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Abstract

Wireless network localization (WNL) is an emerging paradigm for providing high-
accuracy positional information in GPS-challenged environments. The localization
performance of a node in WNL is determined by the allocation of transmit resources
among its neighboring nodes. To achieve the best localization performance, we de-
velop a computational geometry framework for optimal resource allocation in WNL.
We first determine an affine map that transforms each resource allocation strategy
into a point in 3-D Euclidian space. By exploiting geometric properties of these image
points, we prove the sparsity property of the optimal resource allocation vector, i.e.,
the optimal localization performance can be achieved by allocating resources to only
a small subset of neighboring nodes. Moreover, these geometric properties enable the
reduction of the search space for optimal solutions, based on which we design efficient
resource allocation strategies. Numerical results show that the proposed strategies
can achieve significant improvements in both localization performance and compu-
tation efficiency. Our approach provides a new methodology for resource allocation
in network localization, yielding exact optimal solutions rather than e-approximate
solutions.

Thesis Supervisor: Moe Z. Win
Title: Professor
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Chapter 1

Introduction

Wireless network localization (WNL) is a promising paradigm for providing high

accuracy positional information in GPS-challenged scenarios [1-10]. Such information

is crucial for many location-based applications, including logistic, security tracking,

and rescuing activities [5-8,11-16]. In WNL, there are two types of nodes, referred

to as anchors and agents, where the former have known positions and the latter have

unknown positions. The position of an agent can be inferred from range measurements

based on wireless signals transmitted by neighboring anchors (see Fig. 1-1).

The localization performance in WNL depends on various network parameters,

such as topology, signal bandwidth, channel condition, and transmit signal power

[5-7,17-21]. Among these factors, the allocation of transmit resources (e.g., power

and bandwidth) plays a critical role since it not only affects network lifetime and

throughput, but also determines the localization performance. Thus, it is essential to

design resource allocation strategies for achieving the best localization performance

[22,23].

Extensive work has been carried out on maximizing communication and network-

ing performance subject to resource constraints [24-30]. However, these strategies

designed for data networks are not suitable for the purpose of localization since the

performance metrics for localization networks are different from and more complicated

than those for communication networks. Therefore, solving the resource allocation

problem in WNL calls for new formulations that take into account the properties of

13



Anchor --- -

Figure 1-1: Network deployment for WNL: agents (blue dots) determine their posi-
tions based on ranging measurements with respect to anchors (red circles).

the localization performance metric [31-33]. Two fundamental questions related to

resource allocation in WNL are as follows.

1. How does the localization performance depend on the resource utilization?

2. How can the available resources be optimally allocated for efficient localization?

The answers to these questions will reveal the essence of resource allocation in local-

ization and guide the design of resource allocation strategies for WNL.

Current studies on resource allocation for localization [33-37] adopt functions of

the equivalent Fisher information matrix (EFIM) as the performance metric. Typical

functions include the trace of inverted EFIM [33-35,37], and the smaller eigenvalue

of the EFIM [36, 37]. These studies typically optimized the performance metric for

given resource constraints and transformed the resource allocation problem into op-

timization programs. In [35], the power allocation problem for passive localization is

investigated, where the authors employed a relaxation method and obtained subop-

timal solutions. In [36], the ranging energy allocation problem for sensor positioning

network is formulated as an optimization problem and a practical algorithm is pro-

posed based on semi-definite program (SDP). In [37], the trace of inverted EFIM

14



and the smaller eigenvalue of the EFIM are shown as convex functions of the trans-

mit power, and the corresponding power allocation problems for WNL are converted

to conic programs. Recent work [33] unifies the power optimization problem for ac-

tive and passive localization and shows that the problem can be transformed into

a second-order cone program (SOCP). All these approaches obtain c-approximate

solutions and highly rely on optimization engines.

In this thesis, we establish a computational geometry framework for resource allo-

cation in WNL, aiming to achieve the optimal localization performance under resource

constraints. We uncover an essential property, namely low-dimensionality of the lo-

calization performance metric, leading to a linear transformation that maps each

resource allocation strategy into a point in 3-D Euclidian space. This transformation

enables us to exploit some geometric properties to determine the optimal resource

allocation strategy. The key contributions of this thesis are as follows.

" We establish a computational geometry framework to solve resource allocation

problems in WNL, exploiting the linearity and low-dimensionality of the per-

formance metric;

" We determine the sparsity property of the optimal resource allocation vector for

WNL, i.e., the optimal localization performance can be achieved by allocating

resources to only a small subset of anchors;

" In the absence of individual resource constraints,1 we develop efficient resource

allocation strategies via geometric methods with computation cost O(n log n)

for an n-anchor network;

* In the presence of individual resource constraints, we transform the resource al-

location problem into that of finding the set generated by the linear combination

of vectors with bounded coefficients (LCVBC) and develop efficient algorithms

with computation cost O(n 3 log n).

Individual resource constraints refer to the upper bounds for the resource consumption of each
anchor.

15



The remaining chapters are organized as follows. Chapter 2 introduces the system

models and the formulation for resource allocation problems. Chapter 3 presents the

geometric framework and the sparsity property for optimal resource allocation vec-

tor. Chapter 4 and 5 provide the optimal solution for the resource allocation problem,

in the absence of individual resource constraints. Chapter 6 presents algorithms to

solve LCVBC problems and resource allocation problems with individual resource

constraints. Discussions are given in Chapter 7. Finally, the efficiency and the per-

formance gain of the proposed strategies are given in Chapter 8 and conclusions are

drawn in Chapter 9.

Notation: [. ]T denotes the transpose; [A]ij denotes the element in ith row and jth

column of matrix A; tr{A} denotes the trace of a square matrix A; rank{ -} denotes

the rank; Sn denotes the set of n x n positive-semidefinite matrices; ||xj| denotes the

Euclidean norm of vector x; ||x||o denotes the number of nonzero elements of vector

x; the relations x >- y and x >- y denote that all elements of x - y are nonnegative

and positive, respectively; CR{-} denotes the convex hull of the points; In denotes

an n x n identity matrix, 0 m,n denotes a m x n matrix with all 0's, and 1n and 0,

denote n-dimensional vectors with all l's and O's, respectively, where the subscript

will be omitted if clear in the context; ek is a unit vector with kth element being 1

and all other elements being O's; and matrix Jr(#) := [cos# sin #]T [cos # sin].

16



Chapter 2

Preliminaries

This chapter introduces the system model, presents the performance metric, and

provides the formulation of the resource allocation problem for WNL.

2.1 System Model

Consider a wireless localization network with n anchors and multiple agents. Anchors

are nodes with known positions, whereas agents are nodes with unknown positions.

Each agent aims to determine its position based on range measurements made with

respect to the anchors. Let .Mb denote the set of anchors and Pk denote the position

of anchor k E Ab. Without loss of generality, we focus on one agent located at po in

the network. The angle and distance from anchor k to the agent are denoted by #k
and dk, respectively.

The wideband waveform received at the agent is modeled as

r(t) S aj)sk(t -- + Zk(t)

kEs dk i=1

where Pk is the transmit power of anchor k, / is the amplitude loss exponent, {sk(t)

k E 4b} is a set of orthonormal transmit wide-band waveforms, Lk is the number of

multi-path components associated with the channel from anchor k to the agent, ak

and Tk are the path amplitude and delay of the l-th path, respectively, and Zk(t)

17



is the additive white complex Gaussian noise process with two-side power spectral

density No. The path delay is given by

(1 1
Tk = - Pk -PoH

Ctr

where CQr is the propagation speed of the transmit signal.

2.2 Problem Formulation

Let Je(po; x) denote the EFIM for po, which is derived in [7] and given as'

Je(po; x) = Jo + Z kXk Jr(k) (2.1)

keVb

where JO is the EFIM for the prior positional knowledge, Xk is the amount of resources

allocated to anchor k, k is the equivalent ranging coefficient (ERC), and x is the

resource allocation vector (RAV), denoted by

x : Xi x 2  .. - - I .

Equation (2.1) is general enough to accommodate different resource allocation

problems in WNL, where ERCs (k have different expressions depending on the choice

of resource manifested in the RAV x. Formulations for power and bandwidth alloca-

tion are given in Appendix A.1.

Any unbiased estimator po for position po can be lower bounded by the square

position error bound (SPEB) P(x), where

P(x) = tr {Je (po; x)}. (2.2)

Since the SPEB characterizes the fundamental limit of the localization performance,

'If there is no prior positional knowledge, then Jo = 0; otherwise, (2.1) provides an approximation
of the EFIM in the far field scenario. The exact form of the EFIM is discussed in Chapter 7 and we
will show such approximation does not change the structure of the problem.

18



it will be used as a performance metric for the resource allocation problem for WNL,

formulated as follows2

min P(x)
{x}

s.t. 1 T x < i (2.3)

X _ 0 (2.4)

X -- x"" (2.5)

where (2.3) is the total resource constraint, (2.4) is the nonnegative constraint for

resources, and (2.5) is the individual resource constraint.

Note that the methods developed in this thesis are also applicable for the problems

using other performance metric (e.g., the smaller eigenvalue or the determinant of

the EFIM) and some other formulations of the resource allocation problems (e.g.,

minimizing the total resource utilization subject to a given localization performance

requirement).

2.3 Properties of SPEB

This section introduces two important properties of the SPEB.

Proposition 1 (Convexity [37]). The SPEB P(x) is a convex function of x >- 0.

Remark 1. This proposition implies that the resource allocation problem ' is a

convex program and can be solved by convex optimization engines. In addition, the

problems - can be transformed into SDP [37] and SOCP [33], which can be solved

more efficiently than general convex programs.

