field emission into vacuum and electron tunneling through a thin film (oxide in this case) [16].

The goal of this formalism is to determine of the Fermi level within the semiconductor and subsequently find the

modified potential (?0.

Vacuum level

X S ii Si
Si 9

E
EC --------

Ef

Semiconductor Oxide

t
(M

Metal

Figure 8. Energy diagram for a MOS Structure

A high electric field on the field emitter tip results in significant band bending at the silicon surface.

The proposed approach uses fundamental charge and field relations for a planar MOS system and correlates

resulting solution to the field emitter structure. The goal is to determine the electrostatic potential and location of

the

the
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Fermi level at the silicon surface. This can then be used to correct for the silicon work function variation described

in the above equation for psi. Several considerations must be taken into account when relating these two systems.

First is the assumption that the Fermi level of the silicon tip does not vary significantly over the tip radius of

curvature from which most electron emission occurs. This will be shown through simulation results conducted for a

metal field emitter [26]. Secondly, the metal work function must be set equal to the silicon work function in the

model so that the built in potential Obi - (=Psi-pm) is identically zero. This is obvious since in the case of a field

emitter system, there is no potential difference between the silicon emitter tip and the metal gate electrode in

equilibrium. The electrostatic equations governing the MOS system can be solved to arrive at expressions for the

surface charge density, potential and electric field. To then match the MOS system to the field emitter, a sufficiently

large voltage can be applied to the metal to achieve a surface electric field solution that is comparable to field

intensities found on field emitter structures. In addition, the oxide dielectric constant can be set equal to one to

simulate the vacuum region of the emitter system. Because charge and potential equations are being solved

analytically, physical considerations such as oxide breakdown do not need to be taken into account.

There are several basic relations that can be used to describe the MOS structure that will be correlated the field

emitter system. These relationships describe the charge distribution and electric fields within the structure and when

modified appropriately, can be used for non-equilibrium conditions as well. A very succinct analysis has been done

[27] and will be used to present an analytical solution to the MOS system. Figure 9 shows a schematic of a MOS

structure and the associated charge distribution, electric field, and electrical potential within the semiconductor

material.
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Figure 9. MOS Structure

Charge density, electric field, and electric potential as a function of distance are shown.
If the silicon and metal work functions are equal, the built-in potential, Pbi will be zero.

Applying Gauss' law to a region that encloses the entire semiconductor charge Q, it is seen that the electric field

within the oxide region is

E =Ox (15)
9OX

In addition, since the dielectric constants of the oxide and silicon are different we have that

E,, E,, = E E, (16)

giving

E, = -S(17)
Ec

for the electric field at the semiconductor surface.
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The potential drop across the surface bi (the difference in work function between the metal and semiconductor

materials) is equal to

= 01V + XOXCO

Q OX Q
OX COX

If a voltage V is applied to the metal surface the equation is modified to

-QS
Oi + V = 0, Q(18)C

COX

To solve more rigorously for an electrostatic bias condition, a Poisson-Boltzmann formulation was followed to

determine the electric charge, potentials and fields within the silicon device. For a uniformly doped n-type

semiconductor the charge density can be expressed as

p = q(n -p-Nd) (19)

Where p and n are the carrier densities, Nd is the dopant concentration, and q is the electronic charge. With this

charge density Poisson's equation for electrostatic potential is then

d 2  (n-p-N) (20)
dx2 Esid

Since the oxide layer between the silicon and metal surfaces prevents current flow, the semiconductor is in

equilibrium and the relation np = n;2 holds. For this situation Boltzmann statistics may be applied and the carrier

concentrations can be expressed as

n nOexp( ) =Ndep
" ~ kT kT

2 
(21)

-q$= nI qq)
p = p, exp( ) N exp

kT Nd kT
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where no and p, are the electron and hole concentrations in the bulk and the potential deep within the bulk is taken

to be zero. This assumes that most donor sites are fully ionized such that no ~ N, which is valid at room temperature

or above. In the bulk, charge neutrality demands that

no - po - N =0 (22)

Combing the above four results yields the Poisson-Boltzmann equation for the electrostatic potential,

dp qNd q ni qp
-= [(exp - -- exp - i

d2 _ qN ~ kT) N J2kjs,_ (23)
-qNd F(0)

Esi

Going through the mathematical analysis (Appendix A), boundary conditions for the surface electric potential can be

solved for and a self-consistent expression for the electric potential can be reached. Once the electric potential as a

function of distance is known the electric field and semiconductor charge can be solved for from the equations

d _ 2kTN F(p) (24)
dx esi

and

Q = -qN f exp - -1 dx

2 (25)

Q, =q n exp dx

Once a solution is found for the electrostatic potential, it is possible to observe the electrical response and determine

several parameters of interest. Energy band and electric field calculations are shown in Figure 10. In order to

simulate field emitter conditions, the electrostatic solution for the surface electric field was matched to field

calculations conducted for finite element analysis solutions (section 0). Electric field intensities on the order of

E-3.5x10 9 V/m were calculated.
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Figure 10. N-type Silicon Emitter: Energy Band Diagram and Electron Concentration

Accumulation condition for n-type silicon emitter tip under an electric field matching condition of

E-3.5x10 9 V/m. Silicon concentration of Nd= le17 cm-3.

As can be seen in the above figure, the accumulation layer that forms causes the conduction band to drop below the

Fermi level near the surface. The very high electron concentration near the surface causes the material to behave

very similar to a metal. It should be noted that the calculated electron concentration is on the order of 1023 cm 3. In

actuality a quantum mechanical 2-D electron gas exists at the interface due to the confinement of the electron gas

very close to the surface (within -100A). The resulting concentration of the 2-D electron gas in on the order of 101-

,oi C -2.10" cm.

2.3.2. TRANSMISSION PROBABILITY IN SILICON

As in the case of a metal, there exists a potential barrier between the silicon surface and vacuum. When high fields

are applied to the field emitter tip, deformation of the potential barrier occurs and appreciable electron tunneling

through the barrier can occur. A fairly rigorous analysis of the electron energy distribution and its impact on the

transmission probability has been carried out [25] but is somewhat mathematically cumbersome. The analysis looks

at the effects of a non-sharp Fermi-Dirac distribution on the transmission probability,

( 8m(V(x)-E )dx)
TWKB,,(E.,=exp - fx dx

and derives modified expressions for the WKB transmission probability. The equations are solved analytical through

Taylor expansion and match well to experimental data. However through modeling simulations done by [26], it has
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been seen that the high electric fields in field emitter devices are fairly uniform over the emitter tip region. Figure 11

shows a boundary element mesh that was developed by Dr. J.Y. Yang [28] to determine electric field potential and

emission current densities of small (-4-1Onm) emitter tip radii.

7

Figure 11. Boundary Element Mesh for Field Emitter Tip

(a) Mesh used to simulate field emitter electrostatic conditions and (b) expanded view of the field
emitter tip with associated numbering for Figure 12.

As can be seen in Figure 12, the electric field over the simulated emitter tip region drops from approximately 30%

from panel #0 to panel #8. The emitted current density however decrease by several orders of magnitude over this

region and indicates as expected that the emission current is very strongly affected by the surface electric field.
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Figure 12. Electric Field and Current Density for BEM and FEM Models

The electric fields and associated current density of the BEM mesh shown in Figure 11. Also
shown are comparisons to Finite Element Mesh results [26].
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Thus while the transmission probability and subsequent emission current density will be strongly influenced by this

field variation at the tip (due to the tunneling probability having an exponential dependence on the electric field), the

effect of a spread-out electron distribution within the silicon tip surface is expected to not play as significant a role

in altering the emission current density.
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Chapter 3 -MOSFET Theory

3.1. Vertical MOSFETs

The vertical MOSFET (VMOS) behaves similarly to the lateral MOSFET (LMOS) in regards to device operation.

The predominant difference between the two devices is that in contrast to the LMOS, the current flow between

source and drain regions occurs perpendicular to the wafer surface in the VMOS structure. Figure 13 shows a

schematic of vertical and lateral MOSFET devices. Several key differences are apparent between the two structures.

For the LMOS, the channel width can be increased along the z-direction while the VMOS channel width is equal to

the pillar circumference, 21rr. The width and length parameters are consequential since the drive current of the

device is directly proportional to the W/L ratio. One important parameter to be aware of in analyzing a MOSFET

device is the extent of the depletion region under the inverted channel region. For the LMOS device, the depletion

region can extend into the silicon substrate without restriction. The depletion region of the VMOS however is

limited to the pillar volume contained between the source and drain regions. If the depletion volume is too small, it

may not be possible to reach an inversion condition for the VMOS device. As the extent of the depletion region is

dependent on the substrate doping level and applied gate voltage, calculations can be done to determine if the

VMOS is operating in this depletion-limited regime.

V s
W=2nr

V, gat

gatgate

V,. Channel
- regionL

channel region

W :

L gate oxide

Figure 13. Lateral & Vertical MOSFET schematic

For the vertical MOSFET structure, the cylindrical shell around the pillar circumference defines the
channel region. The length and width of the device are determined respectively by the height of the
silicon pillar and the pillar circumference (2iTr).

29



Several works exist that provide analysis of short-channel or fully-depleted vertical MOSFET structures

[29,30,31,32,33,34], however the equations derived are mainly applicable to devices where the extent of the

depletion region in the device is nearly equal to or greater than the volume in the vertical silicon pillar device

(Figure 13). For the case of the devices fabricated in this work, short-channel effects and total body depletion do not

play as significant a role due to the specified device dimensions. Both the extent of the inversion layer and depletion

region are such that the cylindrical devices are only partially depleted and can be modeled with good accuracy using

planar MOSFET analysis. The applicability and accuracy of the planar model was confirmed through the analytical

calculations and verified with both simulation and experimental data. Hence a model for the vertical MOSFET

structure will be developed using theory for a planar device structure.

3.2. Lateral MOSFETs

In order to understand the electronic behavior of MOSFET devices, an examination of the governing electrostatic

equations was performed. Much excellent analysis has been done in this area [35,36,37] and it is instructive to

present a succinct theory from this body of work. This not only provides a fundamental framework from which to

start from but also allows an analytical examination of the device behavior to be completed.

A typical n-channel MOSFET under inversion is shown schematically in Figure 14. The MOSFET operates by using

an electric field perpendicular to the channel region to modulate the electron current density between the source and

drain junction regions. When a sufficiently large bias voltage is applied to the gate electrode, the charge density

under the oxide layer can be altered to form a conducting channel between the doped source and drain regions. This

channel is referred to as the inversion layer since the electrical characteristics of the silicon are "inverted" from p-

type to n-type (electron concentration becomes greater than the p-type dopant concentration).
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Figure 14. Lateral MOSFET schematic

An n-channel MOSFET under applied bias conditions Vgs>VT , O<Vds<Vdsat

If there is a potential difference between the source and drain (e.g. the source is grounded and a drain voltage is

applied), electrons will flow from the source to the drain through the conducting inversion layer. At small drain

voltages the inverted channel region behaves like a resistance and the drain current ID depends linearly upon the

drain voltage (linear regime). As the drain voltage, Vd, is increased it eventually reaches a point at which the width

of the inversion layer xin,=O at the location y=L. This is called the pinch-off point and the voltage at which it occurs

is defined as the saturation voltage, Vdat. For any further increase in drain voltage, the drain current will saturate

(saturation regime) and does not increase as the contact between the drain and the channel no longer exists (xi, 1,=O).

Basic MOSFET characteristics will now be derived under the following assumptions: 1) the device forms an ideal

MOS structure so that there are no interface traps or fixed charge with the gate oxide, 2) drift current dominates over

diffusion current, 3) carrier mobility in the inversion layer is constant, and 4) doping in the channel region is

uniform. In addition the vertical electric field in the channel region is assumed to be much larger than the lateral

electric field between the source and drain regions (gradual channel approximation). Figure 15 shows a MOSFET in

the linear regime of operation. Under the conditions stated above, the charge induced in the semiconductor at a

distance y from the source is given by

Q, (y) -C V, - , (y)) (26)
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where as before, 0,(y) is the surface potential at y and C,) is the gate capacitance per unit area. The total charge in

the semiconductor is also the sum of the charge in the inversion layer (Qi,,) and the charge in the space charge

region (Q.)

