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ABSTRACT

A new method is introduced to perform enhancement of speech degraded by acoustic
noise using the psychoacoustic property of masking. The goal of this algorithm is to
preserve the natural quality of the noise while keeping the speech perceptually intact.
Distortion masking principles based on prior work of Gustafsson are used to derive a
hybrid gain function comprising a function minimizing speech distortion and another
minimizing noise distortion. The system is implemented in floating-point software and
was tested against several existing algorithms. In a forced choice listening test, the new
system was preferred over the Enhanced Variable Rate Codec (EVRC) noise suppression
algorithm in 88% of the cases. Informal listening tests showed preferable speech quality
than Gustafsson's algorithm. As a front end to a vocoder, the new system was preferred
over the other two by all the test subjects. Ideas on future work in speech enhancement
are also explored.
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Chapter 1: Introduction

Noise suppression in speech systems is important for a variety of reasons. In

today's highly competitive mobile telephone market for instance, it is important and often

necessary to have a good noise suppression algorithm. The goal of these algorithms is to

reduce the amount of background noise in a noisy speech signal while minimizing

distortion of the speech, and keeping the residual noise sounding natural.

For mobile telephony, noise suppression is important as a front end to voice

coders (vocoders). Vocoders use redundancy in the information content of speech signals

to perform signal compression. Most voice coding algorithms use models of speech

production in order to achieve their goal. Hence, if a vocoder is presented with a speech

signal that has high noise content, one can expect poor performance because of the fact

that the noise in the signal is modeled poorly by the speech production models used in the

vocoders. Preliminary experiments in this research using the TIA standard Enhanced

Variable Rate Codec (EVRC) [1] without noise suppression have shown this clearly.

The increased popularity of smaller and smaller mobile telephones has also

further given rise to the need for good noise suppression. Smaller telephones result in

increased distance between the mouth of the user and the microphone. Consequently,

more sensitive and more omni-directional microphones are needed. This in turn causes

more background noise to be picked up by the microphones. In hands-free carkit

situations, even more noise is picked up because of the use of highly sensitive omni-
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directional microphones and the increased noise levels due to car engines, air-

conditioning and wind.

Current noise suppression algorithms leave much room for improvement. The

traditional methods of performing noise suppression fall short in a number of different

ways. The spectral subtraction algorithms result in musical residual noise [2, 3]. Musical

noise takes form of short-term tones that have a "gurgling" effect. Wiener filtering

requires an estimate of the speech power spectrum as well as the noise power spectrum

and also results in musical noise, albeit not as severe as in spectral subtraction. Also,

Wiener filtering is a minimum mean square error (MMSE) algorithm which is not the

minimum perceived error. Other algorithms such as signal to noise ratio (SNR) based

spectral attenuation algorithms [1] cause unacceptable levels of speech distortion for high

degrees of noise suppression. The background research section of this thesis elaborates

more on these algorithms and their characteristics.

The objective of this thesis is to develop a noise suppression system that results in

low levels of both noise and speech distortion while achieving a high degree of noise

suppression. The psychoacoustic property of masking [4] will be used to achieve this

target. This property has been exploited successfully for several years in vocoders [5, 6]

as well as audio compression schemes such as the Motion Picture Experts Group

(MPEG) [7] standard. It has recently been successfully used in several speech

enhancement algorithms as well [2,3,15].

The principle of distortion masking which has been used in audio coders [6, 7]

and the speech enhancement algorithm due to Gustafsson et. al [3] will be used in this

thesis. This thesis expands on work done by Gustafsson et. al. by introducing a hybrid
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gain function that uses Gustafsson's results as well as some new ideas. The goal of the

hybrid function is to minimize noise distortion for highly noisy portions of the speech and

minimize speech distortions for portions that are high in speech content. Equations to

achieve this goal are derived and then implemented in a floating point C-simulation.

Speech data with added car noise was used to test the system. A binary forced choice test

was then performed to evaluate the system from a subjective point. The system

introduced here was preferred over that of the TIA EVRC noise suppressor [1] in the

subjective tests. 10 subjects picked the new noise suppressor over the EVRC noise

suppressor 89 % of the time. Informal testing also suggests that the hybrid function is

preferrable to the Gustafsson algorithm in terms of speech quality with noise quality that

is comparable.

This document is organized as follows. After the introduction chapter, a chapter

on the background research done prior to undertaking the major work on this thesis is

presented. This includes information on psychoacoustics as well as state of the art speech

enhancement algorithms. This is followed by a chapter on the theory behind the hybrid

algorithm. The derivation of the hybrid algorithm as well as some discussion on its

expected performance are given in this chapter. A chapter on implementation details

follows. The results obtained using this algorithm are presented and discussed in the next

chapter. Lastly, the results are discussed and ideas on future work are explored.
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Chapter 2: Background Research

2.1 Introduction

This chapter describes the background research that was done before the major

research work was undertaken. It is designed to provide the reader with information on

psychoacoustics as well as state of the art speech enhancement algorithms. In the first

section, the psychoacoustic properties used in this and other systems are described. The

second section describes existing speech enhancement algorithms including classical

methods as well as recent, psychoacoustically motivated algorithms.

2.2 Psychoacoustic Properties

This section describes the two psychacoustic properties that are most widely used

in perceptually based audio signal processing algorithms. Namely, they are the critical

band theory and the masking property. The advantage of using these psychoacoustic

models in performing audio signal processing is that algorithms can be designed to match

the human auditory system better.

2.2.1 Critical Band Theory

In the process of hearing, the vibration of air molecules gets propagated from

outside the human body by various mechanical means until they reach the cochlea. The

cochlea contains a membrane called the basilar membrane (BM). The vibrations of the

BM are converted into electrical impulses and are transmitted to the brain [10].
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The BM can be modeled as a bank of about 10,000 overlapping bandpass filters

[4, 10] which perform a conversion of sound pressure level in time into the frequency

domain. The bandwidths of these filters are known as the critical bands of hearing. It has

been found that the perceived loudness over the range of a critical band is dependent on

the intensity of sound in that band [11]. Experiments have also shown that the human ear

can distinguish frequencies with poorer resolution for higher frequencies [4, 10], i.e. the

widths of the critical bands increase with frequency. Thus, the nonlinear Bark scale for

the critical bands of hearing was conceived. The Bark scale denotes frequencies matched

to the widths of the critical bands. For instance, a Bark frequency of 7 means that there

are 7 critical bands between that frequency and zero. Therefore it is a frequency scale

that is better suited to describing hearing related frequencies. In the low end of the scale,

the bandwidths of the band pass filters are found to be about 100 Hz and in higher

frequencies the band widths reach up to about 3000 Hz [4, 10]. Thus, the distance in Hz

between Bark frequency 0 and Bark frequency 1 is approximately 100 Hz since the

critical bandwidths for low frequencies is approximately 100 Hz . The following

expression due to Zwicker [4] describes the mapping from Hz frequencies to Bark

frequencies.

b =13arctan(0.76 x10-13 f )+ 3.5 arctan j75 1

where b is the bark frequency corresponding to the Hz frequency f.

Most perceptually motivated algorithms, however, do not use a continuous

mapping from Hz frequencies into bark frequencies. The commonly used method is to
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use a fixed-band approach. The range of hearing is divided into a number of bands

depending on the maximum frequency that is handled by the system. For speech

processing systems, typically, 16 bands are used [1, 5, 6]. As a result, the frequency

values are quantized along the bark scale and are commonly referred to as Band Numbers

or Bark Numbers [14]. The following table shows an example of critical band boundaries

that are used in this system to convert Hz frequencies into Bark frequencies. This critical

band structure is also used in [5].

Band Number
(Quantized Bark Upper Bound

Frequency) Frequency (Hz)

1 109.375

2 359.375

3 484.375

4 609.375

5 734.375

6 859.375

7 1046.875

8 1078.125

9 1421.875

10 1671.875

11 1921.875

12 2234.375

13 2609.375

14 3046.875

15 3484.375

16 3984.375

Table 2.1: Critical Band Boundaries

The fixed band approach is not entirely accurate because it is known that the

bands in our ear are overlapping and are far greater in number. However, it was found to
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be sufficient for the purposes of the system in this project as was the case in [1, 5, 6, 14].

It requires significantly fewer computations compared to a more accurate model of

10,000 overlapping filters.