Proposition 2 (Monotonicity). For two RAV x and y, if x >- y, then P(x) < P(y).

2 Solving the resource allocation problems requires the parameters such as angles and ranging
coefficients (RCs). In practice, these parameters can be estimated from previous time steps in
applications such as navigation and tracking. In Chapter 7, we will present a robust formulation to
deal with the network parameter uncertainty.

19



Proof. Considering the EFIM with RAV x and y, we have

Je(pO; x) - Je(po; y) = (Xk - Yk) GkJr(#k) >_ 0
k cAb

where the inequality is because Xk Yk and Gk Jr(#k) E- S'. Since the function

tr{(.)- 1 } is monotonic, we have P(x) tr{J; 1 (po;x)} < tr{J; 1 (po;y)} = P(y). EI

Remark 2. Proposition 2 shows that the SPEB decreases with the number of re-

sources, implying that (2.3) can be replaced with the equality 1 T x = 1. Moreover, if

1T xmax < 1, the optimal solution can be trivially obtained as x = xmax due to the

monotonicity. Hence, we only consider the case 1 T Xmax > 1.

20



Chapter 3

Geometric Framework and

Sparsity Property

This chapter formulates the geometric framework for resource allocation in WNL and

shows the sparsity property of the optimal RAV. The problem without individual

resource constraint (2.5) is first investigated, and the generalization to the problem

with individual resource constraint is given in Chapter 6.

3.1 Reduced Dimension of RAV

The following proposition gives a fractional expression of the SPEB defined in (2.2).

Proposition 3. The SPEB P(x) can be written as follows

4 . Y3
P(x) 2 e 2

y3 - 1 - 2

where

Yi = cT Rx- [JO]22 + [JO]11

Y2 = sT Rx - 2[JO]12

Y3 = 1T Rx + tr{Jo}

21



in which R = diag{1, 2, - - , $n}, and

c= [cos2#,

s = [sin 2# 1

cos202

sin 2#2

-- cos 20n]T

-. sin 20n ]T

Proof. The SPEB P(x) can be written as

P(x) =

4. 1TRx+4-tr{Jo}
xT RT ARx + 4 - det{Jo} + 2 -tr{Jo}1T Rx + 2- ([J 0]22 - [Jo]ii)cT Rx + 4. [JO] 12 sT Rx

(3.1)

where A = 1 1 T _c CT - ssT. Substituting the expression of yi, Y2 and y3 into (3.1),

together with some algebra, gives the desired result. El

Remark 3. The following observation, essential for the design of efficient resource

allocation strategies, can be made from Proposition 3: the SPEB can be written as

a function of only three variables, each of which is an affine function of (possibly

high-dimensional) RAV.

Consider an affine transformation that maps a RAV x E Rn to a point in 3-D

space, given by

y=Ax+b

where A = [c s 1]T R and

b =[ -[JO] 22 + [Jo]11  - 2 - [JO] 12 tr{Jo}]T

Proposition 3 implies that

Q(Y) ~4. Y X 32

Q(y) := 2 2 2 - (-
Y3 - Y1 - Y2

This leads to the geometric representation of the SPEB in the next proposition.

22



Proposition 4. Given a RAV x, y = A x+b lies in a curve of two-sheeted hyperboloid,

given by

(y 3 - -- )2 _ 2 _ 2 _ -2 = o (3.3)

where A = P(x).

Proof. For A = P(x), we have Q(y) = A. Note that for a given A > 0 and y E R3,

Q(y) = A depicts a quadratic curve, almost identical to curve (3.3) except at y =

0.

Denote the feasible RAV set and its image set, respectively, by

X = {x E R' : IT x = 1, 0 - x}

and

I= {y C R3 : y = Ax + b, x c X}.

Note that each element x C X can be written as a convex combination of elements

in S, where

= {ei, e2 , - en}.

The next proposition provides a geometric property of I.

Proposition 5. The image set I is a convex polyhedron, given by CR {A e+b : e E }.

Proof. For any x E X, y = E_1 Xk(A ek+b) with E"_ I = 1. Thus, y is a convex

combination of A ek + b, k = 1, 2, ... , n.

C7-{A e + b : e E }.

Therefore, I is the convex hull of points

ED

This proposition implies that for x C X with SPEB A = P(x), A x + b is in the

intersection of I and curve (3.3), as illustrated in Fig. 3-1.
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Y2

- - - - - -- - - - - - - - - - -

Figure 3-1: Convex polyhedron I and one side of two-sheeted hyperboloid prescribed
by (3.3).

3.2 Geometric Properties

Based on the above geometric observations, some properties of the optimal RAV are

obtained in this section.

Proposition 6. If x* is an optimal solution for 0, then y* = A x* + b lies on the

surface of the convex polyhedron I.

Proof. Suppose y* is an interior point of I, then there exists c > 0 such that Vy E R3

if ||y - y*| <6 , then y E 1. Let J = c/(2. |A111) and x3 = x* + 61.1

A x6 + b - y*I < E. Therefore, y6 = A x6 + b E I, and by Proposition 5, there exists

R E X such that y6 = keNb xk (A ek + b) = AR + b.

Equation (3.2) gives

P(x6 ) = Q(A x 6 + b)

= Q(AR + b) = P().

Since x* is the optimal RAV, P(x*) < 'P(R). Thus we have P(x*) < P(x). This is

Da contradiction since x6 >- x*, which implies that P(x6) < P(x*).

'One can verify that A 1 # 0 and hence 6 is well defined.

24
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With Proposition 6, we determine the sparsity property of the optimal RAV, i.e.,

the optimal performance can be achieved by allocating resources to only a small

subset of anchors.

Theorem 1. In 2-D networks, there exists an optimal RAV x for Y such that ||xllo < 3.

Proof. Suppose x* is an optimal solution for 9. By Proposition 6, y* = A x* + b

lies on the surface of I, and hence inside a triangle with three vertices, denoted by

A ej + b, A ej + b, and A ek + b. Thus, y*- can be written as a convex combination:

y =x 2(A ej + b) + xj (A ej + b) + xk (A ek + b) for nonnegative xi, xj and Xk such

that Xi + Xi + Xk = 1. Let x = xiej + xjej + xkek, then A x = A x* and

P(x) = Q(A x + b)

= Q(A x* + b) = P(x*).

Hence, x is also an optimal solution for Y with ||x jo < 3. The proof for 2 is

analogous. E

Remark 4. Theorem 1 implies that the total transmit resources can be allocated to

only three anchors without loss of optimality in 2-D networks. We intuit that most

anchors will not be used since they either have poor channel qualities or form a

relatively "bad topology." For example in Fig. 3-2, anchor 1 is not active since it is

too far away from the agent compared to other anchors. Therefore, the same amount

of resources allocated to other anchors contribute more in reducing the SPEB. For

anchor 2, it almost forms a straight line with anchor 4, and thus, anchor 2 and anchor

4 provide information along the similar direction. However, since anchor 4 is closer to

the agent, the same amount of resource in anchor 4 provides more information along

the aforementioned direction and thus anchor 2 is not used.
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Anchor 2

Anchor 3

Anchor I

Anchor 4

Figure 3-2: Illustration of the sparsity: the resource can be optimally allocated to
only three active anchors. Most anchors will not be used due to poor channel qualities
or bad topology.

3.3 Sparsity in Higher-Dimensional Localization

Theorem 1 reveals the sparsity of the optimal RAV for 2-D networks. In fact, this

sparsity property is retained for networks in high dimension. Note that in high-

dimensional case, the EFIM is given as

Je(po; x) = Jo + EZ XkUkU (3.4)
k G./V

where Uk = (Pk-Po)/ Pk-Po and the corresponding SPEB is P(x) = tr {J- 1(po; x)}

with Je(po; x) given in (3.4).

Theorem 2. There exists an optimal RAV x for 3 such that |x~jo < D in d-

dimensional networks, where D = (d2)

Proof. For any symmetric d x d matrix M, we denote a one-to-one function f: Rdxd a

RD, such that f(M) is a D x 1 vector obtained by rearranging D elements in the

upper triangular part of M.

Note that Je(po; x) is a symmetric d x d matrix, the element of which is an affine

function of x. Hence, there exists a matrix B and vector c such that B x + c =

f (Je(po; x)). Consequently, we can rewrite the SPEB as

P(x) = tr {Je 1(po; x)}
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= tr { (f -1(B x + c))

g(B x + c)

Let J = {y E RD : y = Bx+c,x E X}. One can verify that J is a convex

polytope, given by CR{B el + c, B e 2 + c, -- - , B e, + c}. Similarly to Proposition

6, if x* is an optimal solution for 9, then y* = B x* + c lies on the boundary of the

convex polytope J, and hence inside a (D - 1)-simplex with D vertices, denoted by

B eki + c, B ek2 + c, - - - , B ekD + c. Thus, y* can be written as a convex combination:

y* = D, Zx (B ekj + c), for nonnegative xj (1 < j < D) such that Lj X = 1. Let

x = , xjek,, then B x = B x* and

P(x) = g(B x + c)

= g(B x* + c) = P(x*).

Hence, x is also an optimal solution for 3 with |1xllo < D. D

Theorem 2 is a generalization of Theorem 1. For 2-D case, a stronger result is

provided as follows.

Proposition 7. For 2-D resource allocation problem 2, there exists an optimal solu-

tion x* such that ||x* Io < rank{A}.

Note that A = 1 1 T - ccT - ssT, implying rank{A} < 3. It can be shown that

this inequality is strict for certain topologies. Consequently, Proposition 7 provides

a tighter upper bound than Theorem 1. The proof for Theorem 1 and Proposition 7

via algebraic methods are shown in Appendix A.2 and Appendix A.3, respectively.
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Chapter 4

Optimal RAV in Simple Networks

The sparsity property implies that the quest for the optimal resource allocation can be

restricted to the small networks with three anchors, referred to as simple networks.

