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Abstract

The complexity of linehaul scheduling is due to the numerous root causes associated
with delays on the road and variabilities introduced by the major participants in the
process, ie: distribution centers, drivers, etc. These sources of variability also make it
difficult to measure the impact changes in transit time have on on-time performance.
This paper focuses on trying to identify indicators of variability and incorporates them
into quantile regression forest, a black box forecasting model, that will provide estimated
scheduled transit times for a given probability of on-time arrival at the destination.

With the use of Amazon's Q1 & Q2 2013 linehaul data, an analysis on performance
trends based on length of haul were categorized to develop an understanding linehauls
in North America. The outbound transportation team at Amazon faces the complex
trade off between providing a sufficient amount of scheduled transit time to ensure on-
time delivery to destination and the utilization rate of a truck. The ability to quantify how
changes in scheduled transit time impact the performance of a particular linehaul allows
transportation managers to assess this trade off.

The paper explores a machine leaming regression technique called quantile regression
forests. The model was developed in R using the quantregforest package. It
incorporates numerous factors about linehaul including: origin, destination, historical
reporting on sources of late to arrivals, time to depart from origin and time of departure.
The strengths of this black box model are in its ability to handle a large amount of data
and continuously update its predicting structure to provide more accurate
recommendations. Quantile regression forests also enable the user to specify the on-
time performance percentage, p, that he/she wants the model to predict based on
historical data. The final model at p = 95% provided a weight mean absolute percent
error of 4.57% and a root mean square error of 2.22%. A four-week pilot was conducted
to validate these predictions and the results are discussed.
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I Introduction

1.1 Company Overview/Project Motivation

Jeff Bezos founded Amazon.com as an online textbook retailer in 1995. Today, Amazon is a

global retailer that aims to be the "Earth's most customer centric company." As part of this

mission, Amazon's Transportation department strives to deliver their goods as quickly and cost

efficiently as possible. As Amazon continues to offer more competitive shipping options, such

as same day, next day and second day, balancing on-time delivery and transportation costs

becomes a bigger challenge (Thomas). The purpose of this project is to better forecast

scheduled transit times between Amazon distribution centers and cross dock facilities.

The estimation of transit time is both a logistical and financial issue. There is an inherent

tradeoff between allotted time to fulfill an order and the allotted time to deliver the order. The

shorter the transit time, the greater the number of orders that may be fulfilled before the truck

must depart the facility. However, a shorter scheduled transit time increases the risk of a late

delivery, and can negatively impact customer experience. Conversely, a long transit time

decreases the risk of a late arrival, with the tradeoff of a lower utilization rate of the

transportation assets. This project attempts to quantify the trade off between on time delivery

with regards to the calculation of scheduled transit time.

1.2 Thesis Overview

1.2.1 Outline of Transit Time Problem

Amazon's Transportation team works with transportation carrier companies to transport

packages from Amazon warehouses to regional transporters, who then complete the final mile

delivery to customer. These carriers are also contracted to perform intra-Amazon network

inventory transfers. Both types of routes are referred to as outbound linehauls. The project is

focused on outbound linehauls within North America. More specifically, the dataset considered

in this paper are linehauls with single destination, which make up 99% of the routes at Amazon

in North America.

Rudimentary calculations of transit time can be made using length of haul. This type of

calculation does not examine the factors that can influence on-time performance, such as: time

to depart from origin or variations in performance based on day of the week, time of day of
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departure, destination type (external customer vs. internal customer), and seasonality in

weather trends. By ignoring sources of variability in the transit time calculation, this type of

calculation cannot anticipate how these factors might affect the on-time delivery performance.

Additionally, the ability quantify the change in transit time to a change in percentage of on-time

delivery is also needed to understand how incremental changes impact performance. This gap

in the ability to evaluate changes in transit time has led to one off adjustments, based on short-

term performance, to improve on time delivery. Without a more sophisticated calculation

methodology, overly conservative scheduled transit time estimates may be unnecessarily

increasing the cost per package for a retailer. My thesis investigates forecasting techniques

that attempt to incorporate these factors of variability.

1.2.1.1 A Perfect Schedule

Scheduled transit time is defined as the time needed for a truck to be pulled off of the dock until

the time it arrives at its destination. This thesis attempts to answer the question: how would a

perfect schedule be designed? In order to do so, characteristics of specific loads will be

examined to determine which characteristics are most influential to transit time estimation. To

qualify as a perfect schedule, every truckload should be scheduled such that it is maximizes the

number of packages on a truck and minimizes the amount of scheduled transit to minimize

transportation cost per package. The difficulty in creating a perfect schedule not only lies in

predicting the necessary transit time for each route but also negotiating arrival times with

carriers and departure times with the distribution centers. The scope of this project will only

address the calculation of scheduled transit time and process improvements to the truck

departure process.

1.2.2 Components of Linehaul Process

The outbound linehaul process can be broken down into two components. The first component

is the time it takes for a truck that has been loaded to depart the yard. The second component

is the actual drive time to the destination. These two processes occur sequentially and

independently of each other. Assuming that both events occur as efficiently as possible, the

minimum amount of time required to do both will be defined as the Nominal Transit Time.
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Figure 1-1: Graphical Representation of Nominal Transit Time
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Actual transit time can then be decomposed into two components:

Actual Transit Time = Nominal Transit Time + factors that contribute to variability

Therefore, any variations in performance can be stated as the difference between Actual Transit

Time and Nominal Transit time.

Variation = Actual Transit Time - Nominal Transit Time

The model incorporates characteristics that may be attributed to the variations at each part of

the outbound linehaul process. It attempts to attribute these characteristics to quantifiable

delays through the use of quantile regression forests.

1.2.3 Variation

Demonstrated performance can be affected by numerous factors; some of these factors are

predictable, others are not. These factors, for the purposes in this paper, will be classified into

three different categories: Origin facility, carrier controllable and other. A full list of these reason

codes can be found in Appendix A. The other category contains stochastic variation reasons

such as accidents, traffic, weather, DOT inspections, etc. which are reasonable and

uncontrollable explanations for delays. Origin facility and carrier controllable can be considered

areas for process and performance improvement.

1.2.3.1 Variation Related to the Departure Process at Origin Facilities

There are two types of delays that can occur at the origin facility: delays caused by warehouse

operations and late truck arrival to the pick up site. Amazon may experience internal delays in

loading the truck due to issues upstream in the warehousing process.
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1.2.3.2 Variations Related to Drive Time

Drive time related variations include carrier controllable and other reason codes. In most cases

the drive time makes up a majority of the scheduled transit time and is also where a significant

amount of uncontrollable variability is introduced. This is where traffic, accidents and DOT

inspections, which are classified in the other category, may cause truck drivers to be heavily

delayed. Carriers can introduce variability through errors such as driver getting lost, error,

mechanical breakdowns and dispatch errors. Effective carrier management practices are

documented into a report and were available to provide a historical perspective on carrier

performance.

1.2.4 Cost Savings Through Accurately Scheduled Transit Times

Overly scheduled transit times effectively increase shipping costs. Amazon prioritizes customer

experience and will do everything possible to ensure the best customer experience, which

includes on-time delivery (Green). With overly conservative transit times, many packages may

be shipping with more expensive ship methods when they could be executed with lower

shipping costs. Anecdotally, it is understood that today's scheduled transit times are heavily

padded to ensure on-time delivery. By understanding how much transit time will ensure a

certain service level of on-time performance, scheduling teams can be intelligently increase or

reduce transit time where needed. Reduction of transit time will realize cost savings.

Increasing transit time may increases costs but maintain Amazon's goal of ensuring on-time

delivery to customer.

1.3 Outbound Transportation Overview

1.3.1 Description of Amazon and Carrier relationships

Transportation carriers within North America for trucking come in two forms: asset based

carriers and brokerage carriers. Asset based carriers are trucking companies who own their own

transportation assets, tractors and trailers, and employ drivers to execute driving assignments.

Brokerage carriers may or may not own their own assets and generally auction the driving

assignments to third party logistics companies who execute the assignment. Common

performance metrics to evaluate a carrier on is on percentage on-time to destination. For late

loads, it is common to work with carriers to identify root causes on a case-by-case basis. These

14



industry best practices have been adopted by Amazon and are used to help drive process

improvement and evaluate carrier performance across the whole network.

1.3.2 Key Terms

This section will define transportation terms that will be used throughout this paper.

1. Linehaul - an origin-destination pair that has been assigned to a specific carrier to

execute, also known as a lane or route

2. Last Truck Out Time (LTOT) - a calculated and scheduled time, the time a truck needs

to be closed in order to ensure on-time delivery to destination

3. Last Truck In Time (LTIT) - a time provided by the destination in which loads must be

at the destination in order to ensure on-time delivery to customer

4. Scheduled Departure Time - the scheduled time to close a trailer for each load

5. Scheduled Arrival Time - the scheduled arrival time communicated to a carrier to

arrive for pick up

6. Transit Time - the time from Scheduled Pull Time to the Last Truck In Time at the

destination

7. Last Truck Out (LTO) - the last truck at the specified Last Truck Out Time for the lane

8. Sweeper Truck - a truck that is scheduled but not the LTO

9. Adhoc Truck - a truck that is not scheduled and is created due to operational needs

1.3.3 Current state of calculating transit time

The current methodology for calculating transit time is a general formula that is applied across

all routes in the Amazon North American network. Each route may have their transit time

adjusted based on historical performance. The tendency is to extend transit time based on

inconsistent carrier performance, rather than reduce transit time. About 70% of linehauls had

scheduled transit times that were greater than the calculated value. The formula has two inputs:

the distance between origin and destination in miles and the drive time estimated by

transportation software based on 5 digit origin and destination zip codes. Transit times may also

be modified based on operating hours of the origin and destination buildings

1.3.4 Process for Changing Scheduled Transit Time

Changes to the schedule are completed on an as-needed basis and are negotiated between the

carrier managers, the carriers and the origin facilities. A typical request could begin as feedback
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a carrier receives from a truck driver that a particular route has become more challenging to

drive because of new road construction. This information is presented to the scheduling team to

extend transit by a certain amount that was suggested by the carrier. The scheduling team may

perform a back of the envelope calculation to determine the reasonability of the request. This

calculation may consist of comparing recent changes requested by other lanes that drive

through a similar area or comparing existing transit times of similar distances. There is no

consistent methodology to determine if the request is valid.

After the scheduling team vets this request, it must be compared to the Last Truck In Times set

by the destination. This is to ensure that the new extended transit time request would not

require changing the existing Last Truck Out Time. If either LTIT or LTOT are compromised,

negotiations with the warehouse begin. Changing the LTIT of a lane can influence staffing

procedures and other processes at the warehouse, such as scheduled breaks.

These change requests can take anywhere from two weeks to one month to go into effect.

Unfortunately the negotiation process is not documented. On time delivery is monitored after the

change but there is no feedback system to determine if the change was sufficient or excessive.

Amazon only knows if the change was deficient because on-time performance would remain

low. The lack of documentation can cause overly inflated transit times. There is also no review

process to reduce transit time once the issue that caused the increase in transit time is relieved.

This is particularly true of transit times that are increased due to increased seasonal inclement

weather.

A deliverable of this project will be to create a system that allows the transit time forecasting tool

to take these changes into account.
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2 Literature Review

2.1 Industry Standards - Comparison to Airline Scheduling Problem

The scheduling issue faced by Amazon is not dissimilar to the scheduling problem faced by

airline companies. A thesis written by Gerasimos Skaltsas titled Analysis of Airline Schedule

Padding on U.S. Domestic Routes (MIT, 2011) provides some insights into how to analyze the

problem of scheduling transit times for trucks. The thesis focused on analyzing how airlines

used block time to account for variabilities in flight operations. Block time is defined by Skaltsas

as the "time interval between the gate departure and the gate arrival time for a given flight"

(Skaltsas 41). Skaltsas examined correlations between buffer and flight time components to

develop a linear regression model to analyze trends. Using his model, he was able to

understand the impact of each component of variability on flight time and studied how various

airlines accounted for them through their scheduling strategies.

One concept that Skaitsas discusses is Nominal Block Time. The Nominal Block Time is defined

as the time required to complete the flight, including taxi time in and out of airports, in optimal

conditions. The difference between Actual Transit and Nominal Block Time is defined as buffer.

This concept was adopted in my analysis of transit time for Amazon, as defined earlier in

section 1.2.2. The current method of calculating transit time utilizes a third party transportation

software, to estimate a nominal drive time. My calculation of nominal transit time for transit time

analysis is based on the same estimate from the third party transportation software.

An additional concept that was helpful in framing Amazon's transit time problem from Skaltsas'

work was calculating gate delays. Gate delay is defined as the time difference between

scheduled departure time and actual departure time. For airlines, gate delay can cause a late

arrival to destination. These delays can be caused by any number of variables such as weather

conditions, airline policies, mechanical problems, baggage handling etc. (Skatsas 2011).

Amazon has similar issues with the truck departure process from the dock. Since departing the

yard is the first step in the delivery process, it is important to understand the variabilities that are

introduced during this process. A more in-depth discussion of lessons from a kaizen will explore

the causes of these variabilities in Chapter 3.

In general, Skaltsas found that there was a weak linearity between buffer and nominal airborne

time. A practice that was common among all airlines examined was buffer increased with length

of flight time (Skaltsas 76). The rationale for this was to account for the increased uncertainty
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en-route, however buffer as a fraction of nominal block time decreases exponentially with

nominal airborne time. This is believed to be due to the fact that absolute delays do not change

with the nominal airbome time. Therefore on short haul flights, buffer is often a significant

fraction of the scheduled block time. Skaltsas concluded that,

"An optimal padding strategy maximizes the number of flights that arrive on time

and at the same time minimizes the total negative delay. The long right tail in the

gate and block delay distribution reveals the existence of flights that require a

large amount of buffer time to arrive on time. Because these flights are

distributed over a wide time range, the gains in on-time performance would be

very small compared to the cost of underutilizing the aircraft, the gates and the

crew for every minute of early arrival" (Skaltasas 2011, page 49).

