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Abstract

While navigating, autonomous vehicles often must overcome significant uncertainty

in their understanding of the world around them. Real-world environments may be

cluttered and highly dynamic, with uncertainty in both the current state and future

evolution of environmental constraints. The vehicle may also face uncertainty in
its own motion. To provide safe navigation under such conditions, motion planning
algorithms must be able to rapidly generate smooth, certifiably robust trajectories in

real-time.
The primary contribution of this thesis is the development of a real-time motion

planning framework capable of generating feasible paths for autonomous vehicles in

complex environments, with robustness guarantees under both internal and external

uncertainty. By leveraging the trajectory-wise constraint checking of sampling-based

algorithms, and in particular rapidly-exploring random trees (RRT), the proposed

algorithms can efficiently evaluate and enforce complex robustness conditions.

For linear systems under bounded uncertainty, a sampling-based motion planner

is presented which iteratively tightens constraints in order to guarantee safety for

all feasible uncertainty realizations. The proposed bounded-uncertainty RRT* (BU-
RRT*) algorithm scales favorably with environment complexity. Additionally, by
building upon RRT*, BU-RRT* is shown to be asymptotically optimal, enabling it

to efficiently generate and optimize robust, dynamically feasible trajectories.

For large and/or unbounded uncertainties, probabilistically feasible planning is

provided through the proposed chance-constrained RRT (CC-RRT) algorithm. Paths

generated by CC-RRT are guaranteed probabilistically feasible for linear systems un-

der Gaussian uncertainty, with extensions considered for nonlinear dynamics, output

models, and/or non-Gaussian uncertainty. Probabilistic constraint satisfaction is rep-

resented in terms of chance constraints, extending existing approaches by considering

both internal and external uncertainty, subject to time-step-wise and path-wise fea-

sibility constraints. An explicit bound on the total risk of constraint violation is
developed which can be efficiently evaluated online for each trajectory. The proposed

CC-RRT* algorithm extends this approach to provide asymptotic optimality guaran-
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tees; an admissible risk-based objective uses the risk bounds to incentivize risk-averse
trajectories.

Applications of this framework are shown for several motion planning domains,
including parafoil terminal guidance and urban navigation, where the system is sub-
ject to challenging environmental and uncertainty characterizations. Hardware results
demonstrate a mobile robot utilizing this framework to safely avoid dynamic obsta-
cles.

Thesis Supervisor: Jonathan P. How
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background and Motivation

Autonomous vehicles (Figure 1-1) face several key challenges when performing real-

time path planning in complex, real-world scenarios [1, 2]. Such scenarios typically

include a vehicle represented with complex, non-holonomic dynamics, subject to clut-

tered environments with a large number and variety of constraints. Perhaps most im-

portantly, such environments tend to be dynamic and highly uncertain. This necessi-

tates the consideration of both online planning responses to a changing environment,

and uncertainty incorporation within any decision-making for the vehicle.

For motion planning algorithms to be deployable on real-world autonomous sys-

tems, it is essential that they be able to quickly identify feasible paths in these highly

complex, dynamic, and uncertain environments. Thus, a key research focus has been

the development of algorithms which can explicitly model many of the possible sources

of uncertainty and incorporate them directly within the planner. This may include

both internal uncertainty (e.g., sensing/process noise, localization error, model uncer-

tainty) and external uncertainty (e.g., placement of static obstacles, future behavior

of dynamic obstacles) [3].

Significant advances have been made in motion planning technology for various

autonomous vehicles in the past decade, much of it spurred by the DARPA Grand

Challenge [4] and later DARPA Urban Challenge [1, 5]. However, existing motion
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(a) MIT DARPA Urban Challenge Vehicle

Figure 1-1: Examples of autonomous vehicles utilizing outdoor navigation

planning technology still often relies on simplifying assumptions, such as limited in-

teraction with other dynamic obstacles; assumed, precise knowledge of the world

map; and/or ignorance of significant uncertainty. Thus, the objective of this thesis

is to develop a real-time motion planner capable of guiding vehicles through complex

and uncertain environments with certifiably robust behavior, enabling real-world ap-

plications. In this context, certifiable robustness is defined being able to provide a

guaranteed minimum likelihood of constraint satisfaction, needed for safe operation.

Such a motion planner faces several major technical challenges. It must be able

to admit problems of arbitrary complexity, including dynamics, complex terrain, in-

complete environmental knowledge, logical/timing constraints, and other constraints.

It must be able to operate safely in the presence of multiple sources of uncertainty.

Finally, it must be able to provide a means of guaranteeing safe operation under such

conditions.

1.2 Literature Review

A wide variety of approaches have been developed for motion planning under uncer-

tainty [6, 7]; as such, discussion of existing work can be classified and contrasted along

several axes. First, motion planning algorithms can be discussed in terms of which

forms of uncertainty are incorporated into the planning problem. Using the frame-

20
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work of LaValle and Sharma [3], algorithms can be categorized by whether they incor-

porate internal configuration/current-state uncertainty (e.g., sensing noise), internal

predictive uncertainty (e.g., process noise), environmental configuration uncertainty

(e.g., placement of static obstacles), and/or environmental predictive uncertainty

(e.g., future behavior of dynamic obstacles).

Second, algorithms can be partitioned in terms of the assumptions made on the

uncertainty model(s), and the corresponding feasibility guarantees. If the uncertainty

is large or unbounded, guaranteed feasibility may be unlikely or impossible. Thus,

many approaches establish probabilistic feasibility: that the likelihood of feasibility for

each timestep and/or trajectory must exceed some minimum bounds. The probability

distribution of the uncertainty must be known, and is often assumed Gaussian. On

the other hand, if all sources of uncertainty are bounded, it may be possible to provide

guaranteed feasibility against any possible disturbance realization. In this case, it is

sufficient to know only the bounds on such uncertainty. The intermediate chapters of

this thesis are divided based on which formulation type is being considered.

Finally, motion planning algorithms can be characterized by whether they are

optimization-based, e.g., seeking to find the lowest-cost solution over the entire feasible

solution space, or sampling-based, e.g., incrementally constructing a set of feasible

solutions. The treatment of related work in this section is divided into these two

groups, exploring the relative strengths and weaknesses of each approach. Preceding

this, however, is a discussion of some of the early techniques developed for motion

planning in dynamic and/or uncertain environments.

1.2.1 Motion Planning Algorithms

Motion planning implementations for autonomous vehicles and other mobile robots

often face two key challenges. First, they must be able to generate solution paths

which are dynamically feasible, e.g., able to be reasonably followed by the autonomous

agent. While this kinodynamic motion planning problem can be especially challenging

for non-holonomic dynamics, provably accurate approximation algorithms have been

developed [8]. A common simplified model for autonomous vehicles assumes a fixed
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velocity and bounded curvature, in which case optimal solutions are known for both

forward motion [9] and mixed forward/reverse motion [10].

Second, such motion planners must be able to reason about a changing uncertain

environment, with dynamic obstacles often being the primary source of uncertainty.

A simple approach to predicting the future state of a dynamic obstacle is the velocity

obstacle [11], which assumes the agent will maintain its current speed and bear-

ing indefinitely. Other approaches developed include the dynamic window [12] and

inevitable collision states (ICS), representing all regions of the configuration space

where a collision cannot be avoided [13]. The ICS approach has been more recently

extended to reason probabilistically about collisions [14, 15].

1.2.2 Optimization-based Motion Planning

In optimization-based motion planning algorithms, the objective is to identify the

solution path or policy that optimizes some specified cost function, over all feasi-

ble solutions. A common approach to handling uncertainty in such frameworks is

to perform replanning as the problem evolves and uncertainties are realized. How-

ever, replanning alone is often insufficient to ensure safe traversal, motivating the

incorporation of uncertainty models directly into the formulation.

In model predictive control [16], a model of predicted system behavior is used to

optimize an open-loop, finite-horizon input sequence which satisfies a set of explicit

constraints, often appended with some cost-to-go function. This optimization is often

performed repeatedly and iteratively, also known as receding horizon control (RHC).

Because constraints are encoded directly into the optimization, MPC-based motion

plans can operate at or near constraint boundaries while maintaining feasibility. How-

ever, the choice of optimization engine often restricts what types of constraints may

be considered.

A common technique used for motion plan optimization is mixed-integer linear

programming (MILP), which provides a very flexible framework for modeling planning

problems with both discrete decisions and continuous variables. A linear program is

transformed into a MILP by requiring at least one of the decision variables to satisfy
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an integer value, typically binary. In the case of non-convex motion planning, binary

variables can be used to represent the avoidance of convex obstacles, making MILP-

based approaches suitable for this domain [17, 18].

The D* algorithm was also developed as a generalization of A* graph search

for dynamic environments [19]. Many variations of D* have been introduced for

planning applications, including focussed D*, which focuses repair in specific search

space regions [20]; D* Lite, which implements D* using a simpler algorithm [21]; Field

D*, which allows state/action interpolation [22]; and anytime repairing A* [23].

An alternative formulation is the Markov decision process, which represents the

motion planning problem in terms of discrete states, actions, rewards, and a transition

function which probabilistically maps actions to state outcomes [24]. Uncertainty in

the outcomes of future actions can be represented in this framework; however, the

state is assumed to be perfectly known. The objective of an MDP formulation is to

identify a policy mapping states to actions in order to maximize expected reward,

typically via value/policy iteration [24].

Motion Planning under Uncertainty

A common approach to guaranteeing absolute safety is robust model predictive control

(RMPC) [25], the extension of MPC to incorporate set-based uncertainty models.

In RMPC, the optimized input sequence must satisfy all constraints subject to an

unknown but bounded disturbance sequence. This disturbance is often represented

as a parametric uncertainty or additive uncertainty.

For most problems, some kind of feedback on realized disturbances is necessary

to prevent RMPC solutions from becoming overly conservative. While it is possi-

ble to enumerate all possible worst-case disturbance sequences, such a formulation

grows exponentially with the problem size [26]. Thus, a more common approach

is to optimize over affine feedback policies, which combine linear feedback on future

states and/or disturbances with a vector of open-loop perturbations. Such techniques

include constraint tightening via state feedback [27, 28], constraint tightening via dis-

turbance feedback [29], minimax formulations using linear matrix inequalities [30],
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and optimization of the linear feedback policy online [31, 32]. Most of these ap-

proaches consider robustness to internal process noise only. Chapter 2 builds on and

extends several of these RMPC frameworks to consider multiple, additional forms of

uncertainty within sampling-based algorithms.

On the other hand, if the uncertainty is large or unbounded, it is no longer possi-

ble to generate meaningful paths which guarantee safety for all possible disturbance

realizations. The fundamental question is then how to properly trade off between

planner conservatism and the risk of infeasibility. A useful way to capture this trade-

off is through chance constraints, which require probabilistic feasibility: that the prob-

ability of constraint violation not exceed some prescribed value [33]. It is possible to

model these probabilistic chance constraints in terms of tightened, deterministic con-

straints on the conditional mean of the state, representing the amount of conservatism

necessary to achieve a desired probability of feasibility [34, 35].

A popular approach for probabilistic motion planning in the recent literature

is chance-constrained optimization, which wraps these chance constraints within a

MILP, second-order cone program (SOCP), or similar optimization in order to ensure

probabilistic feasibility. Blackmore et al. [36] guarantee probabilistic feasibility for a

linear system subject to Gaussian process noise and localization error, by using Boole's

inequality (also known as the union bound) to model a non-convex environment as a

disjunctive linear program. Subsequent work considers particle-based approximations

of the uncertainty [37, 38] as well as feedback design [39]. Of particular note is the

2009 work of Blackmore and Ono [40], which reduces the chance constraints into

a univariate form which can be evaluated more efficiently. While this approach is

significantly less conservative, it does assume convexity of the constraint set.

Two major sources of conservatism in this chance-constrained optimization frame-

work are the use of Boole's inequality, which establishes a loose bound on constraint

violation, and the need to allocate risk among all constraints a priori. While the

former is generally not restrictive in practice, the latter can significantly increase

conservatism as the number of obstacles and other constraints increases. Alterna-

tively, iterative risk allocation (IRA) [41, 42] can reduce this conservatism. In IRA,
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an iterative sequence of two-stage optimizations is performed, with the upper stage

optimizing the allocation of risk over all constraints, while the lower stage optimizes

the control sequence subject to the tightened constraints. These iterations can be

computationally intensive, though the recently-proposed p-Sulu planner [43] can mit-

igate this by decomposing the planning problem into a sequence of convex (and thus

much more efficient) optimizations. The p-Sulu planner also allows the incorporation

of temporal constraints [43]. Vitus and Tomlin consider hybrid analytic/sampling

formulations which incorporate iterative risk allocation within SOCPs, in addition to

considering parametric environmental uncertainty [44, 45].

This thesis builds upon and extends this chance constraint framework for linear

Gaussian systems, particularly Blackmore et al. [36]. By incorporating chance con-

straints within a sampling-based algorithm, bounds on the risk of constraint violation

can be efficiently computed online, rather than requiring offline pre-allocation or iter-

ative allocation [46]. Coupled with the scalability of sampling-based algorithms, the

resulting approach is capable of quickly generating probabilistically feasible solutions.

This is accomplished while extending the existing formulation to consider additional

forms of uncertainty, including both internal and external uncertainty (Chapter 3).

In work concurrent with the author, Du Toit and Burdick [47] develop a chance-

constraint-based formulation for estimating the probability of collision between two

uncertain agents, applied to both dynamic programming and RHC frameworks. The

resulting covariance estimate is similar in form to the one developed as part of this

thesis (Chapter 3) for an uncertain system subject to uncertain obstacle placements.

However, Du Toit and Burdick use an integral approximation and assume point/disk

obstacles, whereas the approach in this thesis provides precise (though conservative)

bounds on avoidance for any polytopic obstacle.

An alternate way to capture other forms of uncertainty is the use partially-

observable Markov decision processes (POMDP), which extend the MDP formulation

to assume the state can only be perceived indirectly through observations [48]. Under

these restrictions, POMDPs operate on a belief state rather than the physical state

itself. Given the significantly increased dimensionality of this belief state, POMDP-
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based formulations are generally intractable for most optimization-based approaches,

though recent success has been found computing locally optimal solutions under the

assumptions of Gaussian sensing and motion uncertainty [49].

1.2.3 Sampling-based Motion Planning

The optimization-based algorithms described above are capable of generating paths

that minimize a cost function over the feasible solution space. However, for mo-

tion planning problems involving complex dynamics and constraints and/or high-

dimensional configuration spaces, the computational complexity of such optimiza-

tions may scale poorly, to the point of becoming intractable. An alternative is to

use sampling-based motion planning algorithms, which instead sample a set of fea-

sible paths from the solution space [7]. While the lowest-cost feasible path found

will typically be selected for execution, there is no guarantee of optimality in fi-

nite time. However, sampling-based approaches have demonstrated several key ad-

vantages for complex motion planning problems, including efficient exploration of

high-dimensional configuration spaces; trajectory-wise (e.g., non-enumerative) check-

ing of possibly complex constraints; incremental construction, facilitating anytime

use; and/or scalability with available computational resources [7]. In particular,

trajectory-wise constraint checking enables sampling-based algorithms to scale well

with problem complexity, while incremental construction enables the quick identifi-

cation of feasible paths. Though finite-time optimality is lost, these resulting benefits

are often worth the trade-off, and in practice sampling-based algorithms can generate

high-quality solutions in real-time (Chapters 2, 5).

Two of the most commonly used sampling-based motion planning algorithms are

probabilistic roadmap methods (PRM) and rapidly-exploring random trees (RRT).

Probabilistic roadmaps are typically used in a two-phase process, enabling their use

in multi-query applications [50]. In the map-building phase, feasible configuration

vertices are randomly sampled throughout the configuration space, with edges being

constructed between nearby vertices if the path between them is feasible. In the

query phase, the map is augmented with the system's current state and goal location,
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and a graph search algorithm is used to find the optimal safe path. Variants of PRM

include dynamic PRM [51], which distinguishes between static and dynamic obstacles,

and differential PRM [52], which incorporates differential constraints. While the

map can be used repeatedly, the edges between vertices may not be dynamically

feasible for systems with complex dynamics, unless a steering law or similar tool is

used to construct edges between vertices. Additionally, a pre-processing phase (map

construction) is required for future online planning.

Rapidly-exploring random trees (RRT) incrementally construct a tree of feasible

trajectories rooted at the system's current state [53, 54]. Because each tree branch

corresponds to a forward simulation of the vehicle dynamics for a specific input se-

quence, all trajectories are dynamically feasible by construction. (A bi-directional

version has also been developed, with trees growing from both the system's current

state and the goal state [55].) New trajectories are added to the tree by sampling

a feasible state, then simulating a trajectory from the nearest existing node to that

sample. In doing so, RRT demonstrates a Voronoi bias which allows it to quickly ex-

plore high-dimensional state spaces. However, RRT is a single-query algorithm: the

tree must be constantly updated and regrown in real-time applications if uncertainty

leads to deviations from the tree.

While RRT is probabilistically complete, it has been shown to converge almost

surely to non-optimal solutions [56]. In other words, the difference in cost between

the optimal solution and the lowest-cost solution identified by RRT does not converge

to zero as the number of tree samples approaches infinity. This limits the ability of

RRT to refine feasible solutions once identified, potentially leading to low-quality

trajectories heavily biased on initial tree growth. Alternately, the RRT* algorithm

incrementally "rewires" the tree as it is constructed toward lower-cost paths [56,

57]. As a result, RRT* provides guarantees on asymptotic optimality: the lowest-

cost solution identified by RRT* converges to the optimal cost as the number of

tree samples approaches infinity. As a trade-off, a steering law must be available

to exactly or approximately connect pairs of states within the tree, which may be

computationally intensive and/or unavailable for more complex dynamics.
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RRT* has been extended to consider online execution [58], non-holonomic dy-

namics [59], and pursuit-evasion problems [60], and has been applied to challenging

autonomous vehicle dynamics [61, 62]. Webb and van den Berg [63] guarantee asymp-

totic optimality for any system with controllable linear dynamics through the use of

optimal controllers. Similarly, Perez et al. [64] apply local linearizations around RRT*

trajectories to generate a basin of attraction/stability for nonlinear dynamics, build-

ing on the LQR-Trees approach [65].

Other sampling-based variants have been developed, including randomized poten-

tial fields [66] (which build on earlier work with potential fields [67]), and rapidly-

exploring roadmaps, a hybridization of PRMs and RRTs [68].

Motion Planning under Uncertainty

Guibas et al. [69] propose the bounded uncertainty roadmap, which extends PRM to

provide safety against obstacles with set-bounded vertex uncertainty. Pepy et al. [70]

propose Box-RRT, an RRT-based path planning algorithm for nonlinear dynamics

subject to set bounded uncertainty in process noise and initial configuration. How-

ever, the approach uses a conservative box-shaped "wrapper" to approximate and

bound the reachable set at each node. By comparison, the approach considered in

this thesis (Chapter 2) tightens system constraints individually as a direct function of

the disturbance bounds, such that constraints are tightened only as much as needed

to achieve robust feasibility for a given control policy.

Several RRT-based approaches have been developed which approximate uncer-

tainty statistically via the use of particles. Particle RRT [71] considers uncertain

motion due to uneven terrain by sampling each tree branch multiple times, using

clustering to create nodes. The work of Kewlani et al. [72] functions similarly, in-

stead identifying a finite-series approximation of the uncertainty propagation, in order

to reduce model complexity and the resulting number of simulations needed per node.

Unlike Particle RRT [71], the proposed particle-based algorithm in this thesis (Section

4.3) can approximate the risk of both time-step-wise and path-wise constraint viola-

tion for multiple forms of uncertainty, while maintaining a separate tree node for each
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possible action sequence. However, such an approach still requires the simulation of

a potentially large set of particles at each node, which can be computationally inten-

sive. An alternative formulation is also considered for directly sampling an analytic

distribution (Section 4.4).

Several probabilistic sampling-based formulations are based on sampling the sys-

tem's belief state [73], reducing the complexity of POMDP-based formulations. Such

approaches often make the assumption of linear/linearized dynamics subject to Gaus-

sian uncertainty. Of these, the most well known is perhaps the belief roadmap

(BRM) [74], a belief-space variant of PRM for nonlinear systems subject to process

and sensing noise. It is shown that the covariance matrix can be factored in order

to plan - and update plans - efficiently in belief space. As the graph is constructed,

a forward search is used to track the realizable belief states at each node, effectively

generating a belief tree; only the paths which minimize the trace of the uncertainty

covariance at each node are kept. However, motion planning is assumed to be kine-

matic, i.e., straight-line connections between nodes. Additionally, construction of

the original graph only checks whether the mean-state path is feasible, rather than

providing minimum guarantees of constraint satisfaction. This work has been ex-

tended to incorporate unscented Kalman filtering with demonstration on a quadrotor

testbed [75].

Another MDP-based variant of PRM is the stochastic motion roadmap [76], which

constructs an MDP over a sampled roadmap to attempt to maximize the likelihood of

reaching the goal region. However, this approach provides no formal optimality guar-

antees, and requires discretization of inputs. The incremental Markov decision process

(iMDP) [77] removes these restrictions, providing asymptotic optimality guarantees

for continuous control policies by incrementally constructing and performing value

iteration on MDPs. The iMDP algorithm considers the continuous-time stochastic

optimal control problem for nonlinear dynamics subject to additive Brownian process

noise. At each iteration, a state is sampled from the environment, and a transition

function is derived by attempting to steer from the sample to nearby states, similar to

RRT*. Because the algorithm generates policies rather than plans, the input sequence
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to be applied is not available a priori - it must be identified online, by applying the

inputs of nodes nearest to the system state after disturbances are realized. As such,

one cannot track the evolution of uncertainty distributions using this approach.

Additionally, iMDP does not consider sensing/localization error or uncertain en-

vironments, and cannot provide safety guarantees - possible obstacle collisions are

modeled as a penalty term within the MDP reward function, which is shown to yield

unsafe paths on some iterations [77]. Subsequent work has mitigated the latter issue

by enforcing trajectory expected-value constraints [78], though solutions are some-

what conservative [79]. Here collision risk must be represented in a time-discounted

Bellman form, rather than as specific time-step-wise/path-wise likelihood bounds or

soft constraints [80]. Alternatively, conservatism can be reduced for particular initial

states through the use of path-wise, time-consistent [81] risk constraints [79].

The feedback-based information roadmap (FIRM) [82, 83] is designed to be multi-

query, unlike BRM. Because FIRM edges and costs are independent of each other,

the motion planning problem is essentially subdivided into decoupled motion planning

problems along each edge. In the FIRM graph, each node represents a small subset of

the belief space, while each edge consists of a sequence of feedback policies comprising

a Markov chain in the belief state. Each feedback policy is a stabilizer bringing the

system into the next belief state node [82], though a finite-time tracker can also be

used transiently [83]. However, all collision probabilities are calculated offline: the

environment is assumed to be known and fixed a priori. Very recent work considers

planning subject to unforeseen large changes in the obstacle environment or vehicle

state [84].

Several other PRM formulations have been developed which maintain probabilistic

safety bounds for a 2D vehicle avoiding obstacles represented by uncertain vertices [69,

85]. However, these approaches are not applicable to nonholonomic systems, which

generally cannot track the piecewise linear roadmap paths. Burns and Brock [86]

use an exploration-based heuristic to traverse a PRM with probabilistic feasibility

guarantees under sensing uncertainty.

The LQG-MP algorithm [87], contemporaneous with the development of CC-
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RRT [46] (Chapter 3), extends the RRT algorithm for a nonlinear system subject

to Gaussian process and sensing noises. A variety of motion planning scenarios are

considered, including corridors, cluttered environments, and multi-agent scenarios,

with heuristics of varying complexity being used to assess path quality and/or risk.

While some scenarios consider an uncertain environment (through the presence of

other uncertain agents), its incorporation is limited - all obstacles are assumed to be

circular, while the risk is computed using an expensive numerical integral evaluation.

Additionally, because of the use of heuristics, no guarantees are available on minimum

likelihood of constraint satisfaction.

The rapidly exploring random belief tree (RRBT) [88] develops a formulation of

RRT* for the belief space of a system with nonlinear dynamics, subject to state and

sensing uncertainty. A stabilizing linear controller is assumed to be applied around

each nominal trajectory. As the tree is constructed, multiple belief evolutions are

tracked through a tree; the tree is rewired when a new belief "dominates" an old

one, . e., has a lower cost and covariance. Only minimum-cost paths and time-

step-wise chance constraint bounds are considered. Here the chance constraints are

evaluated by checking the uncertainty ellipse corresponding to the covariance matrix

for collision against the obstacles. As a result, the probabilistic feasibility check

is relatively expensive and conservative, does not provide a bound on the risk of

constraint violation, and thus could not be readily used to assess path-wise chance

constraints. Additionally, the environment is assumed to be perfectly known.

While this thesis focuses on single-vehicle motion planning, particularly using CC-

RRT, Postlethwaite and Kothari [89] extend CC-RRT to multiple vehicles. Finally,

we note the work of Patil et al. [90], which truncates Gaussian state distributions

by conditioning at each stage along a trajectory on the assumption that previous

states are collision-free. Doing so reduces conservatism, but also shifts the conditional

means of the trajectory, removing the guarantee that the conditional-mean path is

dynamically feasible for the autonomous vehicle.
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Table 1.1: Overview of algorithms in this thesis

Algorithm BU-RRT BU-RRT* CC-RRT CC-RRT*
Chapter(s) 2 2 3-4 5

Uncertainty distribution Any Any Gaussian Gaussian
Bounded uncertainty? Yes Yes No No
Feasibility guarantees Absolute Absolute Probabilistic Probabilistic

Asymptotically optimal? No Yes No Yes

1.3 Outline and Summary of Contributions

This thesis discusses the development of novel real-time motion planning algorithms

for a single vehicle. Unlike previous approaches in the literature, the algorithms

developed in this thesis provide robustness guarantees subject to multiple forms of

both internal and external uncertainty in real-time, even in complex environments.

The algorithms are tested in a variety of simulation environments and demonstrated

via hardware experiments with an autonomous rover. These algorithms differ in the

assumptions made on the nature of the uncertainty environment, the type of feasibility

guarantees available for motion plans, and their optimality. Table 1.1 provides an

overview of the algorithms proposed in this thesis and the chapters where they are

developed.

A major consideration throughout this thesis is the combination of an accu-

rate estimate of the risk of constraint violation with a motion planner that pro-

vides probabilistic feasibility guarantees. Probabilistic feasibility is suitable for many

motion planning problems where guarantees on absolute safety may be impossi-

ble/intractable, overly conservative, or simply unnecessary. For example, navigation

tasks in crowded urban environments almost always impose some risk of constraint

violation, such as a vehicle in an opposing lane triggering an unavoidable collision.

However, if the risk of such outcomes can be evaluated, it can be identified as an

acceptable level of risk, enabling meaningful planning to continue. The key idea is

that, if the risk of constraint violation can be reasonably approximated, the operator

of the planning algorithm can use that knowledge to decide how to best trade off

between the risk of constraint violation and planner conservatism.
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The algorithms in this thesis build upon sampling-based algorithms and particu-

larly rapidly-exploring random trees (RRT) [53, 541, a sampling-based motion planner

with demonstrated utility for autonomous vehicles [1, 91]. As discussed previously,

RRTs present several key advantages for online motion planning of autonomous vehi-

cles, including generation of trees of dynamically feasible paths by construction; quick

exploration of high-dimensional configuration spaces; incremental construction; and

trajectory-wise constraint checking.

9 Chapter 2 proposes the bounded-uncertainty RRT (BU-RRT) and bounded-

uncertainty RRT* (BU-RRT*) algorithms for motion planning problems subject

to bounded uncertainty [92]. The first contribution of this chapter is the de-

velopment of BU-RRT, a novel sampling-based motion planner which provides

guarantees on absolute constraint feasibility for linear systems subject to both

bounded internal and external uncertainty in real-time. In particular, constraint

feasibility is guaranteed for linear systems subject to bounded process noise, lo-

calization error, and/or uncertain environmental constraints. During planning,

state constraints are individually tightened for robustness against future uncer-

tainty, while the input constraints can be tightened in order to apply disturbance

feedback policies. In addition to extending the complexity of uncertainty and

constraint formulations that can be considered online, this contribution also

extends existing work in robust MPC [93, 94] by providing safety guarantees

under environmental uncertainty, in addition to incorporating a sampling-based

planning framework. It is shown that, given a particular choice of input policy

within the planner (including open-loop plans), no conservatism is introduced:

any feasible solution for the original, robust problem remains feasible for the

tightened, deterministic problem. The second contribution is the development

of BU-RRT*, which extends RRT* [56, 57] to efficiently generate and opti-

mize robust, dynamically feasible trajectories. Both algorithms are shown to be

probabilistically complete - if a feasible solution exists, it will be identified by

the planner as the number of samples approaches infinity - while asymptotic

optimality is also shown for BU-RRT*. Simulation results demonstrate identi-
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fication of smooth, guaranteed-safe trajectories in complex scenarios subject to

both internal and external uncertainty, including cases where the uncertainty

may be asymmetric and/or non-convex.

e Chapter 3 proposes the chance-constrained RRT (CC-RRT) algorithm for mo-

tion planning problems subject to large and/or unbounded uncertainty [46].

The primary contribution of this chapter is the development of CC-RRT, a novel

sampling-based motion planner which provides guarantees on probabilistic con-

straint feasibility for linear systems subject to both Gaussian internal and ex-

ternal uncertainty in real-time. In particular, minimum likelihood of constraint

feasibility is guaranteed for linear systems subject to Gaussian process noise,

localization error, and/or uncertain environmental constraints. Probabilistic

constraint satisfaction is represented in terms of chance constraints. Central to

this contribution is the derivation of a novel bound on the risk of constraint

violation, which can be efficiently evaluated and bounded online within the

CC-RRT tree of state distributions (online CC-RRT). Though some conser-

vatism is introduced by this risk bound, the algorithm is effective in identifying

risk-bounded trajectories. In addition to extending the types of constraint for-

mulations that can be considered online, this contribution also extends existing

work in chance-constrained optimization [37] to consider chance-constrained

environment bounds, environmental uncertainty, and both time-step-wise and

path-wise probabilistic feasibility guarantees. Extensions to nonlinear dynam-

ics and/or output feedback models are also considered. Simulation results show

that this algorithm can be used for efficient identification and execution of prob-

abilistically safe paths in real time.

* Chapter 4 considers applications of chance-constrained motion planning, and

in particular CC-RRT, in several motion planning domains of interest. These

applications contribute several extensions to the CC-RRT framework, enabling

consideration of more complex uncertainty formulations than considered in the

sampling-based planning literature. The first contribution of this chapter is

34



the consideration of dynamic obstacles with uncertain intentions, represented

via Gaussian mixture models with uncertainty in both behaviors and trajecto-

ries [95]. Probabilistic constraint satisfaction is shown to be maintained for such

obstacles, whose uncertainty models are often learned from trajectory prediction

algorithms. In particular, joint work showing integration with the RR-GP [95]

and DPGP [96] trajectory prediction algorithms is demonstrated for safe urban

navigation. The second contribution of this chapter is the development of par-

ticle CC-RRT [97], which enables more versatile consideration of uncertainty

types and chance constraints than existing particle-based RRT approaches [71],

though both can be computationally intensive. Finally, the third contribution

of this chapter is the development of a novel motion planning algorithm for

parafoil terminal guidance [98]. The resulting CC-RRT variant, analytic CC-

RRT, uses multi-modal wind modeling and covariance sampling for collision

checking against mapped terrain, yielding superior landing accuracy over state-

of-the-art algorithms [99] in complex terrain.

* Chapter 5 proposes the chance-constrained RRT* (CC-RRT*) algorithm for

asymptotically optimal motion planning with probabilistic feasibility guarantees

for linear Gaussian systems [80]. The first contribution of this chapter is the

extension of CC-RRT to guarantee asymptotic optimality, making CC-RRT*

the first asymptotically optimal sampling-based algorithm with robustness to

both internal and external uncertainty. This algorithm leverages RRT* [56, 57]

to efficiently generate and optimize dynamically and probabilistically feasible

trajectories. The second contribution of this chapter is the proposal of a novel,

risk-based objective function to provide "soft constraints" on risky behavior

alongside the hard constraints derived from CC-RRT. This objective, shown

to be admissible within RRT*, yields a more versatile consideration of risk-

averse behavior compared to existing approaches in the literature. Extensive

simulation results demonstrate that CC-RRT* can efficiently identify smooth,

robust trajectories for a variety of scenarios, including complex dynamics, high-
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dimensional state spaces, dynamic obstacles, and pursuit-evasion problems.

o Chapter 6 contributes the real-time demonstration of the proposed probabilistic

motion planning algorithms on hardware in dynamic environments. Using the

CC-RRT planner, an autonomous rover is able to safely navigate around pedes-

trians, robots, and other dynamic obstacles, the primary source of uncertainty

in this chapter. Obstacles are detected both from motion capture cameras and

from onboard sensors, demonstrating the ability of this approach to be used

within perception-driven planning.

* Chapter 7 offers concluding remarks and suggestions for future work.
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Chapter 2

Guaranteed Robustness to

Bounded Uncertainty

This section presents a novel sampling-based planner which generates trajectories for

linear systems with robustness to bounded process noise, localization/initial state

error, and/or uncertain environmental constraints. The proposed planner builds

on RRT* [56], which extends RRT to guarantee asymptotic optimality, by itera-

tively modifying individual state/input constraints during trajectory simulation and

rewiring to enforce robust feasibility conditions. All trajectories generated by the

proposed algorithm are guaranteed safe for any feasible uncertainty realization. The

set-based uncertainty representation allows consideration of asymmetric and/or state-

dependent uncertainties (e.g., quadrotor ground effect, uneven terrain).

The proposed approach also incorporates the option for state- and disturbance-

feedback policies within planning. During planning, state constraints are individually

tightened for robustness against future uncertainty, while the input constraints are

tightened as needed for future state/disturbance feedback. The proposed approach

extends feedback policies developed in the RMPC literature [31, 94] by providing

guarantees against both internal and environmental uncertainty, as well as incorpo-

rating a sampling-based planning framework. By building on RRTs, the algorithm

can generate dynamically feasible trajectories for complex configuration spaces and

constraint characterizations. For any given control policy, no conservatism is intro-
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duced: the set of feasible solutions is equivalent between the original (uncertain)

and modified formulations. Further, trajectory-wise constraint checking ensures that

the algorithm scales well with the problem complexity. This scalability enables real-

time robust planning in complex, cluttered environments that are computationally

challenging or intractable for optimization-based frameworks [31, 94]. The proposed

approach is shown to work even if the localization or obstacle placement uncertainty

is non-convex.

2.1 Problem Statement

Consider the linear time-invariant (LTI) discrete-time system dynamics subject to

process noise

xt+ = Axt + But + Gwt, (2.1)

wte SW, (2.2)

where xt C Rx is the state vector, ut E R'- is the input vector, wt E R- is a

process noise uncertainty acting on the system, and A, B, G are matrices of suitable

dimension. The disturbance wt is unknown at current and future timesteps, but must

belong to the polytopic set S., which contains the origin. The initial/current state

xO may additionally be uncertain via

X0 = + ,(2.3)

Y E Sx, (2.4)

where Xo is the initial state estimate and Yo is unknown at current and future timesteps

but must belong to the polytopic set Sx, which contains the origin.