This chapter presents the design of the optimal resource allocation strategies for

simple networks, the understanding of which is crucial to determine the optimal

RAVs for networks of arbitrary sizes.

4.1 Geometric Method for Determining the Opti-

mal RAV

Given three feasible RAVs x1 , x 2 and x3, consider a set V consisting of all RAVs that

can be written as a convex combination of these three RAVs, i.e.,

3 3

V {x WkXk : Wk = 1,Wk > 0}.
k=1 k=1

The goal is to determine a RAV with smallest SPEB among this set, i.e.,

4s : min ' P(x)
{x}

s.t. x E V.
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Note that the solutions of Y can be obtained from that of Ps by setting Xk = ek.

The geometric interpretation of SPEB in Proposition 4 is used to solve the problem

Ps. Let U denote the image set of RAVs from V under transformation A x + b, i.e.,

U {A x+ b : x E V}.

Clearly, U consists of all vectors that can be written as a convex combination of

Uk= A Xk + b. Moreover, for A1 > 0, let

-(A 1 ) = {y E R3 : Y1, Y2, and y3 satisfy (3.3)}.

The next proposition shows that the solution of the problem Ps can be obtained

from that of the following problem

PG :min A,Am >0

s.t. U n (A) 0.

Proposition 8. For any x' E V, if A x +b E N(Af), where A' is the optimal solution

for 4G, then xO is an optimal solution for Js.

Proof. Suppose x* is an optimal solution for 9s. By Proposition 4, y* = A x* + b E

-(A*), where A* = P(x*). Clearly, y* E U. Hence, U n 7(A*) $ 0, implying that A*

is a feasible value of G. Therefore, A' < A* since A' is the optimal value for yG-

It can be shown that A x + b E W(A) implies P(x) = A'. Since x' E V, x' is

a feasible solution of Ys. Therefore, P(x*) < P(x) since x* is the optimal solution

for Ys. Equivalently, A* < A'. Consequently, P(x*) = P(x) and hence x' is also an

optimal solution for ;s. E

Remark 5. Note that with the optimal solution of YG, A', and y' E U n R-(A'), one

can obtain nonnegative w', w' and w' such that y' = Wu and 3_1 w = 1.

Let x' = b_1 Wk Xk, then one can verify that x' E V and A x + b E R (AO), and

hence x' is an optimal solution for 1Y4s by Proposition 8.
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4.2 Optimal Solution for 'G

The geometric method can be used to determine an optimal solution A0 of YG and

y c u n -(A7). The approach of finding an optimal solution can be divided into

four cases, depending on the shape of U and the position of y' relative to U.

9 Casel: U is a triangle and y' is an interior point of U.

Any point [X1 x 2 x 3 ]T on the plane containing U satisfies

c3 XI + c2 x 2 + cI x 3 + CO = 0

where the coefficients ck depend on U and assume co > 0. Since y' is an interior

point of U, the triangle U is tangent to -(A ) at y'. Thus, normal vectors of

U and +t(A') are aligned at y', implying that there exists t such that

tc = [-y1'

Moreover, since yo lies in both U and N(A1 ),

c 3 y + c2 yo + cI y + c+ 0

(y - 2Ay-1)2 _ 02 o 2 - 4A --2 0

(4.1)

(4.2)

Solving the equations above gives

0
A1 =

co + 2c 1/A 7
c2 + c2 - c2

and y' can be obtained by substituting (4.3) and (4.4) into (4.1).

e Case 2: U is a triangle and y' is on the edge of U, but not a vertex of U.

Without loss of generality, suppose the edge containing yo connects ui and u 2
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and therefore y' can be written as

y0 = U + t (ui-u 2 ) (4.5)

for some t E [0,1]. Let [ai a 2 a 3 ]T uil and [ b1 b2 b3 ]T = U1 - u 2 . Since y' is

an interior point of the edge, u 1 - u2 is orthogonal to the normal vector of W-

at y', i.e.,

-yo b1 - yo b2 + (y3 - 2/A7)b 3  0 (4.6)

Substituting (4.5) into (4.6) and (4.2) gives

A 2 t 2 + A 1 t + Ao = 0 (4.7)

where

A2 = b3 (b2 - b - b2)

A1 = 2a 3 (b2 - b - b2)

Ao =2 a3 (a3b3 - a2b2 - aibi) - b3 (ag - a2

Then t can be solved in the closed form. The expression of y' can be obtained

accordingly.

* Case 3: U is a triangle and y' is a vertex of U.

In this case, y' is the vertex with the smallest A,.

" Case 4: U degenerates to a segment or a point.

The solution can be obtained similarly to that in Case 2 or Case 3.

The observations made in the above four cases lead to Algorithm 1 for finding AO

and y'.
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Algorithm 1 Solution to Problem PG
Input: U
Output: A' and y'

1: if U is a triangle then
2: Compute A, from (4.3) and the corresponding y';
3: if y is in U then;
4: Output A, and yo;
5: else

6: Compute A, from (4.7) and the corresponding y';
7: if y' is in one of U's edges but not a vertex then

8: Output A, and yo;
9: else

10: Obtain A1 and yo according to Case 3;
11: Output A, and yo;
12: end if
13: end if
14: else

15: Obtain A1 and yo according Case 4;

16: end if

4.3 Discussion

In resource allocation problems, Karush-Kuhn-Tucker (KKT) conditions often play

an important role in determining the optimal solutions [26]. In particular, Appendix

A.4 provides an alternative way of solving 1? in simple networks via checking KKT

conditions.

Regardless of the specific methodology (based either on geometry or on KKT

conditions), the resource allocation strategies for simple networks can be naturally

extended to networks of arbitrary size based on the sparsity property. In particular,

for a network of size n, there are (n) ways to select three out of n anchors. Each

combination forms a simple network, the optimal solution of which can be obtained

efficiently using Algorithm 1. The optimal solution for the entire network can then be

obtained by selecting the one with the minimum SPEB among all (') simple networks.

This requires the evaluation of the SPEB for every simple network and its computa-

tion complexity is 0(n3 ). Comparatively, other strategies that obtain -approximate

solutions using optimization engines (e.g., the SDP and SOCP formulation) have the

worst-case computation complexity 0(n3 5 ) [39]. The complexity of 0(n3 ) can be
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further reduced by exploiting some geometric properties of the optimal RAV shown

in the next chapter.
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Chapter 5

Efficient Resource Allocation

Strategies

This chapter presents efficient resource allocation strategies by exploiting some geo-

metric properties shown in chapter 3.2.

5.1 Strategy via Geometric Methods

Let x* be an optimal RAV for 2 (if there are multiple optimal RAVs, any one can

be chosen). By Proposition 6, y* = A x* + b lies on the surface of I. Hence, the

quest for an optimal strategy can be restricted only to those simple networks that

correspond to the triangles on the surface of I. This observation leads to Algorithm

2, which gives an optimal resource allocation strategy.

Computation complexity of Resource Allocation via Geometric Methods (RAGM):

In Algorithm 2, the computation complexity of Line 1 is O(n). The computation

complexity of Line 2 is 0(n log n) by using Chan's algorithm [381. Note that the

cardinality of set KC is no greater than (6n - 12) according to Proposition 9. Hence,

the computation complexity for Line 3 is O(n) since triangulating a convex polygon

with n, vertices can be completed in time 0(n,) [40]. Moreover, there are no more

than 6n cycles in the iteration from Line 4 to Line 13 and each cycle can be completed

in constant time, implying that the computation complexity of the iteration is 0(n).
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Algorithm 2 Resource Allocation via Geometric Methods (RAGM)
Input: k and <bk, k E N
Output: Optimal RAV x* for 9

1: Initialization: x* <- 1/n and Pcurrent +
2: Construct I= CNf{A e + b : e E 6};
3: Find a triangulation for the faces of I and let K denote the set consisted of all

the resulting triangles;
4: repeat

5: Find an element Ki E K and let A ej, + b, A ej2 + b and A ei3 + b denote the
vertices of K;

6: Find the optimal RAV i according to Proposition 8 and Algorithm 1 for the
simple network {iI, i2, i3 };

7: if P(i) < Pcurrent then
8: Pcurrent &-- P(i);
9: x* < ;

10: end if
11: I +- K \ {Ki};

12: until K = 0
13: Output x*.

Hence, the total computation complexity is O(n log n).

Proposition 9. |k| < 6n - 12.

Proof. Let E denote the number of edges of I. Then E < 3n - 6 by Euler's formula.

Let 11, 12, - - IF denote the number of edges for the faces of I, where F is the number

of faces of I. Then

F

Z lk = 2 -E < 6n- 12.
k=1

Note that a convex polygon with ne edges can be divided into (ne - 2) triangles.

Hence,

F

|K Elk <6n-12
k=1

which gives the desired result. D

Remark 6. The initial use of geometric methods in Chapter 4.3 suggests an algorithm

with computation complexity 0(n3 ) for finding an exact optimal RAV. In this section,
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Figure 5-1: Illustration of visibility. For the
faces, which are not visible from y,.

optimal RAV x*, A x* lies in the red

the insight obtained from geometric methods enables the reduction of computation

complexity to O(n log n) without loss of optimality.

5.2 Visibility Inspired Approaches

More geometric properties can be explo'ited to further reduce the candidate set IC in

RAGM. Intuitively, A x* + b belongs to the triangle facing the hyperboloid of (3.3)

(the red faces in Fig. 5-1). To formalize this claim, the definition of visible is given

as follows.