This conclusion may also be true for Amazon's scheduling issue. If this is true, the current goal

of high percentage of on time delivery may result in highly buffered transit times and highly

under utilized capacity on the trucks.

2.2 Ordinary Least Squares Linear Regression

The work conducted by Skaltsas was meaningful as a methodology to draw conclusions on the

effects of various sources of variation associated with demontrated on-time performance.

Unfortunately, his methodology of using ordinary least squares regression is not a good

methodology for Amazon's data set. An ordinary least squares model makes several

assumptions about the behavior of the data that are not true of Amazon's data set. Specifically,

the assumption of linearity, homoscedasticity of the errors and normality of the error distribution

are not true. By plotting the studentized residuals and normal probability plot of the standard

residuals, it can easily be seen that the assumption of normal error distribution and

homoscedasticity are not true.

The first model that was attempted with the data set was a linear regression. It incorporated

variables that measured Origin Arrival Delay, Dock Depart Delay, Gate Depart Delay,

Destination Arrival Delay, Number of Scheduled Trucks Departing Simultaneously, Day of

Week, Length of Haul, Time of Day and reported late reasons for historical loads. The initial

OLS model was discarded however these variables were later considered in the quantile

regression forests model.
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Figure 2-1: Studentized Residuals of Linear Model
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Note: If homoscedasticity were true, the plot of studentized residuals vs. predicted values would appear random
about 0. The above plot clearly shows a pattern within the residuals that make us reject this assumption.

Figure 2-2: Normal Probability Plot of Linear Model
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Note: If the errors associated with the linear regression were normal, the normal probability plot of studentized
residuals would lie along a straight line. The normal probability plot above clearly points to reject the assumption of a

normal distribution of errors.

Lastly, ordinary least squares regressions provide little ability to interpret service levels based

on the predicted transit time. The ordinary least squares regression produces a value that is the

conditional mean of the dependent variable. Unfortunately, that does not answer the question

how much would be gained or lost through adding and reducing transit time. For this reason,

the ordinary least squares regression model was abandoned.
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2.3 Quantile Linear Regressions

i. Background & Definition
The need to specify transit times at specific service levels cannot be met by using linear

regressions. With least square regressions, the following loss function is minimized:

n

i=1

where Y is the predicted value,

y is the ith actual demonstrated value

The values produced from a least squares regression are an estimate of a conditional mean,

E(YDC I X=x), based on independent variables x, where i={1,2,3... n} and n is the length of x.

Unfortunately, a least squares regression is limited in its ability to recommend transit times for a

given service level because it only estimates a conditional mean.

With quantile regressions, the following conditional loss function is minimized:
n

p|Y-yi|+ + (1 - p)IY-y -

where Y is the predicted value,

yjis the ith actual demonstrated value

and 0 5 p 1

By minimizing the above loss function, the regression produced provides greater information

about Y than an OLS model. The quantile regression is a conditional distribution function, F (y I
X=x) that is defined as:

F(yX = x) = P(Y 5 yX = x) ;> p

where 0 5 p 1

By interpreting p as the probability of a load delivering within a specified transit time y, the

regression may be used to provide forecasts for a specified service level.

ii. Interpreting error rates at specified service levels

20



By interpreting p as the probability of a load delivering within a specified transit time y, the

regression may be used to provide forecasts for a specified service level.

ii. Interpreting error rates at specified service levels

By minimizing the conditional loss function mathematically, we inherently favor transit times that

overestimate the actual transit by definition. Therefore, rather than computing the mean

absolute percent error (MAPE) of the prediction, we use the following formula to compute

weighted mean absolute error rate, WMAPE:

WMAPE =- (p* JA, - TI+ + (1- p) * |it -T1 |* .-) * 100
i=1 T

where p = % On-Time delivery, Ai = ith Actual Transit Time, T = it Predicted Transit Time

Hence, an x% weighted mean absolute percent error rate for a given p implies that (1-x)% of

time, the delivery will be on time with a probability of at least p, where 0 p ! 1.

The precision of the model is also important, since the model should not overestimate transit

times for the benefit of lower error rates. Therefore we will also measure the mean absolute

percentage error, MAPE, as:

1( 
1

MAPE = n il) - Ti|) * 100
n A=

iii. Benefits of Quantile Regressions

The benefit of using a quantile regression is to allow the user to interpret each of the regressors'

influence on the predicted value at specified probabilities. It is possible that certain regressors

exhibit a greater influence over the predicted value within specific probability ranges. For

example, with transit times, it may be true that Amazon performance factors might exhibit a

greater influence on on-time performance at lower service levels, however at higher service

levels, these performance factors may have little effect on the predicted transit time value.

Quantile regressions compute the coefficients related to the regression based on the specified

service level.
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Another benefit of using quantile regression is that it does not make any assumptions about the

underlying behavior of the data. Therefore, issues of non-homoscedasticity and non-normal

error distributions are not an issue with quantile regressions.

iv. Limitations of Quantile Regressions

While quantile linear regressions take into account the varying degrees of influence from the

variables at specified service levels, it is not very good at handling outliers. Due to the nature of

transit times, large delays can cause huge outliers to occur. These outliers caused very

conservative estimates to be produced at high service levels. The quantile regression also did

not provide a good estimate for lanes that had a tendency of missing the receiving window at

the destination. Due to the miss, the carrier would have to wait up to 12-24 hours until the

facility opened before delivering the trailer. Carriers will commonly not report the time of arrival

at destination if the facility is closed. Therefore, on certain routes, there were a significant

number of deliveries that appeared to need transit of at least 12 hours over their current

scheduled transit. In reality, had the truck arrived a few minutes or hours earlier, the prediction

would be much closer to the actual transit time, ie: time to depart from origin and drive to the

facility, rather than the reported transit time, ie: when the arrival was reported by the carrier.

While the quantile regression effectively minimizes the loss function, its MAPE was roughly

33.8%. It provided conservative estimates for many lanes that would be unreasonable to ask

Amazon to schedule to. A more robust modeling method for handling outliers was needed to

appropriately model transit time.

2.4 Random Forests

Random forests were suggested as a modeling technique that would be able to handle the

outliers prevalent in the transit time data set. Below is a formal definition of random forests:

A random forest is a classifier consisting of a collection of tree-structured classifiers {DC(x, t), k

= 1,... J where the {tk} are independent identically distributed random vectors and each tree casts

a unit vote for the most popular class at input x (Breiman 6)

Random forests is a machine learning technique that generates a large number of decision

trees, which are used to estimate the dependent variable. Each tree is created by randomly
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subsetting the data using the independent variables and their corresponding dependent

variables. Within each tree, the data is randomly sampled to generate predictions. These

samples are referred to as leaves.

In addition to their ability to handle outliers well, random forests also have other benefits' such

as:

1. Ability to handle extraneous variables that may not influence the dependent variable

2. Convergence of predictions so over fitting is not a concern

3. Demonstrated high accuracy in predictions

Leo Breiman describes the technique in his paper Random Forest (University of California -

Berkley, Sept 1999). This paper is the primary source for the R library that has been developed

for random forests and quantile regression forests. My model was developed with these R

packages and uses quantile regression forests. The package, quantregForest, is heavily

modeled after the R library randomForest. The description of the modeling technique will be

described using the terminology from the R packages.

Within the R package, the user may define the minimum number of samples that the tree must

have for a given leaf using nodesize. For a given n set of variables, a random sample is taken

of mtry variables, defined by a user input. Mtry is a setting within the Random Forest function

that may be any integer value less than or equal to n. It is the number of input variables that will

be randomly selected to generate a given tree. It is common to split the data into thirds in order

to cross validate the results and prevent over fitting the model. It is assumed that the original

data set has n samples. The probability of a randomly sampled data set is missing by sampling

n times with replacement from the original data set is:

P (sample is missing) = ( -;-

Therefore the limit of this expression as n grows towards infinity is 1/e or approximately 1/3. It is

for this reason that a general rule of practice is to set one-third of the n- independent variables

equal to mtry.

Based on this randomly generated tree, a leaf is created for each unique set of observations, x.

Let that leaf be denoted by l(x), where x is a vector. A prediction is created for every tree T in

1 Breiman, 2001
2 http://DC.bigrigdriving.com/2010/trucking-industry-debates/is-team-driving-the-future-in-trucking
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the forest. The prediction yi is created by calculating the weighted average over the observed

values, Y, in I(x) over all trees and leaves.

The weight, wi, assigned to an observation xi is a positive constant equal to

(# of observations equal to x) if xi is part of the leaf 1(x) and 0, otherwise.

n

prediction from a single tree,T: PIT(x) = W 7 i(X) * Y

where wTi(x) = 1 and Y are observed values

To compute the prediction from multiple trees, the weights from all leaves are aggregated and

averaged.
n

prediction from forest: i(x) = wi(x) * Y
i=1

where wi - k wri , k = total number of trees

Ntree is also set by the user as the number of trees to be generated in the forest. Once the

entire forest has been grown through ntree random samples of the entire dataset, a new

prediction can be made by inputting a vector X of n variables into the random forest. The new

vector X will be applied across all the trees in the forest and the predictor is calculated by taking

a weighted average of all the observed values on all leaves in the random forest for all

observations that match X.

2.5 Quantile Regression Forests

i. Background & definitions

Like ordinary least squares regressions, random forests estimate a conditional mean, which is

equivalent to the weighted mean of the observed yi. In contrast, quantile regression forests use

a conditional distribution to estimate the weighted distribution of the observed yi, where the

weights attached to observations are identical to the original random forest algorithm.

Combining the concepts from quantile regressions and the methodology of random trees to

generate accurate predictions, we can say that the conditional distribution function of DC, given

X = x, is:
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F(y|X = x) = P(Y 5 y|X = x) = E(1(y5Y)|X = x) > p

where 0 p 1,

1{y,5y, = 1 when Y ! y, 0 otherwise

Therefore predictions of yi can be stated as:

n

yi = P(y|X = x) = wi(x) * 1[Y_!yj

ii. Implementation in R

The model was constructed in R with the use of the library package quantregForest. The

package was developed by Nicolai Meinshausen and the algorithm can be summarized as

follows:

1) Grow ntrees to create your random forest based on the nodesize set by the user. If no

value is specified, the default values for ntrees and nodesize are 100 and 10,

respectively.

2) For a given vector X=x, to generate a prediction input x and compute the weights wr for

every observation in the tree and the corresponding wi for all trees in the forest.

3) Compute the estimate of the distribution function for all y using the weights.

The model built using Amazon outbound linehaul data relies on this package to create

predictions. Once the forest is built using the function quantregForesto, vectors X must be

inputted into the forest to generate the predictions. The vectors inputted are at a linehaul load

level. Chapter 4 will discuss the sources of data and the inputs into my model. Chapter 5 will

describe stability testing and final results obtained.
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3 Understanding Truck Departure Process from Amazon Facilities

Analogous to the gate departure process described by Skaltsas, the first step in outbound

linehaul delivery is the truck departure process at the origin. Amazon allocates a fixed period of

time from the scheduled transit time to ensure that a truck has a sufficient amount of time to exit

the yard. It has been shown in time studies across 12 of Amazon's largest warehouses that

while the allocation may seem appropriate, actual performance has a wide variation. On

average a truck will take 99% of the allocated time to depart from the site, however the standard

deviation is approximately 30% of the average. In response to these time studies, a team of

yard personnel, analysts, managers, shipping dock associates and leads were assembled to

perform a kaizen on the yard departure process in April 2013. Kaizen is the Japanese term for

improvement. The motivation and goal for the kaizen was to develop an understanding of how

the variation can be reduced through creating a standard work model that could be applied

across the network.

Figure 3-1 Results from Time Study of Yard Depart Times
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In addition to reducing the variation, there was also a need to understand how much time should

be allocated to departing a truck. Thirty minutes seems more than a sufficient amount of time to
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exit a truck. In fact, many Amazon Transportation managers believed that it was an excessive

amount of time for the process. They believed inefficiencies in the management of the process

drove the long right-sided tail of the performance distribution. Therefore, the goals of the kaizen

were to reduce variation and to measure and improve cycle time of the departure process. The

latter goal was directly related to the needs of modeling performance variation for my transit

time forecasting model.

3.1 Overview of Truck Departure Process & the Last Truck Out Time

The truck departure process can be understood as two time periods, before and after last truck

out time (LTOT). Prior to the LTOT, the distribution center is still loading the boxes onto the

trailers and the tractor assigned to the load will arrive at the origin . After the LTOT has

occurred, the truck is closed and initiation of the departure process occurs. The LTOT is

somewhat of a misnomer because it is not actually the time in which a truck leaves the dock. It

is a scheduled time when a batch of trucks begin to depart. It is also less of a dock metric and

more so a warehouse deadline. Process managers are aware of which LTOT they are picking

and packing for. While it does refer to when a load will depart from the facility, it has become

synonymous with a batch of work. The process flow diagram below outlines the steps that occur

in each of those periods.

Figure 3-2 Truck Departure Process at Amazon
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3.2 Kaizen Teams & Findings

A week was spent on-site at a distribution center (DC) to conduct the kaizen event. It was

conducted at one of Amazon's largest DCs, both in physical footprint and capacity. The kaizen

focused on studying the processes on the outbound dock and yard. The truck departure process

can be grouped into three major teams: dock, ship clerk and yard. As a result, the structure of

the kaizen was also broken into three major teams that examined the processes of each team.

The following subsections will explore operational issues that can influence percent on time

performance.

3.2.1 Dock Team

The Dock team's main responsibility is to ensure that all packages are loaded onto the truck.