Q,(y) =Qi1 ((y)+Q (y) (27)

Qin(y) yd

y

x

0 L

V(y)
Vd

0 y y+dy L

Figure 15. Enlarged View of MOSFET Channel region

MOSFET operating in the linear regime. Drain voltage drop along the channel is shown.

An equation for the charge in the inversion layer as a function of y can then be reached as

Q (y) Q.(y) - Q, (y) (28)
=-C., (V',' - 0, (y)) -Q" (Y )(8

The charge in the depletion region, Qsjy), in the inversion regime of operation is given by

Qs(y) = -qNtxd = -V2EjqNa V(y) - 20, (29)

where xd is the width of the depletion region and , #y is defined as the potential necessary to bend the energy bands

down so that EF = Ei. Thus for a strong inversion condition the surface potential can be said to be 2 0f.

2k (N
$s(inv)= 2,. = 2kT In a

q n )
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Substituting the above equations into the expression for Q,,, yields

Qinv(y) = -C.((V, -V(y) - 2 .f -)+V2eiqN( (V(y) - 2 0, ) (30)

The conductivity of the channel can be approximated by [38]

o (x) = qn(x),U (x)

where n is the electron concentration and p, is the electron mobility in the channel region. For constant mobility, the

channel conductance is then

(31)

The integral in equation above just corresponds to the total charge per unit area in the inversion layer and is

therefore just equal to Qi.

1 W
- = - pQin,(y)
R L

The channel resistance along an incremental section dy is given by

dR = dy
W,Qin, ( Y)

and the voltage drop across dy is then

Integrating the left side of equation (32) from [0 Vd] and the right side from [0 L] yields an expression for the

drain current

W J nCox[gs
L 2

2 2k iqN~ (
3 s ( (VC
3 COX

3 3 
+ 20J. ) - (20., ji

dV=IDdR = IDdY
Wp )Qin,(Y)

(32)

(33)
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Figure 16. MOSFET Drain Current Characteristic

ID versus Vd plot for a uniformly doped MOSFET device.

For the case for small drain voltages equation (33) reduces to

ID = p C,,(V, -V )Vd (34)
L

where VT is the threshold voltage

VT = + 2 p/ (35)
Co

We can see that this corresponds to the linear regime of operation in Figure 16. The channel conductance and

transconductance are given by

g D ID Jln Cox ( -VT)
d d V =constant L

(36)
dID W

,n=dV1 = D cnn >xnVD

dV 9VV,=constant L
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In the saturation region of operation, Vda,t can be obtained from

Qinv ( y) = -C, (V, -V ( y) - 20,. )+ V2.iqN a(V ( y) - 20,.3

with y=L and Qi,,(y)=o since the inversion channel thickness, xinv=O, at pinch-off. This gives a saturation voltage

RiN, 2V ,C 2

Vaa - 20j. + 21 1- 1+ O
Vds~at = gs - + 2~q ~ 12g~Cx

CoE,,,qN,

The saturation current is easily obtained by substitution and is given by

IDsat = j, C.n (V', - VT (37)
2 L

which is independent of the drain voltage (Figure 16). For the idealized MOSFET in the saturation regime, the

channel conductance is zero and the transconductance is

, - dID = OX(Vgs -V, (38)
dV V)LgsVd=constant
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Chapter 4 - Device Fabrication and Simulation

4.1. Device Structure

Device fabrication was carried out with the objective to create vertical structures that exhibited similar electrical

characteristics of MOSFET devices. Previous work [39,40,41] has demonstrated the feasibility of creating similar

vertical-based MOSFET structures. Two main fabrication techniques exist for creating vertical MOS devices. The

first method involves the use of epitaxy on a silicon substrate to create the source, channel and drain regions of the

MOSFET. The doping level of the various regions is modified by changing the gas phase concentration during the

epitaxial deposition process and can yield very good control of the pillar dopant profile [42,43]. An alternative

approach to creating a vertical MOS structure involves etching a vertical pillar into the silicon substrate, growing a

gate oxide along the pillar sidewall and then using a vertical implant step to create source and drain regions

[34,44,45]. Both device structures are shown schematically in Figure 17.

Gate contact Drain contact Source contact Gate contact Drain contact Source contact

gate oxide gate oxide

epinaxialr etched silicon

p-yesubstrate p-type substrate

Figure 17. Vertical MOSFET design

(a) VMOS formed by epitaxial deposition of silicon, (b) similar structure fabricated by etching a
silicon pillar followed by a vertical ion implant step.

It was determined that an etched pillar approach to create the vertical MOS would be preferred for several reasons.

Two benefits to the pillar approach are uniformity of the gate oxide on the vertical sidewall and the ability to contact

the MOSFET body region to adjust the device threshold voltage if desired. It is apparent that in the epitaxial

approach, the body region is sandwiched between the two doped source and drain regions, effectively isolating it
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from the bulk substrate. If the device body volume is not large enough, the region could become completely

depleted before an inversion channel is formed thus limiting device operation. Additionally with epitaxial growth

processing, often film non-uniformity, crystalline defects, and bunching of film layers [46] in small geometries (i.e.

corners or edges) can lead to undesirable film qualities.

4.2. Process Outline and Layout

A fabrication process implementing only four photolithography mask steps was used to create the vertical MOSFET

structures. Process simulations were carried out using SILVACO to verify design flow and feasibility of each

process step. Simulation results and fabrication process flow for VMOS structures are summarized in Figure 18. In

general the process simulation results agreed very well with fabrication processes and provided a good guideline to

investigate alternative fabrication methodologies without running silicon in the laboratory. Some factors that were

not anticipated through simulation will be detailed in the next section.
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Figure 18. VMOS Process Design & Simulation
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4.3. Device Fabrication

Devices were fabricated on 4" n-type substrates with a nominal resistivity of p - 4 U-cm. It was desired that n-

channel VMOS devices be created. However an n-type substrate was chosen so that individual VMOS pillar arrays

could be electrically isolated from each other through use of a p-type tub implant.

For the initial VMOS processing, a 500A silicon nitride (SiN) layer, 3000A low temperature oxide (LTO) and

5000A polysilicon layer were deposited onto the silicon substrate. Because the LTO film was to be used as an oxide

hardmask for etching VMOS pillars in silicon, a densification was carried out at 950'C to give a high oxide/silicon

selectivity during the etch step. The top polysilicon layer was patterned with photoresist and anisotropically etched

in a C12/HBr plasma chemistry to form an implant mask layer for the p-tub formation. Process simulations indicated

that a high energy boron implant could penetrate the 3000A LTO and 500A SiN layers to a depth that would

produce uniform tub doping. A boron (B11 ) implant was done with a beam energy and implant dose of 195 keV and

2e14 cm 2 . After implantation, an extended anneal step was performed to ensure sufficient diffusion of the implanted

species and to provide a uniformly doped p-type layer in the top -2pm of the n-type substrate. The doping level at

this stage is important because it determines the channel doping and subsequently VT of the VMOS devices. Figure

19 shows good agreement between simulated and actual implant profiles along the vertical direction of the pillar

structure (Figure 17). Implant profiling was performed using quadrapole secondary ion mass spectroscopy (SIMS)

measurements through an external vendor.
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Figure 19. Simulated and measured boron implant profiles

Dopant profiles shown good matching in the region of interest (VMOS pillar). Doping profile is
along the vertical direction into the substrate.

The LTO and SiN layers were then patterned with photoresist and etched in a low pressure CHF3 plasma to form an

oxide hardmask for the VMOS pillar arrays. After definition of the oxide hardmask posts (3000A in height), the

silicon pillars that would form the VMOS device were etched in using a CHF 3/HBr chemistry. A low pressure etch

was used to give a vertical device profile such that the device channel region (the pillar sidewalls) would not become

unintentionally doped during the source / drain implant step. Once the silicon pillar were formed, the oxide

hardmask was removed with hydrofluoric acid and a 500A thermal oxide was grown. The thermal oxide was used as

additional protection for the VMOS sidewall channel against possible implant doping. There was some concern that

the thermal oxide grown at the top regions of the pillars would introduce stress and possible film delamination of the

SiN layer at the pillar tops however process simulations indicated that the SiN layer would adhere sufficiently to the

silicon surface. The SiN film is used to provide process latitude in a subsequent chemical mechanical polishing step

where it will serve as an etch stop. Post-etch scanning electron micrographs of the pillar etch and subsequent

sidewall oxidation are shown in Figure 20.
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Figure 20. Silicon pillars for Vertical MOS structure

Vertically etched pillar arrays and magnified view of an oxidized pillar sidewall.

As can be seen from Figure 21 there exists surface texturing on the sidewall regions of the silicon pillars. This

texturing is due to the pattern transfer of the oxide hardmask into the silicon substrate during the etch process. From

SEM inspection the groove depth and period appear to be on the order of 50A and 200A respectively. This raises

some interesting possibilities regarding the electron transport in the conducting inversion channel of the VMOS

under applied bias conditions. While surface roughness in the vertical direction appears to be somewhat constant (on

the order of 5-15A), the grooved sidewall might results in many vertical conduction channels along the sidewall.

Each channel could be isolated from neighboring channels due to the lateral periodicity of the texturing. However,

this phenomena is likely only to occur when the device is in weak inversion. Under strong inversion where the gate

voltage is sufficiently larger than the device threshold voltage, all of the channel regions would become inverted.

However the degree of inversion would differ slightly causing an adjustment in the amount of total current density

flowing upwards through the vertical MOSFET device. In addition, it is expected that the interface integrity between

the silicon and gate oxide layer will not be as smooth as a traditionally grown thermal oxide in planar MOSFET

fabrication due to the somewhat stochastic chemical processes involved in reactive ion etching.
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Figure 21. Sidewall texturing of VMOS channel

Grooves with 200A-300A periodicity and depth of -50A can be clearly seen.

Highly doped source and drain regions of the VMOS device were then simultaneously created by an arsenic (As')

implant of 150 keV with a 5e15 cm2 dose. Arsenic was chosen as the implant species over phosphorous because of

its lower diffusion coefficient. Because phosphorous would diffuse to a much larger extent in subsequent thermal

processing steps, undesired body isolation of the VMOS pillar could result. Due to the low pressure plasma etch, a

small amount of micro-trenching (-150 nm) at the base of each silicon pillar was observed. This was initially a

concern as it could create a high resistance region between the sidewall MOS inversion channel and the source

contact. However it was seen that subsequent processing steps allowed sufficient diffusion of the arsenic implant

under the pillar edge to create a well defined channel path for electron conduction.

Following the source / drain implant the protective sidewall oxide was removed with hydrofluoric acid and the

device gate oxide was thermally grown in a N20 ambient at 1000 C. From planar monitor wafers, a gate oxide

thickness of 250A was measured. However it was apparent that due to the dependence of thermal oxidation rate on

crystal orientation, the vertical sidewall thickness could vary substantially from the measured planar value. To verify

this critical parameter, selective oxide etching was done to delineate the actual gate oxide. Figure. 22 shows a

vertical gate oxide thickness of 185A which is approximately one third the measured and observed planar oxide

thickness of 450A. The difference in planar versus vertical gate oxide thickness is mainly due to the different levels

of doping within the structure. As can be seen in Figure 25, the source region of the device has a high arsenic

concentration (formed by the aforementioned implant step) that will increase the silicon oxidation rate at that
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surface. The pillar sidewall region on the other hand is doped with a boron concentration that is approximately three

orders of magnitude lower (Figure 19) than the heavy arsenic implant. Simulation of thermal oxidation showed

similar quantitative results.

Figure 22. Vertical sidewall gate oxide

(a) Etched micrograph used to delineate the VMOS gate oxide, (b) Gate oxide at a corner region of
the VMOS pillar

Immediately following gate oxidation, 5000A of undoped polysilicon was conformally deposited. The film was then

doped using a solid source diffusion of phosphorous at 925 C to provide a low resistance path for the VMOS gate.