Definition 1 ( [40]). Given a convex polyhedron C and a point p outside C. Let hf

denote the open half space that is generated by the plane containing a face f of C and

does not contain C. Then f is visible from the point p if p belongs to hf.

Consider a point y,, = [0, 0, p ]T (p is an arbitrary negative number). The next

proposition shows that y* lies in a face that is not visible from y,.

Proposition 10. There exists a face f* of I that is not visible from y, and contains

y*.

Proof. See Appendix A.6.
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The next proposition shows that y* lies on the surface of , where 1 is obtained

by performing the convex hull of y, and I.

Proposition 11. f * is a face of 1, where Z = CN{ y,, A e + b : e E }

Proof. Since f* is not visible from y,, f* lies on the surface of the new convex hull

that is generated by the old convex hull I and the new point y, [40]. E

Remark 7. Proposition 11 implies that the quest for an optimal strategy can be per-

formed on simple networks corresponding to triangles on the surface of i. Moreover,

the search can be limited to the faces that do not contain y,, since y, does not lie in f*.

These observations lead to Algorithm 3, which gives an optimal resource allocation

strategy.

Remark 8. Resource Allocation Inspired by Visibility (RAIV) has less computation

complexity than RAGM due to the following reason. In RAGM and RAIV, the

complexity of generating the convex hull is O(n log h), where h is the number of

vertices in the output convex hull [38]. In RAGM, h is equal to n; whereas in RAIV, h

is much smaller than n since many vertices of I become interior points of i. Moreover,

the number of iterations from Line 4 to Line 13 decreases significantly since the search

in RAIV is limited to faces of i that do not contain y,. Fig. 5-2 shows the number

of vertices of the output convex hulls I and Z, and the cardinality of the triangle

sets C and IC (i.e., the number of iterations from Line 4 to Line 13) as a function of

the number of anchors.1 It can be observed that both the number of vertices of I

and the cardinality of IC increase linearly with respect to n. Moreover, the number of

vertices of i and the cardinality of k almost remain a constant as n increases. Such

observation demonstrates the improvement of the efficiency of RAIV.

'Consider that an agent and anchors are placed randomly in the square region with uniform
distribution. The scenario setting is the same as the one used by Case 1, in Chapter 8.2.
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Algorithm 3 Resource Allocation Inspired by Visibility (RAIV)
Input: 'k and <k, k E Ar
Output: Optimal RAV x* for

1: Initialization: y,, <- (0, 0, y) where p < 0 and IpI is sufficiently large; x* <- 1/n
and Pcurrent_<- P(1/n);

2: Construct I CN{y,, Ae + b : e c £};
3: Find a triangulation for the faces of I that do not contain the point y/, and let

C denote the set consisted of all the resulting triangles;
4: repeat
5: Find an element Ki E K? and let A ej, + b, A ei2 + b and A ej, + b denote the

vertices of Kj;
6: Find the optimal RAV i according to Proposition 8 and Algorithm 1 for the

simple network {i1 , i 2, i3 };
7: if P(i) < Pcurrent then
8: Pcurrent <- T(R);

9: X * +- R;

10: end if
11: Kn- k \ { K}
12: until K= 0

13: Output x*.
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Chapter 6

Resource Allocation with

Individual Constraints

This chapter provides the optimal strategies for the resource allocation problem with

individual constraint (2.5).

6.1 Dimension Augmentation and Projection

Denote the feasible RAV set and its image set, respectively, by

X = {x E RC: IT X , 0 0 X -. Xmax}

and

Ie = {y E R3 : y = Ax+b,x E X 1}.

For k c Nb, Xk has two boundary constraints Xk > 0 and Xk < Xmax. Note that each

element x E X can be written as a convex combination of elements in S1, where

S, = {x R' :17 x = 1 and at least (n - 1) boundary constraints are active}.

Similarly to Proposition 5, the next proposition provides a geometric property of le.
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Proposition 12. The image set Ie is a convex polyhedron, given by CR {A e + b :e e

ST1}.

Proposition 12 can be proved similarly to Proposition 5. One can also verify

that if x* is the optimal solution for 4, then A x* + b lies on the surface of Ie.
Therefore, the quest for the optimal strategy of 9 can be restricted to the strategies

that correspond to the surface of 'e. However, the complexity of determining the

surface of -e via generating the convex hull of {A e + b : e E S1} is exponential

with respect to n because S1 has O(n - 2 n-1) vertices. Hence, an efficient method to

determine le is required.

Consider a new affine transformation that maps a RAV x E R n to a point in 4-D

space, given by

Ye = Aex +be

where

A b
Ae =and be= .

T,

Note that Ie in (6.1) can be written as

Tez{Y []
e= Y:

yo [
=y:

Ax+b

= X+be Yo = 1,x 0 -- < X x}

C X1F}

XF {Ae X+ be : - X X ax}
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F -------

XF

Figure 6-1: An illustration of the relationship among I, XF and IF. 'e (red part) is
the projection of XF n iF onto R3.

Y

[IJ
: y ER3}

The relationship between -e, XF and IF is illustrated in Fig. 6-1.

Such observation provides an alternative way to determine the surface of -e: one

can first generate XF and intersect it with 1 F; the resulting polytope is a 3-facet,

whose projection onto R3 is 1 e Therefore, it is sufficient to determine the edges of

XF in order to determine e. Note that XF in (6.2) can be written as

+be, 0 x X

n
z = EXkCk, 0

k=1

k Xmax

Xk 5x7}

where ak = [Gk cos 2 0k G sin 20k G 1 ]T. The edges of XF can be determined by

solving the LCVBC problem, shown as follows.
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Figure 6-2: Illustration of LCVBC in 2-D space. Connecting vectors (yi, -y4, Y2, Y3,

-Yi, Y4, -Y2, -y3) gives the polygon !B. The rightmost point of IB is YR Y2 - Y3-

6.2 LCVBC Problem

LCVBC Problem: Given N vectors yi, Y2, , YN E Rd, the goal is to determine the

vertices and edges of polytope 1B, given by 'B k = E CkYk : 0 < Ck -

Without loss of generality, we assume that vectors yi, Y2, - - YN are not parallel

to each other. It can be shown that any vertex y of 1B can be written as y =

i_ y here W E {0, 1} is the weight for Yk. Therefore, determining the edges

of 1B is equivalent to finding two vertices and their corresponding weights for each

edge of 1B. Let )/V = f {Wk 1 : WkYk is a vertex of IB} denote the weight set

whose elements correspond to particular vertices of 1B.

6.2.1 2-D Case (d = 2)

Without loss of generality, we assume none of vectors yi, Y2, - YN is parallel to the

vertical axis. 1B is determined by Algorithm 4. The process can be divided into two

major steps: Line 1 to Line 3 determine the relative position of 1B; Line 4 to Line

6 find the absolute position of 1B. Fig. 6-2 provides an illustration of the proposed

algorithm. We claim that Algorithm 4 obtains the desired 1B and the proof is given

in Appendix A.7.
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Algorithm 4 Linear Combination with Bounded Coefficients: 2-D Case
Input: N vectors in R 2 : Yi, Y2, - ' YN
Output: Vertices and edges of IB: for each edge, determine its two vertices and their

corresponding weights
1: Find vectors -yi, -Y2, - -YN;
2: Label the 2N vectors yi, -Yi, Y2, -Y2, , YN, -YN in a clockwise order,

denoted as y(l) y(2) ... IY(2N)

3: Connect y('), y(2), ... , y(2N), resulting in a polygon 'B;

4: Among vectors yi, Y2, - - -, YN, search the vectors with positive x components;

5: Sum up these vectors to obtain a point, denoted as YR;

6: Translate iB by YR - YR, where yR denotes the rightmost vertex of IB;

7: Output the vertices and the edges of the resulting polygon.

6.2.2 General Cases (d > 2)

1B can be determined by induction on d. The base case (d = 2) has been solved by

Algorithm 4. Building on that, the higher dimensional cases can be solved. For ease

of exposition, the induction method is demonstrated only for d = 3.

One can show that each edge of 'B is parallel to one of the vectors yi, Y2, -

YN. We first determine those edges that are parallel to yi as follows:

" Generate a normal plane I7 of vector yi;

" Project vectors Y2 to YN Onto -n, resulting in N - 1 vectors in 2-D space,

denoted as zi, zi, - - ,

* For these N - 1 vectors in 2-D space, solve the LCVBC problem by Algorithm

4 and determine the weight set W 1 for the vertices of the resulting polygon,

denoted as -T,;

* For any weight [wI wi ... w I (E -/ 1, the segment { l- kYk + t - Y1, 0

t 1}, parallel to Yi, is an edge of -B. All the edges of 'B that are parallel to

yi can be found in this way due to the following lemma.