This is a metric that they are evaluated on. Because of this, there is little awareness on late

truck departures. Since transit times are scheduled to start at LTOT, it is critical for on-time

departures that the truck be closed as soon as possible. It was discovered that there was no

sense of urgency around LTOT to ensure that the truck departs as soon as possible. There

were also no clocks around the dock to alert the associates what time it was. It was observed

that many associates simply waited around for packages to come down the chutes, as seen in

Figure 3-3. The associates' main priority was to ensure that all packages assigned to the truck

made it onto the truck, and they were less concerned over how long it took. Because of the lack

of awareness of LTOT and general lack of urgency to load the trucks, there was opportunity for

better resource allocation among dock associates. There was often sufficient staff to assist with

package loading from other lanes that were not assigned to the current LTOT, but these

associates were not utilized.
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Figure 3-3 Associate at the Dock During LTOT

Associates waiting for packages to on the dock. No communication with pack areas about LTOT

The dock team was most concerned about ensuring that the packages made it onto the truck

within 30 minutes of LTOT. This cultural habit made it clear that while transit time is supposed to

start at LTOT, the allocated time designed for the departure from the yard was being utilized to

finish loading the truck. Associates understood that it does not take that long to drive a truck off

Amazon's property and were indirectly trained to use this time period to scramble for last minute

packages. The allocated time gave the associates a false sense of excess time, which can

cause delays down the road.

Once the packages are fully loaded, the dock process lead will virtually close the truck in

Amazon's systems. When there are a large number of trucks departing at once, this step tends

to be batched once all physical processes have been completed. Therefore there is often a

mismatch between virtual and physical data.
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3.2.2 Ship Clerk Team

The ship clerk's main responsibility is to act as the link between the yard and the warehouse.

They virtually depart the truck as soon as all packages are loaded and print necessary

paperwork to hand off to the truck driver. Since they are the team responsible for

communicating between warehouse and yard, the ship clerk must know what is occurring inside

and outside the warehouse. In its current state, this cannot be done without physically being in

each location.

Many of the inefficiencies that were noted during the kaizen were related to the lack of standard

work and misalignment of performance metrics. Each ship clerks had their own process for

departing a truck. The ship clerk's performance metric is to ensure that all loads are departed

from Amazon within the allotted time from the LTOT. From a ship clerk's perspective the load

departed on time if it left the yard within this time from LTOT. Implicit in this metric is the idea

that the allotted time is required to depart each truck. Success is defined if a set of trucks

depart on time, rather than each truck. The batching of truck departures leads to unnecessary

queuing and inefficient processes.

Many ship clerks wait on all packages to arrive before initiating any of the steps to depart a

truck. Because of this, a lot of wasted time is spent waiting for packages to be loaded. During

the kaizen, it was noted that much of the work completed by the ship clerk could be done before

LTOT occurred. These included printing the bill of lading for truck drivers and appropriately

communicating with yard jockeys about which trailers are to be pulled next.

The longest task required of the ship clerk is delivering the bill of lading to the truck drivers in

the yard. Since there is often only one ship clerk staffed per shift, they tend to wait until all of

the loads have been completely loaded before walking outside to deliver the bill of lading. This

was noted as an inefficiency for the process. This also prevents the yard team from initiating

their processes. A take away from the kaizen was to improve the bill of lading delivery process

by asking truck drivers to come into the facility or staff at least two ship clerks to expedite the

delivery process.

As the intermediary between two teams, the ship clerk's efficiency is highly dependent on how

much information it is shared by the dock and yard teams. Information is currently delivered
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through handset radios. This method works well but is not effective in delivering messages to

truck drivers who also need information. To improve communication, visual cues such as

pagers to communicate with drivers, would also help ship clerks understand truck arrivals and

departures while not physically in the yard.

3.2.3 Yard Team

The Yard Team analyzed the process from the handoff of the bill of lading (BOL) through the

exit of the truck from the yard. The yard process involves three parties: the security guards,

truck drivers and yard hostlers. The security guards are responsible for checking in the tractors

for their pick up and exit. They also notify the ship clerk when a tractor has arrived for pick up.

The truck drivers are responsible for dropping off an empty trailer, picking up the filled trailer and

completing their pre-trip inspection before exiting the yard. The pre-trip inspection is a safety

check required by law. The yard hostlers are responsible for replacing empty trailers at the

dock that have just been cleared. They also pull trailers off docks in cases where the truck

driver is late to arrival.

Two key findings were the ambiguity of yard ownership and difficulty communicating across

teams during the process. This was highlighted by the disorganization and traffic in the yard.

The truck driver would pull out of their trailer slots and move to a convenient location for them to

complete the safety check. Due to the random location of trucks staged for pre-trips, this caused

congestion and overall disorganized flow in the yard. This disorganization also poses a potential

safety issue for the ship clerks traveling in the yard to deliver the BOLs. Simultaneously yard

hostlers are also pulling trailers on and off of dock doors. They pull trailers based on the lights

by the dock doors controlled by the dock team. There is no prioritization of any specific load.

The lack of communication between the teams inside the facility and the yard hostler outside the

facility result in a lot of inefficiencies in trailer movement.
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Figure 3-34 Example of Yard Congestion

Yard congestion due to lack of standard work and communication to drivers

A fact that complicates matters for the yard processes is that the yard hostlers, security guards

and truck drivers are all employed by third party contractors. Amazon has no direct influence

over these individuals. Therefore, the yard departure process is essentially a third party

managed process. One of the main recommendations of the kaizen was to assign yard

ownership to the ship clerks. Without Amazon overseeing these teams, it would be difficult to

implement process improvement initiatives. Since the yard process is the last step in exiting a

trailer, it is important that Amazon is involved in ensuring timely departure.

3.3 Kaizen Results & Implications on Modeling Transit Time

The kaizen highlighted the need to estimate the time it takes for a specific load to exit the

facility. I believed that it would considerably influence predictions of short haul transit time

estimates. Short haul linehauls are often scheduled to less than one hour and because the

prioritization of truckloads does not exist, any delays of exiting Amazon's premise would

significantly impact the carrier's ability to arrive on time to destination. Based on my experience,

I believed Amazon short hauls suffer from the same scheduling problem highlighted by Skaltsas

for short haul flights. Namely, a large buffer is built in to transit time due to performance

variability. Additionally, I also expect that at high service levels, gate departure performance

would play a significant role in reducing overall transit time.
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The operational challenge that most affected reconciling virtual timestamps and physical

process was the closing of trucks on the docks. The ship clerks' metric of success is based on

their ability to close the loads in the dock management system within the allotted truck departure

time of the scheduled pull time. The behavior that resulted from this metric was that the

scheduled departure time not being the actual time when a truck departed from the dock but the

beginning of the last rush to load the truck.

One methodology to estimate how long a truck takes to depart from the yard is to measure the

time it spends in the yard. This can be done by using a yard management system (YMS) that

utilizes RFID tags. The check in and check out process requires each trailer to be tagged on all

incoming trailers and removed from all outgoing trailers. The security guards are responsible for

ensuring this process is properly executed. While there has been some shrinkage of RFID tags

associated with failures to remove the tags from trailers, this process is believed to be well

managed. Amazon has implemented a YMS in its largest distribution centers,. The usage in

the largest distribution centers was part of a proof of concept pilot before committing to its wide

spread implementation.

The kaizen also offered insight into some of the data discrepancies that I noticed between the

three data sources for the yard departure process. The yard management system (YMS), dock

management system (DMS) and the electronic data interchange (EDI) data captured events that

were in theory simultaneous, however there were often large discrepancies between the

timestamps. This is due to the fact that none of these three systems are linked and do not have

virtual processes that depend on each other. Chapter 4 will discuss how these discrepancies

were reconciled and why EDI data was eventually chosen to be incorporated into the model as

the primary source for modeling the gate departure process.
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4 Developing An Analytical Understanding of Transit Time

Building on the discussion provided in Chapter 1 and Chapter 2, transit time can be considered

as the sum of three components: nominal time to depart a truck from Amazon's premises,

nominal drive time and events that cause performance variations.

Figure 4-1 Composition of Transit Time

Nominal Time to Depart Nominal Drive Time
a Truck from Amazon

Events that cause

Nominal Transit Time performance variations
(drive & departure related)

Developing a new model of transit time began with understanding the current Amazon

calculation process. It is also important to understand existing performance under this

scheduling technique. This chapter begins with a description of both of these topics. It is

followed by a brief discussion of current performance of Amazon's linehauls, segmented by

length of haul. The subsequent sections will examine the data sources used to estimate each of

the components. The first two components of transit time can be considered intrinsic

characteristics, which to some extent, can be predicted and controlled by managing

performance by either Amazon or the carrier. Predicting extrinsic characteristics that can cause

performance variation proves to be a bit more challenging, since the likelihood of these events

may or may not be available prior to scheduling. These types of events include but are not

limited to accidents, weather related delays, and Department of Transportation inspections. To

narrow the scope of these types of events, an initial list of variables was developed with the help

of Transportation carrier managers and the outbound transportation team. The list was pared

down to a list of items that could be reasonably measured and then finally to a shorter list of

variables that significantly contributed to prediction accuracy.

4.1 Current Methodology: Scheduling Transit Time With Respect To Distance

The current methodology of calculating transit time is based on the distance between origin and

destination. A common categorization within the trucking industry of linehauls is subdividing into
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solo and team drives2. Team drives are often assumed to include less breaks because each

driver will alternate driving with less stationary breaks. Therefore it is common practice to pad

transit times for solo drives slightly less than transit times for team drive. This additional padding

is done not only to anticipate delays that could occur during transit. Padding is also done to

sufficiently schedule for any breaks that the truck driver may need to take, ie: refueling, lunch,

mandatory driving breaks etc.

In order to understand the current performance of Amazon's outbound linehaul network under

this methodology, the distribution of linehaul transit time was studied. Figure 4.2 plots the

coefficient of variation for North America's outbound linehaul, ie: standard deviation divided by

the mean actual transit time, for every group of 100 miles through 1000 miles linehauls. Lanes

that exceed 1000 miles were grouped together. From Figure 4.2, it was clear that groups of

linehauls shared similar characteristics between actual transit time and the standard deviation of

the sample size. These groups were named short, solo; mid, solo; long, solo; short, team; long,

team. The groups are overlaid on the graph below.

Figure 4-2 CV of Actual Transit (Feb 18 - March 19, 2013)
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There is a larger amount of variability with respect to the mean for lanes fewer than 50 miles.

This finding is intuitive since the coefficient of variation is a ratio of the standard deviation of

2 http://DC.bigrigdriving.com/201 0/trucking-industry-debates/is-team-driving-the-future-in-trucking
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transit times divide by their average. For any type of delay, the absolute time delay will have a

greater effect on short, solo lanes as a percentage of their scheduled transit time. However, this
finding implies that if Amazon is to ensure a high percentage of on time delivery for short haul

lanes, scheduled transit will be significantly higher than the lane's demonstrated average. This

conclusion is also consistent with Skaltsas' finding that the percentage of buffer decreases

exponentially with distance (Skaltsas 120).

4.2 Estimating Components of Transit Time

There were several data sources that were available for transit time analysis. The following

sections examine the reliability of using specific data sources as a part of the final model.

4.2.1 Validating Nominal Drive Time Estimates Using Transportation Software

Building on the existing practices, the estimation used for nominal transit time was derived from

transportation software. As part of due diligence to ensure that these estimates were

reasonable, the average speed was calculated by dividing the drive times provided by the

software by the distance between the origin and destination. Below are the tabulated results:
Table I Lane Types by Average Speed

Lane Type # of Lanes *Average Speed (Miles per Hour)

Short, Solo 84 33.30

Mid, Solo 255 50.27

Long, Solo 345 53.19

Short, Team 434 55.08

Long, Team 513 56.34
*Note: Average Speed = Drive Time from Transportation Software/Length of Haul

In general, individual estimates from Transportation Software are reasonable and well under

state specified speed limit for 53-foot trailers. A full list of speed limits by state provided by

TruckerCountry.com can be found in Appendix B. In the most extreme case trucks are allowed

to drive 80 mph and in the most conservative scenario, 55 mph. It should also be noted that as

the distance increases, the average speed also increases. This is because as the route gets

longer, there is more highway driving, which allows for higher average speeds. Amazon

Transportation managers assumed that trucks can drive roughly 45 mph on average. Since
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these values represent nominal drive time, defined as driving under optimal conditions, the

estimates are reasonably aggressive and therefore are valid to use in the model.

4.2.2 Estimating Time to Depart a Truck From Amazon Facilities

During the kaizen described in Chapter 3, I was able to see how virtual processes tied or did not

tie to their physical process. This helped provide insight into which data sources were good

approximation of the physical process, as mentioned in section 3.3.

The incongruous communication between the teams operating the dock and yard resulted in a

wide distribution of demonstrated time to depart a truck. Because of the wide distribution of yard

departure times seen in the time study, the current standard allocated time to depart a truck

used by Amazon was not sufficient to use in my model. Through this experience, it became

clear that an estimate of yard departure time by load would be needed to estimate transit time.

The wide range of performance is attributed to a series of both controllable and uncontrollable

factors that govern the truck departure process at distribution centers. Among the

uncontrollable factors are the physical layout of yards and the number of gates available for

trucks to enter and depart from. Among the controllable factors are the communication issues,

lack of ownership over gate departure process and misalignment of productivity metrics. These

operational issues can cause behaviors we observed such as virtually batching physical

processes, which inaccurately represent the duration of each step in the process.

The extent an organization can efficiently schedule transit times may be directly correlated to its

ability to control and predict the required times of all origin facility controllable processes. Any

excess time required because of lack of process standardization introduces additional factors

that unnecessarily complicate forecasting transit time. It also effectively requires additional

buffer time in order to meet on-time delivery requirements. As Skaltsas notes, "a very important

issue is the extent to which this uncertainty is caused by the [airline's] schedule, operational

weaknesses, and poor overall performance, rather by external factors that the airline cannot

forecast and handle effectively" (Skaltsas 51).
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Dock Management Systems & Yard Management Systems

Amazon has two systems that are internally managed that would be the primary sources for

understanding the truck departure process and any delays associated with it. The truck

departure process can be broken down into two sequential processes: dock departure and yard

departure.