The polysilicon layer was patterned with photoresist and etched in a high pressure C12/HBr plasma to form the gate

electrode structure. Figure 23 shows at the polysilicon gate pattern for a VMOS pillar array at progressive levels of

magnification. The polysilicon grain structure can be clearly seen.

Figure 23. Polysilicon gate electrode

(a) lOx 10 VMOS array, (b) two columns of VMOS devices with polysilicon gate, (c) magnified
view of patterned polysilicon gate covering one VMOS pillar.
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In order to contact the drain region at the top of the VMOS device without shorting to the vertical gate electrode, it

was necessary to CMP the polysilicon layer. By using this polishing technique, it was possible to open a drain

contact region at the top of the VMOS pillars (Figure 24). It was very important however to avoid over-polishing the

pillars, which would result in removal of the doped drain junctions at the upper region of the pillars. It is for this that

the aforementioned silicon nitride layer was initially deposited onto the substrate. The CMP polishing selectivity of

polysilicon to silicon nitride is approximately 5:1, allowing significant process latitude in the case of a non-uniform

CMP process.

Figure 24. Gated VMOS pillars after CMP polishing

(a) Top and (b) cross-sectional views of VMOS pillars after CMP polishing.

Dopant stained SEMs were taken to verify that the drain junctions were still intact after chemical mechanical

polishing (Figure 25). It can be seen that subsequent thermal processing steps allowed for sufficient diffusion of the

source dopant under the pillar edge thereby providing a continuous path for conduction electrons. In addition good

agreement was observed between actual devices and simulated process results.
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Y
gate

Figure 25. VMOS Device with Source, Drain and Gate regions

Actual and (b) simulated device fabrication results. Dark regions correspond to high (>10" cm-3)
n-type dopant concentration.

Dopant profiled from process simulations are plotted in Figure 26. Doping variations were seen both within the

channel region (X-X') and along the VMOS body region (Y-Y'). The body doping variation is caused by the

redistribution of implanted boron species during the annealing step (Figure 19). Variation in the channel doping is

likely a consequence of boron out-diffusion during the formation of the gate oxide.
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Figure 26. VMOS Doping Distributions

Dopant concentrations are shown along the X-X' and Y-Y' axis of Figure 25b. (a) The decrease in
channel concentration at the silicon/oxide interface occurs due to dopant out-diffusion during the
gate oxidation step. (b) Body doping variation from drain to source results from the boron implant
step (Figure 19).

For the final processing steps, a 3000A TEOS oxide layer was deposited to isolate the source, drain, and gate

regions and contact vias were etched through this oxide. Low pressure physical vapor deposition was used to deposit
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1 pm of aluminum-silicon film onto the wafer. A one percent silicon concentration was used in the deposition to

prevent aluminum from spiking into the silicon and possibly shorting the device. The wafer was patterned and

etched in a Cl2/BCl 3 plasma to define the metal contact regions for the VMOS device arrays.

Figure 27. Completed VMOS device arrays

IOx 10 device arrays of vertical MOSFET devices.
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Chapter 5 - Device Characterization

5.1. Device Simulation

The motivation for device simulation is two-fold: firstly to assess the validity and applicability of MOSFET

analytical expressions derived in Chapter 3 and secondly to correlate numerical simulation results to actual device

performance. Device modeling was carried out using MEDICI and SUPREM simulation environments. Both are

commercial products available from Avanti and Silvaco. SUPREM implements several semiconductor process

models (ion implantation, diffusion, etc) and was used simulate the device fabrication process. Using measured

process data and process simulation results as a template, a device mesh was generated in MEDICI and used to

characterize electrical device behavior in response to applied voltage conditions.

5.1.1. PHYSICAL MODELING

In order to extrapolate accurate device electrical characteristics, care was taken to verify that MEDICI simulation

parameters closely matched data measured on fabricated devices and SUPREM process simulation results (Table 1).

These data values were used as input variables for the MEDICI device mesh. Device profiles were not imported

directly from SUPREM to MEDICI due to file incompatibility. In the case of dopant distribution from implant and

diffusion processes, agreement of simulated and experimental profiles (Figure 19) lends support to the validity of

this approach. Figure 28 shows a cross-sectional view of the simulated VMOS doping profile (SUPREM) and the

corresponding profile used for electrostatic simulations (MEDICI). The profile corresponds to distance along the X-

X' line drawn in Figure 25b. The drop in doping concentration at the silicon-oxide interface occurs during the gate

oxidation process (Figure 20b). Because the silicon pillar sidewall does not have a capping layer, dopant out-

diffusion [47] results in a decreased surface concentration of the implanted boron species. This will naturally have

an impact on the MOSFET threshold voltage and must be taken into account for the electrostatic device simulation.
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Figure 28. Lateral Doping Profile of Vertical MOS Channel

(a) SUPREM doping simulation output and (b) MEDICI input doping profile.

Another important doping variation that was taken into consideration was the vertical non-uniformity of the post-

annealed boron implant. While a high temperature anneal step considerably flattened out the implanted dopant

distribution (Figure 19), the dopant concentration along the channel (Y-Y' in Figure 25) drops approximately 60%

over the first 1.5pm of the pillar structure. This graded doping distribution (lower doping at the source) alters the

threshold voltage along the device channel and could exacerbate drain induced barrier lowering (DIBL) and device

pinch-off in the saturation regime. The severity of these effects in the fabricated VMOS device will be discussed

further in the following section. While it is not feasible to experimentally extract a full 2-dimensional doping profile,

vertical and lateral dopant distributions that matched simulation and experimental data (Figure 19, Figure 28) were

implemented in the MEDICI device mesh. The good correlation between dopant simulation and experimental data

allows us to extract and use a 2-dimensional doping profile mesh with a reasonable level of confidence. Figure 29

shows the dopant distribution and device mesh used for electrostatic simulations in MEDICI.
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Figure 29. MEDICI Device Mesh and Dopant Distribution

Dopant variations in source, drain and channel regions of the VMOS device mesh are shown.

5.1.2. ELECTRICAL MODELING

In order to model MOSFET characteristics, a detailed electrostatic analysis of the device was conducted. The

analytical framework for a MOS structure, outlined in section 2.3.1, is obviously applicable to the MOSFET device.

The fundamental relations remain the same however appropriate corrections are necessary since the semiconductor

is now p-type for the MOSFET rather than n-type as in the case of the field emitter. In particular, the charge density

is given by

p = q(p -n - N,)

where N, is the p-type doping concentration in the bulk. The electron and hole concentrations are then

n nO exp( ) = exp(q

( kTU N k

P =PO exp( )= N, exp q
kT kT
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As before the point of zero potential is taken to be far inside the bulk. Solving the Poisson-Boltzmann equation

=-c exp-i1 - exp 1
dx2 

_ s k N 2  kT

for the electrostatic potential, it is possible to observe the electrical response and determine several device

parameters of interest. Energy band and electric field calculations are shown in Figure 30. Significant band bending

is apparent near the semiconductor surface under inversion conditions. In addition, a sharp increase in the electric

field occurs where the inversion layer is formed as expected.
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Figure 30. MOSFET Energy Band Diagram and Electric Field Calculation

As can be seen, under strong inversion a sharp triangular potential exists at the silicon surface. This
leads to quantization of carriers and the formation of a 2-D electron gas. Doping concentration of
N, = 6e17 cm-3, gate oxide thickness x 0, = 190 nm.

Figure 31 show doping concentration and surface charge (at the silicon-oxide interface) as a function of applied gate

voltage. The onset of inversion occurs when the electron concentration at the surface begins to exceed the

background dopant level. From the electrostatic calculations this transition occurs at a gate voltage of approximately

Vg = 2.3 volts. Very good agreement was seen between this analytical solution and actual device measurements.
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Figure 31. Carrier Concentration and Charge at the Silicon Surface

Doping concentration of Na, = 6e17 cm-3, gate oxide thickness x,, = 190 nm.

5.2. Electrical Testing

Electrical testing of completed vertical MOSFET devices were done using an HP4145b probe station. Several key

figures of merit were measured and compared to simulated and analytical predicted values. In general, actual device

data matched very well with predicted metrics.

Good correlation was observed between process simulations and fabricated VMOS devices. Simulated fabrication

parameters such as gate oxide thickness, junction depths, and doping profile distributions were all within 10% of

actual measured values. Electrical device characteristics also showed good agreement with actual devices. Device

parameters from both simulation and experimental measurements are summarized in Table 1. Tested VMOS pillars

were 8pm in diameter corresponding to a device width of 25.1pm (21rr). The device length and junction depth were

determined by inspection of dopant stained scanning electron micrographs (Figure 25).
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VMOS device width 25.lpm 25.1pm

VMOS device length 0.78 pm 0.78 pm

Gate oxide thickness 190 A 180-200 A

VMOS body doping 6.6e17 cm 3  6.0e17 cm-3

Drain junction depth 0.26 pm 0.28 pm

Source junction depth 0.31 pm 0.32 pm

Lateral source diffusion 0.13 pm 0.16 pm

Table 1. Comparison of Simulated and Measured Process Parameters

Device Parameters Device Simulation Experiment

Threshold Voltage 2.2 V 2.05 V

Drain Current (Vgs=3V) 99.2 pA 97.4 pA

Subthreshold Leakage 0.027 pA/pm 0.032 pA/pm

Subthreshold Slope 146 mV/decade 110 mV/decade

Table 2. Comparison of Simulated and Measured Device Parameters

Some discrepancy is apparent between simulated and experimental values for the subthreshold leakage and

subthreshold slope. This is believed to be a result of extrapolation error from experimentally measured data (Figure

35). Due to only partial current measurements in the subthreshold regime (Vgs< 2 .1 V), a sharply defined

subthreshold slope was not available.
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Good agreement was seen for simulated and experimental drain characteristics. Figure 32 shows drain voltage as a

function of drain voltage for various gate voltage levels. The values shown are normalized currents for one VMOS

pillar from an IOx10 array of VMOS devices (Figure 27).
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Figure 32. VMOS Drain Current Characteristics

Normalized drain current for one VMOS device as a function of drain voltage for several applied

gate voltages. Graphs show good correlation of actual device data to (a) analytically predicted and

(b) simulated I-V characteristics.

Comparing simulation and theoretical results with the device data, it is clear that the device drain current exhibits

some deviation from the predictive models. In particular from Figure 32a, the drain current continues to increase as

drain voltage is ramped beyond the saturation point (Vdsat). This is most likely due to some drain-induced barrier

lowering (DIBL) at higher values of the drain voltage, Vds. As VdS is increased beyond Vdaa, the pinch-off effect

becomes more pronounced and the effective channel length is reduced. The drain current, which is proportional to

(W/Leff) therefore necessarily increases with increasing drain voltage. By modifying the analytical equations to

decrease Leff as a function of Vd, it was possible to see the same effect (Figure 33a).

In addition to this effect, a 'tilting' of the drain characteristics is observed. This tilting is often observed in MOSFET

devices and can be explained by a series or contact resistance at the device source and drain junctions. In effect a

voltage drop exists across this resistance which decreases the effective drain to source voltage seen by the device. As

a result, the drain current decreases from what it would be if there were no resistive effects.
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Figure 33. Correction Effects for Drain Current Characteristics

Adding DIBL to the analytical model causes drain current to increase as a function of drain voltage
for Vd>Vdal (b) Incorporation of source resistance into the simulation model causes a shift in output
current as seen on actual devices (Figure 32b).

A series resistance of Rs=700pQ/pm was put into the simulation model as this is a reasonable value for the given

device doping levels [48,49]. As can be seen from , with the inclusion of series resistance, the simulation results

matched very well to device data

Another factor that may account for the difference between simulated and measured drain characteristics could be

reduced mobility in the actual device that was not fully accounted for in the simulation. For the device simulation in

MEDICI, a concentration dependent mobility model and a surface mobility model were used concurrently. The first

model uses tabulated values for bulk mobility calculations and is used to determine current flow away from the

surface. The second model takes into account surface scattering at the silicon / oxide interface and is more

dependent upon the channel concentration, surface electric field, and scattering.
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Figure 34. VMOS Drain Current Characteristics with Correction Effects

Good matching between device data and simulation was seen after series resistance corrections
were added to the device model.