Lemma 1. If an edge e of 1B is parallel to yi, then the projection of e onto 11 is a

vertex of IB,; if v is a vertex of Bn, then 1B has an edge e such that e is parallel to

yi and the projection of e onto IJ" is v.
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Algorithm 5 Linear Combination with Bounded Coefficients: General Cases
Input: N vectors in Rd with d > 2: Yi, Y2, - -, yN
Output: Vertices and edges of IB: for each edge, determine its two vertices and their

corresponding weights
1: Initialization: k = 1;
2: while k < N do
3: Generate a normal (d - 1)-plane -. Of Yk;
4: Project vectors yi, Y2, , Yk-1, Yk+1, - YN onto Ik, resulting N-I vectors

in (d - 1) space, denoted as z, Z, z .. - 1, zk+1, - - ,

5: if d = 3 then
6: Call Algorithm 4 with input zkI zk, k - ,_1, k k+1, - ,1' 2' Zkl Zk ZN;
7: Record the weight set W44 for the vertices of the resulting polygon;
8: else

9: Call Algorithm 5 with input zkI z, k - ,_1, zk+1, - - k
1' 2' ,kl Zk~l N;

10: Record the weight set Wk for the vertices of the resulting polytope;
11: end if
12: repeat
13: Find [ wk Wk - Wk_ Wk k ] E Vk;

W 2  k~ W k+1 WNI
14: Add the following segment to the edge set of 1B

W yj+t-Yk,0Ot 1}
1<j<Nj7k

15: Wk +--Wk W \ [ k2 .. - k_ Wa- Ek +..- - 'k

16: until Wk = 0;
17: k-k+1;
18: end while

The proof of Lemma 1 is straightforward and omitted for brevity. Fig. 6-3 provides

an illustration of the steps above. Following a similar process, one can obtain the

edges of 1B that are parallel to Y2, Y3, - -, YN and in this way, all the edges of 'B

can be determined. Details of the procedure are given in Algorithm 5. One can verify

that the computation complexities are O(N log N) and O(Nd-1 log N) for Algorithm

4 and Algorithm 5, respectively.

6.3 Optimal Strategy Design

Note that 1) the quest for the optimal strategy of 3 can be restricted to the strategies

corresponding to the surface of -e and 2) the solution for LCVBC problem provides
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Figure 6-3: Illustration of Linear Combination with Bounded Coefficient in 3-D space:
N=4.

an efficient method to determine the triangles on the surface of -e. These observations

lead to Algorithm 6, which gives an optimal resource allocation strategy for ' with

individual constraints. The design of Algorithm 6 can be divided into two major

parts: Line 2 to Line 5 determine the triangles on the surface of -e; Line 6 to Line

14 select the strategy corresponding to the triangles on the surface of E with the

minimum SPEB. In particular, Line 8 determines the optimal resource allocation

strategy corresponding to a triangle on the surface of §e, which is solved in Chapter

4.1.

Computation complexity of Resource Allocation with Individual Constraints (RAIC):

The computation complexity of Line 1 is O(n). The computation complexity of Line

2 and Line 3 is 0(n3 log n) by calling Algorithm 5. Note that le has 09(n 3) edges

and 0(n3 ) vertices. Hence, the computation complexity for Line 4 and Line 5 are

O(n3 log n) and O(n3 ), respectively. Moreover, there are no more than O(n 3) cycles in

the iteration from Line 6 to Line 14 and each cycle can be completed in constant time,

implying that the computation complexity of the iteration is O(n 3 ). Consequently,

the total computation complexity is O(n3 log n).
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Algorithm 6 Resource Allocation with Individual Constraints (RAIC)
Input: Gk and <k, k c As; Xrmax E Rn
Output: Optimal RAV x* for

1: Initialization: Pcurrent is assigned to a sufficiently large number;
2: Call Algorithm 5 with inputs Yk = axAe ek, k E A3, and translate the resulting

polytope by be, providing XF ;
3: Intersect XF with IF and project the results onto R3 to obtain the vertices of le;
4: Generate the convex hull for the vertices of le;
5: Find a triangulation for the faces of Ie and let IC denote the set consisted of all

the resulting triangles;
6: repeat
7: Find an element Ki C IC;
8: Find the optimal RAV i corresponding to Ki based on the solution for Ys;
9: if P(x) < Pcurrent then

10: Pcurrent +- P(R);
11: X* -;
12: end if
13: C +- AC \ {K};
14: until C = 0
15: Output x*.
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Chapter 7

Discussions

This chapter presents the discussions on several related issues: (1) robust formulation;

(2) exact SPEB expression with prior knowledge; and (3) efficient resource allocation

algorithms.

7.1 Robust Formulation

The design of resource allocation strategies is determined by the network parameters,

which cannot always be perfectly estimated. These estimated values are subject to

uncertainties, and the use of estimated values may result in suboptimal solutions.

Hence, it is necessary to construct robust formulations accounting for the parameter

uncertainties. Let ( E S and #k E So, where

= k - k, k ~ [k k k

in which k and q5 denote the nominal values of the ERC and angles and c and co

denote ERC and angle uncertainties. In this setting, the worst-case SPEB is given by

PR(X) = max P(x) = max 7'(X)
kES'4tAkS k A~k
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where the second equation is due to the fact that the SPEB monotonically decreases

in G .I

Direct maximization over #k is non-trivial. To address this problem, an auxiliary

matrix is introduced as

Qe(po; X) = Jo + Z _k - (Jr(ck) - 6k . I)
keNb

where 6 k = sin Co. It has been shown in [37] that for any #k E So, G E S,

Qe(po; X) -d Je(po; X)

and concequently,

PR(X) -= tr{Q-'(po; x) tr{Je (po; X) = PX)

provided that Qe(po; x) >- 0. With this observation, the robust resource allocation

problem, denoted as IR, can be formulated as minimizing PR(X) subject to resource

constraints.

Consider an affine transformation

y= Ax +b

where A = [ c s 1-26 ]T R, in which 6 = [6162 - 6-n ]T and R = diag{f, 1 2 '...
I , _ .

With this transformation, the geometric methods proposed in Chapter 3 to Chapter

6 can be used to solve the robust resource allocation problem ?R-

7.2 Exact SPEB with Prior Knowledge

We next show that the geometric methods developed in this chapter can be used to

solve resource allocation problems that adopt the exact SPEB as the performance

'The monotonicity of SPEB in RC can be proved similarly to Proposition 2.
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metric.

The exact EFIM is given by [7]

Je(Po; x) = Jo + I Jk

where Jk = E{ Jr(Ok)}, in which the expectation is with respect to the distributions

of the agent's prior positional knowledge, the prior RC knowledge, and the observation

noise. Consequently, the exact expression of the SPEB is

'P(x) = tr Je 1(PO; X) .

Note that by eigenvalue decomposition, the EFIM Jk can be decomposed as

Jk = ) Jr(k) + .(2) Jr(Pk + 7/2)

where (1), .(2) > 0 are the eigenvalues of Jk and 9 k, SOk +7/2 are the angles of the

corresponding eigenvectors. Consider an affine transformation

y = A x + b

where

in which

R() - diag{ f , (i,)

and

C=[cos2p1

=[sin 2 1

cos 2p 2

sin202

n (')}1, 1 = 1, 2

-- cos2o,,]T

.-- sin 2pn].

51

iA [ 1]T R(1) -1 [2 -]T R (2)



With this transformation, the methods proposed in Chapter 3 to Chapter 6 can

be used to solve the resource allocation problem with the exact EFIM. Note that

computing the exact SPEB involves the integration over the distribution of the agent's

prior knowledge. Hence, the approximated SPEB is more favorable to be used as the

performance metric.

7.3 Heuristic Resource Allocation Strategies

We next propose some heuristic resource allocation strategies in WNL. The perfor-

mance of these strategies will be evaluated in Chapter 8.

7.3.1 No Individual Constraints

The following three strategies are proposed to solve 1? without individual constraints

(2.5).

" Uniform strategy: allocate transmit resources equally among anchors;

" Strategy I: select three anchors corresponding to the largest RCs; find the op-

timal RAV for this simple network;

" Strategy II: divide the anchors k E .A4 into three groups g1, 92, and g3 : k E !1

if /k E [0, 27r/3); k c 92 if Ok E [27r/3, 47/3); and k E 93 if Ok E [47/3, 27);

select the anchor with the maximum RC in each group; find the optimal RAV

for this simple network;

" Strategy III: search all (') simple networks and select the one with the minimum

SPEB, proposed in Chapter 4.3.

7.3.2 With Individual Constraints

The following strategies are proposed to solve Y with individual constraints (2.5).
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Algorithm 7 Strategy IV and V
Input: 'k and #k, k c Ab; Xmax c Rn

Output: An RAV x for 3 with (2.5)
1: U - 0;
2: repeat
3: Determine a solution x of 9m for given U (either adopting RAIV or Uniform

Strategy);
4: for k E eA\Udo
5: f z > Xmax then
6: U <- U U {k};
7: end if
8: end for

9: until x < Xmax

10: Output x.

Strategy IV operates in an iterative way and it maintains an upper bound anchor

set U, which records the indexes of anchors that do not satisfy the individual con-

straints (2.5) in the iterations. Details are given in Algorithm 7. Note that in Line

3, Strategy IV adopts RAIV to solve problem sm.

Y/M : min P(x)
{x}

s.t. lTx < 1

X -- max, k E t

X 0.

Strategy V follows the same procedure as Strategy IV except that Strategy V

adopts Uniform Strategy to solve 9M in Line 3. Note that there are no more than

n cycles in the iteration from Line 4 to Line 9. Hence, the computation complexities

are 09(n 2 log n) and 0(n2 ) for Strategy IV and V, respectively.

Strategy VI first finds the triangles on the surface of Ie by determining S1 and

Ie = C't{81} and then follows Line 6 to 15 in Algorithm 6 to provide an optimal

RAV. One can verify that the complexity of Strategy VI is 0(n2n).

The computation complexities of all the proposed strategies are given in Table I.
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Table 7.1: Computation complexity for strategies with and without individual con-
straints

Optimal Suboptimal

Name Time Name Time

? without (2.5) RAGM 0(n log n) Uniform 0(1)

RAIV 0(n log h) Stra. II 0(n)

Stra. III 0(n3 ) Stra. I 0(n)

P with (2.5) RAIC 0(n3 log n) Stra. IV 0(n2 log n)

Stra. VI O(n2") Stra. V 0(n 2 )
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Chapter 8

Numerical Results

This chapter provides numerical results to illustrate the sparsity of optimal resource

allocation and to evaluate the performance of the proposed strategies.