2.2.2 Masking Properties of the Human Auditory System

The phenomenon of auditory masking is the effect of one sound on our ability to

perceive others [10]. In a sense it is a measure of the ability of one sound to drown

another. Research in psychoacoustics has shown that we cannot perceive weak signals

that are in the time and frequency vicinity of stronger signals. These two properties are

called temporal and frequency masking respectively. In this system, temporal masking is

not considered. Only masking in the frequency domain is used. This is because the entire

system is based on frequency domain processing of the input signals. Furthermore,

temporal masking is a property that has been less used in the field of audio signal

processing due to difficulty in properly quantifying this property. In contrast, frequency

masking has been used in perceptual audio coders [5, 6, 7] as well as other

psychoacoustically motivated speech enhancement algorithms [2, 3, 15]. The following

describes the property of frequency masking.

If we have a tone at a certain frequency (masker), there exists a threshold

(masking threshold) of sound pressure level (SPL) in adjacent frequencies below which

other signals are imperceptible. The general shape of the masking curve for a single tone

at frequency v is shown in Figure 2.1. Signals that have a sound pressure level (SPL)

below the broken lines are imperceptible in the presence of the tone at v.
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Figure 2.1: General Shape of Masking Curve Due to Tone

It has been found that the ability of a tone to mask other signals is greater in

frequencies higher than that of the tone [4]. Hence, in Figure 2.1 the masking threshold

for frequencies higher than v has a greater slope. The slope in the higher frequencies is

dependent on the SPL of the tone at frequency v. For frequencies lower than v, it can be

modeled as having a fixed slope [12].

The masking phenomenon is not only limited to tones as maskers. Noise is also

able to mask other signals. In fact, noise maskers have been found to be more effective

than tonal maskers [4, 10]. Noise maskers are able to mask signals that are about 4-6 dB

greater in SPL than corresponding tonal maskers [14]. Adjustments to the computed

masking curve have to be made to account for this difference as is done in [2, 6]. The

computation of the masking curve is detailed in Chapter 4.

The effects of individual maskers are additive [10]. This means that the masking

due to each frequency component can be added up to come up with a "global" masking

threshold. This threshold tells us what is or is not perceptible across the spectrum.

14



The phenomenon of noise masking has also led to the concept of perceptual

entropy [6, 22]. Perceptual entropy is the measure of how much error can be added to a

signal so that the resultant signal is perceptually the same as the original. The basic idea

is that if the error that is added to a signal falls below the masking threshold, then that

error cannot be perceived. This concept is exploited in perceptual audio coders like [5, 6,

7, 22] whereby bit allocation is done in a manner such that the quantization noise falls

below the masking curve and cannot be perceived by the listener.

It has to be noted that the masking curves for various frequencies and SPLs have

been measured experimentally by researchers in psychoacoustics. The actual computation

of the masking threshold is just an estimation of the actual masking that occurs. Thus,

corrections to the computed masking threshold have to be performed. Typically, the

masking threshold is lowered to obtain a more conservative estimate. This will result in

more room for error. The details of the correction to the masking curve that is done in this

system are described in Chapter 4.

2.3 Current Noise Suppression Algorithms

This section provides a description of existing noise suppression algorithms. It

begins by giving a general overview of noise suppression systems. This is followed by a

subsection describing the classical methods of performing noise suppression (i.e. without

considering psychoacoustic effects). The next subsection describes more recent

psychoacoustically motivated algorithms.
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2.3.1 General Noise Suppression Systems

Most noise suppression systems use frequency domain filtering methods. The

following describes a generalized noise suppression system. It has to be noted though that

other methods not involving frequency domain filtering do exist as for example, the pitch

filtering method described later in this chapter.

Assuming an additive noise model, consider a signal x(n) = s(n) + b(n) where

x(n) is the sum of the speech signal s(n) and the background noise b(n). Because of the

short time stationarity of speech, the conversion into the frequency domain has to be

performed on a frame by frame basis with overlapping windows. So, in the frequency

domain, we have X (f,m)= S(f,m)+ B(f,m). Where f is the frequency and m is the

frame number.

In general, noise suppression algorithms apply a gain function H(f,m) to the

signal giving the output Y(f,m)= H(f,m)X (f,m). This gain function (also called the

spectral weighting function) has the goal of reducing the magnitude of the noise

components while keeping the speech components intact. The different weighting

functions correspond to different suppression algorithms.

Most noise suppression algorithms make use of noise estimates in the

computation of H (f, m). In general, long term stationarity of noise is assumed. Voice

activity detection (VAD) is used to detect pauses in speech during which only noise is

present. The noise power spectrum in these frames is averaged over time to obtain an

estimate of the noise power spectrum density (PSD). This estimate is then used in the

computation of H (f, m). Figure 2.2 illustrates a general noise supression system:
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Speech VAD Output
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Figure 2.2: Overview of General Noise Suppression Systems

2.3.2 Spectral Subtraction

One of the classical methods of performing noise suppression is by spectral

subtraction [8]. This algorithm assumes long term stationarity of the noise and short term

stationarity of the speech signal. It also assumes that the noise and the speech are

uncorrelated. When the VAD detects speech, a fraction of the magnitude of the estimated

noise is subtracted out of the magnitude of the input signal. Hence, the term spectral

subtraction. The resulting magnitude is combined with the phase of the noisy input signal

to produce the output. Thus, we have:

Y(f, m)l =X(f,m)jY -ar B(f,m) when IX(f,m)l' >cax B(f,m)

=0 otherwise

17



so that:

H(f,n)= 1- (2.1)
X (f, m|

where b(f,m) is the noise estimate for frame m. a is the amount of suppression and y is

an exponent that controls the abruptness of the transition between full attenuation and no

attenuation. Typically used values for y are y =1 for magnitude spectral subtraction

where the magnitude of the noise is subtracted from the magnitude of the input signal and

y = 2 for power spectral subtraction where the power of the noise is subtracted from the

power of the input signal. The magnitude of the output signal is then given by:

Y(f,ml = H(f,m)X(f,mj.

jY(fm) is then combined with the phase of X (f,n) to produce the output as follows:

Y(f,m)= Y(f,mje['"xn.

The following is an analysis of the mean value of the output using power spectral

subtraction. From the additive noise model,

X(f,m)= S(f,m)+ B(f,m).

Thus,

Y(f,m)|2 =S(fm)2+[B(f,m)2c- a2 f 2 + S*(f,m)B(f, m)+ S(f,m)N*(f,m)

18



If S(f,rm)and B(frm) are uncorrelated and if we subtract the noise out fully, i.e. a =1,

E{ Y(f,m) 2 }E{ |X(f,m) 2

Thus, the expected power of the estimate equals the expected power of the original

speech. A similar argument can be made for magnitude spectral subtraction (for which

the magnitude of the noise is subtracted from the magnitude of the input signal) where

the expected magnitude of the output equals the expected magnitude of the speech.

This algorithm relies heavily on having an excellent estimate of the noise power

spectrum. Since by definition, noise is random, it is impossible to get a perfectly accurate

estimate of the noise power spectrum. As a result, some frequency lines get subtracted

out wrongly resulting in short term tonal components being left behind in the output

signal. This unnatural sounding noise is called musical noise. This is the biggest problem

posed by spectral subtraction.

2.3.3 Wiener Filtering

The Wiener filter is a minimum mean square error (MMSE) algorithm that

minimizes the expected error between the estimated speech and the actual speech signal.

It assumes the uncorrelatedness of the speech and noise. The following is the derivation

of the Wiener filter gain function. From the orthogonality principle, for the minimum

mean square error, the error signal has to be orthogonal to the input signal [26]. The error

is given by the following expression.

e(n) = y(n) - s(n)
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For the error to be orthogonal to the input signal,

Etry(n) - s(n)] x(l)}= 0 for all 1

EI[s(n) - y(n)] x(l)}= 0

but y(n) is x(n) filtered by h(n) i.e.

y(n)= h(k)x(n-k)
k=---

so, we have

E s(n) - h(k)x(n - k) x(l)} =0 for all 1
k=

After some algebraic manipulation,

h(k)Rxx (n-k -l)= Rsx (n-l) for all /

where Rxx (n) is the autocorrelation sequence of x(n) and Rsx (n) is the cross
correlation between s(n) and x(n).

It can be noted that the summation above can be written in terms of a convolution as

follows:

h(n) * Rxx (n - 1) = Rsx (n - 1)

where * denotes the convolution operator. Taking the Fourier transform on both sides,

H (f )P (f) = Ssx (f)

where Ssx (f ) is the Fourier transform of Rsx (n).