To examine dock departure times, the scheduled pull time of each load was compared to the

timestamp associated with when the load was virtually closed in the dock management system.

Unfortunately, since the physical process of releasing a truck and the virtual process of

releasing a truck are not linked, the data was not helpful in analyzing performance. It was also

observed that ship clerks would batch these tasks when they were understaffed. Approximately

25% of the data points examined needed to be discarded, which made the data from the dock

management system unhelpful for the purpose of estimating transit time. These data points

were discarded due to multiple reasons such as departures one hour before scheduled pull

time, yard departure events occurring before dock departure events, departures over ten hours

past scheduled pull times etc.

Amazon's yard management system is used by the distribution centers to track the location of a

trailer in the yard and also the time associated with its exit from the facility. Compliance of the

YMS was above 90%. However trailers could often sit in the yard for hours or days before being

utilized, so in order to estimate gate depart time, the DMS timestamp would need to be used.

Additionally, this system has not been implemented across the entire Amazon network and

therefore could only be used for a subset of distribution centers that had the data available. For

that reason, Amazon's YMS data was not used since it would have limited the applicability of

the model.

Unfortunately, due to data issues, the Amazon controlled sources for tracking the truck

departure process could not be used in the model. A secondary source was used to better

estimate the time associated with the truck departure process.

Electronic Data Interchange (EDI) Data: Carrier Reported

Amazon carriers send electronic messages to Amazon about assigned linehauls through an

electronic data interchange (EDI). Amazon has worked with their carriers to increase the

compliance of EDI messaging. They require the carriers to send origin arrival, origin departure
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and destination arrival messages. Compliance metrics as of April 2013 are listed below in Table

2. Their compliance is measured on a weekly score card that is reviewed by the carriers and

Amazon carrier managers. Because of this, EDI data, while carrier reported, was the most

reliable and network wide reported source for estimating arrival and departure times from

Amazon facility, as well as time to destination. Unfortunately, the time to depart a trailer from

the dock is not captured in the EDI messaging and could not be estimated from this data

source. For this reason, the time to depart a truck was estimated using the difference between

fifteen minutes from scheduled pull time and the depart from origin notification from the EDI.

Fifteen minutes was chosen because the demonstrated average departure time was twenty-

eight minutes with a standard deviation of ten minutes. Therefore fifteen minutes from

scheduled pull time was a reasonable estimate to use in the model since actual timestamps

were unavailable.
Table 2 EDI Compliance Rates

EDI Message Type Q1 2013 Compliance Percentage

Arrival at Origin 99%

Departure from Origin 97%

Arrival at Destination 94%

4.2.3 Understanding Performance Variations

Unlike nominal drive time and the truck departure process, performance variations can only be

estimated once a load has experienced the delay. Amazon tracks these types of performance

issues in an internal report that is reviewed weekly with carriers. The report is compiled based

on EDI messaging, distribution center reporting and carrier reported issues. Late is defined as

one of three possible events: late to pick up at origin, late to departure from origin, late to

delivery at destination. The list was created with the intention of capturing all types of

performance aberrations that would help manage carriers. As a result, the report contains

reason codes that may be attributed to loads that are late to arrival and late departure from

origin. A new metric was developed to track late to destination loads, however was not tied into

the report. This is the only source for tracking reasons associated with late to destination. My

model ignored any late incidents that flagged late arrival to origins because during the initial

development of the OLS model, it was determined to be an insignificant variable.
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4.3 Data Cleaning

Despite high compliance of EDI message, there are still errors associated with the messaging

because it is a manual process. Data cleaning rules were created, with input from

Transportation managers, to ensure that valid load information was being incorporated into the

model. The following rules were implemented in order to ensure integrity of the data:

i. Remove anything with depart timestamp earlier than 1 hour from scheduled pull time

ii. Remove anything with depart timestamp later than 10 hours from scheduled pull time

iii. Remove anything with actual transit time less than 0.5 hour

iv. Remove anything more than 2 standard deviations from the mean variation per lane.

Variation is defined as the time difference between nominal drive time and actual

transit time

Variation was defined so that consistent variation in performance was taken into account when

selecting data. There is a cultural belief that poor performing routes, ie: low percentage on time

based on existing scheduled transit time, should be discarded so that they would not "negatively

influence" the predicted transit time, ie: extend transit. However, this mentality could potentially

lead to selecting the data due to bias, rather than absolute rules. It also ignored performance at

the extremes, a practice that may misrepresent the required transit time at high service levels.

Assuming that each linehaul had a sufficient number of historical data points, the distribution of

the variation should be normal and taking two standard deviation greater than the mean was an

acceptable boundary that was defined conjointly by myself and Amazon Transportation

managers. By defining the variation variable, it ensures that a large amount of data is not

discarded based on an intuitive understanding of how long transit "should" take.

4.4 Variables in Model

The variables that were incorporated into the model are a mixture of known factors prior to the

load being executed and factors that are reported afterwards. Chapter 6.3 discusses the

implementation of the model and the process of how the latter types of variables are dealt with

for forecasting purposes. Based on the ability to quantify and reliably measure each of the

components of linehaul, the following variables were selected and defined to be in the final

quantile random forest model:
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Dependent Variables

1. Actual Transit Time- Time of arrival defined by EDI destination arrival message less

LTOT time from origin. Actual transit time is composed of time to exit the yard plus drive

time.

Continuous Independent Variables

1. Yard/Gate Departure Duration - Duration from 15 minutes after LTOT to when the

truck exits the gate of the DC 3. Truck exit time is given by EDI origin departure

message.

2. Nominal Transit Time- Drive time given by Transportation Software plus required 15

minute breaks for truck drivers for every 4 hours of transit and requisite lunch hour for

routes with over 8 hours of driving.

Binary Independent Variables

1. Rush Hour -1 when the depart hour is between 6 and 9 or between 15 and 18, 0

otherwise

2. Weekend -1 for Saturday or Sunday, 0 otherwise

3. LTOT Truck -1 if the load's scheduled pull time is equal to the Last Truck Out Time, 0

otherwise

4. Performance factors - codes used to explain an instance of lateness. Each historical

load has four performance factors variables associated with it, 1 if true, 0 if false

a. Origin Facility - codes associated with Origin Facility controllable delays

b. Carrier Controllable - codes associated with carrier controllable delays

c. Seasonal - traffic and weather

d. Other - random, difficult to predict events (accidents, DOT inspection etc)

5. Destination Types - 1 if destination is Transporter A, Transporter B, Transporter C,

Transporter D, Amazon cross dock, or distribution center, 0 otherwise. These destination

types were grouped together to limit the total number of variables needed and because

of limited operational hours of certain transporters, the destination type was considered

significant. There also is a general sense of priority for loads that are customer

deliveries versus inventory transfers between distribution centers.

3 15 minutes is used as a benchmark because the dock departure timestamp caused 25% of these values to be negative, which
implies that the accuracy of the dock departure timestamp is questionable. A static value, 15 minutes after LTOT, was opted to be
used for data stability. Theoretically this represents the time it takes after dock door closes to when truck is pulled off the dock.
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6. Origin Distribution Center - a variable was created for each DC to indicate origin of

lane

7. Adhoc - 1 if truck is a non-scheduled truck, , 0 otherwise. An Adhoc truck can occur

when additional truck capacity is required due to excessive volume of packages during

production. This can be caused by poor loading leading to low utilization of trucks, errors

in package forecasting, or other operational issues that may lead to another truck being

needed.

The next chapter will discuss the development of the quantile random forests, forecast errors

and the factors required to provide stable predictions.
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5 Quantile Regression Forests

5.1 Selecting Lanes for the Model

The initial data set for modeling transit time consisted of historical loads from ten origins

throughout the North American outbound linehaul network. These ten sites were chosen

because they were a representative sample of the entire network. These routes consisted of

approximately 30% of all North American package volume. Table 3 summarizes the number of

loads and number of routes that were included in the initial training data set. There were a total

of 117 linehauls in the dataset.

Table 3 Distribution of Load Types Within Test & Training Datasets

Type of Lane # of Routes # of Data Points % of Total Dataset

Short, Solo (< 50 miles) 12 535 6%

Mid, Solo (< 325 miles) 28 3,276 36%

Long, Solo (< 500 miles) 28 1,741 19%

Short, Team (< 725 miles) 24 1,838 20%

Long, Team (> 725 miles) 25 1,665 18%

The time period that was sampled was from January 2013 through April 2013. After the data

was cleaned, roughly 45% of the total loads were discarded based on data cleaning rules

described in Section 4.3.

5.2 Training & Test Data Set

A training and test data set were created to create a control and test group to develop the

model. The training data set was randomly split into two sets. Two-thirds of the data was used

to build the initial quantile regression forest. This dataset was known as the training set. The

remaining third was then used to test the accuracy of the model generated. This dataset was

known as the validation set.

Stability of the model will be discussed later in this chapter to ensure that no specific partitioning

of the training and testing data set influenced the random forest's prediction. The accuracy of

the model was evaluated by measuring the weighted mean absolute percent error (WMAPE)
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defined in Chapter 2. Since the two data sets were from the same time period, the WMAPE

values should be relatively close, if not identical, if the predictive model can be considered a
reliable tool.

To further validate the predictive ability of the quantile regression forest, a new dataset was

created using the historical loads from May 2013 - June 2013 for the same routes. This data

set was known as the untouched set. Based on the forest generated, if the predictive model

was a reliable method of generating predictions, the weighted mean absolute percent error for

the untouched set would be reasonably close to the weighted mean absolute percent error

values generated from the two previous data sets.

5.3 Initial Model

The initial model employed a 100 tree forest, an mtry value equal to 8, which was one-third the

number of variables and a nodesize of 10. This generated an average WMAPE of 4.8% for the

training data set, 4.7% for the test data set and 5.1 % for the untouched data set. These are

relatively small error values, which indicated the modeling methodology was appropriate for

purposes of predicting transit time across the network. It also indicates that the conditions that

cause variation in transit time from the untouched data set had changed very little from the time

period where the training and validation data set was used. The range for the WMAPE between

the validation data set and the untouched data set indicated that the model attributes needed

fine-tuning, roughly a 13% percent difference from the mean values. In the next section the
process of finding the settings for optimal model stability is presented.

Table 4 Values for the Initial Model Developed
Forest Settings: ntree = 100, nodesize = 10, mtry = 1/3 total number of variables

Train Validation Untouched

WMAPE RMSE WMAPE RMSE WMAPE RMSE

Mean 4.80 2.43 4.70 6.14 5.05 6.36

Standard Deviation 0.06 0.07 0.54 0.46 0.56 0.35

Min 4.60 2.20 3.69 5.22 3.97 5.68

25%-tile 4.76 2.39 4.34 5.86 4.73 6.10

50%-tile 4.80 2.44 4.62 6.08 4.95 6.33

75%-tile 4.85 2.48 4.90 6.40 5.24 6.54

Max 4.98 2.55 7.39 7.33 8.14 7.80
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Range 0.39 0.35 3.70 2.12 4.17 2.12

5.4 Stability of the Model

Since the random forest algorithm relies on a weighted average of individual trees created by

random sampling, every forest may produce different predictions. It is necessary to validate if

the prediction generated by the model is dependent on the construction of a specific forest. In

order to validate that the predictions are independent on the random forest constructed, 100

forests were built to generate predictions, then the WMAPE of each iteration was calculated.

From these iterations, the stability of the configuration was determined based on how much the

WMAPE fluctuated from iteration to iteration. Since Amazon wanted the model to be able to

predict transit times for high service levels, the quantile chosen for the computation of WMAPE

was p = 0.95.

In addition to the WMAPE, which measures the overall ability of the model to produce

predictions at specified service levels, the root mean square error (RMSE) is also measured.

Since the WMAPE may remain relatively unchanged due to the weighting at high values of p, it

is important to measure the model's overall deviation from the actual transit times. The root

mean square error is defined as:

RMSE (A -y)2
n

where Ai = actual transit time for historical load i,

yi = predicted transit time for historical load i

n= total number of loads

The stability of the forest was tuned using two attributes: the number of trees in the forest and

the nodesize of each tree in the forest. The value assigned to mtry should not be used to control

the stability of the model since high mtry values may cause a compounding effect where certain

variables have an overly emphasizing importance in generating a prediction (Robin Guneur 4).

The stability tests were conducted in two phases, first by determining the optimal number of

trees in the forest and then using this ntree value and varied the nodesize of the forest to

determine optimal values.

5.4.1 Number of Trees
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The number of trees in the forest affects the speed in which the model generates predictions. It

was noted that as the number of trees increased, the time to compute the predictions increased

noticeably. Therefore, it is important to create a model that both minimizes the number of trees

and maintains the stability of the forest. The following graphs were obtained for random forests

using 100, 1,000, 5,000 and 10,0000 trees:

Figure 5-1 Forest Size Stability Test: Weight Mean Absolute Percent Error from

Weighted Mean Absolute Percent Error: 100 Trees
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Weighted Mean Absolute Percent Error: 5000 Trees
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The following is a table that summarizes the range of WMAPE for the untouched data set:

Table 5 Forest Size Test: Weighted Mean Absolute Percent Error of Untouched Dataset

Numberof Trees 100 1000 5,000 10,000
0% (Minimum) 3.97 4.81 5.07 5.08
25% 4.73 5.10 5.18 5.18
50% 4.95 5.21 5.23 5.21
75% 5.25 5.33 5.29 5.26
100% (Maximum) 8.14 5.93 5.43 5.40

As the number of the trees in the forest increase, there is an increase in the stability of the

WMAPE across each iteration of random forest. This is clear from the reduction in the range of

values from the test to train to untouched data set, as well as the stabilization of each line as the

number of trees increase. This is consistent with expectations since the quantile random forest

uses a weighted average of each tree's prediction to generate the final prediction (Meinshausen

5). The model is very unstable when there are only 100 trees. Therefore, while one construction

of the forest may produce accurate predictions for transit time, a different construction may

produce very different values. Some improvement is seen by increasing the number of trees to

1000, however the range of WMAPE values is still very wide and may produce very different

results based on forest construction. At 5,000 trees, the WMAPE range is reduced to 5.07% to
5.43%, which is a great improvement over a 100 tree forest with 3.97% to 8.14%. There is little

improvement in WMAPE with 10,000 trees, so 5,000 trees will be the value used in the final

model to minimize computational time and resources used.