8.1 Anchor Selection for a Simple Network

First consider an example of anchor selection where the agent is located at different

positions. Three anchors (A, B and C) are deployed at the vertices of an equilateral

triangle. Consider the RC (k - &kdk and (k = 100. The plane is divided into four

types of regions labeled as 1, 11, 111, and IV (see Fig. 8-1). The resource allocation

strategy that achieves the optimal localization performance requires different sets

of anchors corresponding to the agent's position. For instance, the resources are

allocated to all the three anchors if the agent is in region IV. First, the area of region

IV is relatively small, implying that in most cases only two anchors are required to

achieve the optimal localization performance. Second, if the agent is in the "far field"

region, i.e., it is sufficiently far away from all the anchors, the optimal strategy for

J? requires two active anchors. Third, if the agent lies on the line formed by two

anchors, only the anchor closer to the agent is used to achieve the optimal localization

performance. This is intuitive since allocating resources to the closer anchor is more

efficient for improving the localization performance.
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Figure 8-1: The optimal strategy for Y uses B and C if the agent is in region I; it
uses A and B if the agent is in region II; it uses A and C if the agent is in region III;
and it uses A, B and C if the agent is in region IV.

8.2 Performance of Resource Allocation Strategies

Consider a 2-D network where an agent and anchors are placed randomly in the square

region (10m x 10m) with uniform distribution. Consider that the RCs {(k}ke'V are

modeled as independent Rayleigh random variables with mean 100.

Case 1) No Prior Knowledge, No Individual Constraints: The performance of the

optimal strategy and three other efficient strategies (i.e., the Uniform strategy, Strat-

egy I and Strategy II) are compared. Fig. 8-2 shows the SPEB as a function of the

number of anchors for different strategies. First, the achieved SPEB decreases with

the number of anchors for each strategy since more anchors provide more degrees of

freedom, resulting in higher diversity gain. Second, the optimal strategy outperforms

all the heuristic algorithms, e.g., reducing the SPEB by more than 50%, 40%, and

20% compared to Uniform strategy, Strategy I and Strategy II, respectively, when

n = 10. Third, Strategy II outperforms Strategy I, and they both perform better

than Uniform strategy. This agrees with intuition because Strategy II accounts for
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Figure 8-2: Average SPEB as a function of the number of anchors for the optimal
strategy, Strategy I, Strategy II, and the Uniform strategy without prior positional
knowledge.

the effects of both angles and ERCs while Strategy I considers only ERCs.

Case 2) Prior Knowledge, No Individual Constraints: The performances of the

optimal strategy and three efficient strategies (i.e., Uniform strategy, Strategy I and

Strategy II) are compared. The prior positional knowledge of the agent follows a

Gaussian distribution .A(po, 0-12), where po = [0 0 ]T and o- is the standard deviation

of the prior position distribution. Fig. 8-3 shows the SPEB as a function of the

number of anchors for different strategies with u 2 = 10 and o 2 = 1. First, it can

be observed that the SPEB decreases with the number of anchors for all strategies

due to the diversity gain. Second, the optimal strategy, Strategy I, and Strategy II

all outperform Uniform strategy significantly, e.g., reducing the SPEB by more than

30% when n = 10. Third, the SPEB increases with the variance .2 of the prior

knowledge. Moreover, the SPEB values of Strategy I and II are closer to that of the

optimal strategy when a2 is smaller. This is because smaller variance .2 translates

into more prior positional knowledge and thus, ranging measurements contribute less
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Figure 8-3: Average SPEB as a function of the number of anchors for the optimal
strategy, Strategy I, Strategy II and Uniform strategy with prior positional knowledge.

to the localization performance.

Case 3) Individual Resource Constraints: The performance of the optimal strat-

egy, Strategy IV, and Strategy V are compared.

Consider that the upper bound of the individual resource follows an i.i.d. uni-

form distribution over different anchors, i.e., x "ax - U(0, P), Vk E Kb, where P is a

parameter to be selected. Fig. 8-4 shows the SPEB as a function of the number of

anchors for different strategies with P = 0.2 and 1. First, the SPEB decreases with

the number of anchors due to the diversity gain. Second, Strategy IV and the optimal

strategy provide almost the identical performance, significantly outperforming Strat-

egy V, e.g., reducing the SPEB by more than 40% when n = 10. Third, the SPEB

decreases with P for the optimal strategy and Strategy IV because smaller P implies

smaller feasible set for the optimal strategy and Strategy IV, and therefore leads to

larger SPEB. Fourth, the SPEB achieved by Strategy V has almost the same value

for P = 0.2 and 1. This is because Strategy V usually allocates the resources evenly
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Figure 8-4: Average SPEB as a function of the number of anchors for the optimal
strategy, Strategy IV and Strategy V.

among anchors and hence individual resource constraints are often inactive, leading

to the fact that Strategy V provides almost the same performance for different P.

Now consider that the upper bound of the individual resource is a constant for

different anchors, i.e., Xk = P, Vk. Fig. 8-5 shows the SPEB as a function of P for

different strategies with n = 10 and 20. First, the SPEB decreases with P for both

Strategy IV and the optimal strategy because larger P implies more relaxed individual

constraints. This decreasing trend vanishes as P increases because the individual

constraints are inactive for large P. Second, it can be observed that Strategy V

provides almost the same SPEB for different P, similarly to Fig. 8-4. Third, Strategy

IV and the optimal strategy provide almost the identical performance, outperforming

Strategy V significantly. Fourth, the SPEB for n = 20 is less than that for n = 10

due to the diversity gain.
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Figure 8-5: Average SPEB as a function of P for the optimal strategy, Strategy IV
and Strategy V.

8.3 Efficiency of Geometric Methods

The efficiency of the proposed strategies is compared in this section under the same

network setting as Chapter 8.2. The proposed strategies are run on a 2-GHz personal

computer.

Case 1) No Individual Constraints: Fig. 8-6 shows the running time as a function

of the number of anchors for Strategy III, RAGM, and RAIV. First, the running time

increases with the number of anchors and the increasing speed differs for different

strategies. This agrees with the computation complexity analysis in Chapter 4.3 and

Chapter 5. Second, in terms of the running time, RAIV outperforms RAGM, and

they both outperform Strategy III significantly, especially when n is large. Third,

the running time for RAIV almost remains a constant as n increases. This is because

the running time of RAIV consists of two terms: O(n log h) for generating the convex

hull and O(h) for searching the set k. When n is small, the second term dominates

60



-- Strategy III

- 0 - RAGM

10 - R0 RAIV-

1-2o 10-3

10 -

10
4 8 12 16 20

Number of anchors

Figure 8-6: Running time as a function of the number of anchors for Strategy III,
RAGM and RAIV.

the running time. Since h remains almost the same when n is small, as shown in

Fig. 5-2, the running time for the second term does not increase and hence the total

running time is almost a constant.

Case 2) Individual Resource Constraints: Fig. 8-7 shows the running time as a

function of the number of anchors for RAIC, Strategy IV, and Strategy VI. First,

Strategy IV and RAIC outperform Strategy VI significantly in the running time, e.g.,

reduce the running time by more than 98% when n = 15. Second, the running time

gap between Strategy VI and the other two strategies increases with the number

of anchors. The linearity of the curve for Strategy VI shows that the computation

complexity grows exponentially with n, which agrees with the analysis in Chapter

6.1 and shows that Strategy VI is impractical to implement. Third, Strategy IV has

much less running time than the optimal strategy RAIC. Considering its near-optimal

performance shown in Figs. 8-4 and 8-5, Strategy IV achieves a good tradeoff between

performance and complexity.
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Figure 8-7: Running time as a function of the number of anchors for Strategy VI,
Strategy IV and RAIC.
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Chapter 9

Conclusion

In this thesis, we established a computational geometry framework for efficient re-

source allocation in WNL. The proposed approach used the low-dimensionality prop-

erty of the localization performance metric. By mapping a resource allocation strategy

into a point in 3-D Euclidian space, we obtained the geometric interpretation of the

RAV and the SPEB, and then developed important geometric properties of the opti-

mal RAV. These properties enabled us not only to reveal the sparsity property of the

optimal RAV, but also to design efficient resource allocation strategies. The proposed

strategies, with complexity O(n log n), are more efficient than SDP and SOCP-based

approaches. For resource allocation problems with individual constraints, we pro-

posed a dimension augmentation and projection method that coped with the high

computation complexity brought by the individual constraints. The proposed strat-

egy, with complexity O(n 3 log n), is much more efficient than an exhaustive search

with an exponential complexity of 0 (2n). The performance of different resource al-

location strategies was compared in the simulation results. It was demonstrated that

the optimal resource allocation strategies obtained via the geometric methods signif-

icantly outperformed most heuristic strategies. Our results provide a new methodol-

ogy for resource allocation design in network localization as well as insights into the

optimization problems with similar structures.
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Appendix A

Appendices

A.1 Application of the Resource Allocation Prob-

lems

The EFIM is given by [7]

Je = J 0 + Y,
kE Nb

SPk (+f0 f2 IS(f)2df) Jr(k)

87r2  2 jl) 2(1 - Xk)

kr Noc~ d~j

with Sk(f) denoting the Fourier transform of Sk(t) and Xk C [0, 1] denoting the path-

overlap coefficient. Next we show that power allocation and bandwidth allocation

problems in WNL can be converted to 9.