Some deviation was observed between simulated gate current characteristics and measured device values. This is

though to be mainly due to series resistance in the device that was not present in the simulation model for the data

shown in Figure 35. Another factor that may account for the lower simulated values could be a shorter effective

channel length on the actual device caused by a gradual drop in doping concentration for the source and drain

junctions. This would decrease the effective channel length in the device and result in higher output current.
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Figure 35. VMOS Gate Current Characteristics

55



As stated earlier, a graded doping distribution (lower doping at the source) will increase VT along the device channel

thereby increasing device pinch-off in the saturation regime. The resulting effect would be current saturation at a

lower drain voltage (decreased Vdat) causing a lower drain current characteristic. It was seen however, that the

graded dopant distribution shown in (Figure 19) does not strongly impact the drain current characteristic. Figure 36

shows simulation results for a graded doping distribution versus a reverse-graded distribution. Typically an increase

in current would be expected for the reverse-graded doping profile, as a more pronounced diffusion current would

increase the total device current. In addition, the reverse-graded distribution would lower the threshold voltage at the

drain (lower doping) thereby reducing the body effect and pinch-off condition. It was realized however, that while

the ion-implanted doping distribution varies significantly in the VMOS body, the channel doping just below the gate

oxide (Figure 28) is fairly uniform within the region of interest (i.e. the inversion layer thickness, -100nm). This

channel uniformity can likely be attributed to the non-uniform out-diffusion of the implanted boron dopant during

formation of the thermally grown gate oxide. Since the diffusion rate is proportional to the gradient of the dopant

concentration, there will be an increasing degree of dopant out-diffusion as one moves towards the top region of the

pillar (Figure 19). This effect will result in a channel doping that is more uniform than the larger variation seen in

the body doping. As can be seen, the drain characteristics are quite similar for both the graded and reverse-graded

distributions (Figure 36).
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Figure 36. Impact of Graded Channel Doping on Drain Characteristic

VMOS drain characteristics for graded and reverse-graded doping simulations were seen to be
highly similar. This indicates that the variation in doping distribution along the channel region does
not vary significantly enough so that device performance is affected.
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Chapter 6 - MOSFET / FEA Integration

6.1. Motivation and Applications

There are several reasons why we are seeking to integrate MOSFET and FEA structures. As outlined in this section,

in order to obtain appreciable current density from a field emitter array (10-1OOpA), gate voltages of approximately

50-100 Volts are necessary. In device operation, the energy dissipated in switching is given by

I
Edis =-C(AV ) 2

2

It is clear that lowering the switching threshold voltage will result in much reduced power consumption of the driver

circuits. This voltage scaling is particularly effective in the case where several thousand devices that may be

addressed in a matrix array (such as in a display application). Reducing the on-off switching voltage for a field

emitter array can be accomplished by two distinct methods. The first possibility is to aggressively scale the field

emitter tip dimensions such that field emission be induced at a much lower gate voltage (10-20 volts). Scaling the

gate aperture surrounding the emitter tip will strongly increase the electric field at the tip surface. This will results in

higher tunneling probability and consequently a higher emission current density (see Chapter 0).

The other option to reduce the FEA operating voltage is to tie a MOSFET device in series with the area. In this

scenario the MOSFET acts as a switch to open or close a current loop between the field emitter array and ground

potential. By holding the FEA gate electrode at a high potential, the MOSFET device acts a switching device. In

addition, if the emission current is greater than the MOSFET drain current in the saturation regime, the MOSFET

will act as a load and can function as a current limiting device for the FEA. This not only allows more stable device

operation but may possibly extend FEA device lifetime as well. Figure 37 illustrates the integrated MOSFET / FEA

current characteristics and operating principle.
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Figure 37. MOSFET and FEA current characteristics

The intersections of both curves represent points of stable device operation.

6.2. Requirements for VMOS / FEA Integration

Two approaches may be taken for creating integrated VMOS / FEA devices. A one-to-one method attempts to

construct one field emitter device (FED) above each vertical MOSFET. The other approach utilizes one VMOS

structure to address a field emitter array (FEA), essentially a one-to-many method. Both approaches are shown

schematically in Figure 38. While the single FED approach is more conducive in studying the effects of the

integrated system on a single field emitter, thereby reducing statistical variations that exist between emitter tips, two

difficulties arise in this approach. The first and main obstacle is the requirement of current matching between the

transistor switch and the emitting device.

Single field emitter Field emitter array

Gate contact FEA gate contact Source contact Gate contact FEA gate contact Source contact

VMOS illarVMOS pillar

p-type substrate p-type substrate

Figure 38. Approaches to VMOS / FEA Integration

Schematic representations of integrated devices using a (a) one-to-one or (b) one-to-many
fabrication method.
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As shown in Figure 37, in order to achieve a stable performance, both transistor and FEA current characteristics

must intersect at a given operating voltage. In Chapter 0 it was seen that typical VMOS drain currents were on the

order of 0.1 - 1.OpA for a 8pm diameter VMOS transistor. This corresponds to a VMOS W/L ratio of -32 and a

drain area of 50 pm 2. For the VMOS structures, the transistor channel length is determined by the pillar etch step

(Figure 20) and diffusion of the drain implant (Figure 26). It is seen that the circumference of the silicon pillar

determines the device width. Figure 39 shows total and normalized current characteristics of field emitter arrays

tested in the laboratory [50]. While only a small percentage of devices are expected to be contributing to most of the

emission current, it is clear that the current produced by a single emitter is on the order of IOOnA.
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Figure 39. Typical FEA Current Characteristics

(a) Total and (b) normalized current for several field emitter array sizes [50].

To achieve current matching between the two devices, it is necessary to integrate many tips per

Assuming a fixed nominal emission current, the number of tips required to achieve a matching

readily determined and is illustrated in Figure 40.

transistor device.

condition can be
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Figure 40. Required Number of Tips for Current Matching

Larger MOSFET W/L ratios will increase VMOS current thereby requiring a larger number of
emitter tips to achieve a current matching condition. Since FEA area is dependent on pillar radius,
drain area is shown as a function of the corresponding W/L ratio.

6.3. Fabrication Methods for VMOS / FEA Devices

In order to determine the feasibility of integrated VMOS / FEA devices, simulations were conducted for a process

design flow. The device fabrication follows a similar sequence to the VMOS design outlined in Section 0 (Figure

18). Instead of depositing a metal contact layer as in the last VMOS process step, a deposition of n+ doped

amorphous silicon or polycrystalline silicon is done followed by a CMP step. After the base silicon layer is

completed, an oxide layer used to form a hardmask for the silicon FEA etch step (Figure 41b). For the tip density

required for current matching, it will be necessary to use special techniques to form 100nm or 200nm period oxide

caps. These techniques will be discussed in further detail below. The field emitter tips are then formed by an

isotropic silicon etch in a plasma reactive ion etcher (Figure 46). A thermal oxidation sharpening step and oxide

deposition are followed by an oxide etch to open contact vias to the VMOS gate and source regions (Figure 41c). A

highly doped polysilicon layer is then deposited. The deposited film simultaneously forms the FEA gate VMOS

source, and VMOS gate regions. The polysilicon undergoes CMP to open the FEA gate regions followed by a short

HF dip to expose the FEA tips (Figure 42b). A final mask layer then is used to define and etch the FEA gate, VMOS

gate, and VMOS source contacts (Figure 42c).
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Figure 41. Integrated Process of FEA and VMOS Device

(a) VMOS pillar structure before metal deposition step, (b) deposition of amorphous silicon layer,
CMP silicon layer, pattern and etch to form oxide hardmask, (c) etch field emitter tips, thermal
oxidation sharpening and oxide etch to create VMOS gate and source via openings. Simulation
plots are axially symmetric about the left vertical axis.
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Figure 42. Integrated Process of FEA and VMOS Device

(a) Deposition of polysilicon for contact material, (b) CMP to create FEA gate openings, wet oxide
etch to expose FEA tips (c) pattern and etch of polysilicon to form device contacts. Simulation plots
are axially symmetric about the left vertical axis.

6.4. Fabrication Methods to Form Very High Density FEAs

In order to fabricate several hundred tips in conjunction with a single transistor device, three techniques are possible.

The first and most simple approach is to create a lateral transistor whose W/L ratio is independent of the field

emitter array area. This method is currently under investigation within the research group. In the case of a vertical

transistor structure, the FEA area is constrained by the available region on the top drain of the VMOS structure

(Figure 38b). For a VMOS device of radius r, the transistor width, given by 21Er, and the top drain area, 7ur 2, are not
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independent. We see from Figure 40, that for a nominal device with W/L of 32, a drain area of 50pm2 must

accommodate approximately 500 emitter tips are required to realize current matching for a 50pA MOSFET device.

Aggressive scaling of field emitter devices using interferometric lithography techniques has been investigated and it

has been shown that emitter tip densities of 2.5x10 9 tips/cm 2 (25 tips/pm 2) are possible [26]. This level of tip density

is sufficient to attain the required current matching between the VMOS and FEA devices. In addition a maskless

electrochemical process is under investigation to form 100nm period arrays of field emitters. Both techniques will

be outlined below.

6.4.1. INTERFEROMETRIC LITHOGRAPHY

To reach tip densities of 2.5x10 9 tips/cm 2, field emitter devices of a 200nm period must be fabricated. These small

dimensions are typically beyond the capabilities of standard lithography exposure tools. By using an interferometric

lithography process, it is possible to fabricate field emitter arrays with a 200nm period between individual field

emitter tips.

The grid pattern of the FEA lends itself to the use of interferometric lithography for patterning the emitter tips.

Interferometric lithography uses a laser beam that is split and re-combines with itself to form a standing wave

pattern. Two exposures orthogonal to each other will form a post pattern in a positive resist.

laser beam
beamsplitter X = 351.1 nm

variable Pockels cell
attenuator

spatial filters

mirror 20mirror

beamnsplitter substrate

phase err or
sensor

=2sin 0

Figure 43. Schematic of Interferometric Lithography System

Fringes are spatially stabilized by means of a feedback loop on the Pockels cell.
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A 351.1 nm wavelength argon laser is used to form a 200 nm period standing wave. The recombination angle for

this period grating is 0 = 61.370 as per:

P 2sin6

In order to achieve the high contrast patterning with the interferometric lithography an anti-reflective coating (ARC)

was used when the wafer was exposed. This layer serves to minimize reflections from the substrate back into the

photoresist, thereby ensuring good pattern transfer.

To prepare VMOS samples for interferometric lithography (IL) exposure, an oxide layer was deposited before the

CMP processing step described earlier (see Figure 24). The subsequent chemical polish resulted in an exposed

silicon surface (VMOS drain region) surrounded by the deposited oxide. At this stage a thin oxide was thermally

grown on the top surface of the exposed silicon and the tri-level layer was spun on. The purpose of the oxide layer is

to act as an etch hardmask for the silicon field emitter devices. After preparation, the wafers were exposed using the

interferometric lithography system (Figure 43). Each wafer was exposed twice, with the wafer rotated 900 between

each exposure to form the post array pattern. Each exposure was done at approximately 18.5 mJ/exposure. Figure 44

shows the photoresist posts after exposure and developing.

Figure 44. Developed Posts on Top of VMOS Pillar Arrays

Photoresist exposure of interferometric lithography pattern.
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As can be seen, the post patterns resolved much more clearly on the circular silicon regions than on the surrounding

oxide layer. This was expected as the thickness of the tri-level resist layer was designed to minimize surface

reflections off of a silicon substrate and not an oxide layer. While interferometric lithography has been utilized in

previous works [26], this may be the first time its use has been demonstrated on highly non-planar surfaces. To

transfer the photoresist pattern into the underlying oxide layer, the tri-level structure was etched in a reactive ion

etcher using a CHF 3 and 02 plasma chemistry. Figure 45 shows the sub-100 nm diameter caps of SiO 2 that will be

subsequently used as an etch mask for the field emitter tips.