Assuming uncorrelatedness of the speech and noise,

H(f )[Ps (f )+ PB(f Ps(f

20



which leads to the expression for the Wiener filter

H~S (f ). (2.2)
PS W + PBW

2.3.4 SNR Based Weighting Rules

Yet another method of performing noise supression is the use of the instantaneous

estimated SNR to perform attenuation of noise [1]. A measure of the instantaneous SNR

is used to compute the gain function as follows:

X(f,m)
H(f)=min G B(f,m)

A possible function G(O) is the following limited linear function that is used in [1]

G(k)= max[p(k -k)-,] (2.3)

where y is an appropriately chosen slope, is the minimum gain and k, is the largest

value of k for this minimum gain.This gain function attenuates regions of low SNR and

leaves regions of high SNR intact. Regions of SNR k or less are attenuated by the full

amount, . The slope p controls how much difference in attenuation should be applied

for a given difference in SNR. Figure 2.3 shows how the gain varies with the SNR for

(2.3).

This weighting rule preserves noise characteristics fairly well (provided that the

noise is stationary). This is because the frequency components that have high noise

content have low SNR and get attenuated by a fixed amount. However, much of unvoiced

speech is lost as it tends to be low in SNR and as a result causes G(k) to be small. In
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addition, obtaining a measure of instantaneous SNR is itself difficult to do accurately due

to the difficulty in obtaining good noise and speech PSD estimates.

Figure 2.3: Gain versus SNR for SNR Based Algorithm

2.3.5 Weighting Rule of Ephraim and Malah

Ephraim and Malah presented a set of rules that drastically reduce the amount of

musical residual noise while having a high degree of noise suppression [19, 20, 21]. This

method uses a complicated gain function which involves measures of a priori and a

posteriori SNRs. The following are the equations used in the computation of this gain

function for the mth input frame.

Jr Rprio (m, f)
H+Rpri,(in,)=

2 1+ RO( (m, f ) + R)R ((M, f )

xM Rprio (m, f )+ RO, (M, f )Rpio(M, f ]
I + R,,io (M, f )

22
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where

M[] e 2 (1+&) o1 -J +0 I

Rpri (m, f) is the a priori SNR for frame m . The term a priori is used because it is an

estimate of what the SNR in the current frame is based on the previous frame. Ros, (M, f)

is the a posteriori SNR for frame m. The term a posteriori is used because it is a direct

estimate of what the SNR in the current frame is based on the information from the

current frame only. 10 (f ) and I, (f ) are the modified Bessel functions of the zeroth and

first order respectively [20, 21]. Rpr,( (m, f) and Ro, (m, f) can be obtained using the

following equations presented in [21] which are slightly simpler than the ones used in the

original work [20]:

,I ),f) 2

pos (Mf ) I (m, ) 2

Rprio(m, f )=(1 - a)P RPot (m, f )+ a 2

where P(x)= x for x > 0 and P(x) 0 for x < 0 which ensures that Rprio(M, f ) will

always have a positive value. This is required for the square-root operation in the gain

function computation to produce a real value. a is a weighting factor satisfying a| <1.

a is set to a value close to 1.

Thus, the a priori SNR is a combination of the current a posteriori SNR and an

estimate of the previous SNR. In the expression for H(m, f), the a priori SNR is the
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dominant factor [21]. It can be shown numerically that Rpri(m, f) is a heavily smoothed

version of R,,s (m, f ) when Ros (m, f) is small and that Rprio (m, f) is just a delayed

version of RPt (m, f ) when Rpst (m, f) is very large [21].

Thus, for low SNR cases, Rprio(m, f) is heavily smoothed which results in

smoother values in the low regions of the spectrum. Since musical noise occurs in the low

SNR regions of the spectrum, the smoother gain function translates to reduced musical

noise. In the higher SNR cases, Rpr, (m, f) tracks R, 0 ,(m, ff) which is a direct estimate

of the SNR. This results in an SNR based gain function much like that described in the

previous section. Thus, the Ephraim and Malah algorithm in a nutshell can be described

as one that uses a fast tracking SNR estimate for high SNR frequency components and a

highly smoothed SNR estimate for the low SNR components.

This algorithm drastically reduces the amount of musical noise compared to the

spectral subtraction and Wiener filtering methods [21]. However, some musical residual

noise can be noticed if the smoothing of the a posteriori SNR estimate is not gradual

enough. At the same time, if the smoothing is too slow, the beginnings and ends of words

that are low in SNR will cause distortions in the speech due to the fact that the a

posteriori SNR estimate is too slow in catching up with the transient speech [21].

2.3.6 Pitch Filtering

One of the earliest methods of speech enhancement was by pitch filtering [13,

16]. This method does not require frequency domain filtering although it can also be done

in the frequency domain. The basic premise of this system is to exploit the periodicity of
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speech signals. To understand this method, a rough model of speech production is

needed.

Human speech can be roughly divided into unvoiced and voiced speech. Voiced

speech is produced by forcing air through the glotis so that the vocal cords vibrate quasi-

periodically [24]. These periodic air pulses get filtered through the vocal tract and

produce a periodic output. This corresponds to vowel like sounds. One can demonstrate

this to oneself by feeling the vibration of the throat while pronouncing vowel like

sounds. Unvoiced speech on the other hand is produced by turbulent, high velocity air

being forced through various portions of the vocal tract. This corresponds to sounds like

''ss" and "ff'.

Voiced speech can thus be modeled as a periodic pulse train filtered through a

time-varying filter. This results in a harmonic signal. Comb or pitch filtering performs the

enhancement by enhancing the periodic components of the voiced speech. In order to do

this, an estimate of the pitch period is needed. Various methods of doing this have been

proposed [1, 24]. Comb filtering is then performed on the signal to enhance the

harmonics. This can be done in the time domain via an infinite impulse response (IIR)

filter of the form:

H (z)=
1- bz

where L is the estimated pitch period and b is a factor called the long term prediction

gain that controls the widths of the "teeth" of the comb filter. The closer the value of b to

unity, the sharper the peaks of the comb filter are. Figure 2.4 illustrates a pitch filtering

system for speech enhancement.
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b, L

Pitch
Detection

input H(z)= _ oupt0
1- bz

Figure 2.4: Comb Filtering Speech Enhancement System

Other methods include frequency domain filtering as well as time domain comb

filters of other forms as with

H (z) -= N I

I(-1)2k Z-2k
k=1

The most obvious problem with comb filtering is that it only enhances the

harmonic components of the speech. Unvoiced speech is not enhanced. Neither do the

non-periodic components of voiced speech. This results in an unnatural sounding output

and loss of intelligibility. For instance, using a pitch filtering algorithm, words like steam

and team can easily be confused due to the loss of the unvoiced "s" sound. In addition,

pitch period estimation is an extremely difficult problem, even when dealing with clean

speech [24]. Poor pitch period detection results in a chorus-like sounding output due to

new harmonics created by enhancing the wrong frequency components.
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2.3.7 Psychoacoustically Motivated Rules

Recently, several psychoacoustically motivated speech enhancement algorithms

have surfaced [2, 3, 15]. All of them involve frequency domain filtering with various gain

functions. The three major approaches are as follows:

* To attenuate less where noise is heavily masked [2]

" To ensure that distortions are masked [3]

* To increase the amount of masking in order to cause more noise to be
imperceptible [15]

2.3.7.1 Virag Algorithm

Virag [2] uses a subtractive-type algorithm in order to perform noise reduction.

The basic gain function that is used is a generalized form of spectral subtraction due to

Berouti et. al [25]. Berouti's gain function is as follows:

H(f)= 1-a x(f) Ij j for [ < I

IX(f) X(f) a+

x(f) 1 otherwise
X(f) 1

where a is the oversubtraction factor which controls how much noise should be

subtracted out of the speech. P is the spectral flooring factor which determines the
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1minimum value taken by the gain function. y, = is an exponent that determines the
72

abruptness of the transition from full suppression to no suppression.

This function has the flexibility of variable subtraction parameters. Less

attenuation can be achieved by lowering a and # . Virag sets y, = 2 and Y2 = 0.5 which

results in a power spectral subtraction algorithm. The values of a and # are varied

according to the level of masking at the frequency of concern. This is done on a frame by

frame basis as follows:

am(f)= Fa na,amaxT(f)]

#3, (f)= FP ,#nmm '/3max ,T(f)]

where m is the frame number, a., a max I and max are the maximum and minimum

values of a and # respectively. T(f) is the level of the masking threshold. F, and F,

are functions that cause a and # to be minimized when the masking threshold is high

and vice-versa. This results in a low amount of suppression in cases where the masking

threshold is high. The advantage of this lies in the fact that when the masking threshold is

high, more noise is masked. Thus, less noise needs to be attenuated. If less attenuation is

performed, then less speech distortion would result because more of the speech signal is

left intact.
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2.3.7.2 Gustafsson's Algorithm

Gustafsson et. al. [3] , proposed an algorithm to keep the noise perceptually

equivalent to an attenuated version of the input noise. This algorithm ensures that any

distortions in the noise fall below the masking curve and are thus imperceptible. The

main drawback to this system is that it does not consider the effects of the algorithm on

the speech signal. While the noise is kept sounding natural, the speech is distorted. Since

the Gustafsson algorithm plays a major role in this system, a thorough description and

discussion of this method is given in Chapter 3.