There is a similar change but less significant change in RMSE over the different numbers of

trees. The random subset and sampling does not affect the RMSE nearly as much as it did the

WMAPE. Again, as the number of trees increase, there is a reduction in the range of RMSE

values, which indicates an increase in stability. Additionally, there seems to be little

improvement from 5,000 trees to 10,000 trees that would warrant building a forest bigger than

5,000 trees due to the trade off in computational time.
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Figure 5-2 Forest Size Stability Test: Root Mean Square Error

Root Mean Square Error: 100 Trees
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Root Mean Square Error: 5000 Trees
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Table 6 Forest Size Stability Test: Root Mean Square Error for Untouched Data Set

Number of Trees 100 1,000 5,000 10,000
0% (Minimum) 5.68 5.96 6.21 6.29
25% 6.10 6.31 6.35 6.34
50% 6.33 6.41 6.38 6.37
75% 6.54 6.50 6.43 6.41
100% (Maximum) 7.80 6.73 6.56 6.49

5.4.2 Nodesize

The nodesize of the forest determines the minimum number of observations used before the

tree stops splitting and generates a prediction. This value is important for routes with high

variance because if it is set too low, the model may tend to create unstable predictions due to

the random sampling. Since Amazon's short, solo routes, which make up 16% of all of their

network, tend to have high variance, it is important to find an appropriate nodesize.

The quantregForest sets the default nodesize value to 10. The test for nodesize was evaluated

at 6, 10, 15, 20, 30, 40, 45, and 50 with a 5,000-tree forest created for each test. Below is a

graph of the results of 100 iterations of random forest constructions and the WMAPE and

RMSE. There is a clear local minimum around 30 that seemed to reduce both the weighted

mean absolute percent error as well as the root mean square error. Therefore to create the

most stable model, the quantile regression forest was set to have 5,000 trees, a minimum

nodesize of 30 data points, and an mtry value equal to one third of the number of variables (8).
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Figure 5-3 Nodesize Test: Weighted Mean Absolute Percent Error by Nodesize
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5.4.3 Final Model & Maintenance of Model

The forest is currently set such that there are 5,000 trees, the nodesize is 30, and mtry is equal

to 1/3 of the total number of variables in the model. These settings were chosen because they

minimized RMSE and WMAPE. The final estimated values for the RMSE and WMAPE for the

117 linehaul model were 5.86% and 5.00% respectively. These values will fluctuate slightly
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depending on the sample of the data but because of the testing, fluctuations should be

insignificant.

The expansion of the model to include the remaining linehauls in North America required

hosting the model on an Amazon Web Services server because of the size of the data set. The

final error values for the network was 4.57% and 2.22% for WMAPE and RMSE, respectively.

5.5 Testing for Variable Significance

Random forests generally handle insignificant variables fairly well and the presence of

extraneous variables in the model do not deteriorate the quality of the prediction produced

(Breiman 25). However, the more variables included in the model, the more computation power

and time are required. The development of an importance measure is therefore an area of

interest for machine learning scientists in order to balance the trade off between robustness of

model and computational speed. The importance measure is best used as just a rough guide to

what features can be left out of the model without deteriorating the prediction.

5.5.1 Methodology: Permutation Test for Variable Significance

The most popular and well-documented methodology for testing variable significance for

random forests is known as the permutation test (Universite Paris-Sud, 2010). The test, as the

name suggests, has the variable permutated within the test set of observations and inputted into

an existing random forest to see how the predictions change. Depending on the change of the

values predicted in the permutated test set and the non-permutated test set, the importance of

that variable is concluded. For the purposes of testing the model, it was assumed that the origin

and nominal transit times were considered significant and were not included in the permutation

tests. The remaining 16 variables were tested using the permutation test.

The test was performed in R. A forest was constructed using a random subset equal to two-

thirds of the data. This random forest would be used to generate all predictions for all data sets.

The remaining one-third of the data set was used to generate predictions. These predictions

were considered the baseline set of predictions that would be used as a basis of comparison for

the permutated predictions. The WMAPE was used to measure the quality of the predictions for

the baseline set. Then, using the same one-third test set, one variable was permutated and

then inputted into the forest to generate a set of predictions to measure its importance. The
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WMAPE was also computed from the permutated prediction set. This permutation step was

repeated for each of the variables in the data set. The WMAPE from each of the runs were

compared to the WMAPE baseline set of predictions to understand each variable's influence on

the predictions in the model.

Additionally, since quantile regressions generate distributions, the predictions and the model's

forecasting error rate vary based on the p-value used. Therefore it was important to test

variable significance at varying levels of probability on-time delivery. Since Amazon was unlikely

to use a p-value less than 85%, I chose to test the variable significance at 85%, 90%, 95%,

96%, 97%, 98% and 99%. Since the loss function minimized by quantile regressions favors

higher values of p, there was an expected decrease in WMAPE as the values of p increase.

5.5.2 Results of the Permutation Test
Table 7 Baseline WMAPE Rates by Probabilifty of On Time Delivery

Service Levels 85% 90% 95% 96% 97% 98% 99%
Forest (Not Permutated) Error Rates 8.89% 7.81% 5.59% 4.89% 4.12% 3.37% 2.50%

Table 8 Results from Permutation Test: Percent Error from Baseline Error Rate

Service Levels 85% 90% 95% 96% 97% 98% 99%
Variable Permutated
Gate Depart Duration -8.5% -6.8% -5.4% -7.1% -8.5% -8.0% -5.5%
5.5.2.1.1.1 LTOT Truck -2.1% -1.7% -2.3% -2.8% -3.1% -3.3% -1.6%
Rush Hour -16% -13% -10% -9.7% -9.1% -5.1% -1.3%
Adhoc Truck 0.1% 0.0% 0.0% 0.2% 0.0% 0.1% 0.1%
Weekend 0.2% -0.1% 0.1% -0.2% -0.6% -0.1% 0.2%
5.5.2.1.1.2 Transporter A -11% -9.7% -10% -12% -12% -9.2% -1.5%
5.5.2.1.1.3 Transporter B -5.9% -5.9% -4.8% -5.4% -6.8% -7.6% -7.3%
5.5.2.1.1.4 Cross Dock -8.8% -9.1% -8.8% -8.9% -9.2% -9.0% -8.4%
5.5.2.1.1.5 Distribution Center (as -16.0% -12% -13% -17% -21% -20% -11%destination)
5.5.2.1.1.6 Transporter C -1.0% -0.8% -1.7% -1.7% -1.9% -1.6% -0.8%
5.5.2.1.1.7 Transporter D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5.5.2.1.1.8 Transporter E -1.3% -1.3% -1.8% -2.1% -2.3% -2.8% -2.2%
5.5.2.1.1.9 Origin Facility Performance -1.7% -0.7% -0.4% -0.8% -0.8% -1.4% -0.8%

Factor
Carrier Controllable Performance Factor 0.0% -0.2% -0.1% -0.2% -0.6% -0.4% -0.1%
Seasonal Performance Factor -0.4% -0.4% -0.4% -0.3% -0.3% -0.2% -0.2%

Other Performance Factor 0.1% 0.0% 0.1% 0.1% 0.1% 0.2% 0.1%
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Overall the test produced very little absolute change in error rates but significant results when

comparing the percent change in error. Table 8 displays the percentage error of the WMAPE

between the not permutated forest configuration and the forest built respective permutated

variable for a selected p-value. The percentage error is defined as the difference between the

WMAPE of the not permutated forest and the WMAPE of the permutated forest, divided by the

WMAPE of the not permutated forest. The results are from a permutation test for the model with

113 lanes and 5000 trees in the random forest.

The most significant changes in percent error between the baseline case were observed in the

Gate Departure Duration, Rush Hour, Transporter A, distribution center as a destination, and

cross dock variables. The least significant changes were seen in the performance factors,

Weekend and LTOT truck. The percent differences in WMAPE from the set of baseline

predictions were less than 0.5%. 1% was determined that this would be the threshold for

significance.

5.5.3 Trends Between Variables

It is important to note that since random forests are robust against insignificant variables, the

inclusion of these variables did not dilute the model's ability to generate meaningful predictions.

The variable significance testing was done to gain further insight into the behavior of the

variables as they affect transit time predictions, not necessarily to improve the predictive ability

of the model itself.

Significant Variables

Gate departure duration was defined and estimated in the model as the time between fifteen

minutes after the scheduled truck departure and when the carrier sent an EDI yard exit

message. This was the best approximation based on existing data on how long it would take to

successfully depart a truck from the yard. In examining the data, there were also instances

where a truck may depart the yard earlier than their scheduled departure time. A full table of

early departures categorized by business type can be seen in Appendix E. During the data

cleaning stage, any historical data points that indicated the truck departed over an hour earlier

than their scheduled departure time was discarded as an invalid data point. When looking at

specific predictions in the tested data set, there were significant differences found in the

predictions for loads that had early departure values. This intuitively makes sense based on the

existing gate departure procedures. It most notably affected predictions for short haul linehauls.
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This is most likely due to the fact that the gate departure process makes up a larger portion of

the scheduled transit time for short hauls.

Amazon currently departs trucks in batches, defined by the Last Truck Out Time (LTOT). Due to

this batching of departures, there was noticeable congestion at the exit gate of the yard. This

queue can be exacerbated in inclement weather or when there is a delay in the distribution

center. Delays in the distribution center are generally due to waiting on the last few packages to

be loaded onto the truck or due to an unbalanced labor on the shipping dock. For any given

LTOT, there can be anywhere from 2 to 10 trucks exiting the yard at the same time. Therefore,

trucks that depart earlier than the listed scheduled departure time or Last Truck Out Time can

avoid the congestion both immediately as they are exiting the yard and presumably any

congestion on the immediate roads outside of the Amazon warehouse. This probably

contributes to the significance factor of the model's prediction, across all lanes.

Rush hour was classified based on the scheduled departure time and encompassed both

morning and afternoon rush hours. For obvious reasons, trucks that depart during these hours

may experience more local road traffic to highways and more traffic in general than trucks that

depart during non-rush hour periods. In fact, rush hour may be a better proxy in this model for

traffic than the traffic late reason code. Reasons for this will be discussed later.

The significance of distribution centers, Transporter A, and cross dock is possibly due to the

process of sending EDI arrival to destination messages. Carriers should send their arrival to

destination EDI message as soon as the carrier arrives at the destination. However, in some

cases, truck drivers will not send the message until the package is delivered to the transporter

successfully. If there is a late delivery and the destination facility is no longer open to accept

truckloads, the driver will have to hold the trailer until the transporter is ready to receive the load.

Because of this, the arrival at destination timestamps are often inappropriately used as

successful delivery of package. Amazon has not controlled for this because their primary

concern is to ensure that the carrier delivers the load successfully. This phenomenon is most

pronounced for transporter destinations, rather than internal destinations such as distribution

centers and cross dock. Transporter A and cross dock makes up 43% of the historical external

destination type of Amazon's North America network. Therefore the significance of distribution

centers, Transporter A and cross dock as variables may be overstated. Additionally, these

destination types are used for packages that are non-premium or inventory transfers. While it is
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important to get these packages to the destination on time, these loads generally have a lower

priority to carriers since there is such a large window for customer delivery.

Insignificant Variables

A surprising result of the variable significance test was the insignificance of the performance

factors (origin facility controllable, carrier controllable and Other) on the model. This was

surprising since these codes are the closest proxy to explaining performance anomalies.

However, the nature of how they were incorporated may have affected their ability to influence

or not influence the random forest model. Performance factors were not flagged automatically

until March 2013 and required a manual input to update the historical report. Due to this

reason, the performance factors may appear to be insignificant due to their scarcity. The

performance factors may be insignificant at this point in time however may potentially become

more significant as reporting improves.

Unfortunately, performance factors can only act as indicators of the type of delay that caused

late arrivals. They do not identify the root cause of late arrivals and to what extent the truck was

actually late. A lateness was defined for the purposes of this model as any load that arrived

greater than 15 minutes after its scheduled arrival time. Therefore a load that was 20 minutes

late was flagged in the same manner as a truck that was over 12 hours late. The lack of

granularity essentially diluted the influence of these indicators on the model.

The lack of influence of the LTOT truck variable was also surprising. The LTOT truck is defined

as the last truck to depart from the distribution center in order to make Last Truck In Time at the

destination. The incorporation of this variable was based on suggestions from Transportation

managers and ship clerks who manage production and scheduling to the LTOT. This bias led

me to believe that there were many non-LTOT trucks, ie: sweeper and ad-hoc trucks, that would

have significant variation in transit times. In examining the distribution of the types of trucks

scheduled, this belief turns out to be false. This can also explain the insignificance of ad hoc

trucks. Ad hoc loads make up only about 8% of the total loads in the data set. The scarcity of

data probably makes them variables that have little to contribute to the regression.
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The least surprising result was the insignificance of the Weekend variable. During my initial

conversations with Outbound Transportation managers, they told me they believed Amazon's

inability to schedule weekend and weekday trucks differently led to excessively long transit

times for the weekend trucks on the same linehaul. They said that they would receive phone

calls from carriers who would arrive several hours early to destinations that were not yet open

on the weekends due to these inaccurate transit times. The trucks would be able to deliver the

loads significantly early because of less traffic and congestion on the road on the weekends,
due to the lack of commuters on the road as compared to the weekdays. This made intuitive

sense to include this variable in our model. However, when coupled with the issue of delivering

EDI messages after the load delivery, these early arrivals are indistinguishable in the data set.