Power Allocation

The power allocation problem for WNL is equivalent to J with Xk = Pk and

9k 10 Oo)f2 lSk(f)1 2df .
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Bandwidth Allocation

For a given aggregate signal S(f) in frequency domain, determining a n-partition

of the support of S(f) is to find Fk(k E .Mb), so that Ukrb.Fk = {f : S(f) = 0}

and Tn F = 0, 1 < k # j < n. The bandwidth allocation problem is to find

the n-partition of a given aggregate signal S(f) so that the corresponding SPEB is

minimized. Hence, the bandwidth allocation problem is equivalent to Y with

frk f2 2S(f)l
2df

Xk +
fOf2 S(f) 2df

and k = QkPk.

A.2 Proof of Theorem 2

The following lemma will be used in the proof.

Lemma 2. Given n C N and y, z E R", if y > 0 and z # 0, there exists i E R such

that y + iz >- 0 and |ly + izllo < n.

Proof. This lemma can be proved by considering a mapping f : R -+ Rn

f(t) = y + t z.

Note that (i) f(0) = y is a vector with all positive elements; (ii) for sufficiently large

M, if t > M, then either f(t) or f(-t) has at least one negative element; (iii) f(-) is

continuous on t. Thus, there exists i such that f(i) >- 0 with f(i) containing at least

one zero element, i.e., 11f(i) 1o < n. El

Let x* denote an optimal RAV for 1? with the minimum number of positive

elements and let m = x*o. If m < M, the proof is completed. We next show that

m > M will lead to contradiction.

Without loss of generality, consider that the first m elements of x* are positive,

66



i.e.

x* = [xT O-m ]T

Let Q(y) denote a function of y C Rm

Q(y) = Jo
m

+ Yk Ck
k=1

where Ck =kUk uk is a symmetric d x d matrix. Then Je(po; x*) can be written as

m

Je(po; X*) =JO + Y=X*C Q(x)
k=1

Let [Cklij = c' denote the elements of Ck, where I = (j) + i. Let c = [c c

for 1 = 1, 2, ... , M. The elements of Q(x) can then be written as

[Q(x) ]ij = [J]ij + Y X* [Ck]li
k=1

= [Jo]ij + xT c1.

c 1 ]T

(A.1)

Since c1 E R' and m > M, there exists a vector g E Rm orthogonal to { c :1 =

1, 2, . .. , M }. Hence, for any rIE I, 1< i,j < d,

[ Q (x + T g) ]ij = [Jo]ij + (x + T g)T cl = [Q(x)]ij

where the last equation is due to (A.1). This shows the invariance of EFIM with

respect to RAV in the direction of g. Next we show the contradiction for both cases

gT 1 # 0 and gT 1= 0, respectively.

If gT 1 # 0, choose E such that 1) gT 1 < 0 and 2) x+cg >- 0.1 Let k = x+Eg

and k* = [RT OT-m]T. Then

1TR* = 1T R < 1TX = 1nX*.

'This is achievable since x >- 0, one can choose c with jc sufficiently small.
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Choose y = (1Tx*/1TR*) -**. One can verify that

,()(a)P(y) < P(*) = P(x*). (A.2)

where (a) is due to the fact that Je(po; y) >- Je(po; R*). Equation (A.2) implies that

y outperforms x*, which contradicts the assumption that x* is an optimal solution

for Y.

If gT 1 =0, consider h( 1) = x + q g. By Lemma 2, there exists T1 such that

(1) >- 0 and h(T11 )|o < m. Let x'= h( 7 i) and x'* =xIT OT-Im]T. Note that (1)

1x'* 10 = ||h(ni)|o < m = I Ix*Io; (2) Je(po; x'*) = Q(x + ig) = Q(x) = Je(po; x*)

and hence P(x'*) = P(x*); and (3) 1Tx'* = 1Tx 1Tx*. This contradicts that x* is

an optimal RAV with the minimum number of positive elements.

A.3 Proof of Proposition 7

The proof focuses on the case with J0 = 0 and the result is applicable to the case

with any Jo > 0. Let x* denote an optimal solution for Y with the minimum number

of positive elements and let m = ||x*jjo. If m ; rank{A}, the proof is completed. We

next show that m > rank{A} will lead to contradiction.

Without loss of generality, consider that the first m elements in x* are positive,

i.e.,

* T om ]T. (A.3)

Let 1 = diag{1, 2, - - } and A is the first principle m x m matrix of A, i.e.,

A = 1 1 T - EET -is

with

c=[cos# 1 cosq 2 - cossbm]T

s=[sin 0 1 sin# 2 - sinObm]T.
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Lemma 3. If y = x + (I - f-- 1A+AR)w, where x is the vector consisting of the

first m elements of x* in (A.3), and w is an arbitrary real vector satisfying y j 0,

then y* = [T T ]T is an optimal RAV for -.

Proof. To prove y* is an optimal RAV for 9, it suffices to prove that y* achieves the

same SPEB as x* and that x* satisfies the total resource constraint.

One can verify that span{1,i} span{columns of A} and hence IT(I-1A+A)

OT. Consequently,

1T (I - f-- A+kf) =OT (A.4)

Note that

1nRx* = M imy 1nRy* (A.5)

where (a) is due to the relationship between x* and x, (b) is due to (A.4), and (c) is

due to the relationship between y and y*.

By the definition of Moore-Penrose pseudo-inverse, A(I - A+)A = 0. Conse-

quently,

=I - 0 (A.6)

Note that

X*T RAR x* ( xTiIAx y) A Y *TRARy* (A.7)

where (d) is due to the relationship between x and x*, (e) is due to (A.6), and

(f) is due to the relationship between y and y*. Equations (A.5) and (A.7) imply

that P(x*) = P(y*). As with the analysis in Appendix A.2, 1Tx / 1 Ty leads to a

contradiction. Therefore, 1Tx* = lTx = -Ty = ITy*, indicating y* satisfy the total

resource constraint and hence the proof is completed. D

Note that m > rank{A} > rank{A}, which gives I - A+X # 0, and equivalently,
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(I - R-A+XR) $0. Suppose its lth is not 0. Consider the following mapping

h(t) = x+ (I ) - el - t

where e, E R'. Lemma 2 implies that there exists ti such that (1) h(ti) >- 0 and (2)

|h(ti) 1o < m. Consider i = [h(ti)T OT ]T. By lemma 3, i is an optimal RAV for Y

and |iJlo <m. This contradicts the assumption that x* is an optimal RAV with the

minimum number of positive elements.

A.4 Algebraic Method for Optimal Strategy in Sim-

ple Networks

The solution of with Jo = 0 in simple networks is first presented. Note that when

Jo = 0, the SPEB is

4. 1T Rx
P(x) = XTRTARx : P(x)

Proposition 13. If the following conditions hold

rank{A} = 3

1T (RAR)- 11 > 0

(RAR)-'(R1 + c 1) - 0

(A.8)

where

c = V/1/(1T (RAR)-1 1)

then there exists a unique optimal RAV for 9, given by

A
x* = A(RAR)- 1 (R1 + c 1)

2c

(A.9)

(A.10)
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where

2cA4 = I2c(A. 11)
1T(RAR)- 1 (R1 + ci)

and the corresponding SPEB P(x*) = 2 - 1T(RAR)- 1 (R1 + ci). Otherwise, there

exists an optimal RAV for 0 with at most two positive elements.

Proof. See Appendix A.5. E

Proposition 13 provides an efficient method to check if the minimum number of

active transmitting nodes is three, and if so, then it provides the optimal RAV for 0

analytically.

The closed-form strategy for 9' in simple networks is given as follows. Let se

NiV x b -- R denote the function

se(,3)=- sn2 0 j
sin 2 5-

in which i, j E 1b. Two strategies are provided as follows.

e w1 : the optimal solution is given by (A.10);

* 7r2: let (ki, k2) = arg mini} se(i, j) and k3 is the remaining anchor, the RAV is

XkkV 2 _ kVk Xk =-O.
Xk 1 -~ 1 + /6 k 1 + k2

Proposition 14. For a simple network with J0 = 0, if the conditions in (A.8) hold,

the optimal resource allocation strategy w* = ri, otherwise r* = r2. Moreover, the

SPEB is given by

4c
if 7F* = 71

'P(x*) =A.
min se (i, j) if r* = 7 2
{ij}

Proof. If conditions in (A.8) hold, w1 is an optimal strategy by the proof of Proposition

13. Otherwise, there exists an optimal strategy that requires two active anchors.
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Suppose anchors i and j are active, then

x4i + xA~

xix Zj; j sin 2 ( oi _
1 1 1

sin(g - qgj) (jxi (jx3
I1 1

= i ( j + )
sin2(0i - gj) FiXi (9Xj

> Se(i, j

The last inequality is due to Cauchy-Schwarz inequality and the equality holds iff

Xi = xj Vy / j. Minimizing se(i, j) over i, j leads to (i*, j*) arg minf3 1 se(i, j) and

thus anchors i* and j* are active. O

The solution for 0 with JO -f 0 is presented as follows. Though the problem Y

for simple networks can be obtained by checking the KKT conditions, the procedure

is very complex due to the complicated expression of the SPEB. Hence, the following

method, referred to as prior knowledge decomposition, is proposed to solve Y.

Lemma 4 (Prior Knowledge Decomposition). For an arbitrary symmetric Jo and a

simple network, rank{A} 3 implies rank{Ae} = 3, where

Ae=P[1 c s]TR

in which

1/2 1/2 0

0 0 1/2

1/2 -1/2 0

Moreover, if rank{Ae} = 3, then the vector

xo = Ae 1 [[JO]1I [J 0]12 [JO] 22 T
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satisfies that

Jo = Z[XOl k 4Jr (k). (A.12)

Proof. If rank{A} = 3, then 1, c and s are linearly independent. Note that both P

and R are invertible. Hence rank{Ae} = 3.