2.3.7.3 Czyzewski's Algorithm

Czyzewski et. al. proposed a method of increasing the amount of masking present

in a speech frame in order to make the noise imperceptible [15]. This is done by

classifying the frequency components in each frame as useful and useless components.

The useless components are the noise components and the useful components are

considered to be the speech.

The masking threshold is raised by applying a gain of a to the useful components

of the input signal such that all the useless frequency components are masked. The value

of a is found by numerically solving a complicated implicit function. This function is

obtained by computing the masking threshold due to the useless frequency components,

T (f) and an expression for the masking threshold due to the useful frequency

components with gain a, T2 (f). The fact that the masking due to different frequency
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components is additive [4, 10, 14] is used to find an expression for the global masking

threshold as follows:

T(f ) Ta (f )+ T (f) (2.2)

a is found by solving

T(f)= maxDP}

where D P is the set of power values of the useless frequency components. Thus, this

value of a ensures that the power of all useless frequency components is less than or

equal to the masking threshold which results in the useless components being masked.

There are several drawbacks to this system. Firstly, the frequency components

have to be classified as useful or useless. Errors in this classification can cause either

speech components to be masked or noise components to be amplified. Furthermore, in

order to completely mask all audible noise in a frame, the value of a has to be very high.

Experiments that were conducted using a similar method of raising the masking threshold

showed that gains of around 60 dB are not uncommon. Such large gains can cause errors

in the classification of useful and useless components to be enhanced significantly. For

instance, a noise component that was mistakenly classified as useful will be amplified by

60 dB. Conversely, a speech component wrongly classified as useless will be 60 dB

lower than the speech components that were properly classified. Thus, distortions in the

speech and noise are a big problem when the classification of frequency components is

not done accurately . Furthermore, the computation of a has to be done numerically

leading to increased overhead as well as accuracy problems.
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Chapter 3: Theory of Hybrid Algorithm

3.1 Introduction

As is mentioned in Chapter 2, psychoacoustically motivated algorithms can be

divided into three basic approaches. They are, less attenuation of noise when noise is

already masked, the raising of the masking threshold to mask more noise and the masking

of distortions in the speech or noise. The algorithm that is used in this thesis is one that

masks distortions in the speech and in the noise. This approach was chosen because it

offers an explicit way in which to ensure natural sounding speech and noise. The last

section of this chapter compares this algorithm to the approach used by Virag, Czyzewski

and Gustafsson [2, 3, 15].

The goal of this algorithm is to enhance the speech in the input signal while

keeping the noise level the same, where the word enhance is used to mean amplify. It is

implemented via a frequency domain filtering system. Figure 3.1 gives a brief description

of such a system. The gain function used in this algorithm can be divided into two parts.

The first part is a gain function that is due to Gustafsson et. al. [1] which keeps the noise

distortions imperceptible without explicitly considering the distortions to the speech. The

second is a gain function based on Gustafsson's work that ensures speech distortions are

imperceptible without an explicit consideration of the noise characteristics. The gain

functions are then combined via a weighting factor. Section 3.2 details the derivation of

Gustafsson's gain function. The next section is devoted to deriving the new weighting

rule. This is followed by a section describing the combination of the two gain functions.
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Then, the derivation of a suitable weighting factor to perform the combination is

described. The last section in this chapter is an analysis of the performance of this gain

function and a comparison with existing psychoacoustically motivated algorithms.

H (f)

X(fm) IF Y(fM Short Time v(n)
Short Time Inverse

P- Fourier PFourier
Transform Transform

Figure 3.1: General Frequency Domain Filtering System
where m is the frame number of the windowed
input signal

3.2 Gustafsson's Gain Function, HG

The goal of the HG function is to suppress the noise in the input signal in a

manner such that the noise is undistorted. The distortion of the speech is not explicitly

considered. The following is the derivation of the HG function which is based on

Gustafsson's method for keeping noise distortions masked [3].

Let the input signal, x(n) = s(n) + b(n), where s(n) is the speech signal and

b(n) is the noise signal. Let the output signal be y(n). The desired signal, noise

suppressed version of x(n), is d(n) = s(n) + ab(n) where a is the noise suppression

factor. For notational simplicity, let the windowed frequency domain version of the signal

be denoted by the capitalized letter of the time signal. Also, for convenience, we shall
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drop the notation of the frame number as this variable is not used in the derivation of this

algorithm. With reference to Figure 3.1, assuming deterministic inputs, in the frequency

domain, we have:

X(f) S(f )+ B(f)

Y(f)= H(f )X (f )= H(f )S(f )+ H(f )B(f)

D(f)= S(f )+ aB(f ) (3.1)

The noise error in the frequency domain, defined as the difference between the

desired and the output noise signal is given as:

EB(f)= H(f )B(f) -aB(f)

EB(f)= [H(f)-a]B(f)

Similarly, the speech error is given as:

Es (f )=[H (f )-]S (f)

For stochastic signals, we take the power spectral densities of the signals (PSDs)

assuming uncorrelatedness of the speech and the noise. Thus, we have:

Px (f )=Ps (f )+ PB (f

Py (f )=H 2 (f )Ps (f + H2(f )PB(f (3.2)

PD (f = Ps (f )+ a2 PB (f (3.3)

PE S (f )= [H (f)-a2 PS (f )(3.4)

PE B (f ) = [H (f )- 1]2 pB (f ) (3.5)
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As is done in perceptually based audio coders [5, 6, 7], in order to keep the noise

error masked (hence, imperceptible) the PSD of the noise error has to be below the

masking curve. Thus,

PEIW TY

where Pr (f) is an estimate of the power value of the masking threshold of the output

signal where the power value refers to the square of the linear value of the masking

threshold.

from (3.4)

[H (f -a]2PB(f)< PT(f

which leads to

a- 'P <H(f)<a + .
PB (fB

We now have a range of values of H(f) for which the output noise will sound like the

desired noise. In order to attenuate the speech as little as possible, the largest value of

H(f) satisfying this range is chosen. This is because the less attenuation is performed

the more intact the speech signal will be. Thus,

H (f )=a+ Tf

PB f)

In frequencies that are low in SNR in a noise segment, P has a low value. This is

because the noise power in that frequency is high whereas the masking threshold is low.
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In frequencies with high speech content, the noise power will be low and the masking

threshold will be high due to the masking from the speech component. Thus will
jB

have a high value. Thus, the gain function behaves as expected. For frequencies that are

high in speech content, the gain is high. For frequencies with high noise content, the

resulting gain is low. In order to keep H(f) from possibly taking values greater than 1,

it has to be limited as follows:

H(f)= min a+ P ,(f1i

This algorithm performs well so far as the noise is concerned. As expected, the

noise in the output is perceptually equivalent to the noise in the input. However, the

speech gets distorted. This is not surprising considering that this algorithm does not

explicitly take the speech distortions into account. Gustafsson himself reports of speech

attenuation of around 7 dB for low values of SNR [3]. The experiments in this thesis have

confirmed this.

3.3 The Hs Algorithm

The goal of the Hs algorithm is to keep the speech in the output sounding the

same as an enhanced version of the original speech. This is accomplished by ensuring

that the speech distortions remain masked. The effects of this algorithm on the noise isn't
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explicitly considered. The following is the derivation of the Hs function which is based

on ideas from Gustafsson's work in [3].

Let the desired signal be a speech enhanced version of the input signal as follows:

D(f )= AS(f)+ B(f)

where A is the speech enhancement factor'.

Algebraic manipulation similar to that done in deriving the Gustafsson function leads to

the following expression for the PSD of the speech error:

PES (f )= [H (f)-A2 PS. (3.6)

To keep the speech error imperceptible, the PSD of the speech error has to be less than

the estimated masking threshold of the output.