The system is additionally subject to constraints acting on the system state and
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input. These constraints are assumed to take the form

Xt E Xt X\Xt\ ... \X"'t, (2.5)

Ut E U, (2.6)

where X, X 1t, ... , X,,t c Rax, U c RIU are convex polytopes, and the \ operator

denotes set subtraction (relative complement). The sets X and U define a set of

time-invariant convex constraints acting on the state and input, respectively. The

sets Xlt,... , Xot represent n, convex, polytopic obstacles to be avoided. The time

dependence of Xt in (2.5) allows the potential inclusion of dynamic obstacles. For each

obstacle, the shape and orientation are assumed to be known, while the placement is

uncertain. This is represented as

Xi= t Y + j + cj, V j E Zi," 0, (2.7)

cjt E Sit, V j E Zi""' (2.8)

where the + operator denotes set translation and Za,b represents the set of integers

between a and b inclusive. In this model for the jth obstacle, X2 C Rix is a convex

polytope of known, fixed shape which contains the origin, Fjt is a fixed translation at

timestep t, and cj E R8- represents an uncertain and possibly time-varying transla-

tion which must belong to the polytopic set Sit, which contains the origin.

In summary, the system is subject to three separate types of uncertainty: process

noise (2.2), localization/initial state error (2.4), and/or obstacle placement uncer-

tainty (2.8). Each uncertainty, though unknown prior to realization, is bounded

within the sets S,, Sx, and Sit V j E Zl,n0 , V t, respectively. Because these sets are

assumed polytopic, they can be written as the conjunction of linear inequalities

S = {w Ew < fw}, (2.9)

S = {x Exx < fx}, (2.10)

St = {c Eitc < fit}, V j C Zi,,,, V t, (2.11)
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where fW' E R"-, fX E R"'m, fit E R"mjt, and EW , EX, Eit are matrices of appropriate

size. Additionally, since the sets (2.9)-(2.11) are assumed to contain the origin, then

f"', fx fit > 0.

Similarly, the polytopic sets U, X, X1t,... , X,,0 can be written as the conjunction

of linear inequalities:

U = {u | Auu < bu}, (2.12)

X = {x I Aox < bo}, (2.13)

Xt = {xt I Ajxt < bjt}, V j E , (2.14)

where bu E R"u, bo c R"E, bjt E Rnh, and Au, AO, A, are matrices of appropriate

size. The obstacle sets (2.14) can alternatively be written as

Xit = xt I a A xt < aiciit}, Vj E Z,T, (2.15)

cijt = cijt + cat, (2.16)

where A denotes a conjunction and 2cij is a point nominally (i.e., when ct = 0)

on the ith constraint of the jth obstacle at timestep t. The non-convex avoidance

constraints corresponding to these obstacles may be written as

(Aixt < bjt) Vj E Z1,,, (2.17)
ni

<-> ~a ta ci t Vj EC, (2.18)

where V denotes a disjunction.

The primary objective of the motion planning problem is to reach some goal

region Xgoal C Rix while ensuring constraints (2.5)-(2.6) are feasible for all possible

disturbance realizations. Consider the disturbance-free version of the dynamics (2.1),

xt+1 = A-e + But, (2.19)
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and denote

tf = inf{t C Zo,, I 5 t C XgoalI}. (2.20)

The path planner seeks to approximately solve the optimal control problem

tf -1

(2.A) min > (7t, Xgoal, tut) (2.21)
Ut

t=o
s.t. xt+= Axt + But + Gwt, wt C SW, V t,

X0 = X0+ Yo, Yo C Sx,

2t+1 = A7t + But, V t,

ut e U V t,

xteX, VwtCS , ViOCSX, Vt,

tx t, VWt CSW, VoFCSX, Vcj ESjt, Vj CZ 1 ,, Vt,

Xjt=Xj +ct+ct, ct ESt, V E 1 ,, V t,

where / is some cost function to be optimized. In practice, the optimization (2.21)

is solved repeatedly as the system navigates the environment in real-time, with xo

being set to the current state.

2.2 Robustness to Bounded Uncertainty

This section derives and establishes the constraints which must be satisfied by any

candidate trajectory at each timestep in order to satisfy the conditions of the prob-

lem statement (Section 2.1). First, an alternate formulation of problem (2.A) is

posed which incorporates a disturbance feedback policy, in which problem (2.A) is a

special case. It is shown that robust feasibility can be guaranteed by considering a

modified version of that formulation which tightens the state and input constraints,

corresponding to each source of uncertainty and any disturbance feedback which may

be applied. Each inequality constraint is tightened using a series of simple, incre-
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mental optimizations, which can be pre-computed as problem data becomes available

and/or stored for future use. The modified constraints extend existing formulations,

e.g., Kuwata [94], to consider external uncertainty and some forms of non-convex

uncertainty, in addition to process noise.

Consider an affine disturbance-feedback policy [94

t-1

ut = vt + ZPt1kGWk, (2.22)
k=O

where the disturbance feedback matrices Po, P1,... , Pt- 1 are chosen by the operator.

An alternate version of problem (2.A) is now posed which considers this feedback

policy as an additional constraint,

tf -1

(2.B) min dt > (St, Xgoal, ut) (2.23)
Vt

t=o
s.t. (2.A),

t-1

ut = vt + Pt-lkGWk,
k=O

where the above notation implies that all constraints of problem (2.A) are enforced.

By incorporating the feedback policy, the affine input terms vt replace ut as the deci-

sion variables. Additionally, satisfaction of the input constraints b is now dependent

on possible realizations of the process noise wt via (2.22). However, the original

problem (2.A) can be recovered by setting Pt = 0 V t.

The objective is now to impose a set of constraints on the nominal dynamics (2.19)

such that the constraints (2.5)-(2.6) are robustly satisfied for all possible disturbances.

Consider the robust version of problem (2.B),
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tf -1

SO(7t, Xgoai, Ut)
t=O
2t+1 = A2t + But, V t,

Auut < b, - 65-, V t,

AOXt < bo - 60wt - R , V t,

-'(Aj2t < bjt - 6j - 6jt + 6j), V jE 1,n,, V t,

t--1

WkSW

Ut= mmax
k=0 kCS1

t-1

woES..

O= max AA

j0 WCSx

6jwt = min A
k E S

k=C

AuPt_1_kGwk,

AoAt- -kQt-2-kGu,

AAtl1-k Qt-2-kGwk,

where In is an n x n identity matrix. Each maximization and minimization operator

in (2.28)-(2.33) is applied element-wise to the specified vector. Because S., Sx, and

Sit are all sets of linear inequalities, these operators are performing simple linear

optimizations. Each term incrementally tightens one set of constraints for one of the

possible uncertainty sources. Note that the optimizations used in (2.28)-(2.33) to

tighten the constraints are effectively computing supports over the uncertainty sets.

Because the set Sw is time-invariant, tightening terms (2.28)-(2.30) can be written
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Ut

S.

where

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)



implicitly as

"' = u"' i_1) + max AuPt- 1Gw, (2.35)

J' = sOwt_1) + max Ao A t Qt-2Gw, (2.36)

A = oI_1) + min AjAtl-Qt- 2Gw. (2.37)
w E S.

Additionally, define the uncertainty levels At = {Aut, Aot, Alt, . .. , A7 e} at timestep

t as

S= (2.38)

Aot = 6t + J', (2.39)

ic= ij t -t', V j E zL,,". (2.40)

Using these definitions, the robust constraints (2.25)-(2.27) can be written in the

more compact form

Auut < bu - Aut, V t, (2.41)

A07- < bo - Aot, V t, (2.42)

(A3je < b±t + Ajt), V j E Z1 ,,0 , V t. (2.43)

It is now shown that satisfying this set of constraints guarantees robust feasibility

for the true dynamics (2.1) under all possible disturbance realizations.

Theorem 2.1 (Robust Feasibility). Given feedback policy Po,... , Pt,_,, consider

the path specified by the input sequence vo, v1 , ... , v 1. This path is feasible for

problem (2.C) iff it is feasible for problem (2.B). Additionally, this path is feasible for

problem (2.A) if it is feasible for problem (2.B).

Proof. First, equivalence between the deterministic problem (2.C) and the stochastic

problem (2.B) is shown. The objective is to demonstrate that if the sequence of inputs

v o , v,. . , vtf-1 satisfies the constraints of problem (2.C), the nominal constraints

(2.B) will be satisfied for any feasible disturbance realization.
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Suppose that vo, v1,..., vtf_1 are feasible for problem (2.B). The evolution of the

true system state Xt, subject to (2.1), can be written in explicit form

t-1 t-1

xt Atx + At-1-k Buk + 3 Atl-1-kwk.
k=O0 k=O

Substituting (2.44), (2.3), and (2.16) into (2.12), (2.13), and (2.18) yields the con-

straints

(2.44)

t-1

A 0A t -0 + > A 0A t-1
k=0

ni t-1

V T AtX0 + E aT A tl-
i=1 k=O

Auut < b?,
t-1

-kBuk bo- AoAtl--kGwk-AoAto,
k=0

t-1

BUk >aict - ), a7 A- 1 Gwk
k=0

- aT Atio + a§ cjt.

Applying the feedback policy (2.22) leads to the constraints

t-1

A oA tX- + > AOA'-
k=O

t-1
1-kBVk < bo - E AoAtl-1-kGwk

k=O
t-1 k-1

AoA t
0 - > AoAtl-kB EPk_1 cGwi,

k=0 1=0
nJ t-1 t-1

V a At xo + E a7 At- Bvk > agijct - > a7 At- Gwk
k=0

t-1
k=0

k-1

-- Ati + a Tc t - > aTAt-1-k B> Pk-_1IGwi.

k=0 1=0

Re-defining the disturbance-free dynamics (2.19) in terms of vt rather than ut, i.e.,

xt+1 = A5t + Bvt

implies that the left-hand sides of (2.49) and (2.50) can be written as A0o, and a St,
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(2.46)

(2.47)

t-1

Auvt &b - >3 A Pt_1 wk, (2.48)

i=1

(2.49)

(2.50)

(2.51)



respectively. Additionally, the matrix coefficients for the wt terms in (2.49) and (2.50)

can be rewritten via (2.34) to yield the simplified constraints

t- 1

Auvt < b, - ZAuP_1_kGwk, (2.52)
k=O

t-1

A05i- < bo - E AoAtl-kQt-2-kGwk - AoA t 
0o, (2.53)

k=O
n3  t-1

ai Xt > a. C - E a Atl-kQt-2_kGwk - a7 At o + aijcjt. (2.54)
i=1 k=O

Because problem (2.B) is feasible, the constraints (2.52)-(2.54) must be satisfied for

any possible disturbance realization wt E S,, Yo E Sx, cjt E Sjt Vj E Z1,n,, V t E ZO,.

Thus, for each inequality constraint, it is sufficient to consider the tightest possible

bound on the right-hand side. For each uncertain term on the right-hand side, this

is accomplished by maximizing or minimizing that term over all feasible uncertainty

realizations:

t-1
AUvt < bu - E max AuPt1kGwk, (2.55)

k=J

t-1

A07- < bo - max E AoAtk Qt-2kGwk - max AoA tio, (2.56)
k ESw k=O 5oc x

nJ t-1

Va T[5t > a ijt - m n a t-1-k~t2kGwk
i=1 k=

- min aT Ato + max ac. (2.57)
YOECSX i cjt Esjt i j

Substituting in (2.28)-(2.33) yields

Auvt < bu - 6wt ( 2.58)

AOXt < bo - -ot , (2.59)

Vai > ajjjt - - % . (2.60)

By rewriting vt as ut and (2.60) in the form of (2.17), the constraints (2.25)-(2.27)
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are obtained. This ensures that problem (2.C) is also feasible for this path.

Conversely, suppose that vo, v1 , . .. , vtf_1 (when vt is written as ut) are feasible for

problem (2.C), such that the constraints (2.25)-(2.27) are satisfied. Consider some

particular feasible disturbance realization { 0 , Tt V t E NO,_, c V j E N1,,, V t E

NO,-1 }, and define the quantities

= ZAuPt_1
k=O

t-1

%vt =ZEAOA
t -1

k=O

t-1

,j= ZAjAt-1
k=O

=Ao At' < 6

AjA' o > S:

=Ajc < 61t,,

kG7k < 6 ,

-Qt-2-kGk < 6ow,

kQt-2-kGk ;> ap,

where the inequalities are defined from (2.28)-(2.33). The constraints of problem

(2.B) can still be written as (2.52)-(2.54) when using the same input sequence,

v0 , v 1 ,... , V For each disturbance realization, (2.52)-(2.54) can thus be written

as

Auvt < be, - -3, (2.67)

Aoui3 < bo --'yow- -yx
ni

V a T 2t > aT
i=1

(2.68)

(2.69)

However, knowing that (2.25)-(2.27) are feasible, and utilizing the inequality relation-
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ships in (2.61)-(2.66), then

Auvt < bu - 6uwt < bu - - Uw, (2.70)

A07- < bo - 6w - 65x < bowt -- Txt, (2.71)
nj

i=1

implying that the constraints (2.67)-(2.69) must also be satisfied for this specific path

and uncertainty realization.

This implies that the constraints of problem (2.B) are satisfied for this specific

path and uncertainty realization. Thus they are satisfied for any feasible disturbance

realization, implying that the path is feasible for problem (2.B).

Finally, if the path specified by the input sequence vo, v1, ... , t -1 is feasible for

problem (2.B), then generate the input sequence a0 , u1, .. , ut -1 via (2.22). Since

the constraints of problem (2.A) are subsumed by the set of constraints of problem

(2.B), problem (2.A) must also be feasible. U

Theorem 2.1 implies that no conservatism is introduced by this approach for any

specific feedback policy. In other words, if any path can be found to satisfy the con-

straints of problem (2.B) under some specific feedback policy, it can also be found to

satisfy the constraints of problem (2.C) for that same feedback policy. However, this

theorem does make any claims to feasibility over all feedback policies, as emphasized

by the clear lack of equivalence between problems (2.A) and (2.B). The question of

choosing appropriate feedback policies, a.k.a. feedback design, is beyond the scope of

this work, though some specific cases of interest are discussed in the remarks below.

Remark 2.2 (other feedback policies). By applying no feedback, i.e., Pk =

0 V k e Zo,t_1 in (2.22), an open-loop control policy is instead obtained. In this case,

Qn = In, 6wt = 0 and the nominal input constraints (2.12) can be applied in lieu of

(2.25).

Remark 2.3 (state feedback policies). A state-feedback policy of the form ut =

vt + K(xt - St) [28, 100] can be applied by using disturbance feedback matrices in
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(2.22) of the form

P = KkLk, V k E Zo,t_ 1 , (2.73)

Lk+1 (A + BK)Lk, Lo = I, (2.74)

where the Kk are state feedback matrices of appropriate size. If this feedback is

held constant, i.e., Kk = K, then Lk = (A + BK)k. It is shown in Ref. [94] that

state-feedback policies are subsumed by the set of disturbance-feedback policies in

this manner.

Remark 2.4 (non-convex uncertainty). The above results hold even for certain

non-convex representations of the uncertainty in Yo and cjt. Suppose that S, and Sit

are written as the union of polytopic sets,

S -= S E\ {x Ex< }, (2.75)
p=1 p=1
Pjt Pjt

t = J I E{c Ec < 7 , V j E Zijn, V t, (2.76)
p=1 p=1

where pr and pjt are the number of polytopes required to define Sx and Sj, respec-

tively.

In order to verify robustness to a non-convex Sr and/or Sjt, separate constraints

(2.26)-(2.27) are imposed for each convex polytope comprising the uncertainty sets

(2.75)-(2.76). In each case, the nominal initial state ?o and nominal obstacle con-

straint location ijt are temporarily shifted for the constraint checks such that 0 E

SSp) Vp C Zi,, 0 C S() V p C Zi,,t:

= + , (2.77)

ci = CJ& + c3 , . (2.78)
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After this translation, the constraints for the pth polytopes are written as

PX PX

Sx = USP) =U{x I Egx < fj}, (2.79)
p=1 p=1

Pjt Pjt

Sit = J S U {c Ef tc < ff t},
P= 1  P=1

V j E Z, 0 , Vt, (2.80)

where fp > 0, f1jt > 0. The robust feasibility constraints (2.25)-(2.27) then take the

form

Anut < bu - 6', V t (2.81)

A ) < b - 6ow' - sx V p C Z1,p,, V t (2.82)

,(Aj2 -xP b(P -6T'' -6 +sp j , (2.83)
tjt 3t It it

V p E 7Zi,p, V E Zi,pj, V C Zi,o, IV tI
6x(p) max AoAxF(j) (2.84)

6  = min A At XP) (2.85)

6C(P) max A c , (2.86)jt () () Icit,
Cjt it

where the ith element of b( is aT &)
jt ijt ijt

Remark 2.5 (convex obstacle uncertainty). If the obstacle uncertainty sets

Si are convex polytopes, then this environmental uncertainty may be removed from

the planning problem by replacing each obstacle Xj with the Minkowski sum Xj e

Si, which is also a convex polytope. The resulting expanded obstacle with zero

uncertainty is then used.
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2.3 Bounded-Uncertainty RRT*

This section introduces the bounded-uncertainty RRT* (BU-RRT*) algorithm for

quickly identifying and refining feasible trajectories, subject to both internal and ex-

ternal uncertainty (Section 2.1). This algorithm has been designed to fit into the

constraints of the RRT* framework [56, 57], such that guarantees on asymptotic

optimality are preserved. However, unlike RRT*, the bounded-uncertainty RRT*

algorithm enforces the robustness constraints (2.25)-(2.27) on the disturbance-free

dynamics (2.19) to ensure that all trajectories generated in the tree are safe for any

realizable disturbances. As part of the presentation of BU-RRT* and its subsequent

analysis, this section also presents the bounded-uncertainty RRT (BU-RRT) algo-

rithm, building upon the conventional RRT algorithm [54]. The BU-RRT algorithm

maintains both dynamic and robust feasibility of its generated trajectories, but does

not perform the additional "rewiring" steps of BU-RRT* needed to maintain asymp-

totic optimality.

Both the BU-RRT and BU-RRT* algorithms grow a tree of dynamically feasible

trajectories using the disturbance-free dynamics (2.19) for simulation. This tree is

denoted by T, consisting of 7T1 nodes. Each node N of the tree T contains a trajectory

segment consisting of a sequence of states, which is checked for robust feasibility. A

sequence of states is denoted by a; let t[N] and 2[N] denote the terminal timestep

and state for node N, respectively, while t[a] denotes the initial timestep of a. The

cost function (2.24) is implemented by setting O(st, Xgoai, Ut) = f (Xt)dt, where dt is

the timestep duration and f is the per-timestep cost objective specified by the user.

Thus

t[N]

J[N] = dit f(it) (2.87)
t=o

represents the entire path cost from the starting state to the terminal state of node

N. In this work, f(2) = 1, implying minimization of the path duration, though more

complex cost functions satisfying certain conditions [57] may be considered. For a
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state sequence o, the notation

A J(o) = dt f (2) (2.88)

denotes the cost of that sequence. Eq. (2.87) can be constructed recursively by

utilizing (2.88): if o denotes the trajectory of node N with parent Nparent, then

J[N] = J[Nparent] + AJ(u). (2.89)

Both the BU-RRT and BU-RRT* algorithms are comprised of a tree expansion

step, used to continuously and incrementally grow the tree by simulating new tra-

jectories; and an execution loop which periodically selects the best feasible path for

execution and updates problem data online. This chapter focuses on the tree expan-

sion step; the execution loop is presented in detail in Chapter 3 (its implementation

for BU-RRT and BU-RRT* is similar).

The tree expansion step for BU-RRT is given in Algorithm 1. It starts with the

current tree T at timestep t and seeks to add additional, robustly feasible nodes

to the tree, subject to the constraints Xt and U tightened via the uncertainty sets

Sn,, S,, and Sjt (Algorithm 1, line 1). First, a state is sampled uniformly from the

environment via x = Sample() (line 2). Next, a node in T nearest to Xsamp in terms of

some distance metric (here, Euclidean norm [56]) is identified (line 3) via the function

Nearest = Nearest(T, x) = arg min Hx - 2[N]H. (2.90)
NET

The robust steering law a = RobustlySteer(x, y, S, t) is then applied to steer the

terminal state -X[Nnearest] to Xsamp (line 4). The robust steering law returns a sequence

of states originating at x and terminating at y in the form of a dynamically feasible

trajectory, via (2.19). Additionally, the inputs ut applied by this steering law must

satisfy the input constraints S tightened starting from timestep t, such that the robust

input constraints (2.25) are satisfied.

The resulting state sequence is then checked for robust feasibility via the boolean

52



Algorithm 1 Bounded-Uncertainty RRT, Tree Expansion

1: Inputs: tree T; current timestep t; constraints Xt,U; uncertainty sets S,, S, Sjt
2: Xsaimp <- Sample()
3: Nnearest +- Nearest(T, srsamp)

4: o +- Robust1ySteer(5[Nearest], sanp, U, t[Nncarest])

5: if RobustlyFeasible(o, Xt, t[a]) then
6: Create node Nmin{a}
7: Add Nmin to T
8: end if

function RobustlyFeasible(a, S, t) (line 4). This function tightens the state constraints

S starting from timestep t, then checks whether the resulting robust state constraints

(2.26)-(2.27) are satisfied at all timesteps in the sequence. If robustly feasible, a new

node with that state sequence is created (line 6), then added to T (line 7).

The tree expansion step for BU-RRT* is given in Algorithm 2. It begins in the

same manner as BU-RRT (lines 1-6), including the check of candidate node Nmin for

robust feasibility (line 5). However, if the node is robustly feasible in this case, it

is created but not yet added to T. Instead, nearby nodes are identified for possible

connections via the function K = Near(T, x, n) (line 7), which returns a subset of

nodes K C T. To enable asymptotic optimality guarantees (Section 2.4), BU-RRT*

uses [56]

K = Near(T, x, n) {N E T 2 [N] - x < r}, (2.91)

where r, is a radius that decreases with the number of tree nodes n.

Once the nearby nodes K are identified, BU-RRT* seeks to identify the lowest-

cost, robustly feasible connection from those nodes to Xsamp (lines 8-13). For each

possible connection, a state sequence is simulated via the robust steering law (line 9).

If the resulting sequence is robustly feasible, and the cost of that node - represented

as the sum J[Nlcar] + AJ(A), via (2.89) - is lower than the cost of Nmin (line 10),

then a new node with this sequence replaces Nm..in (line 11). The lowest-cost node is

ultimately added to T (line 14). Lines 7-13 are collectively referred to here as the

connect-nearby step.
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Algorithm 2 Bounded-Uncertainty RRT*, Tree Expansion

1: Inputs: tree T; current timestep t; constraints Xt, U; uncertainty sets Sw, Sx, Sjt
2: Xsamp +- Sample()
3: Nnearest <- Nearest(T, Xsamp)
4: a <- RobustlySteer(2[Nearest], xsamp, U, t[Nearest])
5: if RobustlyFeasible(a, Xt, t[o]) then
6: Create node Nmin{u}
7: .Arear +- Near(T, Xsamp, TI)
8: for Nnear C Xnaar\Nearest do
9: o +- RobustlySteer(2[Near], xsampU, t[Nnear])

10: if RobustlyFeasible(a, Xt, t[o]) and J[Nearl + AJ(T) < J[Nmin] then
11: Replace Nmin with new node Nmin{O}
12: end if
13: end for
14: Add Nmin to T
15: for Nnear C Anear\Ancestors(Nmin) do
16: a <- RobustlySteer(2[Nmin], 2[Nnear, U, t[Nminl)
17: if RobustlyFeasible(a, Xt, t[o]) and J[Nmin] + AJ(u) < J[Nnear] then
18: Delete Nnear from T
19: Add new node Nnew{} to T
20: Update descendants of Nnw as needed
21: end if
22: end for

23: end if

Finally, a rewiring operation, referred to here as the rewire-nearby step (lines 15-

22), is performed based on attempting robust connections from the new node Nmin

to nearby nodes, ancestors excluded (line 15). A state sequence is sampled via the

steering law from Nmin to the terminal state of each nearby node Nncar (line 16). If

the resulting sequence is robustly feasible, and the cost of that node is lower than the

cost of Nncar, then a new node with this sequence replaces Nnear within the tree T

(lines 18-19).

Each tightening term (2.28)-(2.33) is independent of the input sequence ut applied

to the system (2.19). Since variations in the input sequence are all that differentiates

individual branches of the BU-RRT* tree, the values of these tightening terms for a

given state depend only on the time elapsed between the tree root and that state.

As such, each optimization and tightening amount for a given timestep should be

stored after it is first computed, as it will get used repeatedly by other tree branches.

Optimizations may even be pre-computed offline, depending on which details about
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the motion planning problem and the environment are available a priori.

By using the RRT* rewiring mechanism with an exact steering law, all descen-

dants of a rewired node remain dynamically feasible. However, the amount by which

the constraints are tightened/modified may change due to rewiring, implying that the

robust feasibility constraints (2.25)-(2.27) may need to be re-checked at descendant

nodes. However, because the tightening amounts (2.28)-(2.33) can be stored after

their initial computation and re-used, these re-checks can be computed efficiently.

Additionally, under certain assumptions, uncertainty can be guaranteed to never in-

crease due to rewiring, such that feasibility re-checks are not necessary. This is used

in the proof of BU-RRT* probabilistic completeness in Section 2.4 below.

Finally, we note that this algorithm does not explicitly consider the task of select-

ing paths to reduce internal or map uncertainty; papers which explore this problem

in more depth for sampling-based planning include Refs. [88, 101, 102] among many

others. Rather, this algorithm demonstrates that robust and asymptotically optimal

planning can be efficiently performed even in the presence of such uncertainty.

2.4 Analysis

This section establishes the theoretical properties of the BU-RRT and BU-RRT* algo-

rithms. In particular, it is shown that both algorithms are probabilistically complete

for problem (2.B), and additionally that BU-RRT* is asymptotically optimal. These

results establish that, for a given feedback policy, both algorithms will find a robustly

feasible path if one exists, while BU-RRT* will further refine that solution to converge

asymptotically toward the lowest-cost path feasible for problem (2.B).

The proof of asymptotic feasibility is based on two arguments: (1) that reducing

the uncertainty level at a given node cannot make it infeasible; and (2) under the

assumption that uncertainty increases at future timesteps, rewiring the BU-RRT*

tree reduces or does not change the uncertainty levels. To prove the first argument,

some additional notation is needed.

The uncertainty levels (2.38)-(2.40) are collectively referred to below as at, where
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a = {u,0, 1, ... , n,}, or collectively as At. Let Af denote the ith element of Aat.

Then Aati is said to be larger than Aat2 , written as Aat Aat2  , if ai > AW V .1t - at2

Additionally, Aat is said to be non-decreasing in t if Aa(t+l) > Aat V t. Conversely,

Aati is said to be smaller than Aat 2, written as Aati < Aat 2 , if A(2) < A a V-

Additionally, Aat is said to be non-increasing in t if Aa(t+l) Aat V t.

Similarly, At, is larger than At2 , written as At, > At 2 , if Aati Aat2 , V a

{u, 0, 1, . . . , n,}. The term At is said to be non-decreasing in t, written as At+1 > At,

if At+, > At, V t. Conversely, At, is smaller than At2 , written as At, < At 2 , if

Aatj Aat
2 , V a = f U, 0, 1, ... , In 0 }. The term At is said to be non-increasing in t,

written as At+1 < At, if At+1 < At, V t.

The following lemma establishes that, if the robustness constraints (2.25)-(2.27)

are satisfied for some uncertainty level, they will remain satisfied if that uncertainty

level is decreased.

Lemma 2.6. Suppose (71, ut) is feasible for constraints (2.25)-(2.27) of problem (2. C)

with uncertainty level At, and A is some uncertainty level such that At > A. Then

Pt' ut) is feasible for constraints (2.25)-(2.27) of problem (2. C) with uncertainty level

A.

Proof. Consider (2.61)-(2.66), associating At with the 6 terms and A with the y

terms. This lemma is then evident from inspection of (2.70)-(2.72) M.

The following assumptions are necessary to establish probabilistic completeness:

Assumption 2.7. All of the following conditions are satisfied:

1. The set U consists of a finite number of inputs. Whenever inputs are simulated,

they are chosen randomly from the set U.

2. All tree vertices are separated by a distance of at least e > 0.

3. There exists a sequence of feasible inputs uo, u1, . . . , 1 such that the con-

straints of problem (2.C) are satisfied by the state sequence o, i, ... ,tf and

2tf Xgoa . All states in this sequence lie in the same bounded, open, and

connected sx-dimensional subset of Rs.
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Assumption 2.7.3 ensures that at least one feasible solution exists. Assumptions

2.7.1-2.7.2 may not necessarily apply directly to many practical applications; however,

as long as the input selection used in the steering law effectively expands the frontier

of the tree, feasible solutions are likely to be identified in practice.

Theorem 2.8 (Probabilistic Completeness of BU-RRT). Under Assumption

2.7, BU-RRT is probabilistically complete for problem (2.B).

Proof. The probabilistic completeness of BU-RRT can be established using the same

approach as the proof of probabilistic completeness for RRT [54]. Through the use of

the discrete LTI dynamics, all timestep durations are constant, and all motions are

locally constrained. Coupled with Assumptions 2.7.1-2.7.3, all assumptions used to

establish probabilistic completeness for RRT are also satisfied by BU-RRT.

In particular, the argument proceeds by induction. Suppose that the BU-RRT

tree currently contains the state 7
k generated by applying the inputs uo, u1,. . . I I

from Assumption 2.7.3, for k < ti. By Assumption 2.7.2, all tree vertices have a finite

Voronoi region (whose volume is a function of e), including -k. As such, because all

states have a non-zero likelihood of being sampled, - has a non-zero likelihood of

being selected as a nearest node for expansion. From Assumption 2.7.1, input Uk

has a non-zero likelihood of being applied in order to generate state - ±1. As the

number of samples approaches infinity, the likelihood of -k+1 thus being added as a

descendant of -k approaches 1 [54]. Since X- is initialized as the tree root, the proof

by induction is complete. Given the equivalence between (2.B) and (2.C) established

in Theorem 2.1, BU-RRT is probabilistically complete for problem (2.B). N

Additional assumptions are utilized for BU-RRT* probabilistic completeness, due

to the potential of its connect-nearby and rewire-nearby steps (Section 2.3) to modify

the uncertainty levels at tree nodes.

Assumption 2.9. All obstacles are static, such that -> t V t and Xt is the same

for all t.

Assumption 2.9 does not necessarily imply that Sit Sj V t.
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Assumption 2.10. At least one of the following conditions is satisfied:

1. The uncertainty levels Aot and Ajt V j e Z1,n0 are non-decreasing in t.

2. No localization error is present, and the obstacle uncertainty levels are non-

decreasing in t.

Assumption 2.10 is in place to ensure that the uncertainty level of a node cannot

increase due to either the connect-nearby or rewire-nearby step in BU-RRT*. This

assumption is typically not restrictive in practice; further, the algorithm typically

performs well even if several of the above theoretical assumptions are not satisfied.

Theorem 2.11 (Probabilistic Completeness of BU-RRT*). Suppose Assump-

tions 2.7, 2.9, and 2.10 are satisfied. Then BU-RRT* is probabilistically complete for

problem (2.B).

Proof. BU-RRT* performs two additional steps in its tree expansion routine (Al-

gorithm 2), relative to BU-RRT (Algorithm 1): the connect-nearby step (lines 7-13)

and the rewire-nearby step (lines 15-22). Since BU-RRT has been shown to be

probabilistically complete, it must be shown that these new steps do not break that

completeness under the provided assumptions.

By Assumption 2.7.3 and Theorem 2.8, the state sequence {xo, 1,... , 2t,} has

a non-zero likelihood of being contained within a BU-RRT tree as the number of

samples approaches infinity. If the same sample sequence is applied in BU-RRT*,

then its tree will contain the same set of states (?o, 1, ... , xt,) as the number of

samples approaches infinity.

For completeness, it is sufficient to show that neither the connect-nearby nor

rewire-nearby steps in BU-RRT* can increase the uncertainty levels of any tree nodes.

Indeed, suppose that some vertex 25 of the path specified in Assumption 2.7.3 is

modified by one of these steps, such that the (feasible) path from X- to Y- may

differ from {-, 21, .. . , X-3-}. If these steps cannot increase uncertainty levels, then the

uncertainty levels at descendants of 2j either remain the same or are reduced. By

Lemma 2.6, each state/input pair of the remaining path segment {5, 2+1, ... , }tf}
remains feasible, such that probabilistic completeness is maintained.
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Because f(.) - 1, i.e., path cost equals path duration, either connect-nearby or

rewire-nearby will strictly decrease the terminal timestep t[N] of any affected node N

and its descendants. Thus, showing that the uncertainty levels At are non-decreasing

in t is sufficient to prove probabilistic completeness.

Consider the implicit forms (2.35)-(2.37) of the tightening terms on the process

noise. Since 0 E Sw, the terms 6', 6w, and -o are (element-wise) non-decreasing in

t. Thus Aut is non-decreasing in t.

If Assumption 2.10.1 is satisfied, then At is non-decreasing in t, as needed for

completeness. Otherwise, suppose Assumption 2.10.2 is satisfied. The assumption on

localization error implies that 6ce = 6ft = 0 V j E Zin,, V t, while the assumption on

obstacle uncertainty implies Sjt is non-decreasing in t V j E 2
1,n.. The uncertainty

levels can then be written as

Aot = owt,

A jt = 6 - 6T, V j ..

Each remaining term has been shown to be non-decreasing in t, implying that At

is non-decreasing in t. Given the equivalence between problems (2.B) and (2.C) of

Theorem 2.1, BU-RRT* is probabilistically complete for problem (2.B), completing

the proof. U

The proof of asymptotic optimality follows a similar path to the proof in Ref. [56].

However, because the feasible state space is a function of the planning timestep, the

definitions must be modified accordingly.

Denote Xt as the set of all states 7, satisfying constraints (2.25)-(2.27) at planning

timestep t. A state x E Xt is a 6-interior state of Xt if the closed ball of radius J

centered at x lies entirely inside Xt. The 6-interior of X is defined as int6(Xt) _{x C

X B(x; 6) C Xt}, where B(x; r) denotes a ball of radius r centered at x. A robustly

feasible path {o, . . . , 2tf} is said to have strong 6-clearance if Xt c int6 (Xt) V t C Z0't, -

A robustly feasible path p = {o,. .. , It,} is said to have weak 6-clearance if there
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exists a path p' = {'o,... , ' } with strong 6-clearance, and a homotopy 4 with

v)(0) = p, v(1) = p', and for all a - (0, 1] there exists J, > 0 such that 0(a) has

strong 60-clearance [56].