Therefore, the weekend variable suffers from a similar issue that Transporter A and cross dock

suffer from, which is the inability to distinguish when the truck physically arrives at the

destination versus when the packages are delivered. However, in this case, it has caused the

Weekend variable to appear to be insignificant.

5.5.4 Trend across percentiles

The values of WMAPE decreased in the baseline case as the p-values increased. This was an

expected result since as the value of p increases, the WMAPE formula becomes much more

heavily weighted towards positive differences between predicted value and actual value. In

general, there was a small expected decrease in WMAPE across the permutated variables as

well. However, in a few instances, there were some variables where the percent difference

between the WMAPE actually increased as the p-values increased. This behavior was found in

all the destination types, LTOT Truck, and Gate Departure Duration. This seems to indicate that

as the percent of required on-time deliveries value increases, the values they take on have

much more significance on the quality of the regression value produced by the random forest.

One possible explanation for this for the destination types is the phenomena of trucks delivering

past the destination's operating hours. As described in the earlier section, carriers tend to not

deliver the completed delivery EDI message until the load has been delivered to the cross dock.

In the most extreme cases, these deliveries may be completed up to 24 hours past their

intended delivery time, despite only missing operating hours by a few hours. These types of

deliveries are extreme outliers in the data and at higher percentiles, have a stronger effect on

the random forest's ability to determine a transit time that would ensure high on-time delivery.
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A similar effect can be seen when looking at LTOT Trucks and Gate Departure Duration

together. The data cleaning removed any loads that departed from the origin earlier than 1 hour,

however loads with excessively long departure times were not removed from the data set.

Below is a graph of the distribution of gate departure durations for LTOT Trucks.
Figure 5-4 Gate Departure Estimates Using EDI Data (Q1 2013)

Distribution of Existing Gate Depart Times for CPT Trucks (hrs), N=20,042
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There is a long tail of LTOT trucks that can took over a half hour to exit the yard. These

extended gate depart times can be caused by DC load delays, issues with gate security,

congestion in the yard and exit gate or carriers forgetting to send the appropriate EDI message

once the truck has exited. The latter issue is managed by carrier managers as part of carrier

performance evaluations. This long tail explains why at high values of required on time

performance, the Gate Departure Duration and LTOT truck become more significant.

5.6 General comments on predictions
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A basic sanity check of the recommendations provided by the quantile random forest model

would be to check if the historical performance at specified percentages roughly match the

predictions. The low values obtained by root mean square error indicate that this is indeed true

on average across most lanes. The low values obtained by the weighted mean average percent

error also indicate the ability to provide transit times that would ensure a high level of on time

performance, given any number of variations. This first pass at the usability of the tool indicates

that quantile random forest modeling has succeeded in addressing the issue of forecasting a

transit time, given certain factors that may influence a linehaul's ability to deliver its load.

However, there are also shortcomings of the model that should be addressed. The model tends

to consistently provide conservative estimates for two specific types of linehauls: short hauls

(less than 50 miles) and low volume linehauls. The latter is mainly due to scarcity of data. Each

route can generally be identified by its origin, destination type and nominal transit time. It would

be rare that any two routes would share exact transit times. Without a proper basis to sample

and generate trees for, the random forest does not have an appropriate sample to generate the

prediction from. I believe that the random forest determines that these types of routes are to be

grouped with outliers. Extremely conservative estimates are provided for infrequently scheduled

lanes due to the scarcity of data issue. Often, these lanes will generate predictions that are 3-4

times their nominal transit time. These predictions are generally not consistent with any

historical performance on the lane.

Conservative estimates are also generated for short hauls, 50 miles or less. This issue is

mainly due to the fat right sided tails of historical transit times. Since short hauls are generally

scheduled for roughly 1 hour of transit, there is less time to recover from large unpredictable

delays, such as accidents or weather delays. Smaller delays due to the truck departure process

also have a greater proportional effect on these types of lanes, thus making consistent

performance difficult. The conservative estimates for these lanes are 4-5 times the nominal

transit time, however they are generally consistent with historical data provided on these lanes.
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6 Implementation of Model & Pilot

6.1 Selection of Lanes
The development of the preliminary model was finalized at the end of May 2013 and 2 two-week

pilots were conducted on a total of 27 lanes. There was a net transit time reduction of 10.5

hours. The preliminary model modeled 117 lanes, which were a mix of linehauls of varying

distances and ship methods. The selection of the lanes to test were based on the following

criteria:

1. Recommended transit time change - For some lanes, the model recommended changes

that would have either dramatically reduced or increased the existing transit time. To

minimize the risk of disruption to Amazon's business and the challenge to execute from

the carriers, I chose lanes whose reductions were no greater than 10% of the existing

transit time. There was no limit imposed on increasing transit time.

2. Priority of Package - Packages are divided into two categories at Amazon, high speed

and low speed. Low speed packages are orders from customers who have elected a

slower ship option. These packages in general have longer total transit times to

customers designed into the estimated time to arrive at the customer's door. Therefore,

changing them would incur lower risk of disruption to customer expectations. I chose to

test lanes with only low speed packages.

3. Buffer between Last Truck In Time & Scheduled Arrival Time - For high volume carrier

destinations, Amazon staggers the arrival of their trucks from various distribution centers

for carrier defined Last Truck In Time (LTIT). For example, two trucks from two different

distribution centers which contain packages for the same transporter may be scheduled

to arrive an hour apart from each other so as not to overwhelm the transporter. This

staggering implies that there is an additional buffer built into the destination, which

allowed transit times to be extended without risk of missing the transporter defined LTIT.

By selecting linehauls that did not compromise LTIT, the long process of distribution

center negotiations to change transit times was also avoided.

4. Variety of distances with substantial historical data - Because of the preliminary

assessment of lanes by length of haul, it was important to test a variety of lanes. In
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addition to ensure a good mix of lanes by distance, I also wanted to ensure that each

lane selected had a sufficient amount of historical data associated with it. While the

random forest should be able to generate predictions for any type of lane, it generally

performed much better when there were more than 20 data points for a particular lane.

Based on the above criteria, it was easier to test lanes that had recommended reductions in

transit times rather than recommended extension of transit times. Amazon Transportation

managers also requested that my initial pilot be contained to one origin. This site handled the

highest volume of low speed packages, provided a single point of contact to discuss any issues

related to departure processes and had the widest range of linehauls by distance that would

provide a good sample to test with. During the second pilot, I was able to add an additional six

lanes that were not from this origin. The six lanes were added mainly due to the desire to

estimate financial savings of reducing linehauls, in addition to proving that existing transit times

for those lanes were excessively buffered. A full list of lanes and the changes are shown in

Table 10.

6.2 Selection of Service Level to Test & Expected Error Rates

After determining the appropriate criteria for selecting lanes to test, I needed to select the

appropriate service level to use in the model. The model demonstrated low values of error rates

for service levels above 85%, specific values shown below. What ultimately drove the decision

to set tested service levels for the piloted lanes was the benchmarking with the existing

performance of the initial 21 lanes in the first pilot.
Table 9 Error Rates of Model at Specified On Time Probability

Service Levels 85% 1 90% 1 95% 1 96% 1 97% 1 98% 1 99%
WMAPE 8.89% 7.81% 5.59% 4.89% 4.12% 3.37% 2.50%

A 5-week average of on-time performance was used to determine that the initial set of lanes to

be tested had roughly a 95% on time performance. Each individual lane ranged in on time

performance from 83% to 100%. The model was designed to ensure an average of "p-percent"

on-time performance across outputted lanes. Therefore if the model was accurate, the pilot

would demonstrate that overall performance would not change. The exact values of each lane's

on-time performance can be found in Table 10 below, which includes the additional 6 lanes
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added during the second stage of the pilot. Those lanes also had an average on time

performance of approximately 95%.

Table 10 Historical Performance Prior to Pilot
(all values are in terms of hours)

Lane Current Transit Time New Transit Time Change % On Time

A 9.0 8.5 -0.50 94%
B 20.0 18.5 -1.50 95%
C 9.50 8 -1.50 100%
D 18.0 17.5 -0.50 98%
E 10.0 8.5 -1.50 97%
F 20.5 19 -1.50 95%
G 9.0 8.5 -0.50 83%
H 5.0 7 2.00 98%

1 3.5 3 -0.5 100%
J 3.5 3 -0.5 97%
K 8.0 5.5 -2.5 96%
L 11.5 12 0.5 95%
M 12 13 1 91%
N 11.5 11 -0.5 100%
0 11 12 1 95%
P 13 12.5 -0.5 95%
Q 14 13.5 -0.5 89%
R 15.5 15 -0.5 93%
S 18 17 -1 94%
T 20.5 21 0.5 98%
U 22 19.5 -2.5 80%
V 22 24.5 2.5 90%
W 27 28 1 95%
X 45 44.5 -0.5 98%
Y 53 56.5 3.5 99%
Z 54.5 51 -3.5 92%

AA 22 20 -2 96%

Based on the selected 95% on time service level and the projected weighted mean absolute

percent error, the pilot would be a success based on two criteria: ability to achieve the selected

service level, ie: 95% on-time, and if the recommended scheduled values had a WMAPE of

1.4% of the demonstrated transit times. 1.4% was the WMAPE of the model forest when applied

to these 10 specific lanes. The network model predicted a 5.6% WMAPE, however in order to

accurately access the pilot, I needed to compare the computed WMAPE for the lanes being
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tested. These lanes had a much lower WMAPE because there was more historical data to

generate regression values that were better estimates of demonstrated transit times. The

WMAPE shown in Table 9 is the value for the forest across the initial 117 lanes used to develop

the model.

6.3 Generating Predictions

The quantile random forest model works as a black box forecasting tool. The model requires

the user to select the specified service level to predict, input a series of vectors describing the

characteristics of a set of linehauls. Based on those inputs, it generates an output that provides

a unique prediction for each inputted vector. A lane can be described almost uniquely by its

origin, destination and nominal transit time, however in order to get the full benefits of the

random forest, other attributes should also be included (ie: weekday, LTOT Truck, etc).

In order to generate predictions for the pilot, I selected 10 baseline scenario vectors to input for

each lane and generated predictions for these scenarios. These ten characteristics made up

roughly 99% of the lanes inputted to develop the model and nearly 100% of the types of lanes

found through the entire network in Q1 & Q2 of 2013. The specific percentages of each scenario

are shown in Table 11 below.

Table 11 Scenarios By Percentage in Network & Subset of Lanes in Model

Total Network Lanes in Model
Weekday, Adhoc Truck during rush hours 1.52% 1.41%
Weekday, Adhoc Truck during non rush hours 1.52% 1.41%
Weekday, LTOT Truck during non rush hours 56.38% 51.85%
Weekday, LTOT Truck during rush hours 14.01% 17.91%
Weekend, LTOT Truck during non rush hours 10.36% 9.70%
Weekend, LTOT Truck during rush hours 4.47% 5.50%
Weekday, Sweeper Trucks during non rush hours 6.03% 6.05%
Weekday, Sweeper Trucks during rush hours 2.07% 1.90%
Weekend, Sweeper Trucks during non rush hours 1.96% 2.27%
Weekend, Sweeper Trucks during rush hours 1.29% 1.39%

Total 100% 99%

In order to incorporate the performance factors, I used a five-week moving average of the

historical performance within each late reason code type to calculate the likelihood of a late
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reason code occurring. If the five-week moving average was greater than or equal to 0.50, the

late reason code value was 1, otherwise it was set to 0.

Once the vectors were created, they were inputted into the random forest model and a series of

predictions were generated for each of the piloted lanes. The recommended transit time to test

was based on the highest frequency of the type of scenarios in the schedule. In most cases, it

was the LTOT truck, non rush hour, weekday that was used in the schedule.

6.4 Results from Pilot

During the pilot, the lanes performed at 93.6% on-time with a standard deviation of 1.81 %. Prior

to the pilot, the piloted lanes performed at 94.6% on-time with a standard deviation of 1.80%. If

the changes were not made the lanes would have demonstrated 95.6% on-time during piloted

period. This was determined by comparing the old scheduled transit time to the actual transit

times during the pilot. Below is a tabulated summary of performance five weeks prior to the pilot

and during the pilot.
Table 12 Summary of Results from Pilot

Week # -4 -3 -2 -1 0 1 2 3 4
% of Lateness due to PRE-PILOT 33% 58% 24%* 28%

change
% on Time 94% 96% 93% 94% 96% 92% 95% 92% 95%

% on Time without Changes PRE-PILOT 94% 96% 94% 97%
% on Time removing Traffic PRE-PILOT 94% 97% 94% 96%

*Note: Spike in number of lateness during week 2 is due to six mechanical breakdowns, unusually high for
one week. Less than 1% of all loads were affected by mechanical breakdown across NA in QI & Q2.

Table 13 Reasons for Lateness Due to Reduction in Transit Time
Summarized by major late categories

Week Number
Reason 1 2 3 4
Traffic/Accident/Construction 2 4 4 4
DOT inspection 1
Unknown (Pending response
Pending Response from carrier
Carrier Controllable 2 1 1 1
6.4.1.1.1.1 Origin Facility 2

Controllable
Total 6 5 5 7

4 Lateness due to change are defined as late arrivals to destination that did not exceed the reduction in transit time (ie: if transit was
reduced by a half hour but the load arrived 3 hours late, it was not counted as a late that was a result of the transit time change)
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During the first week of the pilot, there was a small increase in the number of late on lanes that

saw a reduction in transit time. Lanes that had transit times augmented saw an increase in on-

time performance. This was expected. Based on the performance of the second week of the

pilot, drivers had roughly one week to adjust to the new expectations of the scheduled transit

time to achieve an average 95% on-time performance. Therefore, the lanes were able to adjust

their behavior to meet the predicted scheduled values within a fairly short period of time. This

also demonstrated that the model provided recommended transit times that could successfully

predict a specified service level.