Thus,

PEs (f)< Tf

substituting (3.6)

[H(f)-A]s < (f0

which leads to

A - <H(f)<A+
s) Ps(f)

Thus, we now have a range of values for which the gain function produces an

output that is perceptually equivalent to the desired signal. In order to enhance the noise

This desired output is needed because the use of the same desired output as in IG results in a gain
function with no parameter to vary the level of noise suppression or speech enhancement.
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as little as possible while satisfying this condition, the minimum value of H(f) in this

range is selected.

Thus,

H(f)=A- (

The term is small for the frequencies in which there is high speech

content. This is because Ps (f) will be large in these frequencies. Thus, in high speech

content frequencies, H(f )~ A. For frequencies with low speech content (low SNR) but

in a speech segment, ' ) will be large. This is because Ps (f) will be small for these
Ps (f )

frequencies and Pr (f) will be quite large because of the masking due to other

frequencies that do contain speech. Therefore, for frequencies with greater noise content,

H (f )will be small.

This function was tested and as expected was found to keep the speech

perceptually equivalent to the desired speech. However, the noise characteristics are not

guaranteed. It was observed that the level of noise that was present in the output speech

was not predictable and was often too high and unnatural sounding. This is due to the fact

that for frequencies that have high noise content but with a low masking threshold, both

Ps (f) and P (f) are low in value which results in H(f) having a value close to A - .

Thus, the noise in these frequencies doesn't get attenuated by much which is undesirable.
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Therefore, for frequencies that are more noise-like, this gain function performs

poorly. The following section describes a hybrid function that is used to overcome this

problem.

3.4 The Hybrid Algorithm

In the previous two sections, two gain functions were described. The first was

Gustafsson's algorithm that keeps the noise error imperceptible while applying the

minimal amount of attenuation to the speech. The second was a gain function based on

Gustafsson's work that keeps the speech error imperceptible while applying the minimal

amount of gain to the noise. Since the Gustafsson gain function performs poorly for

speech components and the Hs function performs poorly for noise components, a hybrid

of the two functions is used whereby HG is weighted more for more noiselike signals and

Hs is weighted more for more speech like signals. The following is the description of the

combined gain function.

Let the desired signal in be a speech enhanced version of the input signal as

follows:

D(f)= AX(f )+ B(f) (3.7)

To achieve this desired signal in a perceptual sense, the noise signal has to sound as if it

were not attenuated. In order to do this, a modification to the Gustafsson gain function is

necessary. This is because the HG function is derived using a noise suppressed version of

the input signal as the desired output as in section 3.2. In order to use a hybrid function,
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both HG and Hs have to give the same desired output. Otherwise, using a hybrid of both

the functions will be difficult because both the functions have a different desired result.

The following shows that the use of HG with a particular desired noise

suppression level will result in the same desired signal as that used in the Hs function.

Consider the following signal,

X'(f )= S'(f )+ B'(f )

= AX (f )

= AS(f )+ AB(f )

where S (f)= AS (f ) and B (f )= AB(f )

(3.7)

(3.8)

(3.9)

If we use the HG rule on X (f ) with the noise attenuation factor a = I , from
A

(3.7), the desired output would be

D'(f)= S'(f )+ aB'(f)

from (3.8) AS(f )+ B(f)

from (3.6) =D(f )

Therefore, if we have X (f), to obtain the desired signal equal to D(f) (the desired

signal for the Hs algorithm) we need the Gustafsson gain function to use an attenuation

I
factor, a = I. That is, by using this value of a in the Gustafsson algorithm the signal

A
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X'(f ) will have a desired output equivalent to that of the Hs algorithm with the input

X(f). The use of this attenuation factor results in the following gain function.

H'(f )min
A

PT (f)
1)

where PB. (f ) is the PSD of B (f) and P, (f ) is the estimated masking threshold due to

the output signal. The spectrum of the output signal is then given by:

Y(f)= H'(f)X'(f)

I+ P(f

A PBVf

j x(f ) , X'(f )

Substituting (3.7)

=min

=min{

1+ PTf

A PB(f

fl-A IFT(f)

AX(f)

J
,AX(f)}

A X(f)

from (3.9) B'(f) AB(f), which means that the PSDs of the two signals are related by:

PB(f) 2 PB (f).
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Thus, in order to obtain the desired signal in (3.6) via Gustafsson's algorithm with the

input X (f ), the gain function has to equal

H(f)min 1+ "Tf

PB (f
,A .

It should be noted that throughout the derivation of this gain function, the masking

threshold that is used in the computation is the estimate of the masking threshold due to

the final output signal.

Let HB(f) denote the gain computed from this method and Hs (f) denote the

gain function derived in section 3.3. HB (f) keeps the background noise perceptually

intact and Hs (f) keeps the speech perceptually equivalent to the desired enhanced

speech.

If we have a measure of how noiselike or speechlike a particular frequency

component is, we will be able to get a composite gain that is a combination of HB ()

and Hs (f). Denoting this measure as a (described in Section 3.5) which ranges from 0

for frequency components that are purely noise and 1 for frequency components that are

purely speech, we can compute a composite gain HSB (f) as follows:

HS,B (f )=a(f )Hs (f )+ [1 - a(f )]HB(f)

Thus, H SB (f ) is a composite gain function consisting of H3 (f) which is a modified

version of Gustaffson's rule (as derived earlier in this section) and Hs (f), which is the

function derived in Section 3.5. The contribution of these rules to the composite function

is dependent on how noiselike or speech like a particular frequency component is. For

frequency components in which the speech content is high, HSB (f) takes on a value
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close to Hs (f) which ensures that the hybrid function at that frequency component

keeps the speech perceptually intact. Conversely, for frequency components that are high

in noise content, HS,B (f) takes on a value close to HB (f) which results in intact noise.

Thus we are able to keep speech components sounding the same as the desired speech

and the noise components the same as the desired noise.

3.5 Speech Content Measure

The speech content measure a(f) has to reflect how speechlike or noiselike

frequency component f is. In a sense, all gain functions that perform frequency domain

filtering are indeed such measures. This is due to the fact that the purpose of these gain

functions is to attenuate frequency components that are noise-like and to let speech

components through unmolested. As a result, the gain for noise components is low and

the gain for speech components is close to 1. The speech content measure that was

selected to use in this system is based on the SNR weighting rule described in Chapter 2.

There are several reasons for this.

For simplicity, a measure based on the speech enhancement algorithms described

in Chapter 2 were considered. Spectral subtraction was discarded because the speech

PSD estimation uses the results of a simple spectral subtraction subsystem. See Chapter 4

for details. Thus, some musical noise artifacts are expected to be present in the output

through the Hs algorithm which uses the speech PSD estimate. For the frequency

components in which there is musical noise, the speech content measure should be low so

that the HG function (which keeps the noise consistent) contributes more to the hybrid
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gain function. Using a spectral subtraction based speech content measure will result in

false high values for a at the very frequencies for which Hs produces musical noise. This

will result in Hs contributing more to the hybrid gain. Thus, musical noise will be heard

in the output. Experiments that verified this were conducted.

A Wiener filtering based approach was not selected because it does not give an

explicit way to control the manner in which the transition of a from one to zero occurs.

Equation (2.2) does not contain a variable that can control this transition. Therefore, the

Wiener filter based speech content measure will not be able to explicitly control the

manner in which the contributions of Hs and HB to the hybrid gain function vary.

The SNR based measure provides this via a slope factor.

The speech content measure used for this system is a limited linear function of the

log of the SNR as in (2.3). The following are the equations that are used to compute it.

where G(k)= max[p(k - k,)+(,(]

( is the minimum value of log a, k0 is the value of the SNR when this first occurs. y is

the parameter that controls how the value of a varies as it moves from its minimum

value to 1.
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This results in the following curve for the log a(f) versus the log of the SNR for

a particular frequency. It shows how a changes with SNR on a log scale.

log a
k) log SNR

0>

Figure 3.2: Graph of Speech Content Measure vs SNR

Figure 3.2 can be interpreted as a graph of what the fractional contribution of Hs and HG

are to the composite function. When a(f) is greater, Hs contributes more and vice-versa.

The maximum fraction of the hybrid function that is from HB is 10 and the maximum

fractional contribution from Hs is 1 (i.e. when loga = 0). The parameter Y controls how

rapidly the transition between HB and Hs is when the SNR increases.