Denote the cost of path p via objective (2.24) of problem (2.C) as J(p). A

path p* that solves problem (2.C) is considered a robustly optimal solution if p*

has weak 6-clearance and, for any sequence of robustly feasible paths {pn}ZO with

lim -oc pn = p*, then limnn, 0 C(Pn) = c(p*) [56].

Assumption 2.12. All of the following conditions are satisfied:

1. The set of all points traversed by an optimal trajectory has measure zero [561.

2. The nearby node radius r used in line 7 of Algorithm 2 is a function of the

number of tree nodes, N, and is chosen to be

= Min{ (log n)'Is }
n

y > Y*= (2 (1+-

where sx is the dimension of the state space, p(S) is the volume of set S, (d is

the volume of the d-dimensional unit sphere, and i > 0.

The definition of 7* used by Karaman and Frazzoli [56] includes p(Xfre), where

Xfre is the volume of the collision-free space, rather than p(Xo). However, since X0

implies the state constraints at t = 0, where no tightening is yet needed for robustness,

the formulations are equivalent.

Theorem 2.13 (Asymptotic Optimality of BU-RRT*). Suppose Assumptions

2.7, 2.9, 2.10, and 2.12 are satisfied. Then BU-RRT* is asymptotically optimal for

problem (2.B). In other words, for any realization of problem (2.B) that admits a

robustly optimal solution with finite cost J*, then

P lim sup Jn = J*
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where J, denotes the cost of the lowest-cost path in the BU-RRT* tree after n tree

expansion steps.

Proof. The proof of asymptotic optimality established in Theorem 38 of Ref. [56]

can also be utilized here, with minor modification. As is the case there, it is assumed

that r7 is chosen to be sufficiently large. Additionally, Lemma 2.6 and the resulting

Theorem 2.11 establish that the graph construction process in the proof of Theorem

38 [56] maintains probabilistic completeness.

The primary remaining task in this modified proof is to show that the choice

of nearby node radius in Assumption 2.12.2 is valid. To fit into the framework of

Theorem 38 [56], the choice of -y at each planning timestep t must satisfy

S(2 ( + (Xt)

Under Assumptions 2.9 and 2.10, it is clear that p(Xt) is non-decreasing in t, as each

subsequent planning timestep further constrains the state space. As such, choosing

y > -y* for r(N) implies that -y > -y, validating this approach to proving asymptotic

optimality for problem (2.C). Given the equivalence between problems (2.B) and (2.C)

established in Theorem 2.1, BU-RRT* is asymptotically optimal for problem (2.B),

completing the proof. U

2.5 Simulation Results

This section demonstrates the ability of the proposed algorithm to identify high-

quality, robustly feasible trajectories for complex motion planning scenarios. First,

detailed simulation trials are performed for a single integrator operating in a simple

environment, subject to asymmetric process noise and obstacle placement uncertainty.

Both closed-loop and open-loop control policies are considered for both RRT* and

BU-RRT*, with an emphasis on solution quality and feasibility. BU-RRT* is then

demonstrated for a cluttered environment, with all three types of uncertainty - pro-

cess noise, localization error, and environment uncertainty - present. An additional
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example considers the case of a non-convex localization error. Finally, a scaled-up sce-

nario is presented in which a double integrator UAV must navigate through a cluttered

environment. The algorithm has been implemented in Java, utilizing GLPK [103] and

Java ILP [104] to perform the optimizations needed for (2.28)-(2.33).

2.5.1 Simple Scenario

Consider the 2D single integrator dynamics

1 0 dt 0 dt 0
It+1 t Ut + Wt,

0 1 0 dt 0 dt

where dt = 0.1 s. The position variables xt are constrained within a bounded, two-

dimensional 10m x 10m environment, containing three obstacles with uncertain place-

ment (Figure 2-1). The velocity inputs ut = (ux, uy) are modeled as a linear approx-

imation of a 2-norm constraint |HUt||2 < O = 0.5 m/s, taking the form

cos ( U + sin U < , V d E Z1,DU, V t,
Du) I DU)

where Du = 36 is the discretization level. The steering law executes the feasible input

of largest magnitude at each timestep which moves the system in the direction from

the old state to the new state. The system is modeled as a circular object with a 10-

cm diameter, considered as a point mass during planning by expanding all obstacles

by its radius.

The system is subject to both obstacle placement uncertainty and process noise

which are asymmetric, and thus difficult to model via, e.g., , zero-mean Gaussian

process noise (Chapter 3). The process noise wt at each timestep t is bounded within
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the set (2.9) with

1 0 0.1

-1 0 0.02FW= W =
0 1 0.02

0 -1 0.01

thus, in terms of Figure 2-1, the process noise is largest to the right and smallest from

above. The three obstacles (which are static, such that Si - Sj) have the placement

uncertainties (2.11) defined by E' = 2 = E 3 = EW and

0.2 0.1 0.2

1 0.2 0.1 0.6

0.2 0.1 0.6

0.2 0.1 0.2

The largest uncertainty is on the two concealed sides (from the perspective of the

agent's initial state) of the largest obstacle, emulating a scenario where the agent

may not be able to observe the full size of the obstacle. In this scenario, the ex-

ternal uncertainty is time-invariant, while the internal uncertainty is monotonically

increasing with time. Thus, via Theorem 2.11, any nodes re-wired to a new path are

guaranteed to not become more uncertain, ensuring that all descendant nodes remain

robustly feasible.

The 2D position is sampled uniformly within the bounds of the feasible 2D envi-

ronment. A path is considered to reach the goal if the final position is within 0.25m

of the goal location. Finally, the nearby node function uses a maximum radius [ = 1

m.

Four algorithms are compared throughout these results:

1. Open-loop BU-RRT*, in which Pk-- 0 (Remark 2.2);

2. Closed-loop BU-RRT*, using an affine state-feedback closed-loop policy with

K = -0.0512 (Remark 2.3);
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Table 2.1: Properties of solutions returned in Figure 2-1

Path % Paths Time per Optim.
Algorithm Duration (s) Feasible Node (ms) Time (s)

Open-loop RRT* 18 14.6 0
Closed-loop RRT* 22

Open-loop BU-RRT* 27.1 100 24.2 1.41

Closed-loop BU-RRT* 21.2 100 15.8 3.09

3. Open-loop RRT* [56]; and

4. Closed-loop RRT* [105, 106], which uses the same state-feedback closed-loop

policy K = -0.0512, but for the RRT* algorithm.

First, each algorithm is used to grow a 5000-node tree from the initial state, then

identify the lowest-cost (e.g., shortest) available path. Figures 2-1 shows represen-

tative 5000-node trees (green) and minimum-cost solution paths (orange) generated

by RRT* (Figure 2-1(a)) 1 , open-loop BU-RRT* (Figure 2-1(b)), and closed-loop BU-

RRT* (Figure 2-1(c)). In these figures, the agent (brown, bottom-center) seeks to find

a robustly feasible path to the goal (green circle, top-left), subject to environmental

and obstacle constraints (black), process noise, and obstacle placement uncertainty

(hull of possible obstacle locations in red). Table 2.1 lists several properties of the al-

gorithms used and solution paths identified in Figure 2-1. Here path duration refers

to time the system arrives at the goal when executing its lowest cost path, while

the latter two columns denote the amount of computation used when running the

algorithms.

The tree found by RRT* (Figure 2-1(a)) spans the nominally feasible space, yield-

ing the shortest path of the three algorithms, but does not incorporate uncertainty

during planning. For the BU-RRT* algorithms (Figures 2-1(b) and 2-1(c)), the evolu-

tion of the system uncertainty can be observed via the standoff distances maintained

by tree paths relative to the environment and obstacle boundaries. The system main-

tains the largest distance from the rightmost environmental boundary due to the

'The trees generated by open-loop RRT* and closed-loop RRT* both consider the nominal dy-
namics, and thus are identical. Instead, the algorithms differ in their online control policies, as seen
in Figure 2-2.
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(a) RRT* (b) BU-RRT*, open-loop (OL)

(c) BU-RRT*, closed-loop (CL)

Figure 2-1: Representative trees and minimum-cost paths for RRT* and BU-RRT*,
2D single integrator, simple scenario
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accumulation of a large amount of process noise toward that direction. The system

maintains a particularly large standoff distance relative to obstacle 3 from the left,

due to the combined effect of a large placement uncertainty and process noise in that

direction.

Without feedback, the BU-RRT* planner is not able to identify any feasible paths

reaching the goal on the left of obstacle 3 (Figure 2-1(b)). Thus, the planner ulti-

mately selects a longer path taking it between obstacles 2 and 3. By tightening the

input constraints in order to apply future state feedback in closed-loop BU-RRT*, the

feasible space spanned by the tree is increased (Figure 2-1(c)). As a result, closed-

loop BU-RRT* is able to identify a shorter, robustly feasible path passing obstacle 3

on the left.

Relative to nominal RRT*, BU-RRT* requires at most only 66% more compu-

tation per node in these results (Table 2.1), demonstrating its real-time suitability.

Most of the optimization time (which is longer for closed-loop BU-RRT* due to input

constraint tightening) is front-loaded in the first hundred nodes, as the LP optimiza-

tions (2.28)-(2.33) are performed up to the tree's current timestep horizon. These

optimizations require only a few seconds of additional computation, which can be

reduced if results are pre-computed.

A key metric for the solution paths generated in Figure 2-1 is how often they would

actually be safe if executed for feasible uncertainty realizations. Figure 2-2 shows 100

simulations of the paths chosen by each algorithm in Figure 2-1, subject to various

applied realizations of the uncertainty. As described in Theorem 2.1 (Section 2.2), the

bounded-uncertainty RRT* approach provides robustness subject to any probability

distribution within the uncertainty bounds. The obstacle placement uncertainty is

assumed to be uniformly distributed within its bounds, with each realization shown in

black. In 48 simulations, the process noise is uniformly distributed within S,. (cyan).

In 48 simulations, the process noise randomly samples the vertices of S, at each

timestep (blue). Finally, in 4 simulations, each vertex of S, is realized identically at

all timesteps (magenta). Paths safely reaching the goal terminate in a green diamond;

paths which collide with an obstacle terminate with a red "X."
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Figure 2-1
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When applying the input sequence identified by RRT* in open-loop (Figure 2-

2(a)), only 18 of 100 paths safely reach the goal (Table 2.1); the other 82 paths

collide with the large obstacle. When the closed-loop feedback is applied to RRT*,

the number of safe paths increases only slightly, though the variation between safe

paths decreases (Figure 2-2(b)). However, a majority of paths still do not reach the

goal safely, due to not maintaining a sufficient distance from obstacles. In contrast, all

200 BU-RRT* simulations remain feasible; however, closed-loop BU-RRT* (Figure

2-2(d)) clearly reduces the variation in the simulated paths relative to open-loop

BU-RRT* (Figure 2-2(c)).

Each algorithm is further tested for the simple scenario by analyzing the resulting

final paths, and evolution of the path duration, over many trials. Figure 2-3 shows

a composite image of all 25 final solution paths returned for each algorithm after

5000 nodes. Due to the optimizing nature of these algorithms, there is little variation

in the solution paths across trials. The only qualitative difference is in the case of

open-loop BU-RRT* (Figure 2-3(b)); 15 trials identify the shorter path between the

two rightmost obstacles, while 10 trials ultimately pass around all obstacles to the

right.

Figure 2-4 shows the evolution in the solution path duration, as a function of the

number of nodes in each algorithm tree, across the set of 25 trials. The median value

is indicated as a solid line; the shaded region denotes the 5th-to-95th percentiles.

For each number of nodes, only trials which have identified a path to the goal are

considered.

As expected, given the optimizing nature of all algorithms, path duration tends to

decrease with additional nodes as those nodes are used to rewire the tree and refine

solution paths. RRT* identifies the lowest-cost paths since it does not consider uncer-

tainty within planning, though this leads to a high likelihood of infeasibility (Figure

2-2). Initially, paths identified by closed-loop BU-RRT* (red) tend to have higher

path duration than those found by open-loop BU-RRT* (yellow). However, between

500 and 2500 nodes, all closed-loop BU-RRT* trials identify a robustly feasible path

between the two leftmost obstacles, dramatically reducing the solution path duration.
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(b) BU-RRT* (OL) (c) BU-RRT* (CL)

Figure 2-3: Overlay of final solution paths, 2D single integrator, simple scenario

BU-RRT* (closed-loop
[I~I] BU-RRT* (open-loop)
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Figure 2-4: Evolution of path duration as a function of number of nodes, 2D single

integrator, simple scenario
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(a) Large, cluttered environment (20 obstacles) (b) Environment for system with non-convex lo-

calization error

Figure 2-5: Representative trees and minimum-cost paths for open-loop BU-RRT*,

2D single integrator, more complex scenarios

2.5.2 Cluttered Scenario

Figure 2-5(a) demonstrates open-loop BU-RRT* operating in a more complex environ-

ment, containing 20 obstacles which each have an asymmetric placement uncertainty

randomly chosen between 0.05m and 0.15m in each direction. The system is addi-

tionally subject to an initial state error of 0.1m in each direction, as well as a process

noise one-fourth the magnitude of Section 2.5.1. Thus, the tree and minimum-cost

path found in Figure 2-5(a) demonstrate robustness to asymmetric process noise, lo-

calization error, and randomized asymmetric placement uncertainty for each of the 20

obstacles: all three forms of uncertainty that can be incorporated within BU-RRT*.

The planner is automatically able to determine which pathways between obstacles

are robustly feasible, then identify an asymptotically optimal path. The algorithm

only uses 43.9 ms of computation per node, approximately double the computation

used by the same algorithm in the simple example, despite having 20 obstacles in-

stead of 3 obstacles. This demonstrates the scalability of this RRT-based approach

relative to optimization/MPC-based frameworks, which may struggle in cluttered

environments with many constraints.
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2.5.3 Non-Convex Uncertainty Scenario

Consider a system subject to process noise

1 0 0.005

-1 0 0.005
EW f W

0 1 0.005

0 -1 0.005

and a non-convex localization error. The localization error consists of two small

convex sets spaced im apart vertically, where

1 0 0.01

-1 0 0.01

0 1 0.01

0 -1 0.01

This corresponds to two possible realizations of the initial state, spaced im apart

vertically. Localization error of this nature may occur, for example, due to symmetric

environmental features found during localization.

Unlike previous figures, Figure 2-5(b) decomposes a representative BU-RRT* tree

into linked blue and red versions, corresponding to the upper (blue) and lower (red)

possible realizations of the initial state. Indeed, there are several regions of the state

space which can be reached by only one, or none, of the two realizations safely. The

cost-minimizing path selected has the two initial state realizations (cyan for upper,

magenta for lower) passing on both sides of two obstacles to safely reach the goal.

The planner correctly identifies that the passage near its initial state (bottom-left) is

too small for both realizations to safely pass through.
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2.5.4 Double Integrator Scenario

Consider the more complex 2D double integrator dynamics, representing a hovering

vehicle,

1 0 dt 0 !dt 2  0 'dt2 0

0 1 0 dt 0 'dt 2  0 2 dt2
Xt+1 t + 2 t W 2 t,

0 0 1 0 dt 0 dt 0

0 0 0 1 0 dt 0 dt

where, again, dt = 0.1 s. The system operates in a randomized cluttered 10m x 10m

environment containing 20 obstacles, with initial state x0 = (3.5, 3.5) m and goal

region center xgoal = (-3.5, -3.5) m. The system is also subject to velocity state

constraints IvxI < Vmax, IVf < Vmax, where Vmax 2.5 m/s, as well as the input

ut = (ax, ay) constraints Iax I <, Iay < d, where a = 5.0 M/s 2 .

The system is subject to a triangular process noise wt at each timestep t, bounded

within the set (2.9) with

V53 -1 0

E = -V3 1 , W" 0 ,

0 1 0.025

representing, for example, a large wind disturbance in a northerly direction. Each

of the 20 obstacles has a placement uncertainty randomly chosen between 0.n and

0.2m in each direction; unlike Figure 2-5(a) the uncertainty is now oriented with the

obstacle, rather than the environment.

The sampling strategy augments the position sampling for the single integrator

with velocity sampling. With some small probability (5%), the 2D velocity is sampled

uniformly within the full velocity constraints IVtX Vmax, Ivy Vmax, ensuring that

every feasible state has a non-zero probability of being sampled. Otherwise, the 2D
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velocity is sampled as

V, = Cos , VY = f) sin y

where e is sampled uniformly between 0 and 27, and 6 is sampled uniformly between

Vmi = 1.0 m/s and Vmax = 2.0 m/s. The robust steering law fits a cubic spline to

each coordinate in order to maintain an approximate traversal speed v = 1.0 m/s;

any splines that violate the (possibly tightened) acceleration input or velocity state

bounds are considered infeasible (see Appendix). A path is considered to reach the

goal if the final position is within 0.25m of the goal location, while the nearby node

function uses a maximum radius p = 5 m.

Figure 2-6 demonstrates a representative 2500-node tree (green) and final solution

path (orange) generated by open-loop bounded-uncertainty RRT* for this scenario,

subject to the aforementioned asymmetric process noise and obstacle placement un-

certainty. A robustly feasible path to the goal is quickly found, though the degree of

suboptimality in the solution path is higher due to both the reduced number of nodes

and the increased state dimension.

2.6 Conclusions

This chapter has presented a novel sampling-based algorithm for guaranteed feasi-

bility of linear systems subject to bounded process noise, localization error, and/or

obstacle placement uncertainty. The algorithm can efficiently tighten constraints

to maintain robust feasibility for any given feedback policy while also maintaining

asymptotic optimality. As will be seen in Chapter 5, this algorithm acts as the

bounded-uncertainty counterpart to CC-RRT* and its probabilistic feasibility guar-

antees [80]. The algorithm also extends previous RMPC formulations to consider

additional forms of uncertainty. Simulation results demonstrate the ability of this

planner to identify high-quality safe paths in complex scenarios.
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Figure 2-6: Representative trees and minimum-cost paths for BU-RRT*, 2D double

integrator, cluttered scenario

Appendix: Double Integrator Steering Law

The double integrator steering law propagates the system forward T seconds, using

a piecewise linear acceleration. This steering law can be decoupled for each position

coordinate, so consider the general position coordinate x. The acceleration, or : (ax

for the x-coordinate, ay for the y-coordinate, and a, for the z-coordinate if applicable),

is parameterized as

.(t) = at + b,
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where a and b are scalars. The objective of the steering law is to generate a trajectory

that starts (t = 0) at initial position pi and velocity vi, and ends (t = T) at terminal

position P2 and velocity v2. Integrating the above equation and inserting the initial

conditions yields

1
(t) = -at 2 + bt + vi,

2

x(t) = -at3 + bt2 +VIt + P1.
6 2

By inserting the terminal conditions and rearranging, this can be written as the

system of equations

'T2 T a V2 -- V1

'T 3 'T 2 b P2 - PI - v1T
6 2 -2

Solving yields

a12 T P1 TP2 + VT21 T2
b -'T 2p P,+ -T 2p 2 - IT 3 v1 -T 3v2

12T -12T 6T 2  6T 2  
P2

-6T 2  6T 2  -4T 3 -2T 3  V1

LV2

The input acceleration components a,, ay, and a, are assumed to be bounded in

magnitude by a. Since the acceleration parameterization is piecewise linear, only the

starting and ending acceleration terms need to be checked for each coordinate, for

each trajectory. Thus, if b < d and IaT + b < a, the parameterization is admissible;

if not, the trajectory is inadmissible. The trajectory is also inadmissible if either

velocity component ever exceeds Viax in magnitude.

The only remaining question is how to set T. This implementation seeks to

approximate a traversal speed of f , subject to a minimum propagation time T =
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1 s. The distance between the two states is d = - pf)2 + (p1 - pi)2 (where

the lettered superscripts denote the type of coordinate) in 2 dimensions and d =

(p-- pt) 2 + (p - p )2 + (p2 - p,) 2 in 3 dimensions. The propagation time is then

chosen to be

T = min{ V d , dt ,

where [.J is the floor function; for convenience, the original propagation time (d/D)

is rounded down to the nearest multiple of dt.
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Chapter 3

Probabilistic Robustness via

Chance Constraints

This chapter presents a novel sampling-based planner, CC-RRT, which generates

robust trajectories in real-time subject to process noise, localization/initial state error,

and dynamic and/or uncertain environmental constraints. Probabilistic feasibility is

guaranteed for linear Gaussian systems by using chance constraints to ensure that the

probability of constraint violation does not exceed some user-specified threshold [36].

Additionally, CC-RRT leverages the trajectory-wise constraint checking of RRT [53]

to efficiently bound the risk of constraint violation online [46]. As a result, CC-

RRT can quickly identify trajectories subject to both internal and environmental

uncertainty, with guaranteed minimum bounds on constraint satisfaction probability

at each timestep and along each path.

3.1 Problem Statement

Consider the linear time-invariant (LTI) discrete-time system dynamics (2.1) subject

to process noise

wt ~ A(0, P,,), (3.1)
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where K(a, Pa) represents a Gaussian random variable with mean a and covariance

Pa. The disturbance wt is unknown at current and future timesteps, but has a known

unbounded probability distribution (3.1). The disturbances wt are independent and

identically distributed across all timesteps. The initial/current state xO may be as-

sumed to be either perfectly known or uncertain with known probability distribution

X0 ~ 'V(zo, PX). (3.2)

As defined in Chapter 2, the system is additionally subject to constraints (2.5)-

(2.6) acting on the system state and input. For each obstacle, the shape and orienta-

tion are assumed to be known, while the placement is uncertain. This is represented

as

Xit = X9 + cjt, V j E , (3.3)

cit ~ A(ct, P,3 ), V j E Zl,n. (3.4)

In this model, for the jth obstacle, X) C R'n is a convex polytope of known, fixed

shape, while c.t E R"n represents an uncertain and/or time-varying translation, rep-

resented as a Gaussian uncertainty distribution.

In summary, the system is subject to three separate types of uncertainty: process

noise (3.1), localization/initial state error (3.2), and/or obstacle placement uncer-

tainty (3.4). Each uncertainty, though unknown prior to realization, is assumed to

be accurately modeled as Gaussian uncertainty.

The primary objective of the motion planning problem is to reach some goal region

Xgoai C R"n while ensuring the input constraints (2.6) are satisfied, while the state

constraints (2.5) are probabilistically satisfied. This is represented via two types of

chance constraints,

1P (xt C Xt) > 6S, V t, (3.5)

P (Axt E Xt p, (3.6)
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where P(-) denotes probability and 6,, 6p E [0.5, 1] for the chance constraints1 . The

constraint (3.5) dictates that the state constraints be satisfied at each timestep with a

probability of at least S, while the constraint (3.6) dictates that the state constraints

be satisfied over all timesteps with a probability of at least 6P.

Consider the expected dynamics (2.19); since there is unbounded uncertainty in

the state, it is assumed sufficient for the expected mean 2tt to reach the goal region

Xgoai C R. Denote

tf = inf{t C Zo,,, | 54 E Xgoail} (3.7)

The path planner seeks to approximately solve the optimal control problem

tf -1

(3.A) min #f (Xt,, Xgoal) + > 0 (it, Xgoal, ut) (3.8)
Ut t=o
s.t. xt+1 = Axt + But + Gwt, wt ~ A(0, Pw), x 0 ~AJ(70 , PX0), V t,

xt+1= A5t + But, V t,

ut EU Vt,

IP (t E Xt) ;> 6S, V t,

P (A t E Xt > 6p,

Xt = X\X1t\ -\Xnt , V t,

24t = X9 + ct, cit ~ .(_ct, Pl.,), V j E Zi,1, V t,

where #, of are cost functions to be optimized. These functions may be general-

ized to more complex forms, such as incorporating the state and input constraints or

representing undesirable behaviors in "soft constraint" form, e.g., proximity to con-

straint boundaries, fuel usage, etc. By using 2t rather than xt within the objective

(3.8), the stochastic elements of this optimization manifest themselves only in the

chance constraints (3.5)-(3.6). Section 3.2 details how these chance constraints can

'The bound of 0.5 is chosen such that the conditional mean of state distributions must be nomi-
nally feasible; see Lemma 5.2.
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be implemented as a deterministic optimization.

In practice, the optimization (3.8) is solved repeatedly as the system navigates the

environment in real-time, with xO being set to the current uncertainty distribution

(or state, if perfectly known).

3.2 Chance Constraints

This section reviews the chance constraint formulation that is incorporated and ex-

tended in the CC-RRT framework to provide probabilistic guarantees on safety for

sampled trajectories. This formulation builds upon and extends the framework con-

sidered in Blackmore et al. [36], by considering both time-step-wise and path-wise

chance constraints as well as environmental uncertainty.

Given a sequence of inputs uO,...,ut,_1, the distribution of the state xt, repre-

sented as the random variable Xt, can be shown to be Gaussian [36]:

P(XtJuO,...,ut,_1) ~P(XtluO,...,ut_1)

~ N(Xt,Pt,) V tcEZo,tf . (3.9)

The mean - and covariance P,, can be represented either explicitly as

t- 1

xt = At4O + ZAt--Buk Vt E (3.10)
k=O

t-1

P = AtPxo(AT)t + SAt-k'GwG(AT )t -k-1 vtCe O,tf, (3.11)
k=O

or implicitly as

xt+1 = Aih + But V t E Z,tf_1, (3.12)

P, 1  = APxAT + GPwGT V t e ZOt,_1. (3.13)

Note that (3.12) effectively updates the distribution mean 2t using the disturbance-

free dynamics (2.19), and that (3.13) is independent of the input sequence and thus
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can be computed a priori off-line. The latter property does not necessarily apply if

the dynamics are nonlinear (Section 3.5).

To render the chance constraints (3.5)-(3.6) tractable, it is desirable to decompose

them first by timestep, then by obstacle. First, (3.5)-(3.6) can be equivalently stated

in terms of constraint violation, rather than constraint satisfaction:

IP (xt V X) < I - 6S, V t E 7Z,tf, (3.14)

tf
P \ x X < 1 - JP. (3.15)

(t=O

In particular, the latter chance constraint is now considering the possibility of the

state constraints being violated at at least one timestep. Temporal independence

generally cannot be assumed; in other words,

tf tf
tP \j x E P(xj). (3.16)

(t=0 t=O

As an example of why independence generally does not hold, consider the example

of a system subject to initial state uncertainty but zero process noise. In this situa-

tion, whether the system can safely satisfy the constraints at one timestep is highly

correlated with whether it was able to satisfy the constraints at previous timesteps.

For example, if this system is safely traversing parallel to a linear constraint, it can

be assured of continued safety while it continues to do so, due to the lack of process

noise.

However, Boole's inequality, also known as the union bound [36], can be applied

to upper-bound this probability:

P \ x, tf (3.17)
t=O t=0

It is similarly the case that the probabilities of violating each component of the

state constraints (2.5) are not independent. However, Boole's inequality can again be
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applied, decomposing the chance constraints further:

no

IP(Xt V Xt) < - (Xt V X) +ZP(xt E Xft), Vt C ZOtf. (3.18)
j=1

Consider the jth obstacle at the tth timestep. Because the obstacle is polyhedral,

it can be represented through the conjunction of linear inequalities

aT (Xt - cijt) < 0 V t E otf, (3.19)
i=1

where nr is the number of constraints defining the jth obstacle, and cijt is a point

nominally (i.e., cjt = cjt) on the ith constraint at timestep t. Here aij is not dependent

on t, since the obstacle shape and orientation are fixed. To avoid the jth obstacle at

the tth timestep, the system must satisfy the disjunction of constraints

ni

a7 (xt - cijt) > 0. (3.20)
i=1

To avoid the obstacle, it is sufficient to not satisfy any one of the constraints in

the conjunction (3.19). To collide with the obstacle, all of the constraints in (3.19)

must be satisfied. Thus it is true that

P(collision with jth obstacle at timestep t) = P a (Xt - Cis) < ) (3.21)

< P (a (Xt - Ci 3t) < 0) V i E Zlnj,

where Cijt = cijt+(Cit - cj) is a random variable due to (3.3)-(3.4). As (3.21) imposes

nr upper bounds on the probability of collision for a given obstacle and timestep, only

the tightest of those bounds need be considered:

P(collision with jth obstacle at t) < min P (a (Xt - Ci 3 t) < 0). (3.22)

Suppose it is desired that the probability of collision with the jth obstacle at
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timestep t be less than or equal to A. To ensure this is the case, (3.22) implies that it

is only necessary to show that one of the constraints for the obstacle is satisfied with

probability less than or equal to A:

(3.23)P (a (Xt - Cijt) < 0) < A.

Consider the change of variable

V = a. (Xt - (3.24)

such that (3.23) can be written as

(3.25)VP(V < 0) < A;
i=1

this random variable is also Gaussian.

follows:

V = E[V] =a 2,

T- T= a xt -ac C),

Tuj - j)

The mean and covariance are computed as

- E[a (cit + (Ct - Fjt))]

(3.26)

PV = rE I/E(V - fl)(V - - )T]I

= /E[(ab Xt - aT Cit - a jt + aTc t)(a7 Xt

= E[(aj (Xt - t) - agj(Cijt - cijt))(aT,(Xt

= /IE [(aT Xt - 2t) - a7(Cjt - jt))(aT. Xt -

= a T3(Px + Pc,) aj.

C - a + acijt)T]

- iSt) - a79(Ci2t - cit))T]

- a7(Cy -a t ))T 

(3.27)

As seen in (3.27), the combined uncertainty of this planning problem for obstacle j

at timestep t is conveniently expressed as a sum of covariances.
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Each probabilistic constraint in the disjunction (3.25) can be shown to be equiv-

alent to a deterministic constraint [36]

P(V < 0) < A 4 - > vK2Perf-' (1 - 2A), (3.28)

where erf(.) denotes the standard error function.

Using this, the constraints (3.20) are probabilistically satisfied for the true state

xt if the conditional mean Ft satisfies the modified constraints

ni

a.(t - cijt) > bi't = 2Pverf 1 (1 - 2A) . (3.29)

The term bijt represents the amount of deterministic constraint tightening necessary

to ensure probabilistic constraint satisfaction.

Next, consider the polyhedral state constraints X, represented as the conjunction

of linear inequalities

a T(Xt -cio) <0 V t E ZOt, (3.30)

where nE is the number of environmental constraints defining X, and cio is a point

on the ith constraint. Because X is deterministic and time-invariant, cio is also

deterministic and time-invariant. Violation of the constraints X at the tth timestep

is equivalent to the disjunction of constraints

nE

V aiO(xt - cio) > 0. (3.31)
i=1

Boole's inequality can be applied one more time, such that

S Tf (Xt - Cio) > 0 < EZ P (a T(Xt - cio) > 0) (3.32)

Suppose it is desired that the probability of violating the ith constraint of X at the

tth timestep be less than or equal to A0 . Proceeding in a similar manner as above, it

84



is straightforward to show that this is the case by satisfying the modified constraint

o (t - co) < -bio = -v/2Poerf 1 (1 - 2AO), (3.33)

P, = aTOP,,ajo, (3.34)

where bio represents the necessary tightening of the environmental constraints to

achieve probabilistic constraint satisfaction.

3.2.1 Offline Risk Allocation

The tightening terms bijt in (3.29) and bio in (3.33) are each a function of two quanti-

ties: the imposed risk allocation (A and AO, respectively) and the state and obstacle

covariances (P,, and P,, respectively). Since the covariances can be computed off-

line, the tightened constraints (3.29) and (3.33) can be computed off-line if specific

values of A and AO are pre-allocated. In so doing, the complexity of the nominal

formulation need not increase when incorporating chance constraints. In a similar

manner as Ref. [36], Probabilistic feasibility of any state or state sequence can be

checked via these tightened, deterministic constraints. The consideration of risk in

this framework is analogous to Blackmore et al., but now using sampling-based plan-

ning (Section 3.3).

In order to so do, the risk of constraint violation must be allocated a priori to each

timestep, obstacle, and constraint, in accordance with each usage of Boole's inequality

above. For the jth obstacle at timestep t, denote the risk allocation A of (3.29) as

Ajt. Similarly, for the ith constraint of the environmental bounds X at timestep t,

denote the risk allocation AO of (3.33) as 2 to. For a given A and AO, at timestep

t the state distribution conditional mean se must satisfy (3.29) for all obstacles and

(3.33) for all constraints of X. The stochastic motion planning problem (3.A) of (3.8)

then takes the form
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(3.B) min
Ut

S.t.

tf -1

Of ((Xt,, Xgoai) + 3(it, Xgoal, ut) (3.35)
t=o

xt+= At + But, V t,

P, 1 -APx, A + GPwGT, V t,

ut C UI V t,
ni

ai (jt - cijt) ;> V 2Perf- (1 - 2Kjt) V j EZ,nC , IV t, (3.36)
i=1

aijO(Xt -cio) < -v2Perf-' (I - 2A2jto) V i C Z1,nE,, V t. (3.37)

If the risk allocations are chosen to fall within the desired thresholds 6, and 6p, then

solutions to problem (3.B) will also be feasible for problem (3.A).

Theorem 3.1 (Robust Feasibility of CC-RRT Offline Risk Allocation). Con-

sider problem (3.B) with 3Kj > 0 V j E Z1,n V t and 2ito > 0 V i C Z1,fE V t chosen

such that

nE no

ZAKto + Z2jt
i=1 j=1

, ( n )

2ito + Est
t=0 i=1 j=1

= 1-s, V t,

p-

If the path of state distributions (20, P),(21, P 1)I ... ,(t ,, Pxf) specified by the in-

put sequence u0,u 1, ... , u, 1 is feasible for problem (3.B), then it is also feasible for

problem (3.A).

Proof. Applying (3.22)-(3.23) (with A = Ajt) to (3.18) yields

no

P (xt V Xt) < 1P (xt V X) + EP (xt E xjt)
j=

1

no

< P (t V X) + 72.jt
J=

1

(3.40)

(3.41)
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Additionally applying (3.32)-(3.33) (with AO = A j 0 ) to (3.41) yields

no

P (xt V At) A2 to + E (3.42)
j= 1

(3.43)

satisfying (3.5) of problem (3.A).

From (3.17) and the above discussion,

t5 tf

V \xt V Xt 1: P (xt V Xt) (3.44)
t=0 t=O

< n 2ito n 2j t (3.45)
j=1

- 1 - S1, (3.46)

satisfying (3.6) of problem (3.A). All other constraints are common between the two

formulations, implying feasibility of problem (3.A). M

The most straightforward way to allocate risk is to simply allocate equally to each

component of the state constraints (2.5) [36], i.e., each obstacle and the environmental

constraints. Doing so for the time-step-wise chance constraint (3.14) yields

_(S) 1 -6
V j, t, (3.47)

6, V i, t, (3.48)Aio (n, + 1)nE II

where the (.)(s) superscript denotes time-step-wise allocations. Using an equal allo-

cation for the path-wise chance constraint (3.15) yields

)1- Vj,t (3.49)
(tf + 1)(n, + 1) '

- V it (.
'to (tf + 1)(n, + 1)nE (3.50)

where the (.)(P) superscript denotes path-wise allocations. If both types of constraints
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are imposed, the more restrictive values are used, i.e., K = min{A , N3 } V j, t

and Aito = min{A, Ai~t} V i, t. However, other types of risk allocations may be

considered.