6.5 Evaluating Accuracy of Model & Performance

In addition to evaluating the model's ability to provide transit time predictions at a specified

service level, it was also important to evaluate the accuracy of the model compared to actual

performance. The results of the pilot were actually quite interesting. The RMSE and WMAPE

are tabulated in Table 14. Based on the estimates, I expected the WMAPE for the selected

lanes to be roughly 1.4%, however it was higher than that. When computing the WMAPE value

against the actual transit times during the pilot, the WMAPE was 1.6%. This implies that the

difference between the predicted transit time and the actual demonstrated values were greater

than predicted. This was true even after controlling for the time it required for carriers to adjust

to the new schedule. Therefore the actual forecast accuracy of the selected lanes was slightly

overstated when executed, compared to the predicted forecast accuracy.

However, the demonstrated value prior to the pilot with the original transit times was 1.9%. This

signals that there was a slight reduction in variation relative to the previously scheduled transit

times. This makes intuitive sense since most of the lanes had a reduction in transit time.

Because of the bias implicit in the WMAPE calculation for demonstrated transit times that are

greater than the predicted transit time, the RMSE was used to evaluate whether this claim was

true.

The demonstrated RMSE prior to the pilot for a 27 lanes is 5.9 hours. The demonstrated RMSE

from the pilot was 5.0 hours. This decrease also makes intuitive sense because there was an

overall reduction of 10.5 hours across all the tested lanes. Given the new tighter schedule, the

carriers were now being forced to perform more consistently to the new lowered transit times.

In other words, because time was reduced, the overall perception of buffer was also reduced,
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potentially causing drivers to drive more effectively. What is surprising however is that the

predicted RMSE was 6.2 hours, which is 24% greater than the demonstrated value. This

indicates that the historical loads that were used to estimate the standard deviation from the

demonstrated mean are likely much higher than they should be.

From this result, I concluded that given an excess amount of time to drive to a destination, truck

drivers may decide to take as long as they want, rather as long as they need. This conclusion

also confirmed an anecdotal bias from Transportation managers that carriers will request

excess transit, rather than attempt to improve driver performance. This implies that scheduling

solely based on historical performance by lane is not a good way of determining the "true"

transit time. This also may be an indication that the new scheduled transit time may be closer to

the nominal value of an efficiently scheduled transit time compared to the old schedule.

Table 14 Predicted vs. Demonstrated Error Values for Model

WMAPE - WMAPE - RMSE - RMSE -
Demonstrated Predict Demonstrated Predict

Pre-Pilot 1.95%* 1.44% 5.91* 6.18
Pilot 1.63% - 5.01 -
Wk 4, 6 only 1.64% 1.64%

*Pre-pilot demonstrated values use the old scheduled transit times, whereas the predicted values use the new
scheduled transit time recommendations generated from the model

6.6 Pilot Implications on Supplier Engagement

The discussion of the results from the pilot will mainly be limited to the lateness that were due to

transit time reduction. There were two prominent categories that contributed to 83% of these

late arrivals to destinations, Traffic and Carrier Controllable issues. Both of these issues are

external factors that cannot directly control but can influence through effective supplier

engagement.

6.6.1 Carrier & Truck Driver Response to Pilot

The carriers were not very supportive of the transit time reduction. This was expected since

their performance evaluations are directly related to their on-time performance. They were

given two weeks notice about the pilot. This was done in part to ensure that any carriers that

use independent contractors could communicate with their drivers that a scheduling change was

going to be made. However, in the first week of the pilot, two of the carriers explained their
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lateness as the driver being unaware of scheduling changes. The carriers were quick to claim

that the new transit times were impossible to make given traffic in urban areas that the routes

would drive through. Without direct visibility into the truck's progress en route to destination,
retailers are inclined to take these types of claims from the carrier as truth. However, after the

pilot and analysis of the results, it was demonstrated that drivers may not be forthcoming about

actual required transit times.

It should also be noted that the second most prominent category of lateness due to the change

were Carrier Controllable. These issues contributed to 22% of the total lateness that were

caused by the changes in transit time. Specifically, instances of late dispatching and drivers

running out of hours causing them to stop driving, were particularly notable. Quality

management will be critical to improving on-time performance to destination.

6.6.2 Traffic - Potentially Overused Carrier Reported Issue

Due to the reduction of transit time, the piloted lanes experienced an average 2% reduction in

on-time performance during the pilot. However, when the traffic claims were addressed with the

carrier by lane, that lane experienced almost no lateness the following week. This leads to the

conclusion that once the carrier had drivers adjust their expectations, they were able to perform

to the new transit time. If all lateness due to "Traffic" was removed from pilot period, on-time

performance would better match percentage on-time without changes. In fact, by the end of the

pilot, the demonstrated rate was equal to on-time performance prior to the pilot.

While traffic is understood superficially, there is no formal definition of traffic. It is difficult to

define what would qualify as "traffic", ie: an extended wait at an on ramp or one hour congestion

of cars during rush hour. This loose definition of traffic does not allow carriers to fully describe

the issue. It is also a performance factor that is neither origin facility nor carrier controllable,

which may lend to being overused when there are no other appropriate classification codes.

Clarity over the use of the code "traffic" or the replacement of traffic with more specific

performance factors could also help improve the model, as it drives as the true root cause of the

issue.

6.7 Implementation of Model as a Tool
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Based on the results of the pilot, the quantile random forest received a lot of attention from

Amazon senior Transportation managers, Transportation software engineers and Transportation

data scientists. The random forest application was inspired by an internal study that had been

conducted by a different internal team that attempted to quantify transit time from distribution

center to customer. Unfortunately, the earlier study resulted in unfavorable results so when this

model had successfully predicted transit times based on a specified service level, Amazon

wanted to turn this model into a tool. At the conclusion of my internship, software engineers and

data scientists had been allocated as resources to develop this model into a web interface

service tool that Transportation managers could use. The final product is not a direct replicate

of the model I built, however the quantile regression forests will act as a framework for

developing a similar tool. The estimated start of this project was Q1 2014.

In the interim of software development, I was asked to create a protocol that would enable an

analyst to reproduce my model.. The interim tool that I provided to the Transportation managers

was an abridged version of the full functionalities that the quantile random forest model was

capable of. The model was modified due to the user's requests to simplify the output. To

compensate for this request, the model provides a friendly user interface for a non-technical

analyst that outputs a minimum and maximum predicted value for the ten scenarios outlined in

Table 11.

While the pilot did demonstrate the power of the model, Amazon Transportation managers did

not like its black box style forecast. In order to help them understand where these predictions

were being generated, the Interim tool provided the total number of historical loads used to

generate the prediction by lane. Additionally, they also requested a list of transit times by

quantile be provided with the recommendation so they could see the historical performance by

lane. I was careful to explain that these historical distributions should not be used as the primary

source of determining transit time, due to carrier bias. By providing the historical distribution,

they were much more likely to accept conservative or aggressive estimates. Appendix D shows

an example of the output of the tool I provided using hypothetical data.

6.8 Updating and Maintaining the Model

In order to continually improve on transit time estimations, it is necessary to continually feed

data into the model periodically. The advantage of using a machine learning algorithm is that it

can handle large datasets and incorporate additional data to update the regression values as
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performance improves. I advised Amazon to set up a monthly schedule to update the model. A
month was chosen because updating the model is a manual process that requires input from
multiple sources. A month seemed like a reasonable amount of time so that any unnoticeable

changes in either seasonal trends that could impact transit time (weather, traffic pattern

changes, etc) would not be missed.

I also advised that the model be updated if a significant event has occurred that may affect how
predictions are made by the model. A significant event would be defined as:

e New origin is introduced into network

* New destination type is introduced into network

- Process improvements that may affect gate departure duration

- Any changes to carrier management (performance factor updates, EDI messages etc)

- Significant changes to government regulation that may affect Nominal Transit Time

- Any changes to transportation network not already listed above

6.9 Predicting Transit Times for New Linehauls

The quantile random forest is effective for predicting transit times for existing lanes with

historical data points. However, in order to provide a methodology for calculating transit time, I
must also determine a methodology for predicting transit times for new linehauls as they are

introduced into the network. New linehauls can be classified into the following categories:

1. New Linehaul Connecting Existing Nodes (origins and destination)

2. New Linehaul Connecting to a New Destination but an Existing Destination Type

3. New Linehauls for a New Distribution Center or new Destination Type

The quantile random forest model relies on two types of information: intrinsic characteristics of a

lane (ie: origin, destination, nominal transit time) and historical performance data (ie: gate

departure duration and frequency of performance factors). Intrinsic characteristics are available

when the linehaul is created. The lack of historical performance data however can be estimated

or assumed when assigning values to the input vectors. However, since gate departure

duration and performance factors were shown to have little influence on transit time predictions,

the initial estimates are more or less unimportant.
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Generating transit time predictions that connect existing nodes is the easiest case to deal with.

Since the origin and destination already exist as factors in the input vector, the random forest

will simply use the attributes associated with the origin and destination to generate a reasonable

prediction for the new linehaul. The same is also true for the second scenario where the

destination type already exists in the model (ie: another cross dock or existing transporter).

Estimates from these two scenarios will provide transit times that are similar to other lanes in

the network that share these origin and destination types and nominal transit times. It is intuitive

that this would occur since these attributes were found to be important variables that define

transit times.

The last scenario proves to be most challenging. If the origin or the destination type does not

already exist in the model, a new origin and destination type will have to be added. However,

there is no way of doing this since there is no historical data to rebuild the forest with.

Therefore, in order to estimate transit times for these types of lanes, the user must make

several assumptions of the new linehauls. The user must choose a distribution center that they

believe is similar to the new one being introduced to the network. There is also may be

sufficient similarity in many surrounding areas that it would be reasonable to assume a

distribution center opening nearby an existing one would share its tendencies to have traffic,

weather delays etc. The same must also be done for new destination types, however this task

may be more challenging as there may not be a comparable one to choose from

This process provided reasonable guesses at what the transit times would be. During my time

at Amazon, several new origins were introduced to the network. When employing this process,

the model struggled with predicting mid-short haul lanes (under 100 miles). This is believed to

be due to the large variation associated with these types of lanes. For linehauls that exceed

100 miles, it provided estimates similar to what would be used in Amazon's current

methodology.
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7 Recommendations and Conclusion

7.1 A Perfect Schedule?
Due to the numerous sources of variation associated with outbound linehaul transit, the

construction of a perfect schedule would require the ability to anticipate delays and the duration

of each delay. This thesis attempted to find attributes that could be collected in a large data set

and employ a machine learning technique that would use statistical techniques to anticipate

delays based on historical trends. It was discovered that these key indicators have varying

levels of influence by lane. Therefore it was impossible, using this methodology, to make

generalized statements on how much impact a particular delay would have on a non-specified

lane. The trade off between accuracy and visibility was made based on the needs of Amazon.

Operationally they understand that there is room for reductions in transit times from process

improvement. In the interim of these process improvements occurring, I was asked to deliver a

tool that they could use to manage day-to-day operations. The quantile random forest provides

them the capability to select a service level and predict the required transit time to a high degree

of accuracy. Any adjustments in transit times will impact on-time performance and can be

quantified through the differences in predicted transit time by the model. Unfortunately, it can

be difficult to understand which attributes have caused the change in performance between

service level values.

7.2 Recommendations

The quantile random forest gives Amazon an effective tool for calculating transit times.

However, it currently provides conservative estimates for high percentage on-time performance

and short hauls due to high variability with these scenarios. While the pilot exemplified that

there are linehauls where transit time reduction can occur at 95% on-time performance, almost

all of the recommendations to achieve 99% on-time performance required extending the existing

schedule transit. Therefore realization of this level of on-time performance in today's system will

be challenging. To effectively achieve this goal, Amazon will have to ensure that they have

strict control and alignment from all stakeholders of the delivery process. However, operational

opportunities exist to reduce variability and drive the actual transit times down without

compromising SLA.

Based on learnings from the development of the random forest model, the following

recommendations were created to help Amazon achieve its on time arrival to destination goal.

These recommendations have been grouped into two categories: operational and data.
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Operational recommendations aim to achieve a more efficient process management of the

linehauls. These recommendations aim to improve the existing system. Data

recommendations have been listed to help Amazon better quantify the system. They stem from

needs realized during model development and would help improve the quality of the model

developed. While the quantile random forest is an effective model, it is a black box type model.

The data recommendations attempt to move away from this type of forecasting towards a more

transparent methodology that can also help operation managers drive process improvement.

7.2.1 Operational Recommendations

Hold distribution centers accountable for yard departure process - Accountability was one of the

major needs identified at the kaizen. Today,origin facility controllable variability and carrier

performance are inherently connected since carriers may use distribution center departure

delays as a reason for late arrival to destination. While carriers do play a part in the departure

process, an organization should hold its distribution centers accountable for the time to depart a

truck. It should be noted that this will be challenging to manage for distribution centers since 3

of the 4 parties are outsourced vendors (guards, yard hostlers and truck drivers). With some

process redesigns that were explored during the kaizen, I believe there could be significant

operational improvements made over the yard departure process.

Give truck departure teams the ability to prioritize departures of certain types of lanes -

Variability among linehauls of differing lengths is one factor that was apparent during the initial

assessment. This also became apparent when the quantile random forest would produce

estimates 3-4 times the average transit time for short haul lanes. Since short haul lanes are

more impacted by departure delays and have less time to recover during its drive time, the

ability to prioritize short haul departures in the yard may provide better performance for these

lanes. Additionally, best practices may require deprioritizing inventory transfers since they

generally do not impact customer orders. I was told this is informally done today but is not

standardized. A structure that will allow dock teams to determine which trucks need to be

prioritized during the LTOT when many trucks are leaving at once will enable them to lower the

variability from load to load.