The parameters , y and ko were all obtained experimentally. The first set of

parameters were taken from the gain function used in the TIA speech enhancement

system [1]. These parameters were then experimentally improved on. This was done by

changing the values of the parameters and listening to the output signal and examining

the SNR values during the processing. If the noise distortion was great, the value of

was lowered. The values of the other parameters were changed accordingly. The final set

of parameters that were chosen are p = 0.8, 4 = -34 dB and ko = 2.25.
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The following graph illustrates how the contribution of the Hs and HG algorithms

on the hybrid gain changes with SNR for a given frequency f . The vertical lines marked

Hs and HG denote the points at which the hybrid gain function completely comprises

Hs(f) and HG(f) respectively.

Hs

H g,

0 10 20 30 40

SNR (dB)

Figure 3.3: Contribution of Hs and HG to hybrid function vs SNR

3.6 Discussion of Hybrid Function

3.6.1 Comparison with TIA Noise Suppressor

The Hybrid gain function can be written as follows:

HS,B(f a(f)xmaX A - PTf +il

MSR

mn 1I+ Tf

MBN

,A
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It is thus a function of 3 variables, namely the SNR (used to determine a(f)), a

masking to speech ratio (MSR) and a masking to noise ratio (MINR). The desired

characteristic of this function is that it have a high value for high SNR (high speech/low

noise), low MSR (high speech) and high MNR (low noise) and vice versa. This can be

verified by inspecting the above expression. The traditional method of SNR vs gain

suppression curves will not illustrate the operation of this gain function due to the fact

that Hs,G is strongly dependent on the MSR and MINR, quantities which are meaningless

in algorithms that do not use the masking property. Furthermore, the three quantities are

not independent. Thus, in order to illustrate the operation of this gain function, a

suppression curve using real data is used. The value of the gain for different SNR's is

averaged to obtain a value for the gain given a particular SNR. Figure 3.4 illustrates the

output gain as a function of SNR for both the TIA noise suppresion algorithm and the

hybrid function. The SNR varies from -12 dB to 19 dB.

20-
U

U

15 -

+ +*** m Hybrid
~ 10- TLA

5 ++ **0 -

-20 -10 0 10 20

SNR (dB)

Figure 3.4: Gain Curve for TIA Noise Suppressor and Hybrid Function
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From the graph, we can see that the hybrid function does what is required of a

noise suppression algorithm in that it has a low value for the gain in low SNR cases and a

high value of the gain for high SNR cases. However, the range of values over which the

hybrid function varies is smaller than the range of values over which the TIA gain

function varies. From the psychoacoustic model, we know that signals of lower strengths

are perceptually equivalent to larger signals provided the difference in levels is masked.

Thus, in order to make a signal component sound like it is enhanced by some factor A,

would require some gain that is equal to (when there is no masking present) or less than

A. This explains the smaller range of values that the gain function takes. If the gain

function varies over a smaller range of values, the difference in the gain applied to the

lower SNR components versus the higher SNR components is smaller. Thus, the less

distortion in the output signal can be expected. The results obtained and discussed in

Chapter 5 clearly indicate this.

3.6.2 Comparison with Psychoacoustic Noise Suppressors

This method can be expected to perform at least as good as Gustafsson's

algorithm [3]. This is due to the fact that the hybrid gain function includes Gustafsson's

algorithm which works best for high noise content portions of the speech segment. In

high speech content frequencies, the second gain function which is more suitable for high

speech content frequencies contributes more to the hybrid function. Thus, if the speech

content measure a is chosen well, this algorithm will perform at least as good as

Gustafsson's algorithm.
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The Virag algorithm does not take into account the distortions in the speech and

noise as explicitly as is done in the algorithm in this thesis. As is described in Chapter 2,

this algorithm changes the suppression parameters based on the level of masking present.

Where there are high levels of masking, the amount of suppression is low. This is done in

a heuristic manner compared with that done in the algorithm in this thesis which

explicitly ensures that distortions are masked.

Czyzewski's algorithm involves the raising of the masking threshold by

amplifying the speech in order to mask noise as is described in Chapter 2. Czyzewskitries

to ensure that the noise is inaudible which is a stricter requirement than merely reducing

the level of the noise as is done in the system in this thesis. Experiments conducted in this

research have shown that in order to completely mask noise components, gains in excess

of 50 dB have to be applied to some of the speech portions of the spectrum. Such high

gains will cause a lot of distortion in the speech. In any case, Czyzewski's algorithm has

the goal of masking the noise completely which as expected will require extremely high

levels of attenuation.
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Chapter 4: Implementation

4.1 Introduction

The system in this thesis was implemented in a modular form in a floating point

simulation. The following is a block diagram of the system in this thesis.

Noise
--- > Est

Output Masking L-o anFnto
Speech & Threshold Gai unction
PSD Est.

Speech
CouaContent

Est.

Frequency

aOPr Domain
Filtering

Figure 4.1: Block Diagram of System

The following sections describe the implementation of each of the blocks in

detail. Appendix A lists the full code for the implementation.
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4.2 Analysis - Synthesis

4.2.1 Overview

The analysis-synthesis subsystem performs the conversion from the time to the

frequency domain and vice versa. Due to the short-time stationarity of speech signals

[24], the input needs to processed on a frame by frame basis using some amount of

overlap. Thus, the conversion to the frequency domain is performed on windowed-

overlapped segments of the input data. Due to this, the analysis subsystem can be divided

into a windowing system followed by a Discrete Fourier Transform (DFT) computation.

Likewise, the synthesis subsystem can be divided up into an Inverse DFT (IDFT)

computation followed by overlap addition to obtain the correct output samples.

Windowing joDFT Fremainy

Processing

Y(k m) yw,(n) Overlap y(n)
j IDFT Add

Figure 4.2: Analysis- Synthesis Subsystem
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4.2.2 Windowing

The requirements of the windowing system are as follows:

" The window length should provide sufficient frequency resolution. The longer
the window in timer, the narrower it is in frequency. The window length has
to be long enough so that the input spectrum will not be smeared across many
spectral lines.

" The window shape should have side lobes that are sufficiently lower than the
main lobe to ensure minimal leakage of sidelobe structure into adjacent
frequencies.

" The length of the window should not be too long such that noticeable pre-echo
occurs. This and the next requirement are time resolution issues which are in
contention with frequency resolution

" The overlap and window length should be such that non-stationary events are
handled properly. This is to ensure that sudden changes in the input signal,
e.g. the beginning of words do not get processed poorly due to the fact that
most of the samples in the window capture the silence between words.

" Framing delay should be kept minimal. This is to enable real-time operation
of the system.

The window used in this system is a standard Hamming window of length 320

with 75% overlap and an 80 sample frame size. This corresponds to a 40 ms window with

a 10 ms frame size. The 75% overlap provides for nearly perfect signal reconstruction

[24] using overlap add techniques. Figure 4.3 shows how this overlap provides nearly

perfect signal reconstruction.
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Figure 4.3: Illustration of 75% Overlap-Add Hamming Window
With the 80 sample frame used in this system, sample nos. 240 to
319 which are in the approximately flat region above, are used in
the output. The windowing error in using this method is less than
0.1%. That is, the "flat" region that is zoomed in above is flat to up
to 0.1%.

The sampling rate used in this system is 8 kHz. Thus the frame size is 10 ms and

the window is 40 ms wide. This window offers good frequency resolution as shown by

Figure 4.4 which shows that this window gives about 50 Hz of resolution with sidelobes

43 dB below the main lobe. Such high resolution is sufficient for the masking threshold

estimation because the smallest critical band is approximately 100 Hz. The fine structure
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of the spectrum needs to be preserved in order for the masking threshold computation to

be accurate for the low frequency components where the critical bandwidths are small.

6.OOE+01

S4. 00 E+0 1

1%2.OOE+01

O.OOE+00 -

C>-2.OOE+01 V

-4.OOE+01

-6.OOE+01
0 39.0625 78.125 117.1875

Frequency (Hz)

Figure 4.4: Fourier Transform of Window, Zoomed on Positive Mainlobe

The 320 point window translates to a 320/8000 = 40 ms window. Pre-echo and

poor handling of non-stationary events were examined to determine if this window can be

used. It was found to be satisfactory in that the amount of reverberation noticed was

small. Some pre-echo was noticed but the time resolution cannot be improved because of

the requirements on frequency resolution.
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4.2.3 Discrete Fourier Transform (DFT)

The time to frequency domain conversion of the signal is performed using a 512

point real to complex Fast Fourier Transform (FFT) as per [1]. The equation for this is

given by the following:

2 511
X (k,m)= 2 lx,(n)e- j ""k "51

512 1=

8000
where X (k, m) is the DFT sample of the frequency component at k x Hz in

512
windowed input frame m . x,, (n) is the value of the n-th windowed input sample in frame

m.