Through this offline risk allocation approach, the nominal complexity of the orig-

inal problem is maintained, simply with modified/tightened constraint boundaries.

However, such an approach is often quite conservative in practice, as it requires a

priori allocation of risk to problem constraints. In most cases, it will not be known in

advance which constraints are likely to be active at each timestep of a potentially long

path through the environment. If a constraint is allocated more risk than it typically

incurs online, the margin goes unused. If a constraint is allocated less risk than it

typically incurs online, solutions paths will have to maintain a larger standoff from

these constraints than desired in order to stay within the bounds. Both outcomes

lead to more conservative planning. Additionally, this approach must bound the num-

ber of path timesteps ahead of time in order to ensure the probabilistic guarantees

are met, limiting the available planning horizon. Approaches such as Iterative Risk

Allocation (IRA) [41] address this issue by adjusting risk allocations based on their

proclivity to become active. However, this approach iterates on the risk allocation

through successive optimizations, requiring additional computation.

3.2.2 Online Risk Evaluation

Alternately, it is possible to identify a more precise bound on the probability of

collision, by leveraging the relationship in (3.28) to compute the exact probability

of satisfying each individual constraint for a given distribution .A(2, Px). This novel

operation is only possible via trajectory-wise constraint checking, as in a sampling-

based algorithm such as RRT; it cannot be performed within a single optimization.

Like IRA, risk is dynamically assigned to each constraint set; however, whereas IRA

requires a series of optimizations to do so, a sampling-based algorithm such as CC-

RRT (Section 3.3) can compute suitable risk bounds immediately for each trajectory

that is simulated. Though the resulting approach is still conservative due to the use
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of Boole's inequality (Section 3.2), it provides much tighter bounds in practice that

anything achievable a priori via offline risk evaluation.

Through repeated use of this operation, a bound can be computed for each

timestep of a trajectory, as well as the trajectory itself, on the probability of collision.

This bound can be of great use for heuristics within the RRT algorithm (Section

5.2.1, in addition to checking probabilistic feasibility. There is some tradeoff in the

computational effort needed to compute this bound at each timestep, but the increase

is sufficiently small to maintain the approach's suitability for on-line implementation.

First, a lemma establishes evaluation of a scalar chance constraint, of the form

used in (3.28).

Lemma 2.2. If V - A'(9, P,) is a Gaussian random variable, then

P(V < 0)= - 21 - erf . (3.51)v

Proof. Again consider (3.28), rewritten here as

P(V < 0) 5 y a V > f(y), (3.52)

where f(-y) = V-Perf 1 (1 - 2 -). The inverse error function increases monotonically

and continuously from -oc to +oo over its domain (-1, +1). Since Pv > 0, this

implies that f(y) decreases monotonically and continuously from +oo to -oc over

its domain (0, 1). As a result, there must exist some value -' such that V = f(-').
Exploiting the equivalence in (3.52), for some e > 0 (where ±y el < 1) it is the case

that

As< P(V < 0) <)t + b(3.53)

As c -+- 0, (3.52) becomes the equivalence

P (V < 0) = -Y - V f (0) (3.54)
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Solving for ' yields the desired relationship. U

Consider the ith constraint of the jth obstacle at timestep t, as specified in (3.21),

with associated change of variable (3.24). Let Aijt(-, P2) denote the probability that

this constraint is satisfied for a Gaussian distribution with mean x and covariance Px;

from (3.51),

P (a j(Xt - Cijt) < 0)

( ef aT (5t - cijt)
= I - erf .

2 2a( pxt + pc., t aj

Similarly, let Ajot denote the probability that the ith constraint of X is violated at

timestep t for a Gaussian distribution with mean - and covariance Px; then

= B(a7o(Xt -cio) > 0)

1 -( f ai(c o - 7t)

2 Vr T2a7o(Px,) a i o

As shown in the proof of robust feasibility below, these components can then be

inserted into each usage of Boole's inequality (3.17), (3.18), (3.32) to directly bound

the probabilities of constraint violation. Define the terms

At(X-t, Px) = min Aijt(xt, P,),
i=1,...,nj

t(= Z Aiot(xt,Px,),

no

At (xt, Px,) = P(t, Px2 ) + SAt (t, P 2 ),
j=1

tf

A (X, P,) = At(2t, P,).
t=O

(3.57)

(3.58)

(3.59)

(3.60)
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Finally, the original problem (3.A) is posed using these risk bounds:

tf-1

(3.C) min Of (Xtf , Xgoai) + S $(xt, Xgoal, ut) (3.61)
t=0

s.t. ±t+1= Ait + But, V t,

Pl, = APA T + GPWGT, V t,

ut E U V t, (3.62)

A(t, P,) 1 - J, V t, (3.63)

A(St, P,,) 1 - p. (3.64)

where At and A are as defined in (3.59)-(3.60). It is now shown that any feasible

path for this problem is also feasible for problem (3.A).

Theorem 3.3 (Robust Feasibility of CC-RRT Online Risk Evaluation). If

the path of state distributions (X0 ,P,0), (X1, Px1),..., (hi,, Ptf) specified by the input

sequence U0 , U1 ,. -, 1-1 is feasible for problem (3. C), then it is also feasible for

problem (3.A).

Proof. By applying (3.17)-(3.18) and (3.32), (3.17) can be represented as

tn t no

1P Vx x,% < p ?(xt 0'Y) + E fD(xt G xt)

t=O t=0 j=1

tf noj E EE (ao(Xt - cio) > 0)
t=O i=1

no

+ E. min P (a (Xt Cijt) < 0).
j=1 -
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By using (3.55)-(3.60), then

tf tf no n.

S \|xt t L, <;E( [ Aiot(xtPs,)+z in m i tPll)
t=i t= .i=1 j=1

= A ot t), P E + Ajt (2t, PX,
t=0 .j=1

tf

- ZAt (t,, P,) (3.65)
t=0

= (2t, Px,), (3.66)

From (3.65), to satisfy the time-step-wise chance constraint (3.14), it is thus sufficient

to show that (3.63) is satisfied. To satisfy the path-wise chance constraint (3.15), it

is sufficient to show that (3.64) is satisfied. U

While online risk evaluation is much less conservative than offline risk allocation,

there is still conservatism introduced by the use of Boole's inequality and the relation-

ship (3.22) [36]. In particular, the latter relationship ultimately bounds risk based on

overlap between the uncertainty distribution and the most active obstacle constraint.

This overlap is computed assuming that constraint is an infinite hyperplane, rather

than part of a finite, bounded object. As a result, there may be feasible paths to

problem (3.A) that cannot be identified through the deterministic bounds used in

(3.B) or (3.C). However, in the case of online risk evaluation (3.61), the bounds are

still effective in practice in finding robustly feasible paths without too much conser-

vatism. It is also possible to heuristically reduce conservatism by, for example, only

including obstacles near the distribution mean. Though the guarantee of probabilistic

feasibility is lost, such heuristic methods still effectively remove risk, and could not

be easily formulated in an optimization-based framework.

Finally, suppose that the input ut applying to the dynamics (2.1) is generated via

the closed-loop controller

ut = rt - Lxt, (3.67)
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where rt E Rf- is some reference state and L is a gain matrix of suitable dimension.

Under this modification, the system dynamics (2.1) can then be written as

xt+1 = (A - BL)xt + Brt + Gwt. (3.68)

Thus, the closed-loop dynamics can be treated identically to the open-loop dynamics,

by replacing A with A - BL and treating rt as the input sequence rather than ut. In

particular, the conditional mean and covariance of the state distribution (3.12)-(3.13)

are written as

2t+1 = (A - BL)2t + Brt V t E ZO,tf-1, (3.69)

P+ = (A-BL)Pt(A-BL)T + GPwGT V t e WOtf1. (3.70)

3.3 CC-RRT

This section introduces the chance constrained RRT (CC-RRT) algorithm, an ex-

tension of the traditional RRT algorithm which allows for probabilistic constraints.

Whereas the traditional RRT algorithm grows a tree of states which are known to

be feasible, the chance constrained RRT algorithm grows a tree of state distributions

which are known to satisfy an upper bound on probability of collision.

Figure 3-1 provides a diagram of the CC-RRT algorithm. Given an initial state

distribution at the tree root (blue), the algorithm grows a tree of state distributions

in order to find a probabilistically feasible path to the goal (yellow star). The un-

certainty in the state at each node is represented as an uncertainty ellipse. Each

state distribution is checked probabilistically against the constraints (gray). If the

probability of collision is too high, the node is discarded (red); otherwise the node is

kept (green) and may be used to grow future trajectories

Two versions of the CC-RRT algorithm are presented. In offline CC-RRT, all con-

straints are tightened offline, such that the nominal planning problem is modified to

ensure probabilistic feasibility without additional online computation (Section 3.2.1),
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Goal

Figure 3-1: Chance-constrained RRT

Online CC-RRT, on the other hand, leverages the trajectory-wise constraint checking

of the RRT algorithm to explicitly compute a bound on the probability of collision at

each node (Section 3.2.2). While this latter approach does require online computa-

tion of risk bounds, results show that these computations are highly efficient, and in

return significantly reduce the conservatism in trajectory simulation and execution.

To grow a tree of dynamically feasible trajectories, it is necessary for the RRT

algorithm, and thus CC-RRT algorithm, to have an accurate model of the vehicle

dynamics (2.1) for simulation. For each simulated trajectory, the CC-RRT algorithm

propagates the predicted state distribution, which under the assumption of Gaussian

uncertainty is itself Gaussian, via (3.9). Thus, at each timestep of each simulated

trajectory, it is only necessary to propagate the state conditional mean (3.12) and

covariance (3.13), rewritten here in model form as

Xt+k+1\t Ait+klt + But+klt, (3.71)

Pt+k+llt = APt+kItAT + GPwGT, (372)

where t is the current system timestep and (-)t+kIt denotes the predicted value of the

variable at timestep t + k. When using the (-)t+kIt notation, the subscript (.)x in the
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covariance P, is often suppressed in order to simplify presentation.

This algorithm consists of two primary components for real-time planning. The

first component, the tree expansion step, is used to incrementally grow the tree by

simulating new trajectories; it is generally run continuously, using any available com-

putational resources. The second component, the execution loop, periodically selects

the best available path for execution, in addition to updating the current state of

the vehicle, environment, and tree. For environments which are dynamic and un-

certain, the RRT tree must keep growing during the execution cycle to account for

changes in the situational awareness [107]. Given the extensive computations involved

to construct the tree, as much of the tree should be retained as possible, especially

for real-time applications. As such, the resulting algorithm runs both components

simultaneously, executing some portion of the tree while continuing to grow it.

The subsequent sections detail the algorithms for each of these components, in-

cluding versions of the tree expansion step for offline CC-RRT (Section 3.3.1) and

online CC-RRT (Section 3.3.2), as well as the execution loop (Section 3.3.3).

3.3.1 Offline CC-RRT Tree Expansion Step

The tree expansion step used for offline CC-RRT is given in Algorithm 3. Each time

Algorithm 3 is called, first a sample state is taken from the environment (line 2),

and the nodes nearest to this sample, in terms of some heuristic(s), are identified as

candidates for tree expansion (line 3). An attempt is made to form a connection from

the nearest node to the sample by generating a probabilistically feasible trajectory

between them (lines 5-12). This trajectory is incrementally simulated by selecting

some feasible input (line 8), then applying (3.71) to yield the state distribution mean

Xt+k+llt at the next timestep (line 9). This input may be selected at the user's

discretion, such as through random sampling or a closed-loop controller, but should

guide the state distribution toward the sample.

After each forward simulation, probabilistic feasibility of the new state distri-

bution is checked by determining whether it+klt satisfies the tightened state con-

straints (3.36)-(3.37) (line 7), for appropriate choices of Ajt and Aito (i.e., satisfying
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Algorithm 3 Offline CC-RRT, Tree Expansion

1: Inputs: tree T, current timestep t
2: Take a sample Xsamp from the environment
3: Identify the M nearest nodes using heuristics
4: for m < M nearest nodes, in the sorted order do
5: Nnear +- current node
6: t+kIt <- final state distribution mean of Near
7: while t+klt satisfies (3.36)-(3.37) and 2t+klt has not reached Xsamp do
8: Select input ut+klt E U
9: Simulate 2t+k+llt using (3.71)

10: Create intermediate nodes as appropriate
11: k <- k + 1
12: end while
13: for each feasible node N do
14: Update cost estimates for N
15: Add N to T
16: Try connecting N to Xgoal (lines 5-12)
17: if connection to Xgoal feasible then
18: Update upper-bound cost-to-go of N and ancestors
19: end if
20: end for
21: end for

(3.38)-(3.39) - recall that the planning horizon length must be bounded accordingly).

Implicit in (3.36)-(3.37) is the modeling of Pt+klt and P,,,; however, as both the co-

variances and the tightened constraints can be computed offline, they need not be

referenced directly within the algorithm. Trajectory simulation continues until either

the state is no longer probabilistically feasible, or the distribution mean has reached

the sample (line 7). In this manner, this algorithm behaves similarly to nominal RRT,

with the distribution mean Xt+klt replacing the true (disturbance- free) state Xt+kIt,

and the state constraints Xt replaced with the tightened constraints (3.36)-(3.37) to

enforce probabilistic feasibility bounds.

Even if the trajectory does not safely reach the sample, it is useful and efficient

to keep probabilistically feasible portions of this trajectory for future expansion. For

this reason, intermediate nodes may be occasionally inserted during the trajectory

generation process (line 10). Each node contains a trajectory segment, simulated over

possibly many timesteps; future connections from this node must begin at the end of

this trajectory (line 6). As a result, one or more probabilistically feasible nodes may
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be generated from trajectory simulation, each of which is added to the tree (line 13).

A number of heuristics are also employed to facilitate tree growth, identify proba-

bilistically feasible trajectories to the goal, and identify lower-cost paths (in terms of

(3.35)) once at least one probabilistically feasible path has been found. Samples are

identified (line 2) by probabilistically choosing between a variety of global and local

sampling strategies, some of which may be used to efficiently generate complex ma-

neuvers [105]. The nearest node selection scheme (lines 3-4) strategically alternates

between several distance metrics for sorting the nodes, including an exploration met-

ric based on cost-to-go and a path optimization metric based on estimated total path

length [107]. Each time a sample is generated, m > 1 attempts are made to connect a

node to this sample before being discarded [105]. An attempt is also made to connect

newly-added nodes directly to Xgoa (line 16). Finally, both lower and upper bounds

on the cost-to-go are maintained at each node. A branch-and-bound cost scheme is

used (line 18) to prune portions of the tree whose lower-bound cost-to-go is larger

than the upper-bound cost-to-go of an ancestor, since those portions have no chance

of achieving a lower-cost path [107].

3.3.2 Online CC-RRT Tree Expansion Step

The tree expansion step used for online CC-RRT is given in Algorithm 4. The primary

distinction between this algorithm and offline CC-RRT (Algorithm 3) is the manner

in which probabilistic feasibility is checked. Given the state distribution mean Xt+klt

and covariance Pt+kjt (which can be computed offline, or calculated directly as in line

10) at simulation timestep t + k, the time-step-wise risk bound At(St+kIt, Pt+klt) and

path-wise risk bound A(7 t+klt, Pt+klt) are computed online using (3.59) and (3.60),

respectively (lines 7 and 13). Trajectory simulation continues until either quantity

violates (3.64) (for At) or (3.63) (for A), or the distribution mean has reached the

sample (line 8).

97



Algorithm 4 Online CC-RRT, Tree Expansion

1: Inputs: tree T, current timestep t
2: Take a sample xsamp from the environment
3: Identify the M nearest nodes using heuristics
4: for m < M nearest nodes, in the sorted order do
5: Nnear +- current node
6: (t+klt, Pt+klt) +- final state distribution of Nnear
7: Compute At(2t+kIt, Pt+klt) using (3.59) and A(St+kIt, Pt+klt) using (3.60)
8: while A(2t+klt, t+klt) < I - Jp and At(2t+klt, Pt+klt) < 1 - 6, and 2t+klt has not

reached Xsamp do
9: Select input Ut+klt C U

10: Simulate (Pt+k+11t, Pt+k+llt) using (3.71)-(3.72)
11: Create intermediate nodes as appropriate
12: k +- k + 1
13: Compute At( t+klt, Pt+kIt) using (3.59) and A(2t+kIt, Pt+kIt) using (3.60)
14: end while
15: for each feasible node N do
16: Update cost estimates for N
17: Add N to T
18: Try connecting N to Xgoal (lines 5-14)
19: if connection to Xgoal feasible then
20: Update upper-bound cost-to-go of N and ancestors
21: end if
22: end for
23: end for

3.3.3 Execution Loop

The execution loop for both offline and online CC-RRT, which is performed at time

intervals of At, is given by Algorithm 5. During each cycle, the objective of this

algorithm is to identify the lowest-cost path in the tree that is still probabilistically

feasible, and use the remaining time to grow the tree.

If new observations are available for the vehicle's current state, these may be

applied to update and repropagate the tree first (line 3). In particular, if full state

information is available for the root at state xt, then that node can be considered

to be perfectly known, i.e., xt - Ar(xt, 0), when propagating to child nodes. It is

desirable to perform this update if it is available, as it will reduce the uncertainty at

future timesteps.

For the duration of the timestep, the tree is repeatedly expanded using Algorithm

3 or Algorithm 4, depending on the type of CC-RRT being used (lines 4-6). Following
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Algorithm 5 CC-RRT, Execution Loop

1: Initialize tree T with node (so, P 0 ) for t = 0
2: while 2t V Xgoai do

3: Use observations, if any, to repropagate state distributions

4: while time remaining for this timestep do

5: Expand the tree by adding nodes (Algorithm 3 or Algorithm 4)

6: end while
7: Identify path {Nroot,..., Ntarget} that minimizes (3.35)/(3.61)

8: if no paths exist then

9: Apply safety action and goto line 17

10: end if

11: Repropagate path state distributions using (3.71)-(3.72)

12: if repropagated best path is probabilistically feasible then

13: Apply best path

14: else
15: Remove infeasible portion of best path and goto line 7

16: end if

17: t +- t + At
18: end while

this tree growth, the objective (3.35) (for offline CC-RRT) or (3.61) (for online CC-

RRT) is used to identify the lowest-cost path in the tree (line 7). Once a path is

chosen, a "lazy check" [105] is performed in which the path is repropagated from the

current state distribution using the same model dynamics (3.71)-(3.72) (line 11) and

tested for probabilistic feasibility. If this path is still probabilistically feasible, it is

chosen as the current path to execute (lines 12-13). Otherwise, the portion of the

path that is no longer probabilistically feasible is removed, and the process is repeated

(lines 14-15) until either a probabilistically feasible path is found or the entire tree

is pruned. If the latter case occurs, the system has no path to execute, and some

"safety" motion primitive (e.g., apply maximum braking to come to a stop) is applied

to attempt to keep the vehicle in a safe state (line 9).

3.4 Analysis

This section establishes that, under appropriate assumptions, both versions of the

CC-RRT algorithm maintain the probabilistic completeness of the RRT algorithm

for problem (3.B)/(3.C). The proof below is provided for online CC-RRT, as it is
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the algorithm that will be developed further in subsequent work (Chapters 4-5); the

derivation for offline CC-RRT follows very closely.

Assumption 3.4. All of the following conditions are satisfied:

1. The set U consists of a finite number of inputs. Whenever inputs are simulated,

they are chosen randomly from the set U.

2. All tree vertices are separated by a distance of at least e > 0.

3. There exists a sequence of feasible inputs uO, u1, ... , ut,1 such that the con-

straints of problem (2.C) are satisfied by the state distribution sequence

(XO, P 1O), (i, PX),.. (Xt,, PXf ) and itf E Xgoai. All states in this sequence lie

in the same bounded, open, and connected sx-dimensional subset of Rs-.

Assumption 3.4.3 ensures that at least one robustly feasible solution exists. As-

sumptions 3.4.1-3.4.2 may not necessarily apply directly to many practical appli-

cations; however, as long as the input selection used in the steering law effectively

expands the frontier of the tree, feasible solutions are likely to be identified in practice.

Theorem 3.5 (Probabilistic Completeness of CC-RRT). Under Assumption

3.4, online CC-RRT is probabilistically complete for problem (3.C).

Proof. The probabilistic completeness of CC-RRT can be established using the same

approach as the proof of probabilistic completeness for RRT [54]. Through the use of

the discrete LTI dynamics, all timestep durations are constant, and all motions are

locally constrained. Coupled with Assumption 3.4, all assumptions used to establish

probabilistic completeness for RRT are also satisfied by CC-RRT.

In particular, the argument proceeds by induction. Suppose that the CC-RRT

tree currently contains the state distribution (2k, P,) generated by applying the

input sequence U1, -u,... , u_1 from Assumption 3.4.3, for k < tf. By Assumption

3.4.2, all tree vertices have a finite Voronoi region (whose volume is a function of

e), including - . As such, because all states have a non-zero likelihood of being

sampled, -k has a non-zero likelihood of being selected as a nearest node for expansion.

100



From Assumption 3.4.1, input Uk has a non-zero likelihood of being applied in order

to generate state distribution (-+1, P,,,). As the number of samples approaches

infinity, the likelihood of (-k+1, Pxk+l) thus being added as a descendant node of

(Xk, Px2) approaches 1. Since (20, PxO) is initialized as the tree root, the proof by

induction is complete. U

Thought CC-RRT is probabilistically complete, it is not asymptotically optimal.

In fact, it is straightforward to show that, like RRT, CC-RRT will not converge

on minimum-cost solutions even if they are feasible [56]. This is addressed by the

asymptotically optimal version of this algorithm, CC-RRT* (Section 5).

3.5 Nonlinear Dynamics

If the system dynamics are not linear, as in (2.1), then the probabilistic constraint

satisfaction guarantees of Theorem 3.1 (Section 3.2.1) and Theorem 3.3 (Section 3.2.2)

are no longer applicable. However, through appropriate linearization of nonlinear

dynamics, the resulting bounds can still provide useful estimates on timestep and

path safety, especially for small timesteps. This section presents how to operate CC-

RRT using nonlinear dynamics, through linearization about a sequence of states and

inputs that satisfy the disturbance-free nonlinear dynamics. This sequence of states

become the conditional means of the trajectories simulated within the CC-RRT, such

that the state distributions simulated by the algorithm remain dynamically feasible.

The covariances are computed based on the linearized dynamics at each state along

a trajectory. This results in a predicted state distribution which is still Gaussian.

Because of the dependency on the states and inputs, the covariances can no longer

be computed offline, as in CC-RRT for linear dynamics. Rather, the covariances are

now specific to each tree branch, representing the uncertainty accrued by sending the

nonlinear dynamics along that trajectory.

Consider the nonlinear time-invariant (LTI) discrete-time system dynamics

Xt+1 = f(Xt, ut, w), (3.73)
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where xt, ut, and wt are defined as in Section 3.1, and subject to the same constraints.

In particular, the system is still subject to Gaussian process noise (3.1) and initial

state error (3.2). The disturbance-free dynamics are defined as those in which the

process noise is zero, i.e., wt = 0:

2t+1 = (t, Ut, 0). (3.74)

Consider some state sequence {O, 1,.. .} which is feasible for (3.74) under the

corresponding input sequence {u0 , U1,. . .}. The objective is to construct a set of

linear dynamics at each timestep which linearizes about this nominal plan, such that

suitable covariances can be approximated. Define the error quantity Yt between the

"true state" xt and the nominal plan state Xt,

Xt = Xt - 22, (3.75)

where Yo = 0. (Because the inputs are perfectly known, no error term is needed for

them in this open-loop case.)

The linearized dynamics then take the form

Xt+1 = Atit + Gtwt, (3.76)

Of
At a (hut, 0), (3.77)

Oxt
Of

Gt a t -(t3 IUt, 0); (3.78)

unlike (2.1) and (3.73), these dynamics are time-varying. The system (3.76) is subject

to the same zero-mean process noise (3.1) as (3.73). However, in view of (3.75), the

initial state error is zero-mean:

BO ~ o=(0, P). (3.79)

Because YO = 0 and all uncertainty is zero-mean, it is clear that the state error
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remains zero-mean at all timesteps, i. e.,

it ~ AN(0, Px,).- (3.80)

The evolution of the covariance can be computed in a similar manner as in (3.13),

yielding

P,+ = AtPxtAT + GtPwG[. (3.81)

Thus, to apply CC-RRT with nonlinear dynamics, the model simulation dynamics

(3.71)-(3.72) should be replaced with the linearized equivalent form,

Xt+k+llt = f(Xt+kt, Ut+klt, 0), (3.82)

Pt+k+llt = At+kltPt+kItA ikIt +Gt~kItPwGT ~kIt, (3.83)

where the (-)t+klt notation is used as in (3.71)-(3.72). Because the conditional means

still use the full nonlinear dynamics (3.73), paths generated in CC-RRT for nonlin-

ear dynamics remain dynamically feasible. However, due to this linearization, the

theoretical guarantees presented in Section 3.2 for the case of linear dynamics under

Gaussian noise are no longer valid. Nonetheless, it is straightforward to show that the

quality of the risk approximation improves as the timestep duration is decreased. The

quality of the risk approximation also improves as the accuracy of the linearization of

the nonlinear dynamics increases. Each of these results in a linearization which more

accurately approximates the true, nonlinear dynamics.

A common application of such linearized models is to stabilize nonlinear dynamics

around a nominal path, through the use of a feedback law on the error term it. In

this framework, given a nominal input 8, and a state error it, the actual input applied

is ut = --t + t, where

ii = -Ltit (3.84)
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and Lt is a feedback gain matrix of suitable dimension. In this case, an alternate

version of the linearization (3.76) can be constructed which linearizes about the input

in addition to the state and disturbance, in order to incorporate feedback.

In this case, consider some state sequence {o, X1,. .. which is feasible for (3.74)

under the corresponding input sequence {o, ,. .}. Since ut = ut - it, the linearized

dynamics in this case take the form

=t+ = Atit + Bjit + Gtwt, (3.85)

Bt = ut (tI t, 0), (3.86)

where At and Gt are defined in (3.77) and (3.78), respectively, with ut = Ut. Inserting

the feedback law (3.84) into (3.85) yields

Ft+1 = Atit + Bt(-Lti t) + Gtwt

= (At - BtLt)i3t + Gwt. (3.87)

Thus, when applying CC-RRT to these feedback-linearized dynamics, the model sim-

ulation dynamics (3.71)-(3.72) should be replaced with

Xt+k+llt = f(Xt+kItUt+kt, 0), (3.88)

Pt+k+llt = (At+klt - Bt+k tLt+kIt)Pt+kit(At+klt - Bt+kltLt+kit ) T  (3.89)

+ Gt+kltPwG T
t+klt-

In both cases, as new state information becomes available, the linearizations and

resulting covariances should be updated (Algorithm 5) to propagate this information

through the tree.
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3.6 Output-model CC-RRT

Throughout this thesis, the focus is on developing motion planning approaches that

can be robust to many qualitatively distinct forms of uncertainty, whether internal

or external to the system, or based on current sensing or future predictability [3].

Much of the emphasis in this work is on process noise and environmental uncertainty

sources, given the large body of literature already focusing (sometimes exclusively) on

the internal sensing question. Regardless, the CC-RRT algorithm can be modified to

handle the case where full state information is not available, and is instead provided

through an output model consisting of noisy sensors. This section presents how to

modify the CC-RRT framework to handle output filtering, utilizing a similar approach

to that presented in Patil et al. [90].

Assume the dynamics remain in the linear form (2.1), but the full state xt is not

available. Instead, there is additional an LTI output model with sensing noise of the

form

yt = Cxt + Hvt, (3.90)

vt A(0, P,), (3.91)

where Yt - R'Y is the output vector and C, H are matrices of suitable dimension.

The disturbance vt is unknown at current and future timesteps, but belongs to the

Gaussian zero-mean uncertainty (3.91).

A Kalman filter [108] can be constructed to maintain an optimal state estimate

with mean T and covariance Q. Suppose the observation at timestep t + 1 is yt+.

The Kalman update from timestep t (with mean Tt and covariance Qt) to timestep
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t + 1 (with mean -It+ and covariance Qt+i) then takes the form

Tt+1 = -t+, + Kt+1 (yt+1 - +) (3.92)

Qt+1 = (I - Kt+1C)Q+, (3.93)

T+ = A -t + But, (3.94)

Q+1 AQtA +GPwGT, (3.95)

where Kt is the optimal Kalman gain

K = Q+CT(CQ+CT + HPH T)- (3.96)

= (AQtiAT + GPwGT)CT [C(AQtiAT + GPwG )CT + HPVH T .

The propagation steps (3.94)-(3.95) and update steps (3.92)-(3.93) can be combined

into the single steps

Tt+1 = (I - Kt+1C)(A-xt + But) + Kt+1 yt+1 , (3.97)

Qt+1 = (I - Kt+1C)(AQtAT + GP 0GT). (3.98)

This filter can be incorporated into the predicted planning of CC-RRT by simul-

taneously maintaining dynamics for both the true state xt and state estimate -t along

each trajectory. For this predictive planning, apply the true output model (3.90) to

the mean update equation (3.97), yielding

xt+1 = (I - Kt+1C)(A-zt + But) + Kt+1 (Cxt+1 + Hvt+1 ). (3.99)

Plugging in the true dynamics (2.1) yields

It+, = A-t +But - Kt+1CA-xt-Kt+1CBut (3.100)

+ Kt+1C(Axt + But + Gwt) + Kt+1Hvt+1

= (I - Kt+1C)A-t + Kt+1 CAxt + But + KtiCGwt + Kt+1 Hvt+1 .
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From (2.1) and (3.100), combined dynamics can be formed [90]:

1 [ A 0 1 t F [+ [B Ut (3.101)[t+1 Kt+1CA (I - Kt+1C)A Lt B

Xtti Xt

G 0 Wt

Kt+1CG Kt+1H Vt+1

Ut Wt

which can be written in the more compact form

Xt+1 = AtXt + Btut + tW. (3.102)

These combined dynamics are subject to the combined uncertainty

Wt 0, P 1 , (3.103)
0 P0

TO PX0 0
Xo ~ [ ] XO 0 (3.104)

70 0 0

\k H0 O/

here the initial covariance of the state estimate Tt is assumed zero.

Remark 3.6 (covariance factoring). To avoid the intensive computation needed

for matrix inversion due to (3.96), a factored form of the covariance can be instead

applied [74]. In particular, define Qt = EtF,-1, where EO = Qo and FO = I. The

resulting efficient covariance update of Ref. [74], written in the framework of this
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chapter, then takes the form

Et+1 A GPwGT A-T Et

Ft+1 CT (HPH T)-CA A-T + CT (HPHT)l-CGPwGT A-T F

where the notation (_)-T denotes the inverse transpose.

3.6.1 Open-Loop Case

If inputs are applied to the dynamics (2.1), (3.90) in open-loop, the filter (3.96)-

(3.98) is only needed in the execution phase, as inputs are applied to the actual

dynamics, observations received, and the tree updated (Algorithm 5, line 3). The

same simulation model dynamics (3.71)-(3.72) can be applied in this case.

Similarly, if the dynamics are nonlinear (3.73), the linearized model dynamics

(3.82)-(3.83) can still be applied. However, if the sensor model (3.90) is nonlinear,

then predicted observations - should also be computed and maintained along each

CC-RRT trajectory. These predictions are needed along with the full linearized dy-

namics to apply the filter at each execution timestep, as discussed below.

Suppose the sensor model takes the nonlinear form

Yt = (xt, Vt), (3.105)

where it is still subject to the same zero-mean Gaussian sensing noise (3.91). For a

given predicted state se, define the predicted observation as the most likely observa-

tion,

t = g(xt, 0), (3.106)

and define the observation error y = yt - -t. The linearized output dynamics then
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take the form

Yt( + Htv, (3.107)

Ct ay (Yt, 0), (3.108)

Ht (t,1 0). (3.109)0vt

When applying the filter during execution, suppose that observation yi is received

after applying input uO. The filter then updates its mean and covariance estimates

on the state error Yo via (3.97)-(3.98), yielding

X1 = (I - K1 C1 )Ao3Xo + Ki, (3.110)

Q, = (I - K1 C1 )(AoPoA r + GoPGo)T. (3.111)

When planning from the next timestep, x1 ~- .(X1 + 1, P1 ).

3.6.2 Closed-Loop Case

If inputs are instead selected via a feedback law on the state estimate Tt,

ut = rt - Ltst, (3.112)

then the combined dynamics (3.102) take the alternate form

Xt+i = AtXt + (tTrt + GtWt, (3.113)

At = A 1, (3.114)
Kt+1 CA (I - Kt+1C)A - BLt

where the only changes are that At is replaced with At and ut with rt. As a result of

this change, however, xt and Tt are now coupled, and must both be propagated along

every predicted CC-RRT trajectory. Emulating the form of (3.12)-(3.13), at future
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timesteps, the combined state Xt is Gaussian with Xt ~ A(Xt, Ht) and

Xt+1 Att + Btrt, (3.115)

Ut1= AtrtA +tHwGt. (3.116)

The true state mean and covariance are then extracted via [90]

X,+1= [1 T 0  t+1 (3.117)

= 1 T 0T (At t + Btrt), (3.118)

Pos = i 0 t+1 (3.119)
0

] 0 _ _At At + Gt [Gt (3.120)

The model form equivalent of (3.71)-(3.72) used for each CC-RRT trajectory takes a

similar form:

Xt+k+l1t - AtXt+klt + Ett+klt, (3.121)

U~t+k+1|t = tft+kTt t t

Xt+k+llt = [1 T 0  t+k+lt, (3.123)

Pt+k+1t = I 0 ]ft+k+llt . (3.124)
0

If the dynamics take the nonlinear form (3.73), (3.90), the formulation proceeds

similarly, but instead using the linearized dynamics (3.76), (3.107).

3.7 Simulation Results

Simulation results are now presented which demonstrate the effectiveness of the

chance constrained RRT approach in efficiently computing paths for motion planning
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problems which satisfy probabilistic constraints. Several key points are demonstrated

through these results. First, without chance constraints, the RRT algorithm is not

incorporating knowledge of the uncertainty environment, and may select paths which

are excessively risky. Second, as 6, increases, the algorithm selects more conserva-

tive paths, which are less likely to collide with an obstacle but require additional

length/time to reach the goal. Finally, it is shown that this approach scales favor-

ably in the number of obstacles considered, and performs well even if the dynamics

are nonlinear. Additional, more comprehensive simulation results contrasting this

algorithm with CC-RRT can be found in Chapter 5.

3.7.1 Simple Scenario

Consider the operation of a double integrator (quadrotor) in a two-dimensional non-

convex environment. The system dynamics are

1 0 dt 0 2 t

0 1 0 dt 0 d yt
=t+1 Xt - Ut + Wt, (+t

0 0 1 0 1 0 - L
0 0 0 1 0 1

where dt = 0.ls, subject to input constraints U = {(ux, uy) ux < 1, uY I 1}. The

state constraints X consist of speed bounds (Ivxl < 0.5 and JvYJ < 0.5) and obstacle

avoidance constraints at each timestep. It is assumed without loss of generality that

the vehicle is a point mass (if not, the vehicle size can be applied by tightening state

constraints accordingly). The environment contains four obstacles in fixed, known

locations (Figure 3-2).