The second claim can be verified after some calculation. E

Lemma 4 shows that if rank{A} = 3, the prior positional knowledge can be

viewed as localization information obtained by allocating certain (possibly negative)

resources to the existing anchors.

If rank{A} = 3, Jo can be decomposed as (A.12). Let i = x+xo, then the SPEB

with prior positional knowledge is given by

4. 1T Ri
P(x) = P(i) =TRTAR

Consider an ancillary resource allocation problem:

: mi (i)
{i}

s.t. 1Ti <+lT-xo

If R* is an optimal RAV for j, then x* = R* - xo is an optimal RAV for !.

The objective function of j has a simple expression. Therefore, previous results for

Jo = 0 can be used to derive the solution for Y.

Proposition 15. If the following conditions hold

rank{A} = 3

1T (RAR)-1l > 0 (A.13)

A(RAR) 1 (R1 + c 1) >- 2c (1 + 1T . xo) x 0
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where c and A are given by (A.9) and (A.11), and xo is given by (A.12), then there

exists a unique optimal RAV for 9, given by

x* = A (1 + IT X0) (RAR)- 1 (R1 + c 1) - xo (A.14)2c

and the corresponding SPEB P(x*) = 2. 1T(RAR)--(R1+ c1)/(1 + lTxo). Other-

wise, there exists an optimal solution for 0 with at most two positive elements.

Proof. If the conditions in (A.13) hold, one can decompose J0 and obtain x0 in (A.12).

For problem , similar to the derivation in Appendix A.5, one can verify that there

exists a unique optimal RAV i* for , given by

A (1 x 1 T .X0) (RAR) 1 (R1 + c 1)
2c

where c and A are given by (A.9) and (A.11). Therefore, x* = ** - xo is the unique

optimal RAV for b. If the conditions in (A.13) do not hold, then either rank{A} = 3

or rank{A} < 2. For the former, one can decompose J0 and verify that there exists an

optimal RAV for 0 with at most two positive elements using the similar derivation

in Appendix A.5; for the latter, the proof is completed by Proposition 7. l

Next the case where at most two anchors are required to achieve the minimum

SPEB for 0 is presented.

Proposition 16. For a network with three anchors (i.e., Na = {1, 2, 3}) where the

conditions in (A.13) do not hold, if there exist x and i, j, k such that

Cj~j - Cjj - E,] = (2xjij - 2x? j) sin 2 (oi - 0j) (A.15)

Xi + X = 1, Xi > 0, x >O, Xk= 0 (A.16)

a a
aP(x) < P(x) (A.17)0 Xi Xk

where

Ci = 2 j (tr{Jo} + ([J 0 ]2 2 - [Jo]1I) cos /i + 4[J 0 ]12 sin 0j)
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Eijj = tr{Jo}(2 jj (xj - xi) sin 2(o - 0j) + Ci - Cj)

then the optimal RAV for ? is given by x. Otherwise, there exists an optimal RAV

for 0 with only one non-zero element.

The proof of Proposition 16 is obtained by checking the KKT conditions. Com-

bining (A.15) and (A.16) gives a quadratic equation of xi and this equation can be

solved analytically to achieve x; then one can check whether the inequality (A.17)

holds.

The optimal RAV for 2 in simple networks is provided as follows:

" Conditions (A.13) hold: the optimal RAV x* is given by (A.14);

" Conditions (A.13) do not hold:

- if there exists x such that (A.15) to (A.17) hold, then RAV x* = x;

- Otherwise, the optimal RAV for 3 has one non-zero element and the

optimal RAV can be obtained by checking three anchors one by one.

A.5 Proof of Proposition 13

The RAV x* is an optimal solution for Y iff it satisfies KKT conditions

VP(x*) - [t + V. V(1 Tx* - 1) = 0

x* 0,y ,pe* = 0, k =1, 2, 3

1Tx* =1

If conditions (A.8) hold, one can verify that the RAV provided in (A.10) satisfies

the KKT conditions above with p = 0. The uniqueness is shown as follows. Suppose

there exists another optimal RAV i* for 2; then i *o = 3 or IR*I|o < 2.

If IIR*||o = 3, then [-t = 0, j = 1, 2, 3. Checking KKT conditions with respect to
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one can obtain

A* = 2 (RAR)- 1(RI + c 1) (A.18)2c

where A = R*T RARi* and c = (R1)T i*. Substituting (A.18) into 1Tx* = 1 gives

= (R1)T (RAR)- 1 R1 A 2c

1T(RAR) 11 1T(RAR)- 1 (R1 + cl)'

By formulas of trigonometric functions, (R1)T (RAR)- 1 RI = 1, and hence c can be

simplified as (A.9). Consequently, ** in (A.18) is identical to x* in (A.10). Moreover,

by substituting i* into P(.), one can show that P(x*) = 2 . 1T(RAR)- 1 (R1 + ci).

If I I*o < 2, consider a linear combination of x* and i* with respect to 6 E (0, 1):

x6 = (1 - 6)x* + 6R*. Note that ||xs||o = 3. By the convexity of P(.), x6 is also an

optimal RAV. This statement contradicts that x* is a unique RAV with three positive

elements. Hence, x* is the unique optimal RAV if the conditions in (A.8) hold.

On the other hand, if the conditions in (A.8) do not hold, we claim that there exists

an optimal RAV for 9' with at most two positive elements. Otherwise, the optimal

RAV x* for ' has three positive elements.2 Then by Lemma 7, rank{A} = 3 and

therefore rank{RAR} = 3. KKT conditions imply x* = A (RAR)- 1(R1 +c 1), where

c and A are given in (A.9) and (A.11). Since c is a real number, 1 T (RAR)-1 1 > 0.

Moreover, since A/2c = 2/P(x) > 0, x* >- 0 implies (RAR)- 1 (R1 + c1) >- 0. Then

all conditions in (A.8) hold, which contradicts the assumption that the conditions in

(A.8) do not hold.

A.6 Proof of Proposition 10

The proof can be divided into two cases that depend on the position of y* relative to

E: 1) y* is an interior point of a face f* of I and 2) y* lies in an edge of I. The proof

focuses on the first case and the result can be easily extended to the second case.

The following lemma can be used for checking the visibility of face.

2Jf there are more than one optimal RAV, each of them has three positive elements.
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Lemma 5. Given a facet f of a convex polyhedron C and a point p. f is visible from

p iff (n, h) < 0, where n denotes the outward-pointing normal vector of f and h is

a vector from p to an arbitrary point in f.

Lemma 5 can be verified directly from the definition. Let h* = y*, y*, y* - P]T

denote the vector from y. to y*. Since y* is an interior point of f*, normal vectors

of f* and that of the hyperboloid (3.3) are aligned at y*, implying that the outward-

pointing normal vector of f* can be written as

n* = t [ y *, -y** - 2/A*]IT.

where A* = P(x*) > 0 and t is a constant. Note that -n*, the outward-pointing

normal vector of (3.3), satisfies that -n* < 0, implying that

t(y* - 2/A*) > 0. (A.19)

Moreover, note that y= 1T R x + tr{Jo} > 0 and

(y* - 2/A*) 2 
= y* 2 + y22 + 4/A*2 > 4/A 2

which gives

y* > 4/A* (A.20)

Together with (A.19), this shows that t > 0. Without loss of generality, we consider

t = 1. Then the inner product of n* and h* is

(n* h*) = y* 2  *2 +*2 *

I(2/A- - y*) + 2y*/A*

where (a) is due to the fact that y* is on the curve (3.3). Note that y* > 2/A* > 0

according to (A.20), and hence p(2/A* - y*) > 0 and 2y*/A* > 0. Consequently,
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(n*, h*) > 0 and f is not visible from the point y,.

A.7 Proof of the claim in Chapter 6

The following lemma shows that 'B is a translate of 'B-

Lemma 6. There exists a constant d such that 1B = 'B + d.

Proof. This lemma can be proved by induction. For N = 2, 1B obtained by Line 1

to Line 3 in Algorithm 4 is a parallelogram, and its edges (in a clockwise order) are

either (Yi, Y2, -Yi, -Y2) or (yi, -Y2, -yi, Y2), depending on the angles of yi and

Y2. In either case, there exists a constant d(2) such that 1B =B + d

Let

-'- = kk c : 0 ck 1}
k=1

and let Z) denote the polygon obtained by Line I to Line 3 in Algorithm 4 with

input vectors yi, Y2, - , yi. Note that 1B =(N) and ZB ±(N)

Suppose the lemma is proved for N = 1 - 1. The induction hypothesis implies

that there exists a constant d(1- 1 such that 111) - =Z1) +d(1- 1 . Consider the case

N = 1. Note that

- = {y:Y=t.y+z, zEI ,1 ),0<t< 1} (A.21)

and

ZM ={:y=t-yj+i+ r,iE (11) O<t<1 (A.22)

for some constant r that depends on yi and Z(11. Comparing (A.21) and (A.22)-B

shows that I(') - i~) + d(l) where d(l) = d(1-1 - r.

Next consider the point in 1B with the largest x-component, denoted as Yr. This

point is unique since none of the vectors yi, Y2, - -, YN is parallel to the vertical
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axis. Therefore, IB can be obtained by translating 'B so that yR overlaps Yr. The

only thing remaining to show is that Yr is identical to the point YR obtained in Line

4 and Line 5. Let X(y) denote the x-component of a 2-D vector y. Then

yr =arg max X(y)
YCTB

arg max X(y)
y iZ 1 ciyiOci<1

- arg max X(y)
y=E CiO<ci< 1,X(y ) ;>0

= Yi
X(yi)>0

YR-
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