Figure 45. Pattern Transfer to Form 100nm Oxide Posts

Post-etch processing show good pattern transfer of 200nm period post arrays formed by
interferometric lithography.

While these structures have not been fully processed with the integrated VMOS transistor as of this writing, 200nm

period field emitter arrays have been fabricated on silicon substrates by Dr. David G. Pflug [26]. The processing

steps are similar to those outlined above. After the oxide post formation, an isotropic silicon etch is used to form tip

arrays (Figure 46a).
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Figure 46. Formation of Si Emitter Tips and Polysilicon Deposition

(a) Rough shape of the silicon cone is a function of the lateral and vertical etch rate, tip sharpening
is accomplished by a thermal oxidation step. (b) The conformal polysilicon surface will be
planarized to expose the tips and create gate apertures [26].

The oxide caps are then removed in a hydrofluoric solution and a thin thermal oxide is grown to sharpen the emitter

tips. Conformal oxide and polysilicon layers are the deposited (Figure 46b). Finally the polysilicon layer is polished

in a CMP step to form the field emitter gate aperture. A second hydrofluoric dip is used to remove a small amount of

the deposited oxide thereby exposing the silicon emitter tips. Figure 47 shows completed arrays of 200nm period

silicon field emitter tips.

............. ..........

Figure 47. Fabricated 200nm Period Silicon Field Emitter Arrays
Final fabricated arrays of silicon field emitters with 200nm pitch and 8Onm gate aperture [26].
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6.4.2. SELF-ORDERED PERIODIC ARRAYS THROUGH ELECTROCHEMICAL PROCESSING

A second approach to fabricating high-density field emitter arrays was also investigated. Due to the complexity of

the interferometric lithography system and it high sensitivity to exposure and substrate film conditions a non-

lithographic electrochemical process was explored. In this method, chemical anodization of a thermally deposited

aluminum film creates a self-ordered periodic array of hexagonal cells. The goal of this technique is to use the

periodic array as a pattern transfer layer to form oxide caps for field emitter array formation (Figure 48, Figure 49).

Aluminum

Anodized aluminum layer
100 nm

-LA Isu /a

Figure 48. Process Sequence to Create 100nm Period Field Emitter Tip Arrays

(a) Thermal deposition of aluminum of silicon substrate, (b) electrochemical anodization of
aluminum to form l00nm periodic arrays, (c) thermal oxidation of silicon to form oxide caps.

oxide caps
100 nm

$10 i1btrate

field emitter tips
100 nm

../ .

Figure 49. Process Sequence to Create 100nm Period Field Emitter Tip Arrays

(a) Wet etch of aluminum oxide layer, (b) isotropic plasma etch to form silicon field emitter tips,
(c) deposition of polysilicon FEA gate, CMP, and wet oxide etch to expose emitter tips.
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Self-ordered pore formation from aluminum anodization has been studied and has several possible applications

ranging from nano-fabrication [51,52] to photonic crystals [53]. While theoretical frameworks have been proposed

to explain the exact chemical reaction and formation mechanisms [54], the physical process is not completely

understood as of this writing. In addition, most work has used blank aluminum sheets to form the periodic array

structures. In this work however, formation of self-ordering periodic structures have been demonstrated on silicon

substrates. This advancement is highly beneficial to several possible further applications that may be integrated with

existing CMOS processes. Electron micrographs of the self-formed arrays are shown in Figure 50. While further

processing is required to form oxide caps and field emitter tips the current progress to date is highly encouraging.

3 -- .... .-1!,

Anodized alum inumn AMdzdauiu

Figure 50. Self-ordered lO0nm Periodic Pores Arrays on Silicon

Fabricated arrays show hexagonal packing with 3Onm pore diameter and 9Onm pore spacing.
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Chapter 7 - Conclusions

Integration of FEA and MOSFET device structures has been explored as a means to provide greater device stability

as well as low voltage switching control. A process to create a vertical MOSFET device was simulated and verified.

Vertical MOSFET devices were fabricated and tested in the Integrated Circuits Laboratory at MIT. Models to

describe the physical and electrical device characteristics were developed and showed very good agreement with

both analytical and numerical simulation results. Through process simulation, integration of vertical MOSFET

devices and high density field emitter arrays was shown to be feasible.

To create integrated MOSFET / FEA devices it was determined that a high field emitter array density was required

to reach a current matching condition for the desired device operation. In order to achieve emitter densities greater

than Ix10 9 tips/cm 2, two possible methods were explored. The first method involved using an interferometric

lithography system to form period arrays of field emitter tips. Fabrication capability of FEAs with packing density

of greater than of 2.5x109 tips/cm 2 was demonstrated through the use of interferometric lithography techniques. A

second approach to create very high density emitter arrays was also investigated. Using maskless, electrochemical

processing, periodic array formation with spacings of <100nm was demonstrated. The self-forming arrays showed

the possibility of reaching even higher FEA device packing densities on the order of 1x1O'" tips/cm 2 . The

electrochemical process, in addition to being maskless, provided much larger across-wafer uniformity and the ability

to selectively pattern specified substrate areas.

Several possible applications of the integrated VMOS / FEA devices are possible and may be investigated further.

Some of these include low-voltage, matrix-addressable field emission displays, photosensitive detectors, and

microwave amplifiers. Further work into optimizing VMOS / FEA design and theoretical analysis is also

anticipated.
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Appendix A: Electrostatic Analysis of MOS Structure

There are several basic relations that can be used to describe the MOS structure that will be correlated the field

emitter system. These relationships describe the charge distribution and electric fields within the structure and when

modified appropriately, can be used for non-equilibrium conditions as well. A very succinct analysis has been done

[27] and will be used to present an analytical solution to the MOS system. The figure below shows a schematic of a

MOS structure and the associated charge distribution, electric field, and electrical potential within the semiconductor

material.

P

QM

-xOx O x

E

-xXmetal 0

oxide

semiconductor
x

-xOx 0 x

ObiT

-xOx 0 x

MOS Structure

Charge density, electric field, and electric potential as a function of distance are shown. If the
silicon and metal work functions are equal, the built-in potential, $bi will be zero.

Applying Gauss' law to a region that encloses the entire semiconductor charge Q, it is seen that the electric field

within the oxide region is

Qx
Ox EOX
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In addition, since the dielectric constants of the oxide and silicon are different we have that

E~ = OOX OX 'Vi V

giving

QS

ES1

for the electric field at the semiconductor surface. The potential drop across the surface 01,j (the difference in work

function between the metal and semiconductor materials) is equal to

bi = , + x $

= -S Q+ x ______

__= O __ _0" Q

EOX Cx

If a voltage V is applied to the metal surface the equation is modified to

C

To solve more rigorously for an electrostatic bias condition, a Poisson-Boltzmann formulation was followed to

determine the electric charge, potentials and fields within the silicon device. For a uniformly doped n-type

semiconductor the charge density can be expressed as

p =q(n-p-Nd)

Where p and n are the carrier densities, Nd is the dopant concentration, and q is the electronic charge. With this

charge density Poisson's equation for electrostatic potential is then

dx 2 q(
dX 2 -s ( pNd)
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Since the oxide layer between the silicon and metal surfaces prevents current flow, the semiconductor is in

equilibrium and the relation np = n2 holds. For this situation Boltzmann statistics may be applied and the carrier

concentrations can be expressed as

n no exp( O- )Ndexp~
kT kT

-q 2 (_ q0
P= Po exp( )~ exp

kT Nd kT

where no and po are the electron and hole concentrations in the bulk and the potential deep within the bulk is taken

to be zero. This assumes that most donor sites are fully ionized such that no~ Nd, which is valid at room temperature

or above. In the bulk, charge neutrality demands that

no - Po -Nd =0

Combing the above four results yields the Poisson-Boltzmann equation for the electrostatic potential,

d 20 qNd 2 p , q0
d =2 - exp( ) d- ex { 2 >x

x2 Es kT N2 kT

Going through the mathematical analysis (Appendix A), boundary conditions for the surface electric potential can be

solved for and a self-consistent expression for the electric potential can be reached. Once the electric potential as a

function of distance is known the electric field and semiconductor charge can be solved for from the equations

dp 2kTNd F(0)
dx Esi

and

Qe=-qNd exp- -Idx

n2 q

Q = q exp - 1 dx
Nd kT
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Using the mathematical identity that

d2o 2do _ d (d 2

dx2 dx) dx dx)

the Poisson-Boltzmann equation can be re-written as

d Q I2 2qN d exp~f3) -- N exp Io
dx dx Esi kT )d 2 kT

d1
dx

The equation can then be integrated from within the bulk region at x=o to some point x in the surface (where x=O is

the oxide-silicon interface) such that

dx= 20 exp( Ij_ n? exp kT J-1 ddx

dx dx
- exp 2 exp I do

dp ~2 2kTNd F (qp qp~ n7 ( qp qp1
( I f - ' exp -O--l)+ n2 epq+i-

dx Es kT Na (- kT kT

A first-order differential equation for the electrostatic potential can now be expressed as

_ _ 2kTN [-p --q n2 rexp
dx Es kT kT Nd2

_ 2kTN d dF(O)

esi

qp
kTjJ ± kT

To obtain the electrical potential as a function of distance, one further integration must be carried out. Namely

d _ 2kTNd

0" F (p) esi
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While this integration is rather difficult to perform analytically it is possible to solve numerically to obtain O(x).

From this result, it can be seen that the electric field is then

d~p _2kTN,= d F(O)
dx .si

In addition the semiconductor charge due to electron and hole concentrations can be expressed as

Qe =-qNd exp(- -1 dx

Q = q exp -- )-1 dx
NA/ ~kT}

Changing variables from x to 0 gives

q2 esiNg e kT -
Qe =q qdpsd e

*2kT F F(0)
qOt

2
h $n i s CS.-1d

Nd2  2kTNd , F(O)

A relationship between the surface potential 0, and the applied voltage V can be obtained by combining the above

equations to yield

V =-,,i + 0, -2 kTNd F( s)
COX

This equation is instrumental in that for a given voltage, this equation can be solved numerically to yield the

boundary condition value of ,. After this value is found, all other semiconductor parameters such as charge

distribution, electric field and carrier concentrations can be determined. From these results, the modification to the

semiconductor work function, namely (Ec-Ef) can be accounted for in the calculation of the electron supply function

N(E).
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Appendix B: Matlab Electrostatic Simulation Code

nmosfet.m

% solve MOSFET Poisson-Boltzman equation
% [x,y] = ODE45('F',xspan,ic)
% integrate y' = F(x,y) from time xO to xFINAL with initial conditions ic.

clear
figure(l); clf; figure(2); clf; figure(3); clf; figure(4); clf; figure(5);
clf
global q k eox esi T Na NC xox ni Wm
global V phi-s

%%%%%%%%%%% constants

t=O; j0; i=0;
k=8.61834e-5; % eV/K
q=1.602e-19; % C
esi=11.9*8.854188e-12; % F/m
eox=3.9*8.854188e-12; % F/m
T=300; % K
Na=6e23; % m-3

xox=190e-10; % M
ni=1.07e16; % must be c

NC=3.1e25; % m-3
NV=le25;
Wm=4.04; % eV, aluminum =

hanged

4.04eV

if T changes

styles = {'b-''k-''r-' 'b-' 'b-' 'k-' 'r-' 'b-' 'b-'
'b-'b-' ' 'r-' '--' '1 'b-' 'k-' 'r-'
'r-' 'b-' 'b-''k-' 'r-' 'b-' 'b-' 'k-' 'r-' 'b-' 'k-'
'b-' 'k-' 'r-' 'b-' 'b-' 'k-' 'r-' 'b-' 'k-' 'b-' 'k-'
'r-' 'b-' 'b-' 'k-' 'r-' 'b-' 'k-' 'b-' 'k-' 'r-' 'b-'
'b-' 'k-' 'r-' 'b-' 'k-'};
styles2 = {'b--' 'k--' 'r--' 'b--' 'b--' 'k--' 'r '

x0 = 0;
xfinal = le-7;
ic = 1;