The environment boundaries of the room are not treated as chance constraints,

i.e., it is sufficient for the distribution mean to remain within the room bounds.

In this case (3.37) is not used within offline risk allocation, while Aot = 0 in (3.59)

within online risk evaluation. The use of environmental and path-wise (via 6p) chance

constraints is explored in more detail in Chapter 5.
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The initial state covariance and disturbance covariance are specified as

0.002 0.001 0 0 0.01 0 0 0

0.001 0.002 0 0 0 0.01 0 0
Pw= , Pxo=

0 0 0.0001 0 0 0 0 0

0 0 0 0.0001 0 0 0 0

respectively. The input u is selected at each timestep according to the reference law

-0.3 0 -0.6 0
u=K(xt-rt), K =

0 -0.3 0 -0.6

where the reference rV is moved from the parent node waypoint to the sample waypoint

Xsamp at 0.3 m/s. Since this controller is applied both during trajectory simulation

(Algorithms 3/4) and execution (Algorithm 5), A+BK is used in place of A in (3.71)-

(3.72) [106]. The cost functions (3.35), (3.61) represent the duration of the path to

goal, i.e., Of - 0 and # = dt. Simulations were performed using an implementation

of Algorithms 3-5 in Java, run on an Intel 2.53 GHz quad-core desktop with 4GB of

RAM, with At = Is.

Each simulation uses one of three algorithms: nominal RRT, offline CC-RRT, or

online CC-RRT. Five cases are considered, with 10 trials performed for each:

" Nominal RRT

" Offline CC-RRT with 6, = 0.5

" Online CC-RRT with 6, = 0.5

" Online CC-RRT with 6, = 0.9

" Online CC-RRT with 6, = 0.99

In each trial, the planner is given 20 seconds to begin growing the tree. After this

planning time has expired, the vehicle selects the lowest-cost path in the tree to

execute, then continues to perform the RRT algorithm in real-time, simultaneously

growing the tree while executing paths within it.
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Figure 3-2: Representative tree for RRT, simple scenario

Figures 3-2 and 3-3 show a sample tree for each case after the 20 seconds of com-

putation; in the latter figure, the distribution mean (blue circle) and 2-- uncertainty

ellipse (gray) are displayed for each node. In these and subsequent figures, the vehi-

cle seeks to find a (probabilistically) feasible path from its starting location (orange

diamond) to the goal (green circle) while avoiding all obstacles (black). Due to the

system's closed-loop nature, the state distributions quickly converge to a steady-state

value [106]. As a result, most uncertainty ellipses appear to be identical in the figures.

However, there is indeed an evolution in the uncertainty ellipse size, starting from the

initial state error at the tree root.

Since the nominal RRT algorithm is naive to any disturbances which may be

present, the trajectories are allowed to come arbitrarily close to obstacles. How-

ever, since the nominal RRT algorithm also requires deterministic, not probabilistic,

constraint satisfaction, no trajectory ever intersects any of the obstacles (Figure 3-2).

For online CC-RRT with 6, = 0.5 (Figure 3-3(b)), the algorithm identifies every

homotopically distinct path between obstacles to the goal (moving from bottom to

top). For the case of a Gaussian distribution subject to a single linear inequality
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(a) Offline CC-RRT, 6= 0.5

(c) Online CC-RRT, 6, = 0.9 (d) Online CC-RRT, 6. = 0.99

Figure 3-3: Representative trees for CC-RRT, simple scenario
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constraint, a constraint of 6, = 0.5 is active if the distribution mean falls exactly on

the constraint boundary. Thus, in this case, all distribution means still fall outside

the obstacle boundaries (and will continue to do so for any 6, e [0.5, 1] - see Lemma

5.2 in Section 5.2), but may come extremely close. In that sense, online CC-RRT

, = 0.5 closely emulates the behavior of nominal RRT.

As 6, increases for online CC-RRT from 0.5 to 0.9 (Figure 3-3(c)), the proba-

bilistic constraints tighten and restrict the feasible configuration space of the vehicle.

Whereas the 6, = 0.5 case identifies many paths to goal between the obstacles, the

6, = 0.9 case only identifies two, and cannot traverse the narrowest gap between the

bottommost obstacles. Additionally, the uncertainty ellipses in Figure 3-3(b) signif-

icantly intersect the obstacles, whereas any intersection is minimal in Figure 3-3(c).

When 6, = 0.99 (Figure 3-3(d)), all trajectories take the wider corridors around the

obstacles to reach the goal, at the expense of a longer path duration.

While both Figures 3-3(a) and 3-3(b) use 6, = 0.5 and provide the same guarantee

of probabilistic feasibility, the offline CC-RRT algorithm (Figure 3-3(a)) yields a much

more conservative result, more closely resembling online CC-RRT with 6, = 0.99. In

other words, the solutions generated by the offline CC-RRT algorithm are much more

conservative then those generated by the online CC-RRT algorithm for the same

probabilistic feasibility guarantees.

Table 3.1 presents the averaged results over the 10 trials for each case. The nominal

RRT algorithm achieves the shortest average path to goal, but is also unaware of the

risk posed by uncertainty in the formulation, safely reaching the goal only in a single

trial. For the CC-RRT cases, as 6, increases, the average path length increases, as

does the likelihood of safely reaching the goal. This is the expected behavior, since

the CC-RRT algorithm either explicitly or implicitly tightens the configuration space,

increasing the length of the best path to goal, in order to ensure a higher likelihood

of feasibility. In particular, note that for 6, = 0.99, online CC-RRT safely reaches

the goal in all ten trials. As expected from the figures, the performance of offline

CC-R RT with 6, = 0.5 is comparable to online CC-RBT with higher values of 6,.

Finally, while there is a modest runtime increase for offline CC-RRT and a slightly
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solutions for RRT and CC-RRT, simple scenario

Algorithm 6, Time per Path Safe to
Node, msa Duration, sb Goal?'

Nominal RRT N/A 1.38 27.2 1/10
Offline CC-RRT 0.5 1.51 34.3 8/10
Online CC-RRT 0.5 1.94 27.2 3/10
Online CC-RRT 0.9 2.04 34.9 7/10
Online CC-RRT 0.99 2.06 39.8 10/10

Table 3.2: Properties of solutions for RRT and CC-RRT, cluttered scenario

Algorithm J, Time per Path Safe to
Node, ms' Duration, sb Goal?'

Nominal RRT N/A 4.45 (x 3.2) 22.6 1/10
Offline CC-RRT 0.5 4.98 (x 3.3) 25.6 7/10
Online CC-RRT 0.5 7.56 (x3.9) 22.7 1/10
Online CC-RRT 0.9 7.38 (x 3.6) 24.3 9/10
Online CC-RRT 0.99 7.75 (x3.8) 25.9 10/10

a Cumulative time spent in Algorithm 3/4 divided by the number of nodes generated.
b Duration of initial path to goal, if one exists.

C Number of trials where system executed a path to goal without colliding with any obstacles.

larger runtime increase for online CC-RRT, both are competitive with the average

runtime for nominal RRT. As Table 3.1 indicates, the time per node relative to RRT

increases only about 10% for offline CC-RRT and 40-50% for online CC-RRT, both

of which are suitable for real-time operation.

3.7.2 Cluttered Scenario

The main driver of the computational complexity of the CC-RRT algorithm is the

number of obstacles; the purpose of this scenario is to demonstrate how the runtime

scales with the number of obstacles. In this scenario, all parameters from the previous

scenario are maintained except for the environment itself, which is replaced with a

more cluttered environment (Figure 3-4). Whereas the simple scenario has only 4

obstacles, the cluttered scenario has 20, an increase by a factor of 5.

An identical set of trials was performed as in the previous scenario, for the same

five cases. Figures 3-4 and 3-5 show a sample tree for each case after the 20 seconds

of computation; very similar conclusions can be drawn as from the simple scenario.
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Figure 3-4: Representative tree for RRT, cluttered environment

Of note is the uppermost path to goal found by online CC-RRT with 6, = 0.5 (Figure

3-5(b)), passing along the very top of the figure. While the probability of collision

at each timestep must not exceed 0.5, in practice such a path would be extremely

difficult to execute safely.

Table 3.2 presents the averaged results over the 10 trials for each case. Even

though the number of obstacles has increased by a factor of 5, the average runtime

per node has only increased by a factor of 3 to 4 in each case, with nominal RRT and

offline CC-RRT scaling slightly better than the online CC-RRT cases. Nonetheless,

this data provides empirical evidence that the CC-RRT algorithms leverage the ben-

efits of sampling-based algorithms to scale favorably with the problem/environment

complexity, without requiring significant additional computation.

Otherwise, the results are similar to the simple scenario (Table 3.1), with online

CC-RRT again achieving feasibility across all ten trials for 6, = 0.99. On the other

hand, online CC-RRT performs poorly in this scenario for 6, = 0.5, with only one

trial safely reaching the goal.
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(a) Offline CC-RRT with 6 05. (b) Online CC-RRT with 6.= 0.5.

(c) Online CC-RRT with 5= 0.9. (d) Online CC-RRT with 6= 0.99.

Figure 3-5: Representative trees for CC-RRT, cluttered scenario

118



3.7.3 Uncertain Obstacle Scenario

This scenario demonstrates the capability of the CC-RRT algorithm to incorporate

uncertain obstacles in its probabilistic feasibility computations. The environment

is the same as in Section 3.7.1 (Figure 3-2). The disturbance covariance is signifi-

cantly reduced (from P to P -- P/100), while the obstacles are now uncertain

and thus have their own probability distributions. The upper-left obstacle placement

distribution has covariance Pa, while all other obstacle placement distributions have

covariance Pb, where

0.2 0 0 0

0 0.2 0 0 P
Pa= , Pb= a

0 0 0 0 200

0 0 0 0

The online CC-RRT algorithm is run on this scenario with 6, = 0.99; even though

the process noise has been significantly reduced, the tree trajectories must be very

conservative in path selection to ensure the probability of collision at any timestep

does not exceed 1%. Figure 3-6 shows a representative tree generated by this algo-

rithm. In this figure, the 2-o- uncertainty ellipse is shown both for every obstacle and

for every node; it is clear that the residual state error near the start and the placement

of the upper-left obstacle dominate the process noise within the uncertainty environ-

ment. Whereas trajectories can come very close to the three rightmost obstacles

and maintain probabilistic feasibility, the high uncertainty of the upper-left obstacle

causes any trajectory which comes near it to become probabilistically infeasible.

3.7.4 Nonlinear Dynamics Scenario

The following results demonstrate the validity of linearizing dynamics within the

CC-RRT framework to approximate probabilistic constraint satisfaction bounds for

nonlinear dynamics. Consider the operation of a skid-steered vehicle in a 2D envi-
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Figure 3-6: Representative tree for CC-RRT (6, = 0.99), uncertain-obstacle scenario

ronment, with nonlinear dynamics

xt+1 = xt+dt(1/2)(vf +vftcosot,

yt+i = yte+ dt(1/2)(vf +V )sinot,

Ot+1 = Ot + dt(v R- v ),

VL = sat (Vt + 0.5Avt + w/ ,-0.5, 0.5),

sat (Vt - 0.5Avt + wR, -0.5,0.5),

where dt = 0.02 s, (x, y) is the vehicle position, 6 is the heading, vL and yR are

the left and right wheel speeds, respectively, sat(a, b, c) saturates a between b and

c, and (wL, wR) is a small process noise. The system inputs are specified in terms

of a mean velocity 7v and differential velocity Av. A variation of the pure pursuit

controller [109] is applied, assuming forward direction only. Paths are expanded by

randomly sampling many inputs, then selecting those inputs that guide the vehicle

closest to the sample (leading to much of the observed "zig-zag" behavior in Figure

3-7).
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(a) 6 =0.5 (b) 6= 0.99

Figure 3-7: Representative trees for CC-RRT, nonlinear dynamics, cluttered scenario

Figure 3-7 demonstrates the use of Algorithm 4 using the linearized, open-loop

dynamics (3.88)-(3.89); trees are shown after 20 seconds of tree growth, including

distribution means and 1-a covariance uncertainty ellipses. Unlike previous results,

the state distribution uncertainties on these nodes tend to vary with the tree branch,

and in particular tend to align in a direction perpendicular to the direction of motion.

This reflects the linearization used to estimate the covariances at each tree node,

based on an uncertainty that tends to affect lateral motion, rather than longitudinal

motion. For small values of 6., a feasible path is found to the goal (Figure 3-7(a)); if

6, is increased high enough, no such path may exist (Figure 3-7(b)).

3.8 Conclusions

This chapter has presented a novel sampling-based algorithm, CC-RRT, which allows

for efficient computation of probabilistically feasible paths through a non-convex en-

vironment subject to both internal and external uncertainty, via the use of chance

constraints. In addition to incorporating a sampling-based framework, this approach

builds upon previous chance-constrained formulations by including probabilistic ro-

bustness to both process noise and uncertain, possibly dynamic obstacles, subject to

time-step-wise and path-wise risk bounds. If the tightened constraints are computed
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off-line for a fixed probability bound, the complexity of the CC-RRT algorithm is

essentially unchanged relative to the nominal RRT algorithm. Alternatively, a small

amount of additional computation can be used to explicitly compute a tight proba-

bility bound at each timestep, providing the user with a metric to directly control

the level of conservatism in the planning approach. Furthermore, as demonstrated

through the simulation results, the approach is scalable in the number of obstacles,

allowing for efficient computation of safe paths even in heavily cluttered environments.

The CC-RRT algorithm is effective in quickly generating robustly feasible solutions

through complex environments, making it suitable for many autonomous navigation

applications (Chapter 4). However, due to its lack of optimality, the paths resulting

from the algorithm may be non-smooth and inconsistent in some cases, even if a large

number of tree nodes are generated. This can be addressed by incorporating the use

of RRT* [56, 57] to provide guarantees on asymptotic optimality, with the trade-off

of requiring use of a steering law to connect states. Chapter 5 presents CC-RRT*,

which integrates these optimality guarantees while maintaining the ability to quickly

find safe paths under uncertainty.
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Chapter 4

Autonomous Navigation with

Chance-Constrained RRT

This section considers several extensions to the chance-constrained rapidly exploring

random tree (CC-RRT) framework which address some of the challenges faced by au-

tonomous vehicles navigating in dynamic and/or uncertain environments. A unifying

theme in this chapter is the demonstrated ability of CC-RRT to incorporate complex,

learned models of uncertainty when simulating and executing in its decision-making

to select safe, risk-aware trajectories.

First, CC-RRT is extended in Section 4.1 to consider dynamic obstacles with un-

certain intentions. The CC-RRT algorithm developed in Chapter 3 admits the inclu-

sion of dynamic obstacles while maintaining probabilistic feasibility guarantees. Here,

dynamic obstacles are considered which may have uncertainty in both their behavior,

and in their future trajectory given a possible behavior. This allows consideration

of obstacles whose placement is better represented as a time-parameterized Gaussian

mixture model, rather than one single time-parameterized Gaussian distribution.

One possible application of this extension is the robust avoidance of vehicles and

pedestrians, as often encountered during navigation in urban environments. Section

4.2 demonstrates how CC-RRT has been tightly integrated with two dynamic obstacle

prediction algorithms, RR-GP (joint work with Georges Aoude [95]) and DPGP (joint

work with Sarah Ferguson [96]), to enable an autonomous vehicle to safely avoid
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moving threats.

In Section 4.3, an alternate way is presented to approximate the risk of con-

straint violation, through the use of simulated particles to represent the uncertainty

environment. This framework, leveraging ideas from particle filtering, allows for the

consideration of non-Gaussian uncertainty models [97]. Unlike previously-developed

approaches [71], the proposed particle CC-RRT algorithm can approximate the risk

of both time-step-wise and path-wise constraint violation for multiple forms of un-

certainty, while maintaining a separate tree node for each possible action sequence.

However, such an approach requires the simulation of a potentially large set of parti-

cles at each node, which can be computationally intensive.

Alternately, even if a simple analytic model of an uncertainty environment is

available, it may be desirable to directly sample that analytic model for approximating

the risk of constraint violation. One example of this is in the application of parafoil

terminal guidance, in which the constraint being considered is an arbitrary 3D surface

not easily represented with polyhedral constraints. The parafoil terminal guidance

problem poses several additional challenges, including underactuated dynamics and

large/variable wind disturbances. Section 4.4 explores an alternate formulation of CC-

RRT, analytic CC-RRT, designed to address these specific domain challenges (joint

work with Ian Sugel [98]). Simulation results have demonstrated that this approach

can significantly improve landing accuracy relative to state-of-the-art approaches in

complex terrain environments [98].

In this and subsequent chapters, online CC-RRT is used exclusively instead of

offline CC-RRT. As such, online CC-RRT will be referred simply as CC-RRT in the

material that follows.

4.1 Dynamic Obstacles with Uncertain Intentions

This section extends the CC-RRT framework to consider dynamic obstacles with

uncertain motion patterns. It is shown that, with appropriate modification, the

CC-RRT algorithm can still identify probabilistically feasible paths subject to such
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constraints [95].

In Section 3.1, it is assumed that each obstacle Xjt V j E Zi,n0 , is a convex

polytope whose shape and orientation is known, but whose placement is uncertain.

This is represented as (3.3)-(3.4), reprinted here as

Xit = X9 + c-, VjE Z,n,

c 't ~ K(-t, Pcj), V j E

In this model, for the jth obstacle, X0 C R"- is a convex polytope of known, fixed

shape, while cjt E Rx represents a translation of that obstacle subject to a Gaussian

uncertainty, with mean Fit and covariance Pc,. The dependency on timestep t in the

mean and covariance reflects that the nature of the uncertainty may evolve from one

timestep to the next, as is the case for dynamic obstacles.

In this section, a dynamic obstacle with uncertain intentions is assumed to follow

one of M possible behaviors, indexed via k E Zi,m. The uncertainty model for the

dynamic obstacle with uncertain intentions is based on using observations to assess

the obstacle's intent and trajectory, and consists of two components:

" A likelihood 6(k) that the obstacle is following the kth behavior, where 6 (k) >

0 V k E Zi,M and I 6(k) = 1;

" A time-parameterized Gaussian uncertainty distribution for the obstacle at

timestep t if it is following the kth behavior: c4 ) ~ (c), pCk)

In this context, the original uncertainty model (3.3)-(3.4) represents a dynamic ob-

stacle with M 1 and (1) = 1.

Now, suppose the jth obstacle is a dynamic obstacle with uncertain intentions.

The uncertainty model is represented as a Gaussian mixture model of the time-

parameterized Gaussian uncertainty distributions, where the behavior likelihoods pro-

vide the mixand weights:

M
cjt~ ~(k 4(.k) p(k)). (4.1)

k= 1
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In problem (3.C), the state constraints are evaluated via the robustness conditions

(3.55)-(3.60) and constraints (3.63)-(3.64), reprinted here as

P~2 )

P~2)

Aot (t, P2)

At(2t, P,,)

At(Pt,

'A(Pt,

P~2)

PX2)

P~2 )

I aJ(X-t - c j)
= - -erf J 1

2 2aT s c i

erf a(cio - t)
2 1 V/-2aT7 (Pxt ) a20= -mm-er

no

= ZAot((t, P 2 ),

no

= o(X, Pt ) + EA>t3(, PXt),
j=1

tj

=>Atpt, Pxt),
t=o

< 16-, V t,

< 6 p.

At each timestep, the probability of collision with dynamic obstacle j can be written

as a weighted sum of the probabilities of collision for the dynamic obstacle j under

each behavior. With this modification, all existing probabilistic guarantees (Chapter

3) are maintained by treating each behavior's state distribution as a separate obstacle

with the resulting risk scaled by jk) [95]. Represent the risk bound (3.55) on the ith

constraint of the jth obstacle following the kth behavior at timestep t as

= 2 (4.2)erf [ ,(Xt - 1)
2a7(Pxt+Pc jia _

where c (k) C(k) is a point nominally on this constraint if the kth behavior is being
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followed. Then

no

P(collision) < E P(collision with obstacle j) (4.3)
j=1

no M

S E 6 ()P(collision with obstacle j, behavior k) (4.4)
j=1 k=1

no M

<ES E (k) min P(a TX' <a T§C ) (4.5)
j=1 k=1

no M

6 (k) min A,) (, ). (4.6)
j=1 k=1......n)

The desired result is then obtained by redefining A from (3.57), as

M
~ P~2) - >3 6(k) Min A pt ) 47

k=1 2=1,..., nj

4.2 Application: Urban Navigation

The modification (4.7) is particularly useful for CC-RRT when it is tightly integrated

with a trajectory prediction algorithm which generates predictions of the form (4.1).

This has been demonstrated for two prediction algorithms for dynamic obstacles in

urban environments, RR-GP [95] and DPGP [96]. Both algorithms provide a like-

lihood and time-varying Gaussian state distribution for each possible behavior of a

dynamic obstacle at each future timestep. As such, both algorithms are well-suited

for the CC-RRT framework. This section briefly reviews the uncertainty models gen-

erated by each prediction algorithm, and provides simulation examples demonstrating

the ability of an autonomous vehicle to safely navigate in urban environments with

dynamic obstacles.

4.2.1 RR-GP

The RR-GP algorithm developed by Aoude et al. [95] learns motion pattern models

by combining Gaussian process (GP) predictions with a sampling-based reachability
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refinement, which conditions the GP predictions to enforce dynamic and environ-

mental constraints [95]. By doing so, the accuracy of the behavior and trajectory

predictions is significantly increased without having to increase the GP resolution,

which typically requires extensive computation. Fulgenzi et al. [110] use Gaussian

processes to model moving obstacles within an RRT path planner. However, this

approach relies solely on Gaussian processes for its modeling, which can lead to less

accurate prediction, and uses heuristics to assess path safety rather than providing

guarantees.

The RR-GP algorithm was primarily designed to predict motion of moving vehi-

cles in urban environments, which often demonstrate complex motion patterns with

underlying intentions (e.g., which way to turn when entering an intersection). Even

with perfect sensing, two major sources of uncertainty remain: the future intentions

of such a vehicle, and even if known, the exact trajectory to be followed for that

behavior. Such agents are typically subject to significant dynamic constraints, such

as minimum turning rates and bounded acceleration, which should be incorporated

in the prediction. Additionally, such agents are operating within relatively structured

environments such as narrow roads, which may limit the feasible options available to

such an agent.

Figure 4-1 provides a visual illustration of the RR-GP approach shown in Aoude

et al. [95]. Gaussian processes are learned for each behavior from observations of

agents demonstrating that behavior, which are used as labeled training trajectories.

Samples from those GPs (orange dots) are taken at fixed-timestep intervals for each

motion. A tree of trajectories (brown) is then generated using those samples, taking

into account the actual size of the dynamic obstacle (green circle) and environmental

obstacles it is expected to avoid (gray). Since all trajectories remaining in the tree

must be dynamically feasible and satisfy all environmental constraints, the remaining

samples provide a conditioned estimate of the dynamic obstacle predictions at each

timestep.

Suppose a dynamic model is following one of M motion patterns, which are as-

sumed to be known a priori in this framework. The learned GPs take the form of
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Figure 4-1: Illustration of RR-GP algorithm (Source: Aoude et al.)

a 2D velocity flow field, such that, if a dynamic obstacle's current position and be-

havior is known, its predicted next position is provided via Euler integration on the

corresponding flow field [95]. The mixture model used for these predictions takes the

form

M

P(x) = P(b)P(xlbk), (4.8)
k=1

where x is the observed trajectory, bk is the kth behavior, and P(bk) is its prior

probability. After observing x, the posterior probability of the kth behavior is shown

to be [95]

P(bk x) oc P(bk)P(xlbk). (4.9)

This form closely maps to (4.1), with 6 (k) " P(bk) representing the behavior un-

certainty and ( , P() - P(xtbk) representing the trajectory uncertainty. The

prediction of the dynamic obstacle's 2D position at timestep t + K, given observation
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history (xo:t, yo:t), ultimately takes the form [95]

M

W(Xt+K, Yt+K XO:t, O:t E P(bklXO:t, YO:t)IP(Xt+K, Yt+K Xt, Yt, bk)- (4.10)
k= 1

4.2.2 RR-GP Example

An example is now provided from joint work with Aoude [95] which demonstrates

the CC-RRT planner designing paths enabling an autonomous vehicle (referred to as

the "host vehicle") to safely avoid an unknown, dynamic vehicle (referred to as the

"target vehicle") using RR-GP predictions. All simulations were run on a 2.53GHz

quad-core laptop with 3.48GB of RAM.

To ensure the RR-GP algorithm is tested on realistic driving behavior, the target

vehicle's motion is selected randomly from among a set of simulated trajectories, pre-

generated for each behavior by having a human operator manually drive a vehicle

in simulation. The manual driving was performed via a wireless steering apparatus,

tuned to emulate traditional, nonlinear control of an automobile.

Consider a ground vehicle operating in a constrained, two-dimensional environ-

ment 11.2 m x 5.5 m in size (Figure 4-2). In this scenario, the objective of the host

vehicle is to go straight through the intersection at bottom-center of Figure 4-2(a),

reaching a goal location on the opposite side. However, to get there, the host vehicle

must successfully avoid an errant (rule-violating) driver which is traveling through

the intersection in the perpendicular direction, and is likely to cross the intersection

at the same time as the host vehicle. There are three possible behaviors for the target

vehicle as it enters the intersection: (a) left turn, (b) right turn, and (c) straight. The

host vehicle is assumed to have a radius of 20 cm, while the target vehicle has a radius

of 14 cm; both start at zero velocity.

To ensure theoretical guarantees can be met exactly, the host vehicle is modeled
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as a double integrator,

Xt+i 1 0 dt 0 X t 0

Yt+1 0 1 0 dt Yt 0 d U

Vf+ 0 0 1 0 + 1 0 U 1
V + 0 0 0 1 0 1

where dt = 0.1s, subject to avoidance constraints X (including velocity bounds) and

input constraints

U = {(U', uY) Iu l < 4, luyl < 4}.

To emphasize the impact of the dynamic obstacle's uncertainty, the host vehicle's

own dynamics are assumed deterministic. Trajectories are simulated and executed in

closed-loop via the controller

Ux = -1.5(xt - xf) -- 3(vx - rv"x),

UY = -1. 5 (yt - ry) - 3(vo - r""),

where (rx, ry) is the reference position and (rh", rv") is the reference velocity; the

reference rt is moved continuously between waypoints at a fixed speed of 0.35 m/s.

The speed of the target vehicle is bounded at 0.4 m/s.

Several algorithms are tested in this scenario:

" Nominal RRT, which runs a standard real-time, closed-loop RRT [105] algo-

rithm treating the target vehicle as a static obstacle at its most recent location;

" Naive RRT, which uses the same algorithm as Nominal RRT, but ignores the

target vehicle entirely in order to establish a baseline minimum likelihood of

safety; and

" CC-RRT (Algorithms 4-5), for 6, C {0.5, 0.8, 0.9, 0.99, 0.999}.

Fifty trials are performed for each case; each trial differs only in the path followed
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Table 4.1: Simulation results for RRT vs. CC-RRT with RR-GP

Algorithm 6, % to Path Time per
Goala Duration, s' Node, ms

Naive RRT - 38% 10.01 (0.11%) 0.611
Nominal RRT - 46% 10.90 (8.96%) 0.662

CC-RRT 0.5 92% 11.52 (15.2%) 1.610
CC-RRT 0.8 88% 11.65 (16.5%) 1.620
CC-RRT 0.9 92% 11.69 (16.9%) 1.620
CC-RRT 0.99 96% 12.51 (25.1%) 1.537
CC-RRT 0.999 100% 12.84 (28.4%) 1.492

a Percentage of trials where system executed a path to goal without colliding with any

obstacles.

b Percentage is average increase in path duration relative to minimal-time (obstacle-free)

path, 10.0s. Only paths which reach goal without collision are included

by the target vehicle and the random sampling used in the RR-GP and CC-RRT

algorithms. In particular, the sequence of selected target vehicle paths is consistent

across all sets of 50 trials.

Table 4.1 presents averaged results over the 50 trials for each case on several

figures of merit: the percentage of trials in which the vehicle safely reaches the goal;

the average duration of such paths; and the average time to generate an RRT/CC-

RRT tree node. In all five cases using CC-RRT, the host vehicle safely navigates

the intersection with a much higher likelihood than any of the RRT instances. The

CC-RRT results demonstrate the clear trade-off between overall path safety (in terms

of percentage of trials which reach the goal) and average path duration when using

CC-RRT. As 6, is increased from 0.5 to 0.999, the percentage of safe trajectories

generally increases, culminating with the host vehicle using CC-RRT with 6, = 0.999

reaching the goal safely in all fifty trials. On the other hand, as 6, is increased and the

planner becomes more conservative, the average time duration of the safe trajectories

increases.

Figure 4-2 provides representative screenshots of the RR-GP and CC-RRT algo-

rithms during trial #25 of the intersection scenario, for two different values of 6,. The

host vehicle's path history and current path are in orange; the objective of the host

vehicle (large orange circle) is to reach the goal position (green circle) while avoiding
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all static obstacles (black) and the dynamic target vehicle (magenta diamond). The

blue paths indicate the paths predicted by the RR-GP algorithm for each possible

behavior, including 2 - a uncertainty ellipses; more likely paths are indicated with

brighter shades of blue. All objects are shown at true size; the gray lines are lane

markings, which do not serve as constraints in this scenario.

Figure 4-2 sheds some light on how different values of S affect the types of paths

chosen by the planner. In this particular trial, the target vehicle ultimately makes

a left turn through the intersection, and would collide with the host vehicle if it did

not deviate from an initial straight-path trajectory. The RR-GP algorithm is initially

undecided whether the target vehicle is going straight or turning left (as indicated

by the shading on the predicted trajectories in Figures 4-2(a) and 4-2(b)); by t = 6

seconds RR-GP is very confident that the vehicle is turning left (Figures 4-2(c) and

4-2(d)).

When 6, = 0.8, the planner selects a path with the minimum perturbation needed

to avoid the target vehicle's most likely trajectories (Figure 4-2(a)). As the target

vehicle closes in on the intersection (Figure 4-2(c)), the host vehicle continues to

hedge that it can cross the intersection safely and avoid the target vehicle's approach

in either direction, and thus does not modify its plan.

In contrast, when 6, = 0.999, the planner selects a larger initial perturbation to

maintain a large distance between the host and target vehicles (Figure 4-2(b)). The

host vehicle then demonstrates much more risk-averse behavior by loitering outside

the intersection (Figure 4-2(d)) for several seconds before making its approach. Ulti-

mately, the host vehicle using 6, = 0.8 (Figure 4-2(e)) reaches the goal before the host

vehicle using 6, = 0.999 (Figure 4-2(f)). In real driving scenarios, the most desirable

behavior is likely somewhere between these two extremes.

Table 4.1 shows that with Naive RRT, by ignoring the target vehicle, the time-

optimal path is almost always achieved, but a collision takes place in a majority of

trials, with collisions occurring in most instances of the target vehicle going straight

or left. In some instances, the Nominal RRT algorithm maintains safety by selecting

an alternative trajectory when the target vehicle's current position renders the host
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(a) 6, 0.8, t = 2 seconds

(c) , 0.8, t = 6 seconds

(e) 6, = 0.8, t = 11 seconds

Figure 4-2: Representative snapshots

trial #25

(b) 6, 0.999, t - 2 seconds

(d) J, 0.999, t 6 seconds

(f) 6, = 0.999, t = 11 seconds

of integrated RR-GP and CC-RRT algorithms,
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vehicle's current trajectory infeasible. However, the overall likelihood of safety is still

low. In many cases, the target vehicle collides with the host vehicle from the side,

which cannot be prevented through replanning.

Finally, note that the average time to either generate an RRT node or call RR-GP

is largely independent of 6, for CC-RRT. There is a modest increase in average time

per node when moving from naive or nominal RRT to CC-RRT - approximately scales

by a factor of 2.5 - which is consistent with previous results on CC-RRT scalability

(Chapter 3).

4.2.3 DPGP

The DPGP algorithm is a Bayesian nonparametric clustering algorithm which extends

the GP modeling framework of RR-GP by providing offline, unsupervised learning of

the mixture model (4.8) [111]. Provided with a set of unlabeled training trajectories,

the DPGP prediction algorithm automatically determines the most likely number

of clusters. The mixture model (4.8) is represented by a Dirichlet process, whose

concentration parameter determines whether a new cluster should be formed [111].

In contrast to RR-GP, DPGP is also useful for modeling the behavior of pedestri-

ans in urban environments. Pedestrians pose several particularly challenging tasks for

behavior and trajectory prediction, such as unique and previously unobserved behav-

iors and instantaneous changes in motion [96]. Consideration of results for pedestrians

are explored further in the hardware experiments (Chapter 6).

Depending on the implementation, the reachability-based conditioning of RR-GP

may also be used in tandem with DPGP. In this case, DPGP replaces the original

GP prediction component of RR-GP.

4.2.4 DPGP Example

Several examples are now provided demonstrating the ability of the CC-RRT plan-

ner to safely avoid a dynamic obstacle via DPGP predictions. In these examples,

the DPGP predictions are enhanced with the reachability-based refinement of RR-
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GP [95]. Similar to Section 4.2.2, the host vehicle is modeled as a double integrator.

Section 4-3 considers a modified version of the intersection scenario in Figure 4-2,

with the host vehicle constrained to move in a straight line as it crosses the intersec-

tion. The host vehicle's path history and current path are in orange; the objective of

the host vehicle (large orange circle) is to reach the goal position (green circle) while

avoiding all static obstacles (black) and the dynamic target vehicle (magenta dia-

mond). Unlike Section 4.2.2, the lane boundaries also serve as obstacles/constraints

in this example. The blue paths indicate the paths predicted by the RR-GP algorithm

for each possible behavior, including 2 - - uncertainty ellipses; more likely paths are

indicated with brighter shades of blue. As before, there are three possible behaviors

for the target vehicle as it enters the intersection: (a) left turn, (b) right turn, and (c)

straight. The target vehicle is assumed to have right-of-way, and thus is not obligated

to stop once it reaches the intersection.

Initially, the planner gives the host vehicle a path to have it cross the intersection

(Figure 4-3(a)). However, as the target vehicle approaches the intersection (Figure

4-3(b)) and its planning horizon overlaps with the host vehicle's path, the planner

curtails the host vehicle's path to stop at the intersection entry, in case the target

vehicle decides to go straight through the intersection (Figure 4-3(c)). Eventually,

the host vehicle must come to a full stop: though DPGP predicts that the vehicle

is most likely turning right, it is not yet sufficiently confident to enable the planner

to resume crossing the intersection (Figure 4-3(d)). Once it is clear that the target

vehicle is turning right, the planner resumes an intersection crossing (Figure 4-3(e)),

eventually reaching the goal (Figure 4-3(f)).