This equation causes the negative frequency components to be folded onto the

positive components resulting in 256 complex points spanning from 0 Hz to 3,9999 Hz.

The frequency resolution of this system is 8000/512 = 15.625 Hz per spectral line.

The conversion back to the time domain is performed using the following

equation which performs a complex to real inverse FFT (IFFT).

1 511 j2n 1
y, (n) = Y(k, m)en/s12 0 n < 512

where y, (n) is the nth output sample, Y(k, n) is the kth DFT sample frequency in time

frame m.
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4.3 Noise PSD Estimation

4.3.1 Overview

The noise PSD estimation is performed by smoothing the power spectrum of the

input signal in periods between speech. The speech/non-speech frame discrimination is

performed using the VAD from [1]. This VAD uses an instantaneous SNR estimate and a

long term spectral deviation measures to determine whether an input frame contains

speech.

4.3.2 Voice Activity Detector

The voice activity detector used in this system is borrowed from [1]. The system

uses a quantity called the voice metric sum which is a measure of the SNR in each frame.

An instantaneous SNR estimate is obtained on a critical band basis using the bands in

Table 2.1. The SNR is estimated as the square root of the ratio of the input signal power

to the estimated noise PSD.

The SNR estimate for each channel is then quantized into integer values

and limited between 0 and 89. The quantized SNR is then used as an index into a voice

metric table shown in Table 4.1 in Appendix B which indicates how voicelike a particular

channel is based on the quantized SNR value. As shown in the table, the voice metric is

greater for greater SNR. Also, for low SNR values, the voice metric is at is minimal value
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of 2. Thus the voice metric is a measure of the SNR for which low SNR values all map to

the same voice metric.

The voice metric for each critical band is added to obtain the voice metric sum,

which is used in determining whether a frame was speech or noise. The principle behind

this is that frames with high total SNR, are most likely speech frames.

The long term spectral deviation is another parameter used in determining

whether or not a frame is voice or noise. This is done by taking the difference between

the input signal energy and a long term average energy in each critical band. The

following equation describes the computation of the long term spectral deviation:

spectral deviation in frame m, A(m)= IV [SNRJ 7(i, M)
0

where V is the voice metric vector in Table 4.1, SNR, (i, m) is the quantized SNR for

critical band i in frame m. Note that there are 16 critical bands in Table 2.1. The principle

behind the use of the long term spectral deviation is that noise frames will have an input

spectrum that is similar to the long term average spectrum. Speech frames are more likely

to have a spectrum that is significantly different from the long term average spectrum.

The algorithm for the VAD incorporates the VM_SUM as well as the long term

spectral deviation parameters as is given in pseudo-code in Appendix C. The explanation

for each block is in C style comments. The update flag is set when the noise should be

updated.
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4.3.3 Noise Power Spectrum Estimation

The noise power is estimated in a over each critical band as per Table 2.1 to

estimate the noise power spectrum. The noise power is smoothed when the VAD

indicates a noise frame using the following IIR filter:

E (m + 1,i)= max{Ein ,0.9E, (m, i) + 0.1Ech (M 1, Gj

where En (M, i) is the noise energy for the m-th frame in critical band i, Em is the

minimum allowed channel energy and E(.h (m,i) is the energy in critical band i in the m-th

frame. The critical band energy is found by averaging the energy of all the spectral lines

in that particular band.

4.4 Estimation of Speech Signal and Speech Power Spectrum

4.4.1 Output Speech Estimate

An estimate of the output speech signal as well as an estimate of the speech PSD

are needed in this algorithm. The output signal estimate is needed to estimate the masking

threshold due to the output signal as is done in [2, 3]. The speech PSD estimate is used

directly in the computation of the gain function. The first part of this section details the

computation of the output speech estimate and the second part details the computation of

the speech PSD estimate.
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The clean speech signal is estimated using a modified version of simple

magnitude spectral subtraction using equation (2.1). This is a similar estimate to the one

that was used by Gustafsson and Virag to compute the masking threshold [2, 3] of the

output signal. This was chosen because spectral subtraction has the characteristic that the

speech signal is preserved well. The noise, however, is distorted and is musical in nature.

The tonal components which cause the musical noise are of relatively low magnitude

compared with the speech components. Thus, their contribution to the masking curve is

not significant in comparison with the contribution of the speech components. Therefore,

the effect of the tonal components are not audible in the output.

The method used is a modified version of spectral subtraction which preserves

noise characteristics between words and sentences. During speech frames, the standard

spectral subtraction algorithm is used. In noise frames, a uniform attenuation is applied to

all frequencies. Thus, no musical noise occurs in noise frames.

The voice metric sum computed by the VAD is used to detect pauses between

words. This is done by comparing the voice metric sum (see section 4.3.2) against a

fixed threshold, (T. During these pauses, the gain for all frequencies are uniformly

floored to the value of the desired attenuation. Thus, the output speech estimate is done as

follows.

I(f) = X(f) +a B(f) when X(f) > a k(f) and > (r

§(f) =0 when X(f) <a k(f) and > T

K(f) =a X(f) otherwise.
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The phase of the noisy speech is used as the phase of the speech estimate for all frames as

follows

Z(f = ZX(f)

where 5(f) is the estimate of the output speech.

The value for T was computed experimentally to be 35. This was determined by

plotting the values of the voice metric sum on top of the input speech signal and finding

(by inspection) the largest value of the voice metric sum that occurs during noise. This

was done for several different input files and the lowest value of the threshold from those

tests was taken as the final value.

4.4.2 Speech PSD Estimate

The speech PSD estimate is done using an average of the power of the speech

estimate. This is approach is reasonable. Although the speech estimate from the spectral

subtraction contains musical noise, the algorithm that is used is robust to noise in the

speech PSD estimate. This is due to the fact that musical noise occurs in the low SNR

frequencies for which the Gustafsson algorithm is weighted strongly in the hybrid

function (see Chapter 3). The Gustafsson algorithm does not use the speech PSD estimate

and is derived based on keeping the noise sounding natural. Therefore, it is possible to

use an estimate of the PSD based on spectral subtraction and still obtain good results. The

PSD is estimate on a frame by frame basis when the VAD detects speech instead of noise

as follows:

Ps (n, f (aPSD ~ 1)PS (nz1,f)±apsD, 2(M_1,f).
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4.5 Estimation of the Masking Threshold

4.5.1 Basic Computation

Several different methods have been proposed for the estimation of the masking

threshold [6, 5, 7, 12, 14, 22]. The method used in this project is based on Terhardt and

Sen's methods of computing the masking threshold combined with ideas from the MPEG

standard and Johnston. This method is used because it provides a straightforward

measure of how much masking is present at each frequency point.

In Terhardt [12] and Sen's [5] methods, the masking threshold has a slope

dependent on the masker level for frequencies higher than the maskers and a fixed slope

(fixed over the bark scale) for frequencies below the masker [5, 12, 14]. Johnston uses a

fixed slope for both sides of the maskee [6, 24]. Therhardt proposed the following

equations to compute the masking of a frequency component u (maskee) by frequency

component v (masker) as described in Chapter 2 [12, 5].

230
slope, s, = -24 - -+ 0.2L, dB / Bark for u > v

fl,

s = -27 dB/ Bark otherwise

where fv is the frequency of the vth frequency component and Lv is the sound pressure

level of the vth frequency component.

The level of the masking at frequency u due to the signal component at frequency v is

given by the following linear (in dB) relationship:

Th(fu, f, )=- LV - sV (zV - ZU)
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where zv and z1I are the quantized bark values from Table 2.1 of the u-th and v-th

frequency components respectively.

The overall masking at frequency component u due to all the other frequency

components is given by the sum of the masking due to the indivudual frequency

components [5, 10, 12]. The overall masking threshold is then given by:

Th(f 1 )=10log 10 20

4.5.2 Asymmetry of Tonal and Noise Masking

The masking of tones by noise and noise by tones was found by Hellman to be

different [23]. Figure 4.4 (a) and Figure 4.5 (b) illustrates noise masking tones and tones

masking noise. The ability of noise signals to mask tonal components was found to be

much greater than the ability of tonal signals to mask noiselike signals [23]. Johnston

proposed that the masking threshold for the masking of tones by noise and vice versa be

offset by the following values to account for the difference in the ability of tones and

noise as maskers. For tones masking noise, a fixed offset is used.

0[i]= 5.5 (4.1)

For noise masking tones:

O[i] (14 - i) dB (4.2)

where O[i] is the offset in dB that has to be applied to the masking threshold at Bark

band i.