'k-'
'b-'
b-'

'r-'

'b-'

b--'
'b--'
'b--'
'b--'
'b--'
'b--'

'b-' 'k-'
'b-' 'k-'
'r-' 'b-'
'b-' 'k-'
'r-' 'b-'

'b--'
'b--'
'b--'

'ID--'
'b--'

'k--' 'r--'
'k--' ' r--'
'k--''r '
'k--' 'r--'
'k--' 'r--'
'k--' 'r--'

% initial guess
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%VvalO = -2: 0.2 : 5;

%Vvals = [0, Vval0];
Vvals = [0, -2, 3]; % V = 50 V, xox=190A gives n = 1e20 cm-3

% E = 1e7 V/cm (field emission)

for V = Vvals
t=t+l;

ic = fzero('icF',ic); % Solve for initial condition Phi_s

phis = ic;

xspan = [x0 xfinal];

[x,phi] = ode45('F',xspan,ic); % phi(i) = phi(x)

figure(l)

plot(x,phi,char(styles(t)))

xlabel ('Distance into semiconductor (m)')

ylabel ('Potential (Phi(V))')

hold on

zoom on

%%%%%%%%%%%%%%%%% Fill in F-phi solutions %%%%%%%%%%%%%%%

for j=1 : size(x,1)

F-phi(j)=(phi(j)/abs(phi(j)))*sqrt((exp(-l*phi(j)/(k*T))+phi

(j)/(k*T)-1)+(niA2/NaA2)*(exp(phi(j)/(k*T))-phi(j)/(k*T)-1));
end

%%%%%%%%%%%%%%%%% Plot E field %%%%%%%%%%%%%%%%%%
E = sqrt(2*k*T*q*Na/esi) * Fphi;
figure(2)

plot(x,E/100,char(styles(t)))

xlabel ('Distance into semiconductor (m)')
ylabel ('Electric Field (V/cm)')

hold on
zoom on

%%%%%%%%%%% Plot electron concentration %%%%%%%%%
n = (ni^2/Na)*exp(phi/(k*T));

figure(3)

semilogy(x,n/1e6,char(styles(t)))

xlabel ('Distance into semiconductor (m)')
ylabel ('Electron concentration (cm-3)')

hold on

zoom on

nconc(t)=n(1)/1e6;

nconc2(t)=log(n(1)/le6);

%%%%%%%%%%% Plot hole concentration %%%%%%%%%
p = Na*exp(-phi/(k*T));
figure(4)

semilogy(xp/le6,char(styles2(t)))

xlabel ('Distance into semiconductor (m)')
ylabel ('Hole concentration (cm-3)')

hold on

zoom on

pconc(t)=p(1)/1e6;

pconc2(t)=log(p(1)/le6);

%%%%%%%%%%% Plot energy bands %%%%%%%%%
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offset = 1.124/2;
Ec = 1.124 - phi-offset;

Ev = Ec-1.124;
figure(5)

hold on
if V==O % plot equilibrium Ef in bulk

Ei = (Ec+Ev)/2;

phi-p = k*T*log(Na/ni);
Efp = Ei - phip; % Fermi level in bulk

Efp2 = zeros(size(Efp,l),l); Efp2(:,l) = max(Efp);
plot (x,Efp2,'k--')

end
if t==size

Ei =
plot

(Vvals, 2)
(Ec+Ev) /2;

(x,Ei, 'r--')

% plot inversion Ei

Ec,char(styles(t)))

Ev,char(styles(t)))

('Distance into semiconductor (nm)')

('Energy (eV)')

clear F-phi % must clear since x range will

Naval(t)= log(Na/le6);

differ on new solution

figure (7)
clf
hold on
plot (Vvals(1,2:size(Vvals,2)),nconc2(1,2:size(Vvals,2)),'r-')

plot (Vvals(1,2:size(Vvals,2)),pconc2(1,2:size(Vvals,2)),'b-')

plot (Vvals(1,2:size(Vvals,2)),Naval(1,2:size(Vvals,2)),'k-')

xlabel('Gate Voltage (Volts)')

ylabel ('log Carrier concentration (cm-3)')

zoom on
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end
plot (x,
plot (x,
xlabel

ylabel-
zoom on

end
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F.m

% Solve for electric potential phi

%TO BE USED [t,Y]=ode45('function',tspan,ic)

function Fphi=functionl (x,phi)

global q k eox esi T Na NC xox ni Wm
global V

F_phi=-l* (sqrt (2*k*T*q*Na/esi) ) * (phi/abs (phi) ) *sqrt ( (exp(-
1*phi/(k*T))+phi/(k*T)-1)+(ni^2/Na^2)*(exp(phi/(k*T))-phi/(k*T)-1));

77



icF.m

% Solves initial condition for F(phi) as a function of applied voltage (V)
% finds zero of function b
% to be used from ic=fzero('icF',yO) yO = intitial guess

function b=functionO(phi)

global q k eox esi T Na NC xox ni Wm
global V

b=-1*(sqrt(2*k*T*q*Na*esi))*(phi/abs(phi))*sqrt((exp(-1*phi/(k*T))+phi/(k*T)-

1)+(ni^2/Na^2)*(exp(phi/(k*T))-phi/(k*T)-l)) * xox/eox-k*T*log(ni^2/(Na*NC))-
phi+V;
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Qex.m

% solves foe charge distribution as a function of x within the semiconductor material

clear

global q k eox esi T Na NC xox ni Wm
global V

constants

t=0;
k=8.61834e-5;
q=1.602e-19;
esi=11.9*8.854188e-12;
eox=3.9*8.854188e-12;
T=300; % K
Na=6e23; % m-3
xox=45e-10; % m
ni=1.07e16; % mu
NC=3.le25; % m-3
Wm=4.04; % eV, alum

st be changed if T changes

inum = 4.04eV

ic=1; % ic = phi_s boundary condition

Vsteps = -2 0.1: 2;

for V= Vsteps

t=t+l;

ic=fzero('icF',ic);

icval (t) =ic;
Vval (t) =V;
phi-s=ic;

integral=0;
if ic>0

else

% do Qh integral peicewise

for phi=0:ic/200:ic;

val = intQe(phi);
integral=integral-ic*val/201;

end

for phi=0:ic/200:ic;
val = intQe(ic+phi);

integral=integral+ic*val/201;

end

end

Qe(t)=integral;
Vt(t)=V;

end
Qeo=Qe/le4;
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figure (3)
clf
plot(Vt,Qeo,'k--')

t=0
for V= Vsteps

t=t+l;
ic=fzero('icF',ic);

icval(t)=ic;

Vval(t)=V;

phi-s=ic;

integral=0; % do Qh integral peicewise

if ic>0
for phi=O:ic/200:ic;

val = intQh(phi);

integral=integral-ic*val/201;

end

else
for phi=0:ic/200:ic;

val = intQh(ic+phi);
integral=integral-ic*val/201;

end

end

Qh(t)=integral;

Vt(t)=V;

end

Qho=Qh/le4;
figure(3)
hold on
plot(Vt,Qho,'r--')

xlabel ('V [VI')
ylabel ('IQhl [C/cm^2]')

Qso = Qeo+Qho;
plot(Vt,Qso,'b-')
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intQe.m

% electron charge integration function for Qex.m

function a = functionQe(phi)

global q k eox esi T Na NC xox ni Wm
global V

if sign(phi) == 0
a=0;

else
if sign(phi)>0

a=(q*ni^2/Na) *sqrt(esi/ (2*k*T*q*Na) )*(exp(phi/ (k*T) ) -1) /sqrt( (exp(-
1*phi/(k*T))+phi/(k*T)-1)+(ni^2/Na^2)*(exp(phi/(k*T))-phi/(k*T)-1));

end

if sign(phi)<0

a=-1* (q*ni^2/Na) *sqrt(esi/ (2*k*T*q*Na) )*(exp (phi/ (k*T) )-1) /sqrt( (exp(-
1*phi/(k*T))+phi/(k*T)-1)+(ni^2/Na^2)*(exp(phi/(k*T))-phi/(k*T)-1));

end
end
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intQh.m

% hole charge integration function for Qex.m

function a = functionQh(phi)

global q k eox esi T Na NC xox ni Wm
global V

if sign(phi) == 0
a=0;

else
if sign(phi)>0

a=-1*sgrt(esi*q^2*Na/(2*q*k*T))*(exp(-1*phi/(k*T))-1)/sqrt((exp(-
l*phi/(k*T))+phi/(k*T)-1)+(ni^2/Na^2)*(exp(phi/(k*T))-phi/(k*T)-1));

end

if sign(phi)<0

a=sgrt(esi*q^2*Na/(2*q*k*T))*(exp(-1*phi/(k*T))-1)/sqrt((exp(-
1*phi/(k*T))+phi/(k*T)-1)+(ni^2/NaA2)*(exp(phi/(k*T))-phi/(k*T)-1));

end
end
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mosiv.m

% calculates and plots ideal MOSFET IV characteristics

clear

%%%%%%%%%%% constants

k=8.61834e-5;
q=1.602e-19;
esi=11.9*8.854188e-12;
eox=3.9*8.854188e-12;
T=300; % K
Na=2.3e23; % m-3
xox=40e-10; % m
ni=1.07e16; % must be changed if T changes

Wm = 4.1; % eV aluminum

X = 4.04; % eV Si electron affinity

Eg = 1.124; % eV

Ws = X + Eg + (k*T)*log(Na/ni);

styles {'b-' 'k-' 'r-'};

styles2 = {'b--' 'k--' 'r--'};

styles3 {'b-' 'k.-' 'r--'};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mu=500e-4;
W = 25.1; % um

L = 0.78; % um

phi-f = (2*k*T)*log(Na/ni);

Cox = eox/xox;

Vfb = Ws-Wm % eV

t=0;k=0;

Vrange = [2.5 2.75 3 3.25 3.5];
for Vg = Vrange
k=k+l;

for Vd = 0 : .1: 3

t=t+l;

Id(t,k) = (W/L)*mu*Cox*((Vg-2*phif-Vd/2)*Vd-

(2/3)*(sqrt(2*esi*q*Na)/Cox)*((Vd+2*phif)^1.5-(2*phif)^1.5));

Vdval(t) = Vd;
VT = Vfb + (1/Cox)*sqrt(2*esi*q*Na*2*phif)+2*phif;

end
t=0;
end

VT

for j= 1: size(Vrange,2)

maxId(j) = max(Id(:,j));

for t=1 size(Id,l)
if Id(t,j) == maxId(j)
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for k= t : size(Id,1)
Id(k,j) = maxId(j);

end
end

end
end

Id = 100*Id; % convert to mA

f igure (1)
clf
hold on
for t = 1 : size(Vrange,2)

plot (Vdval,Id(:,t),'k-')

end

xlabel ('Drain voltage (V)')

ylabel ('Drain current (mA)')

zoom on

grid on

max(max(Id))

84



xdep.m

% calculates depletion width of p-type Si

% under inversion as a function of doping

clear

%%%%%%%%%%% constants %%%%%%%%%%%%

kT= 25.86e-3; % eV
q=1.602e-19; % C
esi=11.9*8.854188e-12; % F/m
eox=3.9*8.854188e-12; % F/m
ni=1.07e16; % cm-3

k=0;
for Na = 1e23 0.01e23 : 5e23 % m-3

k=k+l;
xinv(k) = sqrt((2*esi*kT)/(q*Na));

phisth(k) = (2*kT)*log(Na/ni);

xdepl(k) = sqrt((2*esi*phisth(k))/(q*Na));