Figure 4-4 and 4-5 give two examples for an obstacle field scenario, in which the

host vehicle is moving left-to-right while avoiding a dynamic obstacle moving in the

opposite direction. The dynamic obstacle has six possible behaviors, corresponding

to which of the three corridors it traverses in the central passage, and which of two

different speeds is used (slow and fast). In Figure 4-4, the CC-RRT planner tree

(green) is also visualized.

Initially, with the dynamic obstacle not yet proceeding forward, the CC-RRT
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(b) t = 10 seconds

(c) t = 15 seconds (d) t = 20 seconds

(e) t = 22 seconds (f) t = 40 seconds

Figure 4-3: Representative snapshots of integrated DPGP and CC-RRT algorithms,

modified intersection scenario
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(a) (b)

(c) (d)

(e) (f)

Figure 4-4: Representative snapshots of integrated DPGP and CC-RRT algorithms,

obstacle field example #1
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planner quickly finds a path all the way to the goal (Figure 4-4(a)). However, as

the dynamic obstacle begins moving, the DPGP predictions quickly detect that the

obstacle is planning to traverse the bottom corridor, curtailing the host vehicle's

planned safe path (Figure 4-4(b)). The planner quickly finds an alternate route

through the central corridor (Figure 4-4(c)); though this path overlaps with several

possible behaviors, the low likelihood of those behaviors (indicated by the very light

blue shading in Figure 4-4(c) results in a risk of collision below the necessary threshold.

As the host vehicle begins executing this path and the DPGP predictions become more

confident, the path is refined to reach the goal more quickly (Figure 4-4(d)). In this

case, the planner path for the host vehicle overlaps with the target vehicle's most

likely path, and will eventually come close to the target vehicle's current location.

However, the prediction model anticipates that the target vehicle will have continued

moving left to the central corridor by the time the host vehicle arrives, ensuring that

the path is safe. Indeed, the host vehicle is able to continue executing this path to

reach the goal safely (Figures 4-4(e) and 4-4(f)). The second example proceeds in a

similar manner (Figure 4-5).

4.3 Particle CC-RRT

When applying CC-RRT to nonlinear dynamics (3.73), linearization can be applied

to maintain a Gaussian state uncertainty representation along each tree trajectory

(Section 3.5). However, if the dynamics are themselves subject to a non-Gaussian

uncertainty, a Gaussian state representation is no longer appropriate for accurately

representing the predicted uncertainty at future timesteps. For example, a Gaussian

approximation may underestimate the true likelihood of colliding with an obstacle

(Figure 4-6). This section introduces a particle-based chance constraint framework for

CC-RRT, known as particle CC-RRT, which can be used to statistically approximate

the uncertainty at a resolution which can be dictated by the user [97].

In particle CC-RRT, a set of particles are maintained at each node which statisti-

cally represent the true uncertainty distribution, which cannot be assumed to be Gaus-
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 4-5: Representative snapshots of integrated DPGP and CC-RRT algorithms,

obstacle field example #2
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Figure 4-6: Modeling non-Gaussian un- Figure 4-7: Modeling non-Gaussian un-

certainties using Gaussian model certainties using particle CC-RRT

sian. Each particle is simulated through the true dynamics (3.73), randomly sampling

each uncertainty source that is present. The chance constraints (3.5),(3.6) are then

tested by assessing the fraction of particles which violate the problem constraints

at each timestep and along each trajectory, respectively. Figure 4-7 demonstrates

the propagation of a single particle CC-RRT node consisting of 20 particles, each

sampling the modeled uncertainty. Each particle is checked for feasibility against ob-

stacles (gray); infeasible particles (red) are discarded, while feasible particles (green)

are maintained for future propagation.

The particle CC-RRT framework is generalizable both in the types of probabilis-

tic feasibility which are assessed (time-step-wise and/or path-wise) and in the types

of uncertainty that are modeled using particles. Though this section considers un-

certainty in the state distribution only, this framework can be readily extended to

consider hybrid combinations of multiple uncertainty types. For example, an agent's

process noise may be represented using particles, while interactions with dynamic

obstacles are modeled using traditional Gaussian distributions.

While probabilistic feasibility bounds can only be statistically approximated using

particle CC-RRT, the algorithm can approximate chance constraints with modeling

errors and levels of conservatism which both approach zero as the number of samples
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approaches infinity. Indeed, this approach overcomes the conservatism introduced via

the use of Boole's inequality and other bounds in the development of CC-RRT (Section

3.2). However, maintaining a large set of particles is often computationally intensive,

and challenges the desired real-time nature of algorithms developed in this work.

Identifying a number of particles which accurately approximates the true uncertainty

distribution, without requiring excessive computation, is a key consideration in this

approach.

Consider the nonlinear dynamics (3.73) subject to process noise and localiza-

tion/initial state error uncertainty

Wt ~ W(w), (4.11)

X0 ~ Xo(x), (4.12)

respectively, where W and X 0 are random variables representing their true uncer-

tainty distributions. In particle CC-RRT, as each trajectory is simulated, the state

distribution at each simulation timestep is approximated as a weighted sum of np par-

ticles. At simulation timestep t + k and execution timestep t, this can be represented

as

Xt (l) W(P)l p E l, C Xt~klt(Xt+klt)i (4.13)

where x +) is the state of the pth particle and wo+) > 0 is its weight; the weightst~klt t~klt

are generally normalized such that Ei. W+kIt =1. The particle-based mean of

Xt+klt(xt+klt) can thus be computed as

np
(p) (p)Xt~klt =LWtkltXt+klt* (4.14)

P(p)

At each simulation timestep, the particle states xt(k) are propagated through the
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true dynamics (3.73), including uncertainties sampled from their true distributions,

X(p) f (p) IlUktW(p) V 1np1(.5
t+k+1|t f +k t t+kt, ttklt V ,P (4.15 )

Wt+klt W(w), V p E Zi,np, (4.16)

X(~) Xo(X), Vp C Zi,np. (4.17)

While the state xP+k)t and sampled disturbance w,+klt are unique to each particle on a

given trajectory, the same input ut+klt is applied to all particles. Each weight is also

updated based on the likelihood of the uncertainty sampled, via

Wk+) OC Wt+kjt . IP(W(w) = W,+P) V p C Z,,. (4.18)

Weights should be re-normalized at each timestep such that they continue to sum to

1.

Each particle represents a fraction of the likelihood of feasibility at each timestep,

corresponding to its weight w+) At each simulation timestep, a binary collision

check is performed on each particle state X+klt against the state constraints Xt+k of

(2.5). Since the weights are normalized, the time-step-wise chance constraint (3.5)

can then be statistically approximated as

Ti,

Yt~kt Z t~klt (P)k C Xt+k) , (4.19)
p= 1

where I is the indicator function, i.e., 1 if the contained statement is true and 0

otherwise.

Particles are discarded as soon as they become infeasible, as they no longer repre-

sent a realizable trajectory. However, to maintain the resolution of the particle-based

uncertainty approximation, new particles are resampled from existing ones such that

np particles are always propagated from each timestep. The likelihood of a particle

being re-sampled is proportional to its weight. In this manner, the path-wise chance
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constraint (3.6) can be statistically approximated as

6t+klt > 6p, (4.20)

where

6t+k+1|t - 6
t+kKtYt+k~t, 0 = 1. (4.21)

Algorithm 6 details the tree expansion step for PCC-RRT. During each simulation

timestep, after any infeasible particles are resampled (line 9) and an input selected

(line 10), each particle is individually simulated (line 12) and assigned an appropri-

ate weight (line 13). After weights have been re-normalized (line 15) and the new

mean state Xt+k+l|t computed (line 16), any infeasible particles are removed (line 17).

Propagation of the particles continues until either the approximate chance constraints

(4.19), (4.20) are violated, or the mean state reaches the sample Xsamp.

The execution loop is a straightforward application of Algorithm 5. At timestep

t = 0, the initial set of particles is initialized with x) sampled from (4.17).

Figure 4-8 considers a simple example of particle CC-RRT, using the skid-steered

dynamics of Section 3.7.4. Figure 4-8 shows representative trees (blue edges) gen-

erated by the particle CC-RRT algorithm after 40 seconds of growth for the vehicle

(orange) attempting to reach the goal (green); 100 particles are generated for each

node. The vehicle is controlled in closed-loop; at each timestep there is a 50% chance

that either its left or right skid will slip (but not both), causing a uniformly-distributed

disturbance to that skid's speed. As in Chapter 3, 6, denotes the required probability

of feasibility at each timestep; a node's size decreases as it comes closer to violating

this constraint. On the other hand, 6p denotes the required probability of feasibility

along an entire path; a node's color changes from green to red as it comes closer to

violating this constraint. In comparing Figure 4-8(a) to Figure 4-8(b), it is seen that

increasing 6p causes nodes to become infeasible more quickly due to accumulation of

particles in collision along tree trajectories.
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Algorithm 6 Particle CC-RRT, Tree Expansion

1: Inputs: tree T, current timestep t
2: Take a sample Xsamp from the environment

3: Identify the M nearest nodes using heuristics
4: for m < M nearest nodes, in the sorted order do

5: Nnr - current node
6: (2+kt W('k,) +- final set of particle states and weights for Near

7: Compute it+kt using (4.14)

8: while (4.19),(4.20) satisfied and st+k~t has not reached Xsamp do
9: Resample particles up to nrp

10: Select input ut+klt E U
11: for each particle p do
12: Simulate x using (4.15),(4.16)Xt~k~llt 4.6

13: Assign weight w,+k+1 using (4.18)
14: end for
15: Normalize weights
16: Compute Xt+k+lt using (4.14)
17: Remove infeasible particles
18: k +- k + 1
19: end while
20: for each feasible node N do
21: Add N to T
22: Try connecting N to Xgoal (lines 5-19)
23: end for
24: end for

4.4 Application: Parafoil Terminal Guidance

One application requiring particularly careful consideration of uncertainty within mo-

tion planning is parafoil terminal guidance: guiding a parafoil from a potentially high

altitude to land precisely with a desired position. This motion planning problem

presents several key challenges. Parafoil dynamics are highly nonlinear and under-

actuated, with potentially large turning radii and severely limited altitude control.

Landing may require interacting with arbitrary, non-convex terrain maps, which may

not easily be represented in a polyhedral form as in the baseline CC-RRT algorithm

(Chapter 3). Perhaps most significantly, parafoils are subject to uncertain and vari-

able wind environments which can lead to significant errors between predicted and

actual trajectories, often resulting in unacceptable landing accuracy.

The CC-RRT framework has been adapted in joint work with Ian Sugel [98, 112]
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(a) 6, = 0.95, 6p = 0.50 (b) 6, = 0.95, 6p = 0.90

Figure 4-8: Particle CC-RRT for skid-steering vehicle

to address the special concerns of the parafoil terminal guidance problem, enabling

a large, autonomous parafoil to robustly execute collision avoidance and precision

landing on mapped terrain, even with significant wind uncertainties [98, 1121. The

proposed algorithm, analytic CC-RRT, offers two key extensions of the CC-RRT

framework. First, unlike RR-GP (Section 4.2), a learned uncertainty model for the

wind dynamics is incorporated directly into the simulated dynamics. This uncertainty

model is multi-modal, with each mode corresponding to different classes of wind

behavior which have been learned offline, and can be used to classify wind observations

online.

Second, even though the augmented vehicle/wind dynamics yield an analytic state

distribution for the vehicle at future timesteps, these uncertainty distributions are

sampled for collision checking. These "covariance samples" are evenly spaced within

the state distribution at each timestep at distances proportional to the covariance

and thus are assigned equal weight. Sampling the uncertainty distributions allows for

consideration of the terrain map as a 3D surface function, rather than forcing it into

polyhedral obstacle boundaries to fit the baseline CC-RRT formulation. Addition-

ally, unlike the particle-based formulation (Section 4.3), dynamic state propagation

146

F 71
VN



of individual samples is not required: only the mean state needs to be simulated.

By having an analytic state distribution available along each trajectory, covariance

samples can be quickly generated, yielding a robustness formulation with stronger

computational efficiency than particle CC-RRT. This section reviews these exten-

sions to the CC-RRT framework [98].

The overall parafoil dynamics take the form [98]

Px,t+ = Px,t + dt (V(Pzt) cos t + wXt), (4.22)

Py,t+1 Py,t + dt (V(Pz,t) sin O4 + WY't)

Pz,t+i Pz,t + dt (vpz,t) + WZt

st+1 = st + dt (Ast + But) ,

t+1= sat (Vt + dt (Cst + Dut), -Wmax, Wmax) ,

where xt (px,t, py,t, PZ't, St, Ot) is the state vector, pt = (px,t, py,t, pz,t) is the position,

4 't is the heading, LD is the lift-to-drag ratio, and wmax is the maximum turning rate.

The parafoil velocity v is a simple function of the parafoil altitude, while st is a fifth-

order state vector with dynamics (A, B, C, D) corresponding to the lag dynamics of

the parafoil [98].

The wind disturbance wt = (wx,t, wy,t, wz,t) is modeled as the multi-modal linear

dynamics [112]

wtri = W + (I + dtAc)(wt - T) + dtBcvt, V c C (4.23)

where W is a 3-D mean wind estimate computed via a finite impulse response fil-

ter [112], vt ~ M(0, I) is zero-mean, unit-variance Gaussian noise, and (Ac, Bc) are

dynamics specific to each of the NC wind classes.

The wind classes are identified by performing DP-means clustering on a set of

features extracted from live airdrop data, partitioning the airdrop data [112]. For

wind class c, the (Ac, B,) are then chosen to fit the empirical data for wind profiles in

that class. For the 2D wind models used in this work, AC = acI and Bc = 0cI. Online
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wind classification is performed via SVM classification, identifying which version of

(4.23) is used to augment the parafoil model (4.22).

Even though the combined parafoil/wind dynamics are nonlinear, the effect of

the wind disturbances on the dynamics is linear, such that a simple analytical state

distribution can be derived. By defining the 2D variation state

(4.24)

the variation dynamics take the form [112]

1 0 dt 0

0 1 0 dt
6xt+1 = xt +

0 0 1+dtae 0

0 0 0 1 +dtae

A

0 0

0 0

dt3 0

0 dte

vt. (4.25)

Because this is a linear Gaussian system, all future state distributions take the form

xt C .A(Rt, Q,,). As in the original formulation of CC-RRT with nonlinear dynamics

(Section 3.5), xt is computed through direct simulation of (4.22)-(4.23), while the

covariance Q, can be written in implicit form

Q~ AQ 1 A + m I (4.26)

with A and B defined appropriately [112].

The covariance samples used for analytic CC-RRT

of the position covariance

Pxt= [1

0

0

1

0

0

0
x QX, x

0

are then equi-spaced samples

1 0

0 1

0 0

0 0

(4.27)
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In practice, the N, covariance samples are placed on one or more uncertainty ellipses

for fixed --values. Figure 4-9 shows an example of the covariance samples (black)

generated for an example parafoil trajectory (orange).

In analytic CC-RRT, each simulated trajectory within the tree uses the parafoil

dynamics (4.22) and wind model (4.23), written in shorthand model form as

Xt+k+l|t f (Xt+klt, Ut+klt, Wt+klt), (4.28)

Wt+k+llt w w t+k( t , ,Wt, 0)- (4.29)

At simulation timestep t + k and execution timestep t, denote the mean of the

position distribution as (Pfx,t+klt, PY,t+k~t,fPz,t+kIt), and the location of the jth covariance

sample as (PfX,t+klt +P +klt I Py,t+klt + 6Pyt+kt , Pz,t+klt). A path-wise chance constraint

(3.6) is imposed, and approximated as Pcollide < 1 - 6p, where [98]

N,' k

Pcollide A z,t+i~t T (prrt'iit + ,t+it + pi(4.30)
Nj=1I i=0 ~l)] (.0

li[] is the indicator function, and T(px, pY) is the terrain map being used. A node is

considered to have landed on the terrain if Pcollide > 1 -P or the nominal trajectory

intersects the terrain, i.e.,

Pz,t+klt > T (xtW k t ,Py,t+kt) . (.-

The tree expansion step and execution loop for Analytic CC-RRT are presented

in Algorithms 7 and 8, respectively [98]. Due to its sampling-based nature, the

analytic CC-RRT algorithm is designed to handle arbitrary initial altitudes, approach

geometries, and terrain surfaces. Additionally, through the use of wind modeling and

covariance sample collision-checking, analytic CC-RRT is robust to significant wind

disturbances which may be highly dynamic throughout terminal approach, including

updrafts and downdrafts.

For the cost function, analytic CC-RRT uses (3.61) with 0 - 0 and of equal to a
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Algorithm 7 Analytic CC-RRT: Tree Growth

1: Take a sample xsamp from the environment
2: Identify the m nearest nodes using heuristics
3: for m < M sorted nearest nodes do
4: Na,- current node, (Rt+klt, wt-kt) <- final vehicle and wind state of Nnea,

5: Pcollide <- fraction of feasible covariance samples after Nnear
6: while Pcollidc < 1 - 6p and (4.31) true and Rt+klt has not reached Xsamp do
7: Select input Ut+kit E U
8: Simulate (it+k+1t, wt+k+1it) using (4.28),(4.29)
9: Create intermediate nodes as appropriate

10: Compute/retrieve Pt+k+lt using (4.26)
11: Compute Pcollide using (4.30)
12: k <- k + 1
13: end while
14: for each identified node N do
15: Add N to tree
16: Try connecting N to XG
17: end for

18: end for

reachability-based cost-to-go estimate [98]. Inputs are selected in line 7 of Algorithm

7 based on a reference model which generates circular arcs to connect existing nodes

to new samples [98].

Figure 4-9 shows a screenshot of an analytic CC-RRT simulation in progress. The

planner constructs a tree of feasible trajectories (teal), and executes a path (orange)

which guides the parafoil (blue) to land on the terrain (background; changes from

green to red with increasing altitude) at the goal (green circle).

4.4.1 Analytic CC-RRT Example

This section reviews simulation results from Luders et al. [98] demonstrating the ef-

fectiveness of analytic CC-RRT in improving average and worst-case accuracy relative

to the state-of-the-art on complex terrain. Additional simulation results can be found

in that work which demonstrate the algorithm's invariance to terrain and initial alti-

tude, as well as the superiority of the composite wind model and cost-to-go over their

individual components alone.

Three algorithms are compared throughout this section:
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Algorithm 8 Analytic CC-RRT: Execution

Require: Initial vehicle state x1 , initial wind measurement w1 , goal state XG

1: t <- 0, xt <- xI, wt +- wI
2: Initialize tree with node at xt
3: while xt 0 X do
4: Update current vehicle state xt, wind measurement wt, and mean wind estimate

Wt
5: Propagate mean state xt by computation time -+ xt+At using (4.28),(4.29)

6: Update tree feasibility and costs
7: while time remaining for this timestep do
8: Expand the tree by adding nodes (Algorithm 7)
9: end while

10: Use cost to identify lowest-cost path {Nroot, . . , Ntarget}

11: if at least one path exists then
12: Apply best path
13: else
14: Apply "safe" action
15: end if
16: t - t + At

17: end while
18: Mark vehicle as landed at xt

" RRT with mean wind, which represents a nominal RRT planner in which uses

the mean wind estimate W, but assumes no future wind variation (i.e., 6w - 0,

wt = W).

" Analytic CC-RRT, i.e., Algorithms 7-8, with 6, = 0.9.

" BLG, or band-limited guidance, which utilizes band-limited control to ensure

accurate tracking and prediction, as well as knowledge of the mean wind esti-

mate W and replanning to account for system disturbances [99].

To simplify comparisons, a fixed number of iterations are performed for each algo-

rithm during each 1-Hz planning cycle, with the number of iterations chosen for BLG

and the RRT-based algorithms such that both use a comparable amount of compu-

tation on each planning cycle. The figure of merit in these simulations is the miss

distance, i. e., the 2D distance between the location where the parafoil lands and

the desired/target location; the mean and worst-case values of miss distance are of

particular interest.
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Figure 4-9: Example of analytic CC-RRT

For each simulation trial, each algorithm is tested on a random wind profile and

initial condition. The parafoil state is initialized 500 meters above the goal, with a

random heading and lateral distance randomly chosen between 100 and 400 meters

from the goal. The terrain used in the simulations is the 1.5 km x 1.5 km valley

terrain pictured in Figures 4-9 and 4-10. This represents a particularly challenging

terrain for the parafoil terminal guidance problem, for several reasons. First, the slope

of the valley is greater than the glide-slope of the parafoil, limiting planning options

at lower altitudes by making approach from either side impossible. Second, the large

low-altitude regions away from the goal (bottom-right and top in Figure 4-10(a)),

where terrain collisions can be avoided for longer path durations, are likely to lead to

terrain interactions as the parafoil's path crosses in and out of those regions. Finally,

by placing the goal near a terrain "bottleneck," planning becomes more difficult near

the goal compared to planning away from the goal.

Table 4.2 shows the statistics for each algorithm over 500 trials on the valley terrain

Analytic CC-RRT demonstrates matching or improved landing accuracy, relative to

RRT with mean wind and BLG, at nearly all percentiles. Both RRT-based algorithms

show significant improvement over BLG for all but the worst-case trials. The mean

landing accuracy for both is lower than BLG by a factor of 2. This ratio continues
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Figure 4-10: Valley terrain used in Analytic CC-RRT simulations

Table 4.2: Miss distance data for valley terrain comparison, over 500 trials (in meters)

Algorithm Mean StDev 50% 80% 90% 95% 98% Max

RRT with mean wind 33.9 49.3 19.3 56.6 79.7 101 151 548

Analytic CC-RRT 30.8 32.8 18.7 52.5 75.8 103 126 218

BLG 63.5 89.0 37.9 66.1 153.2 226.9 430.5 581

approximately up to the 95th percentile, and increases to a factor of 3-4 by the 98th

percentile (Table 4.2). In particular, about 12% of BLG trials have an miss distance

exceeding 100m, whereas only about 5% of the RRT-based trials have a miss distance

exceeding 100m. The BLG algorithm also demonstrates a "long tail": 4% of trials

have a miss distance of 300m or worse, while the worst-case trial misses by 581m.

Analytic CC-RRT demonstrates superior performance over both RRT and BLG

over the worst 5% of trials. Up to the 95th percentile, performance is similar be-

tween the two algorithms, though analytic CC-RRT shows slight improvement at

most percentiles (and a better mean accuracy). This suggests that for those trials in

which terrain interaction is unlikely, the robustness-based enhancements in analytic

CC-RRT do not significantly influence performance relative to RRT with mean wind

prediction alone. However, the two CDF curves diverge beyond the 95th percentile.

At the 98th percentile, analytic CC-RRT miss distance is 17% lower than RRT. By the

worst-case trial (i.e., 99.8%), analytic CC-RRT miss distance is 60% lower. All trials

of analytic CC-RRT have an accuracy of 218m or less, whereas RRT demonstrates
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some trials exceeding 500m (Table 4.2). This "shorter tail" for analytic CC-RRT,

relative to both RRT with mean wind and BLG, demonstrates the robustness of the

algorithm to pathological uncertainty conditions, which might otherwise drive the

vehicle prematurely into the terrain.
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Chapter 5

Asymptotically Optimal Planning

with Probabilistic Robustness

This chapter presents a novel sampling-based planner, CC-RRT*, which generates

robust, asymptotically optimal trajectories in real-time, subject to process noise,

localization/initial state error, and dynamic and/or uncertain environmental con-

straints. As with CC-RRT (Chapter 3), probabilistic feasibility is guaranteed for

linear Gaussian systems by using trajectory-wise constraint checking of RRT [53]

to efficiently bound the risk of constraint violation online [46]. However, CC-RRT*

builds upon the RRT* framework [56, 57] to provide guarantees on asymptotic opti-

mality of the lowest-cost probabilistically feasible path found by "rewiring" the tree

toward lower-cost paths, with the tradeoff of requiring a steering law. The resulting

real-time algorithm asymptotically converges toward minimum-length, dynamically

feasible trajectories which satisfy all time-step-wise and path-wise probabilistic fea-

sibility constraints specified, even in complex environments. Alternatively, a novel,

risk-based objective function is posed which allows the user to trade-off between min-

imizing path duration and risk-averse behavior. This objective uses the same risk

bounds computed to check the probabilistic feasibility constraints (Chapter 3), such

that no additional computation is required, and is shown to be admissible as an RRT*

objective. Unlike RRT*, CC-RRT* can model soft probabilistic feasibility constraints

via the risk-based objective, in addition to hard probabilistic feasibility constraints.
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5.1 The CC-RRT* Algorithm

The CC-RRT* algorithm builds upon the CC-RRT algorithm (Chapter 3), which en-

ables the use of probabilistic constraints [46]. As is the case with CC-RRT, CC-RRT*

grows a tree of state distributions known to satisfy an upper bound on probability

of collision. At the same time, the CC-RRT* algorithm has been designed to fit

into the constraints of the RRT* framework [56], such that guarantees on asymptotic

optimality are maintained. The RRT* framework expands on RRT by "rewiring"

connections within the tree, in two ways. First, anytime a feasible connection to a

new sample is identified, rather than adding that connection directly to the tree as a

new node (as in RRT), all "nearby" nodes (in terms of a metric defined below) are

also checked. The lowest-cost, feasible connection among all such nodes is added to

the tree. Second, a connection is attempted from this new node to all nearby nodes.

If such a connection is feasible and achieves a lower cost than the existing path to that

node, the existing path is replaced. The CC-RRT* algorithm expands this framework

by checking probabilistic feasibility, using the chance constraints (3.5) and/or (3.6)

via the form (3.63)-(3.64).

For each simulated trajectory, the CC-RRT* algorithm propagates the predicted

state distribution, which under the assumption of Gaussian uncertainty is itself Gaus-

sian, via (3.9). Thus, at each timestep of each simulated trajectory, it is only necessary

to propagate the state conditional mean (3.12) and covariance (3.13), using the model

form (3.71)-(3.72). In this manner, the distribution mean i3t replaces the role of the

true state x, in the nominal RRT algorithm.

The CC-RRT* tree is denoted by T, consisting of T1 nodes. Each node N of

the tree T consists of a sequence of state distributions, checked for probabilistic

feasibility. As described above, each state distribution can be characterized by a

distribution mean - and covariance P. The terminal mean and covariance of a node

(i.e., at the end of its sequence) are denoted by x[N] and P[N], respectively. A

sequence of means and covariances will typically be denoted by & and fI, respectively.

The cost function takes the form (3.61), with of = 0, and is utilized in two forms
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within the CC-RRT* algorithm. Let t[N] denote the terminal timestep for node N.

The notation

t[N]

J[N] = dt E f(t,Pt), (5.1)
t=o

denotes the entire path cost from the starting state to the terminal state of node N,

where dt is the timestep duration and f is the per-timestep cost objective specified

by the user. Alternatively, for the state distribution sequence (&, fl), the notation

AJ(&, f) = dt f (X, P) (5.2)

denotes the cost of that sequence. Eq. (5.1) can be constructed recursively by utilizing

(5.2): if (b, 1) denotes the trajectory of node N with parent Nparent, then

J[N] = J[Nparent] + A J(&, 11). (5.3)

As is the case for algorithms proposed in previous chapters, the CC-RRT* algo-

rithm consists of a tree expansion step and execution loop. The tree expansion step

for CC-RRT* is given by Algorithm 9. It starts with the current tree T at timestep t

(line 1 of Algorithm 9) and seeks to add additional nodes to the tree, possibly remov-

ing some in the process via rewiring. First, a state is sampled from the environment

via the "Sample" function (line 2). The function x = Sample() must return inde-

pendent and identically distributed samples from Xfree, the obstacle-free portion of

the state space [571. It is assumed in the problem statement (Section 3.1) that all

state elements are bounded. Thus, the approach utilized here is to sample each state

element independently, with each realization having a non-zero probability, then filter

out any infeasible samples.

Next, a node in T nearest to T sanp, Nnearest, in terms of some distance metric is

identified via the "Nearest" function (line 3). The function N = Nearest(T, x) uses

157



Algorithm 9 CC-RRT*, Tree Expansion

1: Inputs: tree T, current timestep t
2 : Xsamp <- Sample()
3: Nnearest +- Nearest('T, xsamp)

4: (a, f) <- Steer(-[Nearest], P[Nnearesti, Xsanp)

5: if ProbFeas(&, H) then
6: Create node Nmin{d, F1}

7: PAear <- Near(T, Tsamp, IT)
8: for Nnear E .near\Nnearest do
9: (&, H) <- Steer(7[Near], P[Nnear], xsamp) _

10: if ProbFeas(d, H) and J[Near] + AJ(&, H) < J[Nmin] then

11: Replace Nmin with new node Nmin{, H}

12: end if

13: end for

14: Add Nmin to T

15: for Nnear E Xnear\Ancestors (Nmin) do
16: (&, n) +- Steer(5[Nmin], P[Nmin], X[Nnear])

17: if ProbFeas(d, n) and J[Nmin] + AJ(&, H) < J[Nnear] then
18: Delete Nncar from T
19: Add new node New{&, H} to T
20: end if

21: end for

22: end if

the Euclidean norm metric via [56]

Nnearest = Nearest(T, x) = arg min x - 2[N]fl. (5.4)
NcT

The Steering law "Steer" is then applied to steer the terminal state mean 2[Nnearest]

to Xsamp (line 4). The function (a, H) = Steer(x, P, y) returns a sequence of state

distributions, characterized by their means (&) and covariances (H), which originates

at state x and terminates at state y. The state distributions must be dynamically

feasible: the mean sequence C must satisfy (3.71) with initial mean x, while the

covariance sequence H must satisfy (3.72) with initial covariance P. Previous work [56]

dictates that a function be used of the form

z = Steer(x, y) = arg min ||z - y11 (5.5)

s.t. H1z - XI1 < P,
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Algorithm 10 ProbFeas

1: Inputs: dynamically feasible K-time-step sequence of means d, covariances H

2: for k = 1 to K do
3: (5, P) +- kth element of (&, fl)
4: Compute At (, P) using (3.59) and A(2, P) using (3.60)
5: if A(, P) > 1 - 6p or At(2, P) > 1 - 6, then
6: return false
7: end if
8: end for
9: return true

for some prespecified p > 0. The formulation used here requires a full path to

be generated from x to y when one exists, such that z = y and this condition is

automatically satisfied.

The resulting distribution sequence is then checked for probabilistic feasibility via

the "ProbFeas" function (line 5). The Boolean function ProbFeas(&, LI), detailed in

Algorithm 10, returns true if the distribution sequence (&, H) satisfies the proba-

bilistic feasibility conditions (3.63)-(3.64), and f alse otherwise. In particular, the

subroutine iterates over all elements of (&, U7) (Algorithm 10, line 2). For the kth ele-

ment with mean X and covariance P (line 3), At(5, P) and/or A(X-, P) (depending on

which chance constraints are being enforced) are computed (line 4). It is assumed that

the values of At at previous timesteps are available for the computation of A(X, P),

typically achieved by storing incremental values along each tree trajectory. If either

value exceeds the maximum allowable risk (line 5), the subroutine returns f alse (line

6); if this does not occur for any state distribution, the subroutine returns true (line

9).

Returning to Algorithm 9, if (a, H) is probabilistically feasible (Algorithm 9, line

5), a new node with that distribution sequence is created (line 6), but not yet added

to the tree T. Instead, nearby nodes are identified for possible connections via the

"Near" function (line 7). The function , = Near(T, x, n) returns a subset of nodes

M C T, and is considered a generalization of Nearest to return multiple nodes, not

just one. To enable probabilistic asymptotic optimality guarantees, CC-RRT* uses
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the implementation [57]

.A = Near(T, x, n) {N E7 [ [N] - < r,}, (5.6)

where r, is a radius that decreases with the number of tree nodes n, chosen to enforce

asymptotic optimality conditions (Section 5.2).

Once the nearby nodes .J are identified, CC-RRT* seeks to identify the lowest-

cost, probabilistically feasible connection from those nodes to Xsamp (Algorithm 9,

lines 8-13). For each possible connection, a distribution sequence is simulated (line

9). If the resulting sequence is probabilistically feasible, and the cost of that node -

represented as the sum J[Nnear] + AJ(C-), via (2.89) - is lower than the cost of Nmiii

(line 10), then a new node with this sequence replaces Nmin (line 11). The lowest-cost

node is ultimately added to T (line 14). Lines 7-13 of Algorithm 9 are collectively

referred to as the connect-nearby step.

Finally, a rewiring operation, known as the rewire-nearby step (Algorithm 9, lines

15-22) is performed based on trying connections from Nmin to nearby nodes. A

distribution sequence is sampled via the steering law from Nmin to each nearby node

Nnear (line 16). If the resulting sequence is probabilistically feasible, and the cost of

that node is lower than the cost of Nnear (line 17), then the new distribution sequence

is chosen to replace Near. This rewiring is performed by first removing Nnear from

the tree T (line 18), then adding the new node to 7T in its stead (line 19).

The CC-RRT* algorithm's execution loop, which is performed at time intervals

of At, is given by Algorithm 11. During each cycle, the objective of this algorithm is

to identify the lowest-cost path in the tree that is still probabilistically feasible, and

use the remaining time to grow the tree.

If new observations are available for the vehicle's current state and/or environment

(such as movement of dynamic obstacles), these may be applied to the tree first,

resulting in the update of the current root node Nroot (Algorithm 11, line 3). If

the terminal covariance P[Nroot] changes, it should be propagated through the rest

of the tree T. For the duration of the timestep, the tree is repeatedly expanded
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Algorithm 11 CC-RRT*, Execution Loop

1: Initialize tree T with node (sO, P 0 ) for t = 0
2: while 2t V Xgoai do
3: Use observations, if any, to repropagate state distributions

4: while time remaining for this timestep do

5: Expand the tree by adding nodes (Algorithm 9)

6: end while
7: Identify path {Nroot, ... , Ntarget} that minimizes (5.1)
8: if no paths exist then
9: Apply safety action and goto line 17

10: end if
11: for each node N{, U} in path do

12: if ProbFeas(&, UL) f alse then
13: Remove infeasible portion of path and goto line 7
14: end if
15: end for
16: Execute path
17: t +- t + At

18: end while

using Algorithm 9 (lines 4-6). Following this tree growth, the objective (5.1) is

used to identify the lowest-cost path in the tree (line 7). In practice, only paths

which terminate in the goal region Xgoai are considered; if no such path exists, the

path which terminates closest to the goal region (in terms of Euclidean distance) is

selected.

Once a path is chosen, the path is re-checked for probabilistic feasibility [105]

against the current constraints (lines 11-15) If this path is still probabilistically fea-

sible, it is chosen as the current path to execute (lines 16). Otherwise (line 12), the

portion of the path that is no longer probabilistically feasible is removed (line 13),

and the process is repeated until either a probabilistically feasible path is found or

the entire tree is pruned. If the latter case occurs (line 8), the system has no path

to execute, and some "safety" motion primitive (e.g., come to a stop) is applied to

attempt to keep the vehicle in a safe state (line 9).

By using the RRT* rewiring mechanism with an exact steering law, all descendants

of a rewired node remain dynamically feasible. As in that algorithm, the reduced

path cost at the rewired node N 0 ,w should be propagated downward through all

descendants. On the other hand, the terminal covariance/risk may change due to
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rewiring, implying that it should also be propagated to - and probabilistic feasibility

re-checked at - descendant nodes. Even if all descendant nodes remain feasible, it

may still be desirable to update the descendant portion of the tree to ensure the risk

bounds are accurate.