Hold carriers accountable for variability of arrival in addition to on-time percentage - Carriers

have been trained to only be concerned about on-time performance. However good carrier

management must also try to control for variation associated with linehaul performance. This
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can begin with holding carriers to a metric that measures their reliability to perform to the

schedule. RMSE can be helpful with managing consistent performance. Monitoring some level

of performance "accuracy" relative to the schedule may help drive performance of suppliers,

rather than simply looking at percentage on-time. The adoption of this metric may be

challenging. Carriers may push back, claiming uncontrollable variables for inconsistent

performance or worse, be dis-incentivized to drive efficiently so that transit times may be

inflated. However, it was shown during the pilot that carriers are already dis-incentivized to

drive efficiently so it changes nothing from today's circumstances.

7.2.2 Data Recommendations

Creating a scheduling system that allows for different transit times for each scenario- One of the

scheduling limitations identified by Amazon's Transportation managers is the inability to

schedule a weekday truck differently from a weekend truck on the same route. This need exists

because the traffic conditions vary significantly on weekdays versus weekends. This issue was

also apparent when developing and testing the model for variable significance. The ability to

calculate transit time by lane, under specific circumstances (ad-hoc, weekday, etc), will enable

flexible scheduling that should result in cost savings due to reduced transit, without

compromising service levels. It will also be favorable to carriers as there will be greater flexibility

to assign appropriately long transit times.

Remove "traffic" as a performance factor code - The current method of reporting traffic forces

carriers to use traffic if they are late and all other reason codes are not applicable. One reason

this performance factor exists today is because it is not possible to take into account variation in

traffic patterns along the same lane. As more sophisticated scheduling capabilities are

developed, ie: scheduling by time of day and lane, specific transit times can be set to

incorporate traffic without over scheduling other loads in the same lane. Traffic and road

congestion can therefore be considered a seasonal, predictable attribute that naturally occurs at

certain hours of the day. Other instances of traffic would be captured by codes such as

"accident" or "weather". The quantile random forest is able to provide estimates based on time

of day of departure and lane to take the normal congestion into account. When this is achieved,

traffic should never be a relevant code and can be removed. In general, any performance factor

that lacks transparency or is difficult to quantify should be removed.
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Clarify ownership of each transit time process by detaching yard departure process from the

calculation of transit time - While the process of yard departure and drive are inherently linked,

the calculation of transit time would be simplified by removing the yard component. Linking

them creates an accumulation effect to occur with performance factors. Trying to attribute more

than one reason introduces other complications such as trying to determine what percentage of

the delay should be attached to each code. Ultimately, since these two processes have their

own independent set of possible variabilities, they should be treated as two independent

calculations.

Link virtual trailer depart from dock time to the need to physically depart - The estimate used by

the model assumes that 15 minutes from the scheduled depart time is actual depart time from

the dock. Based on observations during the kaizen, this is clearly not true. Without being able

to accurately measure the time it takes from physical trailer departure from dock to exit the yard,

it will be very difficult to measure improvements in implementing standard work of yard

departure process. If the dock departure process signaled to each driver in the yard

electronically which door to proceed to, it would not only solve a data quality issue but improve

channels of communication between distribution centers and drivers.

Implement a system wide yard management system to understand yard movement - The

implementation of a yard management system would allow management of the movement

trailers and tractors that interact in the yard. An RFID tagging system was implemented in

several distribution centers in North America as a pilot, however it has not been fully

implemented through the network. Implementing this yard management system enable

monitoring of the traffic in the yard, but to own the reliability of the information of when trucks

exit and enter its yard. During the time of the project, the only network wide data source that

collects this information is through carrier controlled EDI. The incentive for carriers to ensure

data quality is low and was seen while data cleaning. By owning the data, Amazon will be

enabled to not only schedule better but also manage its yard more effectively.

Change process of sending EDI arrival at destination among carriers - In the case of carriers

arriving at their destination, Amazon has incentivized its carriers to ensure the data quality is

high by closely managing on-time performance. However, there needs to be a distinction

between the time the carrier arrives at the destination and the time the load is delivered. This

issue was highlighted when looking at high service levels. Due to the constraint that

transporters will have limited operating hours, if the truck arrives at the destination while the
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transporter is closed, using the load delivery time is an inaccurate measurement of the transit

time. Amazon can incentivize carriers to make this distinction by explaining it would allow

Amazon to appropriately allocate transit time so they are not late to delivery.

7.3 Conclusion

The development of the quantile random forest enables Amazon to calculate transit times of

linehauls based on a desired service level. This understanding began with looking at historical

performance, however there was no systemic methodology to incorporate historical data into the

scheduling. The historical performance was generally limited to the percentage of on-time

performance.

The quantile random forest allows for a large body of information, based on EDI carrier

messages, to be incorporated into the development of transit time. It also builds on historical

performance, allows for updating forecasted transit times as processes improve, and allows the

user to understand service level relative to allocated transit times. However, as discovered

through the pilot, historical transit times may not be the best methodology to compute the transit

times. The model, as with most historical data based model, assumes that the system is

stagnant. Relying only on historical transit times to schedule efficiently is therefore misguided.

Operational improvements must be made to drive progress in on-time delivery to destination.

These operational improvements will require aligning incentives for carriers and the teams

responsible for the truck departure process. This process will be challenging, as there are

multiple teams who are contracted. Specifically, the yard departure team has two externally

managed contractors who must work efficiently with warehouse personnel to ensure

communication from warehouse to yard is clear. The operational improvements that can be

achieved by ensuring the design of this process is standardized will result in impactful financial

savings.

The advantage of using quantile random forests, and machine learning algorithms in general, is

that consistently updating the structure will appropriately adjust the transit times as operational

improvements are made. The implementation of the quantile random forest provides a dynamic

and consistent methodology that will adapt as distribution networks grow.
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8 Appendix

8.1 Appendix A: Performance factors
Origin Facility Carrier

Reason Code Other Controllable Controllable Seasonal
[Not Late] 0 0 0 0
CARP Issue 0 1 0 0
Late Sweep Request 0 1 0 0
Pending Investigation 1 0 0 0
Loaded Overweight 0 1 0 0
Schedule Error 0 1 0 0
Vendor Delay- Pickup Scheduling 0 1 0 0
Vendor Delay-Loading 0 1 0 0
Accident 1 0 0 0
Border Delay 1 0 0 0
DOT Inspection 1 0 0 0
Traffic 0 0 0 1
Weather 0 0 0 1
Capacity 0 0 1 0
Dispatch Error 0 0 1 0
Driver Error 0 0 1 0
Mechanical 0 0 1 0
Medical 0 0 1 0
Prior non-amazon load 0 0 1 0

Rail Delay 0 0 1 0
Carrier Not Responding 0 0 1 0
DC Load Delay - Truck Utilization 0 1 0 0
DC Load Delay - No Response 0 1 0 0
DC Load Delay - DC Disputed 0 1 0 0
DC Load Delay - DC Admin Issues 0 1 0 0
DC Load Delay - TOC Admin Error 0 1 0 0
DC Load Delay - Physical Loading
Issues 0 1 0 0
DC Load Delay - Pending 0 1 0 0

DC Load Delay - Late Depart 0 1 0 0
DC Load Delay - Carrier Reported 0 1 0 0
Previous stop 1 0 0 0

Carrier disputed 1 0 0 0
Buffered Arrival 0 0 0 0

Driver Late 0 0 1 0
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8.2 Appendix B: Speed Limits For Trucks by State
State Trucks (MPH) State Trucks (MPH)
Alabama 70 Rhode Island 65
Alaska 65 South Carolina 70
Arizona 75 South Dakota 75
Arkansas 65 Tennessee 70
California 55 Texas 75-80
Colorado 75 Utah 75-80
Connecticut 65 Vermont 65
Delaware 65 Virginia 65-70
District of Columbia 55 Washington 60
Florida 70 West Virginia 70
Georgia 70 Wisconsin 65
Hawaii 55 Wyoming 75
Idaho 65
Illinois 65
Indiana 65
Iowa 70
Kansas 75
Kentucky 70
Louisiana 70
Maine 65
Maryland 65
Massachusetts 65
Michigan 60
Minnesota 70
Mississippi 70
Missouri 70
Montana 65
Nebraska 75
Nevada 75
New Hampshire 65
New Jersey 65
New Mexico 75
New York 65
North Carolina 70
North Dakota 75
Ohio 65-70
Oklahoma 70-75
Oregon 55
Pennsylvania 65
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8.5 Appendix E: Note on Linear Models Attempted

For reasons discussed in Chapter 2, the original linear models did not sufficiently suit the needs

of the project. An artifact that carried over into the final model from the linear models were

variables that were eliminated from the linear models based on F-tests and correlation tests.

Since the random forest uses the quantile regression to generate its regression value, it is

assumed to be insignificant in the random forest implementation as well.

Correlation tests

While random forests are capable of handling correlated variables, to simplify the model, I

eliminated highly correlated variables from the final list of variables in the random forest model

in order to simplify the number of inputs. Significant correlation is defined as greater than .5 or

less than -.5 (citation?). Miles was eliminated from the model since it is almost perfectly

correlated to nominal transit time. No other variables have any significant correlation to each

other. The full Pearson correlation matrix can be found in Appendix C.

The following variables were eliminated through the development of the linear model:

1. Destination Arrival Delay - Difference between scheduled arrival time of truck at

destination and actual arrival time at destination. Actual arrival time provided by EDI 214

X1 NS message. Scheduled arrival time to destination provided by Amazon schedule.

Rationale for Exclusion: This variable assumes that there is a fixed schedule to adhere

to and including it in the model produced results that were very close to scheduled

transit time. It seemed to force an over fitting to a predetermined transit time, which was

undesirable.

2. Miles - distance between origin and destination pair given by transportation software

Rationale for Exclusion: This variable was perfectly correlated with Nominal Transit

Time, which makes sense since Nominal Transit Time is derived from length of haul.

Including correlated variables in a model increases the risk of over fitting, so it was

discarded (Breiman 20).

3. Number of Trucks Departing - the total number of trucks departing at the same

scheduled depart time

Rationale for Exclusion: The motivation for including this variable was to try to determine

some relationship between the number of trucks departing and ability to depart within 30
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minute window. A time study conducted by Amazon showed that the number of trucks

departing simultaneously increase the percent of late departures, as shown in Figure 8.

Unfortunately this variable does not play an important role in the larger calculation of

transit time since time to depart from the gate is such a short portion of most transit

times. The F-tests from the quantile linear model also determined this input was not

significant in the regression.

Figure 8-1 Late Depatures vs. Number of Trucks Departing Simultaneously

% of Trucks Departing Late
78%

71%
65%

41% 40% 43%
35%

24% 23%

II I I I I I

1 2 3 4 5 6 7 8 9

# of Simultaneous Trucks Departing At the Same Time

4. Day of Week - 7 binary variables, 1 to indicate true, 0 to indicate false for each day of

the week

Rationale for Exclusion: This was simplified into weekday or weekend. After consulting

with transportation managers, they believed that little variation occurred any given

weekday but significant variation may exist between the weekdays and weekends. This

was also helpful in limiting the total number of variables

5. Scheduled Depart Hour - the hour the truck was scheduled to depart

Rationale for Exclusion: This value was eliminated due to the need to introduce 24

unique categorical values into the model. To keep the data set simple, I created a

variable called Rush Hour that would indicate whether the departing truck was going to
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be leaving the DC between the hours of 6-9 or 15-18, which could capture any variations

due to traffic congestion.

6. Origin Arrival Delay - Difference between scheduled arrival time of truck to origin and

actual arrival time at origin. Actual arrival time provided by EDI 214 X3 NS message.

Scheduled arrival time to origin is provided by Amazon schedule.

Rationale for Exclusion: While this is an important metric to track to ensure carrier

performance, it is outside of the defined transit time process. It was therefore defined as

an extraneous value, despite being tracked by the Transportation team for carrier

management.

83



8.6 Appendix F: Gate Departure Duration by Business Type
Loads from January - April 2013 in NA

The table below shows a significant number of loads departing earlier than pull time. This is mainly due to
transfers, outbound from B and tote loads. A full breakdown of the distribution by business type can be
found below. Without accurate timestamps of when the truck pulled off the dock, we cannot estimate the
actual duration to depart the yard. An estimate that used the timestamp associated with dock door close
provided too many exceptions and was disregarded.

Negative values highlighted in red

Gate Departure Du ration by Business Ty pes

0% 25% 50% 75% 100% %*o

INBOUND TO A 0.03 0.25 0.45 25.50 13%
INBOUND TO B 0.20 0.37 5.27 3%/0
INBOUND TO C 0.18 0.43 24.18 6%
LOCAL TRANSPORTERS 6 0.25 12.57 8%

NON-INVENTORY 0.87 0.87 0.87 0.87 0.87 0%

OUTBOUND FROM B 22.92 10%

POSTAL INJECTION 0.20 0.40 43.87 30%
TBD 0.08 0.25 0.50 1.17 0%

TOTE LOAD 0.12 0.93 26.75 0%
TOTE RETURN 0.15 1.29 38.00 3%

TRANSFER -A 1.78 1.86 1.93 2.01 2.08 0%

TRANSFERS - C 0.22 24.08 7%

TRANSFERS - D 0.60 0.5 0.89 1.04 1.18 0%

TRANSFERS - E 0.11 2.78 1
8.6.1.1.1.1 RETURNS 0.25 2.84 4.32 6.85 0%

TRANSFERS -F 0.17 0.73 23.02 0%

TRANSFERS - G 4.52 7.27 _14.59_ _23.88 0%

TRANSFERS - H 01 0.02 0.30 8.57 17%

8.6.1.1.1.2 OTHER 0.20 0.38 2.88 1%

WAREHOUSE DEALS 0.2 0.52 0.72 0.76 0.80 0%

I I i 'ITotalT 100%
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