Naval(k) = Na;

end

xinv = xinv*1e9;
xdepl = xdepl*1e9;
Naval = Naval/le6;

figure(l)

clf
hold on
plot (Naval, xinv, 'r-')

plot (Naval, xdepl, 'b-')

xlabel ('Doping concentration (cm-3)')

ylabel ('Depletion width (nn)')
axis([1e17 5e17 0 120])
title ('Depletion width under inverison')
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emitter.m

% solve MOSFET Poisson-Boltzman equation for n-type Si field emitter (planar)
% [x,y] = ODE45('F',xspan,ic)
% integrate y' = F(x,y) from time x0 to xFINdL with initial conditions ic.

clear
figure(l); clf; figure(2); clf; figure(3); clf; figure(4);
clf
global q k eox esi T Nd NV xox ni Wm
global V phi_s
%%%%%%%%%%% constants %%%%%%%%%%%%%
t=0;j=0;
k=8.61834e-5;
q=1.602e-19;
esi=11.9*8.854188e-12;
eox=3.9*8.854188e-12;
T=300; % K
Nd=6e23;
xox=200e-10;
ni=1.07e16;

NV=le25;
Wm=4.04;

clf; figure(5);

% m-3
% m
% must be changed if T changes

% m-3

% eV, aluminum = 4.04eV

styles {'b-' 'k-' 'r-');
styles2 {'b--' 'k--' 'r--'};
styles3 = {'b-' 'k.-' 'r--'};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x0 = 0;
xfinal = le-7;
ic = 1; % initial guess

Vvals = [0 , 5, -5]; % V = 15 V, xox=50A gives n =
% E = 1e7 V/cm (field emission)

1e20 cm-3

for V = Vvals
t=t+l;
ic = fzero('icF2',ic); % Solve for initial condition Phi_s
phi-s = ic;
xspan = [xO xfinal];

[x,phi] = ode45('F2',xspan,ic); % phi(i) = phi(x)

figure(1)
plot(x,phi,char(styles(t)))
xlabel ('Distance into semiconductor (m)')
ylabel ('Potential (Phi(V))')
hold on
zoom on

%%%%%%%%%%%%%%%%% Fill in F-phi solutions %%%%%%%%%%%%%%%
for j=1 : size(x,l)

F-phi (j) = (phi (j) /abs (phi (j) ))*sqrt ( (exp(phi (j) / (k*T) ) -phi
(j) / (k*T) -1) + (ni^2/Nd^2) * (exp(-phi (j) / (k*T) ) +phi (j) / (k*T) -1))
end

%%%%%%%%%%%%%%%%% Plot E field %%%%%%%%%%%%%%%%%%
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E = sqrt(2*k*T*q*Nd/esi) * Fphi;
figure(2)

plot(x,E/100,char(styles(t)))

xlabel ('Distance into semiconductor (m)')

ylabel ('Electric Field (V/cm)')

hold on

zoom on

%%%%%%%%%%% Plot electron concentration %%%%%%%%%

n = Nd*exp(phi/(k*T));
figure(3)

semilogy(x,n/1e6,char(styles(t)))

xlabel ('Distance into semiconductor (m)')

ylabel ('Electron concentration (cm-3)')

hold on
zoom on

%%%%%%%%%%% Plot hole concentration %%%%%%%%%

p = (ni^2/Nd)*exp(-phi/(k*T));

figure(4)

semilogy(x,p/1e6,char(styles2(t)))

xlabel ('Distance into semiconductor (m)')

ylabel ('Hole concentration (cm-3)')

hold on
zoom on

%%%%%%%%%%% Plot energy bands %%%%%%%%%

offset = 1.124/2;

Ec = 1.124 - phi-offset;

Ev = Ec-1.124;

figure(5)

hold on

if V==O % plot equilibrium Ef in bulk

Ei = (Ec+Ev)/2;

phi-p = k*T*log(Nd/ni)

Efn = Ei + phi-p; % Fermi level in bulk

Efn2 = zeros(size(Efn,l),l); Efn2(:,l) = min(Efn);

plot (x,Efn2,'k--')

%maxd = max(Efn)
end

if t==size(Vvals,2) % plot inversion Ei

Ei = (Ec+Ev)/2;

plot (x,Ei, 'r--')

end

plot(x,Ec,char(styles(t)))

plot(x,Ev,char(styles(t)))

xlabel ('Distance into semiconductor (m)')

ylabel ('Energy (eV)')

zoom on

clear Fphi % must clear since x range will differ on new solution

end
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emittericf.m

% solves initial condition for F(phi) as a function of applied voltage (V)
% finds zero of function b

% to be used from ic=fzero('icF',yO) yO = intitial guess

function b=functionO(phi)

global q k eox esi T Nd NV xox ni Wm

global V

b=1* (sqrt(2*k*T*q*Nd*esi) ) *(phi/abs (phi)) *sqrt( (exp (phi/ (k*T) )-phi/ (k*T) -

l)+(ni^2/Nd^2)*(exp(-phi/(k*T))+phi/(k*T)-l)) * xox/eox-
k*T*log(ni^2/(Nd*NV))+phi-V;
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emitterF2.m

%function for electrostatic potential phi for n-type Si field emitter

%TO BE USED [t,Y]=ode45('function',tspan,ic)

function Fphi=functionl(x,phi)

global q k eox esi T Nd NV xox ni Wm

global V

F_phi=-l*(sqrt(2*k*T*q*Nd/esi))*(phi/abs(phi))*sqrt((exp(phi/(k*T))-

phi/ (k*T) -1) + (ni^2/Nd^2) * (exp(-phi/ (k*T) )+phi/ (k*T) -1) );
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emitterQex.m

clear

global q k eox esi T Na NC xox ni Wm
global V
%%%%%%%%%%% constants

t=0;
k=8.61834e-5;
q=1.602e-19;
esi=11.9*8.854188e-12;
eox=3.9*8.854188e-12;
T=300; % K
Na=6e23; % m-3
xox=45e-10; % m
ni=1.07e16; % mu
NC=3.1e25; % m-3
Wm=4.04; % eV, alum

st be changed if T changes

inum = 4.04eV

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ic=1; % ic phi-s boundary condition

Vsteps = -2 : 0.1: 2;

for V= Vsteps

t=t+l;

ic=fzero('icF',ic);

icval (t) =ic;
Vval(t)=V;
phi-s=ic;

integral=0;

if ic>0
% do Qh integral peicewise

for phi=0:ic/200:ic;
val = intQe(phi);

integral=integral-ic*val/201;
end

else
for phi=0:ic/200:ic;

val = intQe(ic+phi);
integral=integral+ic*val/201;

end
end

Qe(t)=integral;
Vt(t)=V;

end
Qeo=Qe/1e4;
figure(3)
clf
plot(Vt,Qeo,'k--')

t=0
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for V= Vsteps

t=t+l;
ic=fzero('icF',ic);

icval(t)=ic;
Vval(t)=V;
phis=ic;

integral=O; % do Qh integral peicewise

if ic>O
for phi=O:ic/200:ic;

val = intQh(phi);

integral=integral-ic*val/201;

end

else
for phi=0:ic/200:ic;

val = intQh(ic+phi);

integral=integral-ic*val/201;

end
end

Qh(t)=integral;

Vt(t)=V;

end

Qho=Qh/le4;
figure(3)
hold on
plot(Vt,Qho,'r--')

xlabel ('V [V]')

ylabel ('IQh| [C/cm^2]')

Qso = Qeo+Qho;
plot(Vt,Qso,'b-')
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emitterQe.m

function a = functionQe(phi)

global q k eox esi T Na NC xox ni Wm
global V

if sign(phi) == 0
a=0;

else
if sign(phi)>0

a=(q*ni^2/Na)*sqrt(esi/(2*k*T*q*Na))*(exp(phi/(k*T))-1)/sqrt((exp(-
1*phi/(k*T))+phi/(k*T)-l)+(ni^2/Na^2)*(exp(phi/(k*T))-phi/(k*T)-1));

end

if sign(phi)<0

a=-1*(q*ni^2/Na)*sgrt(esi/(2*k*T*q*Na))*(exp(phi/(k*T))-1)/sqrt((exp(-
1*phi/(k*T))+phi/(k*T)-1)+(ni^2/Na^2)*(exp(phi/(k*T))-phi/(k*T)-1));

end
end
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emitter_Qh.m

function a = functionQh(phi)

global q k eox esi T Na NC xox ni Wm
global V

if sign(phi) == 0
a=0;

else
if sign(phi)>0

a=-l*sqrt(esi*q^2*Na/(2*q*k*T))*(exp(-l*phi/(k*T))-1)/sqrt((exp(-
1*phi/(k*T))+phi/(k*T)-1)+(ni^2/Na^2)*(exp(phi/(k*T))-phi/(k*T)-1));

end

if sign(phi)<0

a=sqrt(esi*q^2*Na/(2*q*k*T))*(exp(-l*phi/(k*T))-1)/sqrt((exp(-
1*phi/(k*T))+phi/(k*T)-l)+(ni^2/Na^2)*(exp(phi/(k*T))-phi/(k*T)-l));

end
end
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Appendix C: MEDICI Device Simulation Code

% MEDICI device simulation from Vertical MOS transistors

vmos.med

loop steps=1

* ** ** ************************ Inputs *****************************

$Input Description:

$ xmesh:

$ ymesh:

$ pillarw:

$ pillarh:

$ srcxj:
region)

$ drainxj:

$ drainsp:

$ deltaxj:

$ gateox:

$ bulkdop:

$ draindop:

$ deltadop:

$ srcdop:

$ R:

number of x meshpoints
number of y meshpoints

pillar radius
pillar height

junction depth under pillar (source

junction depth of drain (top of pillar)
space between drain & delta doped region
junction depth of delta doping

gate oxide thickness
doping of bulk of wafer
drain region doping
drain2 delta doping

source region doping
contact resistance (ohms)

name=xmesh n.value=120

name=ymesh n.value=50

name=pillarw

name=channel

name=pillarh

n.value=3

n.value=@pillarw-0.02
n.value=1.2

name=gateox n.val=0.0190
name=srcxj n.val=0.185
name=srcxj2 n.val=0.05
name=drainxj n.val=0.05

name=drainsp n.val=0.0

name=deltaxj n.val=0.0

assign name=draindop c.val=2el9

assign name=deltadop c.val=2el8
assign name=bulkdop c.val=9.43e17
$good assign name=bulkdop c.val=9.5el7

$ name=bulkdop c.val=5el7
assign name=srcdop c.val=2el9

assign name=R n.val=0

94

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign
assign



assign name=xmax n.value=@pillarw+@gateox+1

assign name=ymax n.value=@pillarh+0.5

$ Note: All distances are in um

$***************** ******* * MESH GENERATION ***************************

$Initiate mesh

mesh cylindrical

$mesh

$ Tags for Mesh generation

x.mesh n=1 1=0
x.mesh n=2 1=@xmax/@xmesh
x.mesh n=0.1*@xmesh l=@pillarw-2*@srcxj
x.mesh n=0.5*@xmesh l=@pillarw-3*@gateox
x.mesh n=0.9*@xmesh 1=@pillarw+3*@gateox

x.mesh n=@xmesh 1=@xmax

y.mesh n=1 1=0
y.mesh n=@ymesh l=@ymax

$ ******************************** Device regions ********************

region name=pillar x.min=O x.max=@pillarw y.min=O y.max=@pillarh silicon
region name=base x.min=O x.max=@xmax y.min=@pillarh y.max=@ymax silicon

region name=oxgate x.min=@pillarw x.max=@xmax y.min=O y.max=@pillarh oxide

$********************************* *Electrodes ******************

electr name=drain x.min=O x.max=O.1 y.min=O y.max=@drainxj

electr name=substrate x.min=O x.max=O.1 y.min=@ymax-0.1 y.max=@ymax

electr name=gate x.min=@pillarw+@gateox x.max=@xmax y.min=O

+ y.max=@pillarh-2*@gateox void

electr name=source x.min=@xmax-0.1 x.max=@xmax y.min=@pillarh

y.max=@pillarh+O.1

********************************** Dopings ***************

$profile p-type n.peak=@bulkdop unif

$----------------- Doping 1-D ------------------------------
$profile p-type n.peak=5e17 y.min=O y.max=@pillarh/3 y.char=0.5