Because all uncertainty covariances can be computed and time-indexed off-line,

the probabilistic feasibility re-checks can be computed efficiently. Additionally, under

certain assumptions, uncertainty can be guaranteed to never increase due to rewiring,

such that feasibility re-checks may not not necessary. This is used in the proof of

CC-RRT* probabilistic completeness in Section 5.2 below. In practice, however,

the algorithm remains effective even if full tree updates are not performed at every

timestep.

5.2 Analysis

This section establishes the probabilistic completeness and asymptotic optimality

of CC-RRT* under appropriate assumptions. Before proceeding further, however,

several theoretical properties of solutions to problem (3.C), used in the context of

CC-RRT*, must be established. First, the robust feasibility of CC-RRT* - already

established via Theorem 3.3, since both algorithms use the same constraint set (3.61)

- is re-stated.

Theorem 5.1 (Robust Feasibility of CC-RRT* Risk Evaluation). If the path

of state distributions (2o, PO), (21, P), ... ,( ,, Pxf) specified by the input sequence

,U1 ,.. . , ut,1 is feasible for problem (3.C) as sampled by CC-RRT*, then it is also

feasible for problem (3.A).

Proof. See proof of Theorem 3.3. E

Lemma 5.2 (Feasibility of Distribution Mean). Suppose (xt, P, P,3 ) is feasible

for constraints (3.62)-(3.64) of problem (3.C), where 6,6, e [1/2, 1]. Then 2, e Xt.

Proof. Because the error function returns values in the open interval (--1, +1), then

from (3.55)-(3.56) Agg, Adot E (0, +1). Thus all terms in the left-hand sides of (3.57)-
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(3.60) are positive.

From (3.63)-(3.64), if 6,, c E [1/2, 1], then At, A E (0, 1/2]. Because all terms of

(3.59) are positive, this implies that Aot < 1/2 and Ajt < 1/2 V j E Zi,,.

Because all terms of (3.58) are positive, then Aot < 1/2 implies that Ajot(st, Px,)

1/2. Incorporating this inequality into (3.56) and rearranging yields

erf 1io > 0 t = io - > 0 (5.7)
IV2aTO(Px,)aio1 V2aTOt Px,)aio

e- 0= (cio - t) > 0

= a7O (t - cio) < 0 V E ZiE

- t E X. (5.8)

Consider (3.57) for each j E Ni,. Since Ajt < 1/2, there exists at least one

i* E 1,..., nj such that A t(X- P,, P 3cj) < 1/2. Incorporating this inequality into

(3.55) and rearranging yields

erf [ *j(t2jt) 1 0 -Yi-jt [Jt 2jt) 0 (5.9)

L a ( Pxt +JPc, ) ai 2a, j ( Px, + Pc,,)ai-j

-> a(Pt - ci~jt) > 0

-> V1 Xit, (5.10)

where the last relationship is implied by the inequality satisfying the jth obstacle's

disjunction of constraints. Together, (5.8) and (5.10) imply (2.5), i.e. Xit E Xt. U

Lemma 5.3 (Feasibility under Relaxed Constraints). Suppose (it, P2,, Pep) is

feasible for constraints (3.62)- (3.64) of problem (3. C), where 6, 6p E [1/2,1]. Con-

sider (5t, P',Pc) where Px, < P, and Pc', < Pcjt V j E Z1,no. Then (?, P C, ')

is feasible for constraints (3.62)- (3.64) of problem (3.C).

Proof. From Lemma 5.2, it is known that -t E Xt. For obstacle j, denote the

indices of the obstacle inequality constraints that are not satisfied by 7 t as =

{I c Zi,n, I a79( t - cijt) > 0}; since St V Xj, Ij must be non-empty. This implies
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that -Yiot (as defined in (5.7)) is always positive, and 7ijt (as defined in (5.9)) is always

positive for i E li.

In moving from , Pe to P, since P, P, and P' P Pe , the denomina-

tors of ^/jot and ^Yijt (for i E fI[) are non-increasing. Since the numerators are positive,

this implies that 7Yot and yijt (for i C fII) are positive and non-decreasing. Rewrite

(3.55) and (3.56) as

1
Ajt (i2, P2,, Pc) = (1 - erf [yi3 t]) , (5.11)

1
Aiot(t, )= - (1 - erf [7ot]) . (5.12)

2

Recall that the error function is monotonically increasing, taking values in (-1, 0) for

negative inputs and (0, 1) for positive inputs. If 'yiot and -Yijt (for i E 1j) are positive

and non-decreasing, this implies that Aijt (for i E 1j) and Ajot are non-increasing

and within the range (0, 1/2).

For i j I, the numerator of -ijt is negative, implying that -Yijt is negative. Thus,

in view of (5.11) and the discussion above, Aijt E (1/2, 1) V i _E I. As a result,

when considering the minimization in (3.57), values of Aijt with i E lI will always be

dominated by values of Aijt with i E I, for which Aj3 t E (0, 1/2). Thus (3.57) can

be rewritten as

At(X-t, Px,, Pc ) = min Aijt(t, Pxt, Pcjt). (5.13)
iE~j,i=1,..,nj

If A23 t (for i C 1j) and Ajot are non-increasing, then Ajt and Aot are non-increasing

by (3.58) and (5.13). This, in turn, implies that At (t, Px,, Pct) is non-increasing by

(3.59), and A(St, P, Pct) is non-increasing by (3.60).

Finally, it is given that the values of At and A for (it, Pxt, pc,t) satisfy constraints

(3.62)-(3.64) of problem (3.C). Since At and A have been shown to be non-increasing,

the values of At and A for (it, P' , P') must be the same or smaller V t - implying

that constraints (3.62)-(3.64) of problem (3.C) are still satisfied. M

Additional assumptions are utilized for CC-RRT* probabilistic completeness, due
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to the potential of its connect-nearby and rewire-nearby steps (Section 5.1) to modify

the uncertainty levels at tree nodes.

Assumption 5.4. All of the following conditions are satisfied:

1. All obstacles are static, such that -t = - V t and Xt is the same for all t.

2. In the objective function (3.61) of problem (3.0), Of 3 0 and $ = dt.

3. For t1 < t2, Pt, < P"2 and Pc, < Pen .

Assumption 5.4.1 does not necessarily imply that Pc, = P, V t. Assumption

5.4.2 implies that the objective function seeks to minimize path duration, subject to

the input constraints (3.62) and probabilistic state constraints (3.63)-(3.64).

Finally, Assumption 5.4.3 is in place to ensure that the covariance of a node cannot

increase due to either the connect-nearby or rewire-nearby step in CC-RRT*. This

assumption is typically not restrictive in practice; further, the algorithm typically

performs well even if several of the above theoretical assumptions are not satisfied.

Theorem 5.5 (Probabilistic Completeness of CC-RRT*). Suppose Assump-

tions 3.4 and 5.4 are satisfied. Then CC-RRT* is probabilistically complete for prob-

lem (3.C).

Proof. CC-RRT* performs two additional steps in its tree expansion routine relative

to CC-RRT (Section 3.3.2): the connect-nearby step (Algorithm 9, lines 7-13) and

the rewire-nearby step (Algorithm 9, lines 15-22).

In view of both Assumption 3.4.3 and Theorem 3.5, the state distribution se-

quence {(7, PaO), (-1, Pa ),..., (tf,, Pf )} has a non-zero likelihood of being con-

tained within a CC-RRT tree as the number of samples approaches infinity. If the

same sample sequence is applied in CC-RRT*, then its tree will contain the same set

of state distributions ((X0, PX0 ), (i, P 1),..., ( tf, Pxf)) as the number of samples

approaches infinity.

For completeness, it is sufficient to show that neither the connect-nearby nor

rewire-nearby steps in CC-RRT* can increase the covariances of any tree nodes.
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Indeed, suppose that some vertex ( j, P,,) of the path specified in Assumption 3.4.3

is modified by one of these steps, such that the (feasible) path from Xo to X3, may differ

from {(XO, PX0 ), (X1, P,1 ), .. . , (Xj, P,)}. If these steps cannot increase covariances,

then the covariances at descendants of 2j either remain the same or are reduced.

By Lemma 5.3, the remaining path segment {( , ( , P tf)}

remains feasible, such that probabilistic completeness is maintained.

Via Assumption 5.4.2, i.e., f(.) -1 in (5.1), i.e. path cost equals path duration.

As a result, either connect-nearby or rewire-nearby will strictly decrease the termi-

nal timestep t of any affected node and its descendants. By Assumption 5.4.3, the

covariances will also decrease; coupled with Lemma 5.3, this completes the proof. E

The proof of asymptotic optimality follows a similar path to the proof in Karaman

and Frazzoli [56]. However, because the feasible state space is a function of the

planning timestep, the definitions must be modified accordingly.

Denote Xt as the set of all states 2t satisfying constraints (3.63)-(3.64) at planning

timestep t, with corresponding state covariance P, A state x C Xt is a 6-interior

state of Xt if the closed ball of radius 6 centered at x lies entirely inside Xt. The 6-

interior of Xt is defined as int3 (Xt) ={x c Xt 1 B(x; 6) C Xt}, where 3 (x; r) denotes

a ball of radius r centered at x. A robustly feasible path {(2O, PO), ... , (2t,, P, )}

is said to have strong 6-clearance if iit c int6(Xt) V t E Zo,tf. A robustly feasible

path p = {(20, PxO), ... , (t,, P f)} is said to have weak 6-clearance if there exists a

path p' = {(2', PXO),..., (2'f, P )} with strong 6-clearance, and a homotopy V) with

0 (0) = p, 0 (1) = p', and for all a C (0,1] there exists 6, > 0 such that 0 (a) has

strong 6,-clearance [56].

Denote the cost of path p via objective (3.61) of problem (3.C), with Assumption

5.4.2, as J(p). The cost function is assumed to be admissible as established in Ref. [57]

and discussed further below (Section 5.2.1) - this is clearly the case for 0 _ dt as

assumed here. A path p* that solves problem (3.C) is considered a robustly optimal

solution if p* has weak 6-clearance and, for any sequence of robustly feasible paths

{pn} 7zo,. with limn, 0 p, = p*, then limn,,c, c(pn) = c(p*) [56].
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Assumption 5.6. All of the following conditions are satisfied:

1. The set of all points traversed by an optimal trajectory has measure zero [56.

2. The nearby node radius r used in line 7 of Algorithm 9 is a function of the

number of tree nodes, N, and is chosen to be

r, = min ylo )
n

S> ( a2 (1+

where sx is the dimension of the state space, p(S) is the volume of set S, (d is

the volume of the d-dimensional unit sphere, and r/ > 0.

The definition of y* used by Karaman and Frazzoli [56] includes p(Xfrec), where

Xfrcc is the volume of the collision-free space, rather than p(Xo). However, since Xo

implies the state constraints at t = 0, where no tightening is yet needed for robustness,

the formulations are equivalent.

Theorem 5.7 (Asymptotic Optimality of CC-RRT*). Suppose Assumptions

3.4, 5.4, and 5.6 are satisfied. Then CC-RRT* is asymptotically optimal for problem

(3.C). In other words, for any realization of problem (3.C) that admits a robustly

optimal solution with finite cost J*, then

P lim supJ = J = 1,

where Jn denotes the cost of the lowest-cost path in the CC-RRT* tree after n tree

expansion steps.

Proof. The proof of asymptotic optimality established in Theorem 38 of Karaman

and Frazzoli [56] can also be utilized here, with minor modification. As is the case

there, it is assumed that r/ is chosen to be sufficiently large. Additionally, Lemma 5.3

and the resulting Theorem 5.5 establish that the graph construction process in the

proof of Theorem 38 [56] maintains probabilistic completeness.
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The primary remaining task in this modified proof is to show that the choice of

nearby node radius in Assumption 5.6.2 is valid. To fit into the framework of Theorem

38 [56], the choice of -y at each planning timestep t must satisfy

>SX> (2p(X )

However, under the assumptions of Theorem 5.5, it is straightforward to show that

p(Xt) is non-decreasing in t, as each subsequent planning timestep further constrains

the space of feasible conditional means. As such, choosing -y > -y* for r(N) implies

that -y > yt, validating this approach to proving asymptotic optimality for problem

(3.C). U

5.2.1 Risk-based Objective

The alternative cost function presented in this section is a novel feature of this work, as

it explicitly incorporates the risk of constraint violation inherent to chance constraints.

Using (5.1), the cost function takes the form

f(X ,Pt)=CT +CRAt(-t,Pt)+CM max At tt)), (5.14)
i={0,}

where CT > 0, CR > 0, Cm > 0, CTCRCM > 0. The cost component with coefficient

CT seeks to minimize time/path duration. The cost component with coefficient CR

represents the accumulated risk across all timesteps, as measured by the risk bound

At(7t, Pt). Finally, the cost component with coefficient Cm penalizes the maximum

risk bound encountered at any timestep along the path.

It is now shown that, in the context of Ref. [57], the cost function (5.14) is an

admissible cost heuristic for RRT*, and thus CC-RRT*.

Theorem 5.8 (Risk-based Objective Admissibility). The function (5.14) is an

admissible cost heuristic for CC-RRT*.

Proof. Using the framework established in the work of Karaman and Frazzoli [57],
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there are three additional conditions that must be satisfied by (5.14) to establish

admissibility within RRT*, and thus CC-RRT*. To simplify notation, this proof

uses simply & to denote a path segment and AJ(&) its cost, rather than (a, 1I) and

AJ(a, 11) from (5.2).

First, the cost must be monotonic; that is, if ail 2 denotes the concatenation of

path segments d1 and &2, then AJ(&1 ) A J(&1 1&2 ). The cost function (5.1) with

(5.14) is a time integral of a quantity which is always non-negative; thus the cost is

monotonic.

Second, the cost must be additive; that is, AJ(dd 2) = AJ(&i) + AJ(&2 ). The

cost function is also clearly additive, as the cost function over any path segment

can always be decomposed into the sum of cost functions over partitions of the path

segment, by splitting the timesteps. (Finding a higher-risk state further down a path

does not retroactively increase the value of the maximum risk at previous timesteps.)

Third, the cost must be Lipschitz continuous: there exists some K such that

IAJ( 1) - AJ(&2)1 < K sup IJ1C(T) - C-2(T)112
TC[O,1]

for all paths ul and O2 , parameterized by w. The CT-component of the cost function

is clearly Lipschitz continuous. For the CR-component, smooth shifts in the state un-

certainty distribution yield smooth variations on the risk of collision with a bounded

slope via (3.55)-(3.56) and thus are also Lipschitz continuous. The CM-component is

essentially a maximum operator on the CR-component, so it too is Lipschitz contin-

uous.

As all three conditions are met, (5.14) is an admissible heuristic. U

Theorem 5.8 implies that the risk-based objective (5.14) provides an alternate

means of converging toward optimal paths within the space of feasible solutions iden-

tified by CC-RRT*, utilizing knowledge of the risk environment.

In the results that follow, two distinct variations of CC-RRT* are considered,

depending on whether or not (5.14) is applied (with positive values of C? and/or

Cm). The variant of CC-RRT* in which the risk-based objective is used is referred to

169



as CC-RRT*-Risk. As demonstrated below, each variant has its own strengths and

weaknesses which should be considered carefully.

5.3 Simulation Results

This section presents simulation results which demonstrate the effectiveness of the

CC-RRT* algorithm in efficiently identifying smooth, robust trajectories subject to

both internal and external uncertainties. Applying CC-RRT* with a time-based ob-

jective (e.g., CR, CM = 0) is shown to generate trees of trajectories satisfying all

robustness chance constraints, yielding an asymptotically optimal trajectory that is

both probabilistically and dynamically feasible. As the likelihood of constraint viola-

tion tends to increase with proximity to obstacles, the chance constraints will typically

be active in the final trajectory, with solutions often approaching the maximum al-

lowable risk. Alternatively, by incorporating measures of risk within the objective

(e.g., CR, CM > 0), the resulting trajectories are shown to demonstrate more risk-

averse behavior, avoiding riskier actions unless deemed necessary to reduce traversal

time (as determined by the relative weights of the cost coefficients). The hard prob-

abilistic constraints are still imposed in this case; however, as shown the subsequent

results, the tree shape is significantly reconfigured to minimize time in risky regions

as risk-based penalties become more prominent.

Six variants of the RRT algorithm are compared throughout this section:

1. Nominal RRT, with a min-time objective;

2. RRT*, with a min-time objective;

3. CC-RRT, with a min-time objective;

4. CC-RRT-Risk, which utilizes the objective (5.14) with CT, CR, CM > 0 but

is otherwise identical to CC-RRT;

5. CC-RRT*, with a min-time objective (i.e., CT > 0, CR =Cm = 0 in (5.14));

and

170



6. CC-RRT*-Risk, which utilizes the objective (5.14) with CT, CR, Cm > 0.

Simulation results are presented for a variety of dynamics, environments, and un-

certainty conditions. First, results are provided for the case of a 2D single integrator

subject to uncertain localization, process noise, and obstacles with placement uncer-

tainty. Examples of the typical trees and solutions resulting from each algorithm are

given, illustrating key differences in their operation, as well as how the tree structure

changes as the cost objective, uncertainty environment, 6, and/or 6p is modified. On

another environment, extensive simulation trials are performed, providing statisti-

cal data on the duration, risk, and computation of paths yielded by each algorithm,

including how those parameters vary as a function of tree size. Finally, the algo-

rithm is tested for more complex dynamics and scenarios, including double integrator

dynamics, Dubins vehicles, and pursuit-evasion games.

5.3.1 Illustrative Scenario

Consider the 2D single integrator dynamics

1 0 dt 0 dt 0
Xt+i It + Ut - Wt,

0 1 0 dt 0 dt

Xt X Px]T-t T

-JT

where dt = 0.1 s. The position variables (px, pt) are constrained within a bounded,

two-dimensional environment, containing four obstacles with uncertain placement

(Figure 5-1). The velocity inputs ut = (ux, u4) are modeled as a linear approximation

of a 2-norm constraint I 5 h = 0.5 m/s, taking the form

Cos 2 U + sin (2d U4 v, VdcZ1,Dtj, Vt,
(Du Du)

where DU = 36 is the discretization level.

The system is subject to three forms of uncertainty. First, the initial state x0 is
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subject to localization error (3.2) more prominent in the y-direction,

E g( 0 , p)), p4) = 10- 5 5 0X0 C 0 X0, XO0 30

At each timestep, the system is subject to process noise (3.1) more prominent in the

x-direction,

Wt E Af(O, Pj), p(l) = 10- 5  30 0
0 5

Finally, the placement of each obstacle is itself uncertain. At all timesteps, the

displacement of the jth obstacle is governed by (3.4), where

07- 0
cjt E- AN(Fj, P(1), P = , V t

Ci 1 0 O'j

and cr > 0. In this environment (Figure 5-1 - obstacles are placed at their means

jjt), ox = 0.2 for the upper-left obstacle, aj = 0.1 for the bottom-right obstacle, and

aj = 0.001 for the other two obstacles. Thus, the upper-left obstacle is the most

uncertain, followed by the bottom-right obstacle. The system is required to satisfy

a minimum probability of constraint violation at each timestep of 6, = 0.9; no path-

wise probability bound is imposed (i.e., 6p = 0). Note that the state uncertainty will

grow without bound over time, ensuring that Assumption 5.4.3 is satisfied.

The 2D position is sampled uniformly within the bounds of the 2D environment,

with any positions that are in collision with the nominal obstacle placements being

excluded. The steering law draws a line connecting the old and new positions; the

system traverses this line at speed V. A path is considered to reach the goal is the

final position is within -0.25m of the goal location; the lowest-cost path about those

paths meeting this criterion is selected for execution. In the absence of any such path,

the path bringing the system closest to the goal is used. Finally, the nearby node

function uses a maximum radius p = 1 m.
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Figure 5-1 shows typical trees and solution paths returned by each algorithm after

5000 nodes of tree growth (via Algorithm 9). The objective is to plan a path from the

start (brown dot) to the goal (lime green circle); the minimum-cost path after 5000

nodes is shown in orange. The 2-- uncertainty ellipse is shown for the placement

uncertainty of each obstacle.

As expected, the RRT-based algorithms (Figures 5-1(a), 5-1(c), and 5-1(e)) gener-

ate trees which are relatively random and unorganized in their path structure, yielding

non-smooth paths. As RRT-based algorithms seek only to connect the nearest node(s)

in the tree to each sample, without any rewiring, most node path segments in the tree

are relatively short. In contrast, the RRT*-based algorithms (Figures 5-1(b), 5-1(d),

and 5-1(f)) attempt to rewire the tree to reduce path costs every time a new sample

is added. The resulting trees will then generate paths from the root (brown dot)

which minimize the cost of all paths from the root node, not just the one ultimately

selected. This yields a much more organized tree with longer node path segments.

Thus the cost-minimizing paths identified by each tree tend to be relatively smooth,

as demonstrated in the images.

Both RRT (Figure 5-1(a)) and RRT* (Figure 5-1(b)) identify short paths to the

goal which take the system between all obstacles. However, both algorithms do not

consider the risk of constraint violation, and thus are likely to select risky behaviors

in order to minimize path duration. In particular, the uncertainty in the placement

of the bottom-right obstacle presents a high chance of collision for the system as it

passes nearby to the left. The robust algorithms, however, only add trajectories to the

tree as long as they satisfy the time-step-wise chance constraint (3.5) with 6, = 0.8, as

enforced via chance constraints (Figures 5-1(c) through 5-1(f)). A standoff distance

containing no (probabilistically feasible) tree paths can be seen around each obstacle

and the environment boundaries, reflecting regions where the cumulative effect of

the internal and obstacle uncertainties violates the probabilistic feasibility constraint.

This buffer is larger for the more uncertain obstacles, and increases with distance from

the starting position as process noise accumulates - for example, compare the standoff

from the bottom-left and upper-right obstacles. In all cases, no probabilistically
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(a) RRT

(c) CC-RRT

(e) CC-RRT-Risk

(b) RRT*

(d) CC-RRT*

(f) CC-RRT*-Risk

Figure 5-1: Demonstrative 5000-node CC-RRT* trees and minimum-cost paths, 2D

single integrator, simple scenario
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feasible path exists that takes the system between the two lower obstacles, implying

the paths chosen by RRT and RRT* violate probabilistic feasibility.

CC-RRT* (Figure 5-1(d)) identifies a minimum-cost solution path which takes the

system around both lower obstacles to the left, to avoid the uncertain bottom-right

obstacle. It then minimizes the cost of the remaining path to the goal, without bring-

ing it close enough to the highly uncertain upper-left obstacle to violate probabilistic

feasibility bounds. Such a path would also be feasible for CC-RRT (Figure 5-1(c));

however, such a path is unlikely to be sampled. For example, in Figure 5-1(c)), the

minimum-time path to goal passes around all obstacles to the right, even though a

path between them would have been probabilistically feasible if identified.

Both CC-RRT* and CC-RRT*-Risk are subject to the same probabilistic con-

straints; however, the shapes of both the resulting trees and solution paths are signif-

icantly affected by the use of different cost objectives. Whereas CC-RRT* seeks the

shortest path subject to the robustness constraints (Figure 5-1(d)), CC-RRT*-Risk

instead identifies a path which passes around all obstacles to the right, by a signifi-

cant distance (Figure 5-1(f)). A particularly large distance is maintained relative to

the bottom-right obstacle, while the upper-left obstacle is avoided entirely. Though

the resulting path is similar to the path generated in the CC-RRT example (Figure

5-1(c)), the path in Figure 5-1(f) is the result of a rewiring process to minimize the

cost, with asymptotically optimal convergence. Repeated executions of the algorithm

for this scenario would yield very similar final paths (Section 5.3.2). (Using the risk-

based objective function has little effect on CC-RRT, as observed by CC-RRT-Risk

in Figure 5-1(e).)

In comparing CC-RRT* to CC-RRT*-Risk, each tree has been rewired in a differ-

ent way, corresponding to the different cost functions, yielding trees with significant

qualitative distinctions. For example, paths passing around obstacles in the CC-

RRT* tree (Figure 5-1(d)) tend to travel parallel to the obstacle surfaces in order

to minimize path duration, since this algorithm is only concerned with satisfying the

minimum time-step feasibility 6,. On the other hand, paths passing around obstacles

in the CC-RRT*-Risk tree (Figure 5-1(f)) tend to travel perpendicular to the obstacle

175



(a) CC-RRT* (b) CC-RRT*-Risk

Figure 5-2: Figures 5-1(d) and 5-1(f), with homotopic boundaries marked

surfaces, in order to minimize the time spent by trajectories in higher-risk (and thus

higher-cost) regions.

Of particular note are the "homotopic boundaries" of each tree: those boundaries

separating portions of the tree that pass around obstacles in each direction (and

thus belonging to different homotopies). Such boundaries do not appear in RRT-

based trees, which do not optimize over time via rewiring. Figure 5-2 reproduces

Figures 5-1(d) and 5-1(f) with homotopic boundaries marked in blue. The boundaries

of the CC-RRT* tree (Figure 5-2(a)) largely follow the Voronoi minimum-distance

boundaries; there is a slight preference for passing around the lower obstacles on the

left, as passing on the right requiring maintaining a wider berth around the more

uncertain bottom-right obstacle. For CC-RRT*-Risk, these boundaries have shifted

significantly. For example, along the top of the environment (i.e., above all obstacles),

nearly all tree paths approach from the right-hand side.

Governing these changes is the trade-off between minimizing path length and

minimizing risk, as dictated by the cost coefficients in the objective. Consider the

ratio of cost coefficients -y = CR/CT, where it assumed' that CM = CR; Figure 5-3

'In empirical simulation results, performance was nearly identical in all cases where at least one
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shows how the resulting CC-RRT*-Risk trees evolve as -y is varied. For low values of 'y

(e.g., Figure 5-3(a)), the resulting tree behavior is essentially the same as CC-RRT*,

for which -y = 0. As -y is increased (Figure 5-3(b)) toward 100 = 1 (Figure 5-3(c)), the

solution path slowly increases its distance from the upper-left obstacle. Additionally,

the upper-right homotopic boundary can be seen to moving to the left. When -y is

increased to 101 (Figure 5-3(d)), this boundary sweeps past the goal, causing the

solution path to shift toward passing all obstacles on the outside. The set of paths

between the two upper obstacles is also approached from the right, rather than from

the left for lower values of 'y, as the risk of nearing the upper-left obstacle becomes

more significant. This effect becomes more prevalent as -y increases further (Figures

5-3(e) and 5-3(f)).

Regardless, it is essential that CT > 0; including a cost term which minimizes

path duration acts as a regularization parameter for CC-RRT*, especially in low-risk

regions. Figure 5-4 shows the trees and paths that typically result when CT = 0. In

regions where the risk bounds are near zero, tree behavior essentially reverts to the

unorganized nature of RRT, resulting in risk-averse paths that are often significantly

less smooth.

Figure 5-5 provides several more images of trees generated using CC-RRT*-Risk

which demonstrate the effect of the uncertainty environment, 6, and/or 6p. Figure

5-5(a) shows a 500-node tree with visible 2 - - uncertainty ellipses corresponding

to localization and process noise for each tree node; the accumulation of uncertainty

over time due to the process noise is clear. This effect is even more pronounced in

Figure 5-5(b), in which the covariances of the localization uncertainty P1) and model

uncertainty P,(I) have each been scaled up by a factor of 10. The distance the system

must maintain from the room boundaries clearly increases as paths move toward the

goal. Additionally, due to the increased uncertainty, paths that pass between the

obstacles are no longer probabilistically feasible.

Figure 5-5(c) shows the resulting tree and solution path for CC-RRT*-Risk when

the time-step-wise feasibility bound is changed from 6, = 0.9 to 6, = 0.999, respec-

of CM and CR were positive, regardless of which specific coefficients were positive.
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(e) y = 103

Figure 5-3: Demonstrative 5000-node CC-RRT*-Risk trees for various cost ratios -y
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(a) CR = 105 , CM = 0 (b) CR = CM = 105 (7 =0)

Figure 5-4: Demonstrative 5000-node CC-RRT*-Risk trees with CT = 0

tively. While the size and shape of the trees varies considerably, relative to Figure

5-1(f) (where J, = 0.9), the final path selected is nearly identical. This final path

invariance is due to the risk-based cost objective encouraging risk-averse behavior,

even as the hard probabilistic feasibility constraints are varied.

Finally, Figure 5-5(d) adds a path-wise probabilistic feasibility bound of 6J = 0.9,

in addition to a reduced time-step-wise bound J, = 0.5. Due to the additional chance

constraint (3.6), the space of feasible solutions here is significantly reduced compared

to J, = 0.9 (Figure 5-1(f)), as expected.

5.3.2 Simulation Trials

Consider the same single integrator dynamics of Section 5.3.1 now applied to a dif-

ferent environment containing four obstacles (Figure 5-7). The environment is 37

feet (11.3 m) long and 18 feet (5.5 m) wide, while the upper and lower corridors are

2.5 feet (0.76 m) wide each. This will be referred to henceforth as the full-corridor

scenario.

This environment is geometrically symmetric along the centerline of its long axis;

however, the uncertainty environment is not symmetric. In this environment, only
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(a) 2 - c uncertainty ellipses shown for tree

(500 nodes)

(c) 6, 0.999 (5000 nodes)

Figure 5-5: Demonstrative CC-RRT*-Risk trees for various values of 6, 6p,, P O, and

Pl)
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the bottommost obstacle has placement uncertainty,

S E 0.05 0
Cj e Ia, ) pe$) 0 0.05J Vt;

all other obstacle locations are known precisely. The system is additionally subject

to the same process noise as before, P = P (1), and an initial state error 10 times

as large, P0 = 10P(1. A time-step-wise probabilistic feasibility bound of 6, = 0.8 is

enforced. A path is considered to reach the goal is the final position is within 0.5m

of the goal location. All other algorithm quantities are the same as in Section 5.3.1

Fifty simulations were performed of each algorithm, each growing a tree of 2500

nodes. Three quantities were evaluated for every 10 nodes:

" Path Duration: Time duration of the lowest-cost path in the tree, in seconds.

" Maximum Risk Bound: Largest value of At(23, Px,) encountered at any

timestep of the lowest-cost path, representing a bound on the maximum risk

encountered at any timestep along that path.

" Accumulated Risk: A measure of the total risk encountered by the system

along its lowest-cost path. This quantity is evaluated as the path integral of

At(Ft, Px,), approximated as

N

AA - dtZEAt (5tPxt).
t=o

Note that this is distinct from the path-wise risk bound (3.6).

Figure 5-6 charts the evolution of each of these properties as a function of the

number of tree nodes. In each figure, the median over all 50 trials for each algorithm

is indicated as a solid line, while the shaded region surrounding it denotes the 10th-

to-90th percentiles. The percentiles are excluded when comparing the RRT-based

algorithms (Figures 5-6(b), 5-6(d), and 5-6(f)), where the huge variation in these

properties otherwise obscures the overall trends. Additionally, data is only shown
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Table 5.1: Properties of solution path after 2500 nodes, full-corridor scenario, 50 trials

Path Duration (s) Maximum Risk Bound Accumulated

Algorithm Mean I SD I Min I Max Mean I SD I Min I Max Risk (mean)
CC-RRT*-Risk 22.7 0.40 22.1 24.2 0.002 0.002 0.001 0.013 0.004

CC-RRT* 20.3 0.14 20.0 20.6 0.189 0.010 0.158 0.200 0.782
RRT* 19.8 0.12 19.4 20.0 0.472 0.025 0.401 0.500 2.717

CC-RRT-Risk 27.2 3.46 21.4 40.5 0.143 0.047 0.029 0.200 0.421
CC-RRT 27.1 3.97 22.2 40.1 0.126 0.061 0.004 0.198 0.368

RRT 26.6 3.65 21.0 42.6 0.357 0.112 0.019 0.491 1.058

once all trials have found at least one feasible path to goal. Table 5.1 gives additional

statistical properties of the solution path after 2500 nodes for each algorithm.

First, consider the evolution of the path duration as a function of the number of

nodes (Figure 5-6(a) for the RRT*-based algorithms, Figure 5-6(b) for the RRT-based

algorithms). RRT* consistently achieves shorter path durations than CC-RRT* and

CC-RRT*-Risk, since it is not subject to the same robustness requirements. CC-

RRT* also consistently achieves shorter path durations than CC-RRT*-Risk, since

CC-RRT* only seeks to minimize path durations, while CC-RRT*-Risk includes it as

one term in a multi-objective optimization. For the same reason, CC-RRT*-Risk's

path duration does not decrease monotonically with the number of nodes like CC-

RRT* and RRT*, though it does clearly trend in the same direction.

On the other hand, CC-RRT*-Risk is able to identify much shorter paths than

any of the RRT-based algorithms, including RRT, which does not have to consider

robustness requirements. This is largely due to the significant variation in path

duration returned by the RRT-based algorithms due to their lack of asymptotically

optimality. For example, Table 5.1 notes that the standard deviation of all RRT-based

algorithms is over an order of magnitude larger than their RRT*-based counterparts,

while the maximum path durations returned are twice as large.

From Table 5.1, the final solution path returned by RRT* is consistently the

shortest; its maximum path duration over all trials is the same or shorter than the path

durations returned in all other algorithm trials. However, the mean path duration of

CC-RRT* is only 2.5% larger than RRT*, and its maximum path duration is only 3%

larger than RRT*, despite additionally enforcing robustness guarantees via J,. The
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paths returned by CC-RRT*-Risk are only slightly longer; its mean path duration is

15% larger than RRT* and 12% larger than CC-RRT*.

Next, consider the evolution of the maximum risk bound as a function of the

number of nodes (Figure 5-6(c) for the RRT*-based algorithms, Figure 5-6(d) for

the RRT-based algorithms). The most obvious distinction between the RRT*-based

algorithms is that maximum risk tends to increase with more nodes for RRT* and

CC-RRT*, while it tends to decrease with more nodes for CC-RRT*-Risk. Because

RRT* and CC-RRT* do not include any risk-based terms in their cost objectives, the

rewiring process will leverage any margin between the current maximum risk value

and the allowable bound to decrease path duration. This is utilized by selecting paths

which bring the system closer to obstacles, thus increasing the maximum risk. As

a result, as more nodes are added, the maximum risk value tends to converge to its

bound. For CC-RRT*, that bound is 1 - 6, = 0.2; for RRT*, that bound approaches

0.5, i.e., the value of the risk bound if the state distribution mean were exactly on

a constraint boundary, and thus exactly half-feasible with respect to that constraint.

CC-RRT*-Risk, however, quickly drives the maximum risk to nearly zero, with very

little variation past 1000 nodes, even though any value less than 0.2 satisfies the

probabilistic constraints.

Unlike the RRT*-based algorithms (Figure 5-6(c)), the RRT-based algorithms

(Figure 5-6(d)) show very little change in their risk as more nodes are added. This is

due to the non-optimal nature of RRT-based algorithms, where the placement of the

initial tree samples has a disproportionate impact on the nature of paths generated.