$----------------- Doping 2-D ------------------------------

$ - - - - - - original graded doping profile - - - - -

profile p-type n.peak=@bulkdop x.min=O x.max=@pillarw-0.035 y.min=O
+ y.max=@pillarh/3 x.char=0.031 y.char=0.5 outf=bodydop.txt

$ - - - - - - reverse graded doping profile - - - - -

$profile p-type n.peak=@bulkdop x.min=O x.max=@pillarw-0.035 y.min=0.9
$+ y.max=1.4 x.char=0.031 y.char=0.5 outf=bodydop.txt
$ -- ------------------------------ -

$ - - - - - - const doping profile - - - - - - - -

$profile p-type n.peak=@bulkdop x.min=O x.max=@pillarw-0.035 y.min=O
$+ y.max=@pillarh/3 x.char=0.031 y.char=15 outf=bodydop.txt

$ - ----------------------- -- -- -
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profile n-type n.peak=@draindop y.min=0 y.max=@drainxj y.char=0.l
$profile n-type n.peak=@deltadop y.min=@drainxj+@drainsp
$+ y.max=@drainxj+@drainsp+@deltaxj y.char=0.01

profile n-type n.peak=@srcdop x.min=@pillarw-@srcxj/2 x.max=@xmax
+ y.min=@pillarh+@srcxj2/2 y.max=@pillarh+@srcxj2 y.char=0.l xy.rat=0.8

********************************* Plots *****************

contact name=gate n.poly resistan=@R

models conmob fldmob srfmob2
symb newton carriers=1 electrons

plot.2d boundary fill title=VMOS

$contour doping fill

plot.2d grid boundary fill title=Mesh

plot.ld doping x.start=2.5 x.end=@xmax y.start=1.25 y.end=1.25

+ y.log points bot=lel5 top=le21 color=2 title="Source doping"

$theta is tilt, phi is spin
assign name=phi n.val=60

assign name=theta n.val=30

plot.3d doping log x.min=2 x.max=@pillarw y.min=0 y.max=@ymax-0.1

+ z.min=lel5 z.max=1e21 phi=@phi theta=@theta ^fill.view ^equidist

$3d.surf c.auto

$regrid doping log ratio=3 smooth=1

$regrid doping log ratio=3 smooth=1

$plot.2d grid boundary fill title=Mesh2
log out.file=mdexgl

$ plot Channel doping across structure
plot.1d doping x.start=@pillarw-0.06 x.end=@pillarw y.start=@pillarh/2
+ y.end=@pillarh/2 y.log line=1 bot=8.5el6 top=5e18 color=1

title="Channel doping"

$$ plot Channel doping across structure - expanded view

$plot.1d doping x.start=@pillarw-0.3 x.end=@pillarw y.start=@pillarh/2

$+ y.end=@pillarh/2 y.log points bot=8.5el6 top=5el8 color=3

title="Channel doping 2"

$ plot Channel doping 0.05um (500 A) from pillar edge

plot.1d doping x.start=@channel x.end=@channel y.start=0 y.end=1.5

+ y.log bot=lel5 top=le21 color=2 title="Vertical doping"

$ ------------------------ Ramp Vds to 0.1 V ------------------------------

solve V(gate)=0 V(drain)=0.01
solve V(gate)=0 V(drain)=0.05
solve V(gate)=0 V(drain)=0.l

$ ------------------------ Ramp Vgs to 3 V ------------------------------

log ivfile="LOGS/jdrain.log"

assign name=VDS n.val=0.l
loop steps=10
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assign name=VGS n.val=(0.05 0.2 0.6 1.0 1.2 1.4 1.6 1.8 2.0 2.1)

solve V(gate)=@VGS V(drain)=@VDS

1.end
loop steps=11

assign name=VGS n.val=(2.2 2.3 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.5 5.0)
solve V(gate)=@VGS V(drain)=@VDS

1.end
solve elec=gate save.bia outfile=Vgate.soln

log close

plot.ld title="Subthreshold - log Id vs. Vg" in.file="LOGS/jdrain.log" y.log
+ y.axis=I(drain) x.axis=V(gate) points color=1 symbol=1 line=1
+ outfile="PLOTS/subthNavd943.txt"

label label="Vds = "@VDS" V

plot.ld title="Vgs vs Id" in.file="LOGS/jdrain.log"
+ y.axis=I(drain) x.axis=V(gate) points color=1 symbol=1 line=1

+ outfile="PLOTS/subthNavd943.txt"

label label="Vds = "@VDS" V

$ ------------------------ Ramp Vds to 3 V ------------------------------

log ivfile="LOGS/jdrain2.log"
loop steps=11

assign name=VDS n.val=(0 0.1 0.2 0.3 0.5 0.6 0.8 1 2 2.5 3)
solve V(gate)=@VGS V(drain)=@VDS

1.end
log close

plot.ld y.axis=I(drain) x.axis=V(drain) points color=1 symbol=1 line=1

+ title="Vds vs Id" in.file="LOGS/jdrain2.log"
+ outfile="PLOTS/IDVg3O.txt"
label label="Vgs = "@VGS" V, R = "@R

$-------------------------------------------------------------------

plot.2d bound junc depl fill scale title="lD potential contours"

contour poten ncont=5 color=2

label label="Vgs = "@VGS" V'

plot.2d bound junc depl fill scale title="Current flowlines"

contour flowlines ncont=21 color=4

label label="Vgs = "@VGS" V'

save mesh out.file="../MESH/"@profile".mesh"

1.end
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Appendix D: SUPREM Process Simulation Code

vmos. in

go athena

# VMOS process

#SILVACO Process simulation for Vertical MOS transistor
go athena

line x loc=5.0 spac=0.5
line x loc=6.0 spac=O.l
line x loc=6.4 spac=0.002
line x loc=6.5 spac=0.002
line x loc=6.6 spac=0.01
line x loc=6.8 spac=O.l
line x loc=10.0 spac=0.5

line y locO.O spac=O.O2
line y loc=0.3 spac=0.02
line y loc=0.4 spac=O.l
line y loc=1.1 spac=0.02
line y loc=1.35 spac=0.02
line y loc=3.0 spac=0.25

#n-type Si, P 1e15 cm-3, rho=4 ohm-cm

init silicon c.phosphor=l.Oel5 orientation=100

deposit nitride thick=0.05
deposit oxide thick=0.3

struct outfile=al.str
implant boron dose=2el4 energy=195 crystal

struct outfile=a2.str

method compress init.time=0.10 fermi
diffus time=900 temp=1100 nitro press=1.00

struct outfile=a3.str
deposit photo thick=1

struct outfile=a3b.str
etch photores start x=O y=- 2 .0
etch cont x=3.5 y=-2.0
etch cont x=3.5 y=1.0
etch done x=O y=1.0
etch photores start x=6.5 y=-2.0
etch cont x=13.5 y=-2.0
etch cont x=13.5 y=1.0
etch done x=6.5 y=1.0
etch photores start x=16.5 y=- 2 .0
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etch cont x=23.5 y=-2.0

etch cont x=23.5 y=1.0

etch done x=16.5 y=1.0
etch photores start x=26.5 y=-2.0
etch cont x=30 y=-2.0

etch cont x=30 y=1.0
etch done x=26.5 y=1.0

struct outfile=a3c.str

# Oxide hardmask

etch oxide dry thick=1.00
etch photores dry thick=0.5

etch nitride dry thick=0.3

struct outfile=a4.str

etch photores all

#etch nitride all
struct outfile=a4b.str

# Silicon pillar
etch silicon dry thick=1.3

struct outfile=a5.str
# HF dip so can implant As

etch oxide all
# Thin oxide to protect sidewalls during implant

struct outfile=a5b.str

# n+ implant

implant arsenic dose=l.0e16 energy=180 tilt=1 crystal

struct outfile=a5d.str

# RCA clean

etch oxide all

# Form gate oxide + protective oxide cap on Si top layer

method compress init.time=0.10 fermi

diffus time=30 temp=925 dryo2 press=1.00 hcl.pc=0

extract name="gateox" thickness material="SiO-2" mat.occno=l y.val=0.5
struct outfile=a6b.str

# poly gate

deposit poly thick=0.50 divi=10 c.phosphor=1.0e20
struct outfile=a7.str

deposit photo thick=1.0

etch photores start x=0 y=-5.0
etch cont x=2 y=-5.0
etch cont x=2 y=1.0

etch done x=0 y=1.0
etch photores start x=8 y=-5.0

etch cont x=12 y=-5.0

etch cont x=12 y=1.0

etch done x=8 y=1.0

etch photores start x=18 y=-5.0
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etch cont x=22 y=- 5 .0

etch cont x=22 y=1.0
etch done x=18 y=1.0
etch photores start x=28 y=-5.0

etch cont x=30 y=-5.0
etch cont x=30 y=1.0
etch done x=28 y=1.0

struct outfile=a8.str

etch poly dry thick=0.50

struct outfile=a9.str

etch photores all
deposit oxide thick=1.5 dy=0.2

struct outfile=alO.str

# CMP to SiN layer

etch above pl.y=0.045

struct outfile=all.str

# WET ETCH SIN

etch nitride all

struct outfile=allb.str

deposit oxide thick=0.3 dy=0.2
struct outfile=a12.str

deposit photo thick=1.0

etch photores start x=4 y=-4.0

etch cont x=6 y=-4.0

etch cont x=6 y=1.0

etch done x=4 y=1.0
etch photores start x=9 y=-4.0

etch cont x=11 y=-4.0

etch cont x=11 y=1.0
etch done x=9 y=1.0
etch photores start x=14 y=-4.0

etch cont x=16 y=-4.0

etch cont x=16 y=1.0
etch done x=14 y=1.0
etch photores start x=19 y=-4.0

etch cont x=21 y=-4.0

etch cont x=21 y=1.0
etch done x=19 y=1.0
etch photores start x=24 y=-4.0

etch cont x=26 y=-4.0

etch cont x=26 y=1.0

etch done x=24 y=1.0
struct outfile=al3.str

etch oxide dry thick=2.0
etch photores dry thick=0.7

struct outfile=al4.str

etch photores all

struct outfile=al4b.str

deposit titanium thick=0.05

deposit alumin thick=1

struct outfile=al5.str

etch above pl.y=-0.7

struct outfile=al5b.str

deposit photo thick=1.0

struct outfile=a16.str
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etch photores start x=O y=-5.0

etch cont x=3 y=-5.0

etch cont x=3 y=1.0

etch done x=O y=1.0

etch photores start x=7 y=-5.0

etch cont x=8.5 y=-5.0

etch cont x=8.5 y=1.0
etch done x=7 y=1.0
etch photores start x=11.5 y=-5.0

etch cont x=13 y=- 5 .0
etch cont x=13 y=1.0

etch done x=11.5 y=1.0

etch photores start x=17 y=-5.0

etch cont x=18.5 y=-5.0
etch cont x=18.5 y=1.0

etch done x=17 y=1.0

etch photores start x=21.5 y=-5.0

etch cont x=23 y=-5.0
etch cont x=23 y=1.0
etch done x=21.5 y=1.0
etch photores start x=27 y=-5.0
etch cont x=30 y=-5.0
etch cont x=30 y=1.0
etch done x=27 y=1.0

struct outfile=al7.str

etch aluminum dry thick=0.5

etch photores dry thick=0.5

struct outfile=a18.str
etch photores all
etch titanium dry thick=0.5

struct outfile=vmos.str

etch aluminum all
etch titanium all
etch oxide above pl.y=0.05

etch oxide start x=6.8 y=0.00
etch cont x=9 y=0.00
etch cont x=9 y=1.4

etch cont x=8 y=1.4
etch cont x=8 y=1.0

etch cont x=6.8 y=1.0
etch done x=6.88 y=0.0

struct outfile=vmos.str
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