Notably, CC-RRT-Risk (which uses risk terms in its objective) performs slightly worse

on average than CC-RRT (which only minimizes path duration in its objective) in

both path duration and maximum risk bound, as supported by Table 5.1 for the final

solution paths. This reinforces the idea that adding risk-based terms to the objective

is only useful in an asymptotically optimal algorithm which is able to redesign the

tree in accordance with those terms.

Consider the maximum risk bound in Table 5.1; the mean and maximum values

of that quantity are 1-2 orders of magnitude smaller for CC-RRT*-Risk than all
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other algorithms. Additionally, for each algorithm except CC-RRT*-Risk, one trial

brings the maximum risk bound very close to or at the allowable bound (0.2 for

CC-RRT-based algorithms, 0.5 for RRT-based algorithms). Finally, both CC-RRT*

and CC-RRT*-Risk have significantly less variation in incurred risk than RRT*. The

latter relationship is obvious, since CC-RRT*-Risk explicitly minimizes risk as part of

its objective. The former relationship is less obvious, but is related to the fraction of

paths coming near the uncertain bottommost obstacle (Figure 5-7, discussed further

below).

The trends for accumulated risk (Figure 5-6(a) for the RRT*-based algorithms,

Figure 5-6(b) for the RRT-based algorithms) are very similar to those for the maxi-

mum risk bound. In particular, the mean accumulated risk for CC-RRT*-Risk is two

orders of magnitude lower than all other algorithms, as seen in the rightmost column

of Table 5.1.

Figure 5-7 shows an overlay of the final solution paths returned by each algorithm

after 2500 nodes over the same 50 trials for this scenario. The non-optimal algorithms

(Figures 5-7(a), 5-7(c), and 5-7(e)) vary wildly in the qualitative nature of the paths

returned, as suggested by their large corresponding variations in Table 5.1. There

is a slight decrease in the number of paths which pass near the uncertain bottom-

most obstacle for CC-RRT (Figure 5-7(c) and CC-RRT-Risk (Figure 5-7(e)), which

are risk-aware, compared to RRT (Figure 5-7(a)), which is not. However, paths in

all homotopic classes are still occasionally selected by all three algorithms, largely

depending on the initial node sample placement for that trial.

The final solution paths returned by the asymptotically optimal algorithms (Fig-

ures 5-7(b), 5-7(d), and 5-7(f)) are much more smooth and consistent; however, they

do not all necessarily fall into the same homotopies. All of the paths returned by the

RRT* algorithm (Figure 5-7(b)) come very close to the boundaries of the leftmost

and rightmost obstacles, with very little variation within each homotopy. However,

the paths are split between passing those obstacles from above (19 out of 50) or from

below (31 out of 50). Because the environment is geometrically symmetric, and RRT*

is not a risk-aware algorithm, RRT* is likely to consider paths in both homotopies,
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Figure 5-7: Overlay of final solution paths returned in all 50 trials for each algorithm,

full-corridor scenario
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even though one is subject to a much higher risk of collision than the other.

Comparing RRT* to CC-RRT* (Figure 5-7(d)), which is risk-aware, it can be

seen that CC-RRT* is much less likely to select paths which pass near the uncer-

tain obstacle. Of the 50 trials, 41 pass the leftmost and rightmost obstacles from

above. Additionally, all paths chosen maintain sufficient distance from the obstacles,

especially the bottommost obstacle, to ensure probabilistic feasibility constraints are

satisfied. Regardless, the paths returned by the algorithm are not consistent: 3 of the

50 trials pass the leftmost and rightmost obstacles from below, while the remaining

6 trials alternate.

On the other hand, CC-RRT*-Risk (Figure 5-7(f)), which not only acknowledges

the risk posed by uncertainty but explicitly optimizes against it via rewiring, con-

sistently identifies paths in the uppermost homotopy in all 50 trials. It is the only

algorithm of the six to fully recognize the asymmetry of this environment due to its

uncertainty in all trials.

In parts of the environment where the risk is relatively low, i.e., the upper-left

and upper-right regions of Figure 5-7(f), CC-RRT*-Risk exhibits more variation in

its paths than seen from either RRT* or CC-RRT*. On the other hand, as the

system passes the uppermost obstacle, there is very little variation in the paths at all:

all 50 paths pass very near the centerline of that corridor. Because CC-RRT*-Risk

incorporates risk bounds within its objectives, regions with higher risk correspond to

larger gradients in the algorithm's objective function. Thus, the paths returned by

CC-RRT*-Risk can be expected to show lower variation in regions of higher risk, and

vice versa.

Alternatively, suppose the upper boundary of this environment is moved down-

ward 1.25 feet (0.38 in), such that the width of that uppermost corridor is reduced

by half. This is referred to as the half-corridor scenario. Under this modification,

any path that would pass over all obstacles is no longer probabilistically feasible for

6S = 0.8, due to the narrow corridor above the uppermost obstacle. Table 5.2 gives

the final path results of running 50 simulation trials of each algorithm in this environ-

ment, while Figure 5-8 plots the evolution of the maximum risk bound as a function
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Table 5.2: Properties of solution path after 2500 nodes, half-corridor scenario, 50

trials

Path Duration (s) Maximum Risk Bound Accumulated

Algorithm Mean I SD Min Max Mean [ SD Min Max Risk (mean)

CC-RRT*-Risk 23.6 0.51 22.5 25.0 0.022 0.004 0.017 0.035 0.094

CC-RRT* 20.3 0.14 19.9 20.5 0.191 0.009 0.167 0.200 0.832

RRT* 19.8 0.14 19.4 20.2 0.477 0.025 0.376 0.500 2.774

CC-RRT-Risk 27.8 2.93 22.7 33.7 0.150 0.041 0.054 0.200 0.648

CC-RRT 28.7 4.13 21.5 42.5 0.162 0.034 0.071 0.200 0.581

RRT 26.0 3.08 20.8 35.5 0.369 0.102 0.164 0.498 1.306
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Figure 5-8: Evolution of maximum risk bound for each algorithm, half-corridor sce-

nario, 50 trials

of tree nodes for each algorithm. (The corresponding figures for path duration and

accumulated risk are omitted for brevity.)

By making the environment more restrictive, the maximum risk bound and ac-

cumulated risk generally increase for each algorithm, as expected. The most notable

change is in CC-RRT*-Risk, for which the maximum risk bound and accumulated risk

each increase by approximately an order of magnitude. Of the three asymptotically

optimal algorithms, CC-RRT*-Risk was the only one to utilize the risk-minimizing

upper corridor, which is no longer probabilistically feasible; thus its risk increases

significantly as it is forced to consider alternatives, though it remains well below

enforced bounds. This is most visible in Figure 5-8 where the maximum risk for

CC-RRT*-Risk is seen to be bounded away from zero.

188



Table 5.3: Number of nodes sampled until feasible path to goal found, 50 trials

Full-Corridor Half-Corridor
Algorithm Mean ] Max Mean I Max

CC-RRT*-Risk 73 270 84 210
CC-RRT* 80 270 99 250

RRT* 91 460 77 300
CC-RRT-Risk 78 220 76 220

CC-RRT 89 390 98 250
RRT 88 350 64 280

The risk statistics for RRT* and CC-RRT*, on the other hand, are nearly iden-

tical to the full-corridor scenario (Figure 5-6(c) and Table 5.1), as the paths those

algorithms converge to are unaffected by the shifted environment boundary. The

increases in risk faced by CC-RRT-Risk, CC-RRT, and RRT are slightly larger; the

final paths for these algorithms tend to vary among all feasible homotopies, but the

risk-minimizing homotopy is no longer feasible.

On the other hand, no algorithm experiences a major increase in path duration as

a result of the change. Most notably, even though CC-RRT*-Risk is now incurring

10 times as much risk, its mean path duration has only increased by 4%.

An important question in these comparisons is considering whether the refinements

beyond the nominal RRT algorithm result in more nodes being required to find a

feasible path to the goal. This is particularly important in real-time applications,

where it is often critical to quickly identify a feasible solution, especially if it can

be refined later online. Table 5.3 shows the mean and maximum number of nodes

required to find a feasible path to goal across all trials for each scenario considered

above. The data shows that the number of nodes required is fairly consistent across

all algorithms and scenarios: a feasible path is found on average in under 100 nodes,

while a feasible path is always found within 500 nodes. This implies that the effect

of these modifications on finding feasible paths is limited, at best.

Table 5.4 shows the average time required to generate a feasible node for each

algorithm across all trials. This calculation includes any time spent on failed at-

tempts to connect the tree to samples, i. e., tree expansion steps that fail to generate

additional nodes. The most notable increase in computation comes from switching
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Table 5.4: Per-node computation results for each algorithm, 50 trials

Runtime
Algorithm per Node (ms)

CC-RRT*-Risk 17.84
CC-RRT* 17.04

RRT* 7.17
CC-RRT-Risk 1.36

CC-RRT 1.36
RRT 0.83

from an RRT-based algorithm to its RRT*-based equivalent; this results in a run-

time increase by a factor of 9-13 per node. This factor can be significantly affected

by the complexity of the dynamics and the steering law that is used, as RRT-based

algorithms do not require use of a steering law. These considerations should be taken

into account when determining which algorithm(s) to apply.

By comparison, introducing robustness via chance constraints only results in a

runtime increase by a factor of 1.6-2.5 per node, which is consistent with previous

results [46]. The impact of introducing risk-based terms into the cost function is

minimal. Regardless, both CC-RRT*-Risk and CC-RRT* are able to generate over

50 nodes a second on average, making them suitable for real-time use.

Figure 5-9 shows an evolution of the computation time required per node, as

a function of tree size, for the full-corridor scenario; computation has been averaged

every 10 nodes to smooth the plots. The median value is indicated as a solid line, while

the shaded region denotes the 10th-to-90th percentiles. The computation required

per node for the RRT-based algorithms tends to slowly increase with tree size. On

the other hand, the computation required per node for the RRT*-based algorithms

increases at a faster rate up to about 700 nodes or so, where it begins to level off and

even decrease slightly. This is largely due to the radius r, used to check nearby nodes

for possible connections decreasing over time. At the point where the direction of

growth rate change shifts, the computational effort of searching a larger tree becomes

offset by the few number of connections to nearby nodes being attempted during each

cycle.

Finally, sets of 50 trials were performed for each algorithm in which each trial
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Figure 5-9: Evolution of computation per node for each algorithm, full-corridor sce-

nario, 50 trials

consists of growing a tree for 30 seconds, with no upper bound on the number of

nodes. Figure 5-10 shows the evolution of the mean path duration, as a function of

computation time elapsed, for these trials. This figure clearly shows that even with

the robustness modifications of CC-RRT* and CC-RRT*-Risk, both algorithms find

higher-quality paths (in terms of duration) than any RRT-based algorithms within

the initial seconds of computation.
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5.3.3 Double Integrator

Consider the more complex 2D double integrator dynamics,

1 0 dt 0 1dt2  0 -dt 2  0

0 1 0 dt 0 1dt2  0 1 dt 2

t+1 = t + 2 Ut + 2 Wt,

0 0 1 0 dt 0 dt 0

0 0 0 1 0 dt 0 dt

t= p t v ,

Ut = ax a Yl,] T

where, again, dt = 0.1 s. The system operates in the same environment as Section

5.3.2, with the same obstacle placement and start and goal locations. In addition

to the previous state constraints, this problem is also subject to the velocity state
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constraints IvxJ < Vmax, V | < vmax, where Vmax = 2.5 m/s, as well as the input

constraints Iafl < a, layl < a, where a = 5.0 m/s 2

The system is subject to the same three forms of uncertainty, though their values

have changed. First, the initial state xO is subject to position-based initial state error

(3.2) of equal value in all directions,

X0  e )(2 0, p()), p(3) 10-3 12 02

02 02

At each timestep, the system is subject to velocity-based process noise (3.1) of equal

value in all directions,

wt e A (0, p(3), p( 3) = 10-6 02 02

02 '2

Finally, the placement of the bottommost obstacle is subject to the same position-

based uncertainty (3.4) as in Section 5.3.2,

e E A(>, P( 3)), p 3) = 0.05 2 V t;
C02 02 ;

The system is required to satisfy a minimum probability of constraint violation at

each timestep of 6, = 0.8; no path-wise probability bound is imposed (i.e., 6, = 0).

The sampling strategy and steering law are the same as in Section 2.5.4.

Figure 5-11 demonstrates typical trees and final solution paths generated by CC-

RRT* and CC-RRT* risk for this scenario. Similar behaviors are observed for both

algorithms as in the single-integrator scenarios, though the degree of suboptimality

in the solution paths is higher due to both the reduced number of nodes and the

increased state dimension. Regardless, all paths in each tree satisfy probabilistic

feasibility requirements for 6, = 0.8, with additional buffers induced by using a risk-

based objective in Figure 5-11(b).

Figure 5-12 shows a 1000-node CC-RRT*-Risk tree and solution path generated
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(a) CC-RRT*

(b) CC-RRT*-Risk

Figure 5-11: Demonstrative 1500-node CC-RRT* trees and minimum-cost paths,

double integrator, full-corridor scenario
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Figure 5-12: Demonstrative 1000-node CC-RRT* tree and minimum-cost path, dou-

ble integrator, cluttered scenario

for the double integrator dynamics (subject to the same initial state error and pro-

cess noise) in a cluttered 20m x 10m environment, consisting of 30 obstacles with

randomized placement uncertainty. This demonstrates the scalability of the CC-

RRT* algorithm to very complex environments, in both the number of obstacles and

the uncertainty characterization.

5.3.4 Higher-Dimensional Planning

Figure 5-13 demonstrates a tree of trajectories and minimum-cost path for a 3D single

integrator operating in a 10m x 10m x 10m environment. The system (magenta

diamond) must find a path around the large central obstacle (gray, left) to the goal

(green circle) on the other side. Given the environment constraints, the only feasible

way to do so is to pass over the obstacle in the foreground, then under the obstacle

in the background. The planner tree is shown in green, while the minimum-cost path

which successfully reaches the goal is shown in orange.
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Figure 5-13: Demonstrative CC-RRT* tree, single integrator, three-dimensional en-

vironment

5.3.5 Dubins Vehicle

Figure 5-14 provides an example of how CC-RRT* can be utilized on more complex

dynamics, as long as a suitable steering law is available. In this case, the system

is a 2D car with Dubins dynamics [9] and corresponding steering law. Though the

dynamics are nonlinear, the uncertainty environment acts on the system linearly, such

that analytic uncertainty distributions can be maintained (Section 4.4). In this case,

the system is subject to a small process noise and a dynamic obstacle (magenta) with

uncertain intentions (blue), as discussed in Section 4.2. The tree identifies a relatively

smooth path that guides the vehicle (brown) as close as it can safely get to the goal

(green circle).
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Figure 5-14: Demonstrative CC-RRT* tree, Dubins vehicle, dynamic obstacle scenario

5.3.6 Pursuit-Evasion Games

The CC-RRT* algorithm can also be applied to a variety of planning scenarios with

more complex uncertainty assumptions, particularly in characterizing the uncertainty

of dynamic obstacles [113]. One possible scenario with real-world implications is the

pursuit-evasion problem. In this scenario, it is assumed that there are other dynamic

"pursuer" agents in the environment, which will act in a worst-case manner to try to

collide with the planning "evader" agent.

By adapting an RRT* algorithm variant for this scenario [60], the CC-RRT* algo-

rithm can handle this problem even in the presence of multiple sources of uncertainty.

This variant grows CC-RRT* trees for the evader and all pursuers, removing evader

nodes when a pursuer can cause a collision by arriving at that node at the same or

previous timestep. The results below show probabilistically feasible open-loop solu-

tions (i.e., not using feedback on pursuer movement) to this adapted [60] problem

when the evader and some obstacles are uncertain. Though worst-case behavior is

assumed for the pursuers, the actual motion of those agents is deterministic - though

it could be made uncertain, as well, without additional modification.

In this example, consider the single integrator from Sections 5.3.1 and 5.3.2 with
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the same constraints and apply CC-RRT*-Risk with 6, = 0.9. The environment now

takes the form of Figure 5-15; note that the uppermost obstacle is uncertain, while

all other obstacle placements are precisely known. The uncertainty environment is

characterized as

[ 0.0005 0 Pr E 0.000060 0 sP 0.1 0

0 0.0030 0 0.000010 0 0.1

There are two pursuing agents in the environment; their dynamics are assumed to be

deterministic, but otherwise identical to those of the evader, including their maximum

speed.

Figures 5-15(a) and 5-15(b) show the resulting CC-RRT*-Risk tree and current

solution path for the evading agent, for two different initial placements of the pursuing

agents. The evading agent and chosen path are shown in orange, while the pursuing

agents are shown in red. The 2-o- uncertainty ellipse is shown for the uppermost

obstacle, whose placement is uncertain. The trees for the pursuers are suppressed for

clarity.

As the lower pursuer is moved behind the evading agent in going from Figure

5-15(a) to Figure 5-15(b), a significant additional region of feasible nodes is added

to the evader tree in the lower-right corner. Ultimately, these nodes are not used to

select a path, as the cost is higher in this region, and thus they are not connected

directly to the goal. The tree maintains a large buffer with respect to the uncertain

obstacle, with the evader ultimately choosing a risk-averse path that maintains an

even larger distance from that obstacle.

5.4 Conclusions

This chapter has introduced the CC-RRT* algorithm for robust, scalable, and asymp-

totically optimal path planning. The algorithm efficiently computes bounds on risk

of constraint violation using a chance constraint formulation - expanded in this work

to consider environmental uncertainty, path-wise feasibility bounds, and probabilistic
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(a) Placement 1 of pursuers (b) Placement 2 of pursuers

Figure 5-15: Demonstrative 1500-node CC-RRT*-Risk tree, 2D single integrator,

pursuit-evasion scenario

environmental boundaries - to ensure all trajectories considered are both dynami-

cally and probabilistically feasible. These risk bounds are also utilized within a novel,

risk-based cost function, shown to be admissible for RRT*. The CC-RRT algorithm

has been shown to be probabilistically complete and asymptotically optimal under

appropriate assumptions. Simulation results have demonstrated that CC-RRT* can

be utilized to identify smooth, robust trajectories, displaying a level of risk-averse

behavior specified by the user.
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Chapter 6

Experimental Results

This chapter presents hardware results demonstrating the ability of the CC-RRT al-

gorithm to plan and execute safe trajectories in real-time. In these experiments, the

CC-RRT planner is used to guide an autonomous rover through dynamic, uncertain

environments. There are many sources of uncertainty tested in these experiments, in-

cluding uncertainty in the motion of the rover; uncertainty in the location of detected

pedestrians; and uncertainty in the future motion of dynamic robots. A variety of

sensing infrastructure is used to gather data about the vehicle state and the loca-

tion of obstacles, including motion-capture camera data and onboard 2D lidar data,

facilitating true perception-driven planning.

First, the implementation of the experimental setup is presented (Section 6.1),

including the testbed environment, autonomous vehicle, available sensors, and plan-

ning software. The first set of experiments (Section 6.2.1) involve the rover driving

around small robots - both static and dynamic with uncertain intentions - tracked by

motion capture. In the second set of experiments (Section 6.2.2), the rover must plan

and execute online paths to avoid one or more pedestrians, identified and tracked by

onboard lidar.
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Figure 6-1: RAVEN testbed environment Figure 6-2: Pioneer 3-AT rover

6.1 Implementation

Hardware experiments are performed in the Real-time indoor Autonomous Vehicle

test ENvironment, or RAVEN [114]. The primary RAVEN testbed area is approxi-

mately 12 m x 6 m in size (Figure 6-1), and contains a set of Vicon motion-capture

cameras designed to track the location of any operational vehicles [115]. In these

experiments, a smaller subset of that environment, approximately 9.75 m x 4.25 m,

is used as the environmental boundaries for the rover.

A Pioneer 3-AT rover is used as the autonomous vehicle in all experiments. The

Pioneer 3-AT is a skid-steered vehicle, with a maximum speed of 0.7 m/s for each

wheel in either direction. Its payload includes a 2D SICK LMS-291 lidar for onboard

pedestrian detection [96] and an Intel Core i5 laptop with 6GB RAM for computation,

as well as a configuration of reflective dots for motion-capture tracking.

The online planning and control algorithms implement the full CC-RRT algorithm,

including tree expansion and the online execution loop, onboard the rover laptop

using a multi-threaded, real-time Java application. The software implementation

consists of four primary modules, each in a separate thread. The vehicle thread

manages the overall simulation, including all simulation objects. The CC-RRT thread

implements Algorithms 4-5, growing the CC-RRT tree while periodically sending the

current best path in the tree to the vehicle thread. Where appropriate, the DPGP

thread builds predictions on the likelihoods and future state distributions of possible
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behaviors for each dynamic obstacle [96]. Finally, the communications thread receives

state/obstacle data and sends waypoint plans via the Robotic Operating System

(ROS) [116]. High-fidelity localization is provided for the rover via the motion-capture

cameras [114].

A pure pursuit controller [117] is used both in planning to generate robustly fea-

sible trajectories within CC-RRT, and onboard the rover laptop to execute waypoint

plans provided by CC-RRT. The pure pursuit controller uses a desired velocity of

0.3 m/s, an Li distance of 0.6m, and an anchor point 3cm ahead of the vehicle front

wheel axes.

6.2 Hardware Experiments

6.2.1 Robust Avoidance of Dynamic Robots

In these experiments, the autonomous rover must safely navigate around one or more

small iRobot Create [118] robots to reach a sequence of goal waypoints. Each robot is

detected and tracked through Vicon motion capture. Within the planner, each robot

is represented as an 8-sided obstacle.

The planner provides the rover with a fixed sequence of goal waypoints to reach,

one goal at a time, located at the four corners of the testing environment. Rather

than waiting for the rover to reach each goal precisely, the planner switches to its

next goal anytime the rover gets within approximately one meter of a goal waypoint.

Whenever the goal is switched, the existing CC-RRT tree is preserved, but the costs

are recomputed based on the new goal location. Doing so enables the rover to move

continuously through the waypoint sequence.

In these experiments, the rover is initially subject to two primary forms of uncer-

tainty. First, the rover's driving is not precise - its controller occasionally overshoots

or undershoots waypoints on its trajectory plan. Within the CC-RRT planner, this

model uncertainty is represented as a process noise in position. Second, the placement

of each robot is assumed to be uncertain. The CC-RRT algorithm grows a tree of
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trajectories that are probabilistically feasible for the time-step-wise chance constraint

6, = 0.9, subject to both of these uncertainties.

To demonstrate CC-RRT planning and execution, we have set up a visual overlay

which maps the CC-RRT situational awareness directly onto the physical environment

it represents (Figure 6-3). This is accomplished through the use of a pair of overhead

projectors which project directly onto the floor, and act as a monitor on which the

CC-RRT visualization can be run. In the figure, the white region on the overlay

represents feasible portions of the environment for the rover. They do not represent

the entire feasible space, however. The projectors span the full width of the feasible

space, but not its length; thus, the rover will occasionally have feasible plans that

take it outside the boundaries of the projected overlay to reach goal waypoints.

Figures 6-3(a) and 6-3(b) show representative CC-RRT trees grown for the rover

to reach a goal waypoint while avoiding two static robots. In the overlay, the rover

is represented by a large orange circle, while each robot is represented as an 8-sided

magenta polygon with uncertainty ellipse (gray) shown. The goal region for the rover

is marked in yellow. The CC-RRT tree (thin edges) and selected path for execution

(thicker edges, with circular nodes) are nominally colored green; however, as the risk

bound for trajectory segments on the tree/path approaches 1 - 6, the color changes

from green to red, indicating higher-risk segments of the tree.

The planner runs the CC-RRT execution loop (Algorithm 5) online at At = Is.

During each iteration, it uses updated information on obstacle locations to update the

risk bounds throughout the tree, removing any nodes that are no longer probabilisti-

cally feasible. Video 1 (Table 6.1) and Figure 6-4 demonstrate how these risk bound

updates allow the CC-RRT planner to quickly update its planning tree and choose

paths to execute as changes are observed. In this example, the rover is stationary, but

four static robots are manually placed and moved within the environments, causing

probabilistically feasible regions to shift dynamically. In fact, once the fourth robot

is placed, the rover can no longer identify a probabilistically feasible path to the goal

waypoint (Figure 6-4(d)); only a partial path can be found.

In Video 2 (Table 6.1), four robots are placed in fixed locations, but the rover
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a

(a) Front view

(b) Back view

Figure 6-3: Static obstacle environment, overlaid with planner visualization
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(a)

(b)

(c)

(d)

Figure 6-4: Stationary rover planning paths around 4 static robots
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Table 6.1: Summary of hardware experiment videos

# Filename Description
1 videol.mov Stationary rover, 4 static robots

2 video2.mov Moving rover, 4 static robots

3 video3.mov Moving rover, 1 dynamic robot

4 video4.mov Moving rover, 2 dynamic robots

5 video5.mov Stationary rover, 3 pedestrians

6 video6.mov Moving rover, 1 pedestrian

7 video7.mov Moving rover, 2 pedestrians

All videos are located at http://acl.mit.edu/uders-phd/video#.mov - insert # from

table above. Copies were also included in the submission of this thesis to MIT.

is now moving autonomously using the CC-RRT planner. The rover safely passes

through 17 goal waypoints; examples of some of the safe motion plans generated by

CC-RRT for the rover are shown in Figure 6-5.

Experiments were also performed in which the rover safely avoids one or more

dynamic robots with uncertain intentions, introducing the third type of uncertainty.

In these examples, the dynamic robots can follow one of three possible behaviors,

visualized as gray outlines on the testbed overlay (Figure 6-6). The DPGP algo-

rithm [96] is trained on these behaviors, such that it can predict the likelihood and

trajectory distribution for each online and provide that information to the CC-RRT

planner (Section 4.2.3).

In Video 3 (Table 6.1), the rover safely navigates through a sequence of 16 goal

waypoints while avoiding one dynamic robot. Figure 6-8 provides an example of

an interesting rover/robot interaction in this scenario. Initially, the rover's path to

its goal in the back-right corner of the environment is partially pruned, due to an

anticipated overlap with one of the dynamic robot's possible behaviors (Figure 6-

8(a)). After some time, the rover begins to execute a new, feasible path to goal that

it identifies (Figure 6-8(b)). However, updates in the robot position cause that path

to also become infeasible. The rover comes to a stop and waits for the robot to pass

(Figure 6-8(c)); once the robot has done so, the planner identifies a new path reaching

the goal (Figure 6-8(d)).

In Video 4 (Table 6.1), the rover safely navigates through a sequence of 10 goal
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(a)

(b)

(c)

(d)

Figure 6-5: Moving rover planning paths around 4 static robots
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Figure 6-6: Dynamic obstacle environment

Figure 6-7: Pedestrian environment
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(a)

(b)

(c)

(d)

Figure 6-8: Moving rover planning paths around 1 dynamic robot
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waypoints while avoiding two dynamic robots. Figure 6-9 provides an example of a

particularly interesting interaction that involves the rover and both dynamic robots.

The rover's initial planned path to reach the goal directly behind it takes it far to the

right side of the environment (Figure 6-9(a)). By doing so, the planner is attempting

to avoid both possible behaviors of the near robot. A few seconds later, DPGP has

predicted that the near rover is not taking the middle crossing behavior, and so the

planner identifies a more direct path to the goal (Figure 6-9(b)). While it is executing

it, the DPGP expected behavior of the far robot begins to overlap with the rover's

planned path, causing the portion near the goal to be pruned as too risky (Figure

6-9(c)). The planner then identifies a new path which maintains a larger standoff

from the far rover (Figure 6-9(d)). While executing that path, the planner eventually

switches to a new path taking it even further from the far rover (Figure 6-9(e)).

6.2.2 Robust Avoidance of Pedestrians

In these experiments, the autonomous rover must safely navigate around one or more

pedestrians to reach a sequence of goal waypoints (Figure 6-7). Each pedestrian is

detected and tracked through the onboard 2D lidar as a potential obstacle; multiple

pedestrians can be tracked simultaneously [96]. The pedestrian location is mapped to

a point in the environment using the rover's Vicon-based localization, which continues

to be used for navigation in these experiments.

However, the pedestrians introduce two additional forms of uncertainty: sensor

noise and incomplete knowledge of the environment. In the latter case, the lidar has

a limited field of view, meaning that the planner's obstacle data can become out-of-

date or be missing pedestrians entirely. As such, the planner may generate paths that

would intersect with pedestrians because it cannot see them, and thus relies on tree

updates and replanning (Algorithm 5) to safely avoid such threats. More advanced

strategies are available for planning under such conditions, but are beyond the scope

of this work.

Each pedestrian is treated as a static obstacle at its sensed location. If a pedestrian

drops out of the lidar field-of-view, the obstacle associated with that pedestrian will
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(a)

(b)

(c)

(d)

(e)

Figure 6-9: Moving rover planning paths around 2 dynamic robots
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persist for several seconds before disappearing. Video 5 (Table 6.1) shows how the

CC-RRT tree and motion plan evolve over time due to the presence of up to three

pedestrians coming into view.

In Video 6 (Table 6.1), the rover safely navigates through a sequence of 5 goal

waypoints while avoiding a pedestrian. Figure 6-10 provides an example where the

rover correctly identifies a safe path to goal (Figure 6-10(a)), but is later blocked

by the pedestrian moving into their path (Figure 6-10(b)). In this case, the planner

correctly constructs a new path taking the rover around the pedestrian (Figure 6-

10(c)), reaching the goal from the side (Figure 6-10(d)).

Finally, in Video 7 (Table 6.1), the rover safely navigates through a sequence of

6 goal waypoints while avoiding 2 pedestrians. Figure 6-11 provides an example of

some of the planning challenges introduced by onboard sensing, and how the CC-RRT

execution loop can mitigate those challenges. In this case, the planner identifies a

path to the next goal, but is unaware of a pedestrian standing on that path, due to

the pedestrian being out of the lidar's field of view (Figure 6-11(a)). As the rover

turns, the second pedestrian is detected by the lidar, and the original path is ruled

probabilistically infeasible (Figure 6-11(b)). However, the planner execution loop

quickly identifies an alternate route for the rover to reach the goal (Figures 6-11(c)

and 6-11(d)).

213



(a)

(b)

(c)

(d)

Figure 6-10: Moving rover planning paths around 1 pedestrian
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(a)

(b)

(c)

(d)

Figure 6-11: Moving rover planning paths around 2 pedestrians
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Chapter 7

Conclusions

This thesis has developed several novel motion planning algorithms suitable for real-

world motion planning problems, which may contain a large number of dynamic

and/or uncertain constraints. Unlike existing approaches in the literature, each of

the algorithms developed in this work provides guarantees on constraint satisfaction

subject to both internal and external uncertainty, even in complex environments,

while maintaining the scalability to operate in real-time. In particular, these ap-

proach leverage the advantages of sampling-based algorithms, particularly randomly-

exploring random trees, to quickly identify robustly feasible solutions that scale well

with problem complexity. However, each algorithm developed in this thesis has been

designed to incorporate uncertainty models efficiently, such that minimal computa-

tional overhead is required to achieve robustness, relative to the nominal motion

planning algorithms.

In bounded-uncertainty RRT (BU-RRT) and bounded-uncertainty RRT* (BU-

RRT*), absolute feasibility is guaranteed subject to bounded internal and external

uncertainty. Problem constraints are tightened incrementally to reflect the uncer-

tainty environment, including the possibility of incorporating disturbance feedback

to expand the feasible solution space. Under appropriate assumptions, BU-RRT* has

been demonstrated to be probabilistically complete and asymptotically optimal. Sim-

ulation results demonstrate that BU-RRT* can quickly grow trees of trajectories and

identify low-cost solution paths that are safe for any feasible disturbance realization.
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In chance-constrained RRT (CC-RRT) and chance-constrained RRT* (CC-RRT),

probabilistic feasibility is guaranteed subject to Gaussian internal and external un-

certainty, including dynamic obstacles with uncertain intentions. By leveraging the

trajectory-wise constraint checking of RRT, the risk of constraint violation is effi-

ciently computed and bounded, both at each timestep and along entire trajectories in

the tree of state distributions, through the use of modified chance constraints. Under

appropriate assumptions, CC-RRT* has been demonstrated to be probabilistically

complete and asymptotically optimal. Several extensions to the CC-RRT algorithm

are also proposed which approximate the chance constraints, including nonlinear dy-

namics, output modeling, and non-Gaussian uncertainty. Additionally, an admissable,

risk-based objective function have been proposed to provide soft constraints on risk

for CC-RRT*. Simulation results demonstrate that CC-RRT* can quickly generate

safe trajectories with risk-averse behavior for many types of complex environments.

Finally, variations of CC-RRT have been demonstrated for a variety of problem

domains and uncertainty models, including urban navigation with RR-GP/DPGP

prediction of dynamic obstacles, and parafoil terminal guidance. The CC-RRT al-

gorithm has also been demonstrated for perception-driven planning, via hardware

experiments in which an autonomous rover safely navigates to avoid dynamic robots

and pedestrians.

7.1 Future Work

This section briefly explores several ways in which the work in this thesis could be

extended further in useful directions.

7.1.1 Analytic CC-RRT*

By leveraging the asymptotically optimal nature of RRT*, a formulation of CC-

RRT* designed specifically for the parafoil terminal guidance problem (Section 4.4),

i.e., analytic CC-RRT*, might be able to significantly improve both the consistency

in generated solution paths and the miss distance. However, adapting the parafoil
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dynamics (4.22)-(4.23) into the CC-RRT* poses several challenges, most notably the

development of a steering law for such a complex and underactuated (particularly in

terms of altitude) system. Figure 7-1 demonstrates one possible proof-of-concept ap-

proach, in which the 3D planning problem (Figure 7-1(a)) is treated as a 2D planning

problem with an arrival timing constraint (Figure 7-1(b)). In this case, the parafoil

(magenta) grows a tree of trajectories (green) before finding a path (orange) guiding

it to the target landing location on the ground (green circle).

7.1.2 Robust Fast Marching Trees

Many of the robustness techniques developed in this thesis for rapidly-exploring

random trees could potentially be incorporated into other sampling-based motion

planners with desirable properties. One such example is the recently-proposed fast

marching trees (FMT) algorithm [119]. FMT utilizes a dynamic-programming-based

recursion to generate asymptotically optimal paths without rewiring, and is compu-

tationally faster than RRT*, combining features of multiple-query and single-query

algorithms. However, a priori sampling is required, limiting its usage to offline op-

eration; the algorithm is run on a predetermined, fixed number of nodes. Figure 7-2

demonstrates the growth of a proof-of-concept "robust FMT" tree for the CC-RRT*

example in Section 5.3.1, using the same robustness constraints (3.62)-(3.64) with

5000 samples.

7.1.3 Other Forms of Uncertainty

A key emphasis in the development of the algorithms in this thesis has been enabling

many different kinds of uncertainty to be represented. With that in mind, there

are still several additional forms of uncertainty that could be incorporated, such as

parametric uncertainty, probabilities on the likelihood that obstacles exist (e.g., "pop-

up obstacles"), or uncertain robot/obstacle interactions.
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