61



Figure 4.5 (a): Narrow-band noise masking tone

Figure 4.5 (b): Tone masking noise

The system distinguishes between these two kinds of masking by performing a

spectral flatness measure (SFM) as done by Johnston [6, 24]. The spectral flatness

measure, as its name implies is a measure of how flat the spectrum of a particular frame

is. It is obtained by taking the ratio of the geometric mean2 to the arithmetic mean. Figure

4.6 (a) and Figure 4.6 (b) illustrate how this ratio is able to distinguish between tonal

components and more noise-like, spectrally flat components. The signals in both

2 To avoid zero samples from causing the geometric mean to be zero, zero samples have to be checked
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diagrams have the same arithmetic mean of 1. However, the geometric mean of the signal

in Figure 4.6 (a) is 1 whereas the signal in Figure 4.6 (b) has a geometric mean of 0.866.

2-

1.5-

1 -

0.5-

0 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 4.6 (a): Illustration of Arithmetic Mean vs Gometric Mean
Arithmetic mean = 1, geometric mean = 1

2-

1.5-

1 -

0.5-

0 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 4.6 (b): Illustration of Arithmetic Mean vs Gometric Mean
Arithmetic mean = 1, geometric mean = 0.866

Thus, for a particular frame, we are able to distinguish how noiselike or tonelike

the spectral components are due to the fact that noise spectrums are flat and tonal
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spectrums have peaks. This gives us a very good indication of the tonelike or noiselike

nature of the maskers.

Johnston in [6] and [22], assumes that the nature of the maskee is opposite of that

of the maskers. This is reflected by the fact that he offsets his computation of the masking

threshold by a linear combination of (4.1) and (4.2) with each part's contribution

controlled by the SFM. The following equations describe the computation of the offset as

per Johnston:

. SFM
caSFM mn

SFM ax -60 dB

The offset is then given by

O~i]=aSFM (4+i)(I-SFM ) 5.5 dB

Thus, Johnston doesn't take into account the nature of the maskee; he only considers the

whole speech frame, i.e. the maskers. If the whole spectrum was completely noiselike,

the offset would be 5.5 dB regardless of whether the maskee was tonelike.

In this system however, the nature of the maskee is also accounted for by using a

chaos measure to compute a tonality index as presented by Schroeder [10]. It is a measure

of predictability in the magnitude of the frequency component from frame to frame. The

chaos measure uses the fact that a more tonal component is more predictable than a more

noiselike component which is expected to be randomly changing. A linear prediction of

what the current magnitude and phase of each spectral line is made based on 2 previous

values of the magnitude and phase. The error between this predicted value and the known
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value is computed. For completely tonelike signals, the prediction would be accurate. For

noiselike signals, the prediction will be poor. The algorithm to compute the tonal measure

due to Schroeder is as follows:

r(t, f ) = magnitude of spectral line of frequency f at time t.

1D(t, f) = phase of spectral line of frequency f at time t.

T(t, f ) = predicted magnitude of spectral line of frequency f at time t.

1(t, f) = predicted phase of spectral line of frequency f at time t.

The predicted values of phase and magnitude are computed as the sum of the

previous value and the difference between the previous value and the one before that as

follows:

T(t, f )= (t - 1, f )+ (T(t - 1, f )- (t - 2, f )

5(,f )=5 -,f )+ O(t - 1, f )-->(t - 2, f )

The chaos measure c(t, f)is then computed by finding the error between the

predicted values of the magnitude and phase versus the known values. This error is

normalized by the magnitudes of the predicted and actual magnitude as follows.

c(t,f) = DE V(tf) , cF(tlf] , [rQf) , d1(t'f)] I
r(t, f )+ (t, f )

where DE is defined as the Euclidian distance between the two points given as

DE {(x,y),(a, b)}= (x - a)2 + (y -b) 2
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The computation of the offset is then done with a combination of the SFM as well

as the tonality index in bark band i, T[i]as follows:

offset, O[i]= T[i]-cy -1 x [a(14.5+i)+(1-a)5.5] dB

where a denotes the spectral flatness measure. This ensures that the value of the offset is

also based upon the tonality of the maskee. If the maskee and the maskers are both

completely noiselike, then T[i]= 0 (denoting completely non-tonal) and a =1 resulting

in zero offset. For completely tonal maskers and maskees, T[i]= 1 and a - 0 , also

resulting in zero offset. For noise masking tones and tones masking noise,

T[i]- a -1 = 1 and a will distinguish if it is a tone masking noise case or vice-versa.

4.6 Gain Function Computation and Frequency Domain Filtering

The gain function is computed based on the results in Chapter 3. This is done

using the noise PSD estimate as described in section 4.3, the speech PSD estimate as in

section 4.4, the masking threshold estimate as in the last section and a speech content

measure based on the SNR. Section 3.5 describes an SNR based speech content measure.

The SNR is estimated using the following equation:

SNR(f)= Es(f)

where N(f) is the noise estimate and Es (f) is the input signal energy.
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Chapter 5: Results

5.1 Informal Tests and Author Evaluation

Informal testing of the algorithm on several different input files shows an

improvement over the TIA's Enhanced Variable Rate Codec (EVRC) noise suppression

algorithm [1] as well as the Gustafsson algorithm. The tests were conducted on 8 input

files. 6 of the files were generated by adding car noise to clean speech samples. The

SNR's were divided into low, medium and high. 15 dB of SNR was used for the high

SNR data, 8 dB of SNR for the medium SNR and 4 dB for the low SNR. The two

additional files are from actual recordings of speech in road noise. The target noise

suppression is 20 dB. The evaluation was done by the author and another expert listener.

The following is based on the comments from the listeners.

The output from the hybrid algorithm contains no audible musical noise. The

speech was of high quality except in very low SNR segments (below 3 dB), where there

is some noticable attenuation of the speech. This is due to the fact that the Gustafsson

part of the hybrid function gets weighted highly in the low SNR regions. Since the

Gustafsson algorithm attenuates the speech significantly for low SNR's [3], the hybrid

function does the same as well. The EVRC algorithm attenuates low SNR speech

portions (below 3 dB) by more than 19 dB resulting in choppy speech and the loss of

begginings and ends of words. As for the Gustafsson algorithm, speech attenuation was

noticable even in high SNR speech. The EVRC algorithm also has a "choruslike" effect

on some low SNR speech. This effect is due to noise being let through in bands that
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contain speech for which the speech does not completely mask the noise. As a result the

noise that is let through is correlated with the frequency components of the speech and

sounds "choruslike". This effect is not present in the hybrid function or the Gustafsson

algorithm.

The system in this thesis causes some reverbaration in the speech. This is due to

the large time window used in this system. The requirements on frequency resolution for

the masking threshold estimation and the low sampling rate of 8 kHz used for telephony,

force the use of such a large window. The EVRC noise suppressor uses a window of

13.5 ms compared to the 40 ms used in the system in this thesis. Therefore the EVRC

algorithm performs better in terms of reverbration. The Gustafsson algorithm has the

same reverbration effect since the implementation of the Gustafsson algorithm in this

research project uses the same windowing scheme.

5.2 Quantitative Performance Measures

5.2.1 Objective Measures

In Chapter 3, the notions of Masking-to-Noise-Ratio (MNR) and Masking-to-

Speech-Ratio (MSR) as measures of performance for algorithms using the masking

model were introduced. The resultant gain from the hybrid algorithm as well as the

Gustafsson algorithm are plotted versus the MINR in Figure 5.1, versus the MSR in

Figure 5.2 and versus the SNR in Figure 5.3. All data were obtained by several runs of

the algorithms on various inputs with a target noise suppression of 20 dB. It is important
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to note that a 20 dB speech enhancement (i.e. amplification of speech) and a 20 dB noise

suppression are equivalent up to a normalizing factor.

-20 -10 0 10 20 30

0

-5

-10
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-20

MNR (dB)

+ Gustafsson o Hybrid

Figure 5.1: Gain versus MNR for Gustafsson and Hybrid Algorithms

The data in Figure 5.1 show that both the algorithms behave as expected for

different MNR's. It is expected that for high MNRs, the noise level is low and the signal

level is high (which causes a high degree of masking). Thus, the gain is expected to be

close to 0 dB. Conversely, when the MNR is low, there is low masking and/or high noise.

High noise will have to be attenuated more and low masking (low signal power) will also

require higher attenuation. Thus, low MNR requires higher attenuation.

The Gustafsson algorithm gives the minimum amount of attenuation needed to

make the noise perceptually equivalent to the desired noise level. From the graph above,

the hybrid function attenuates the signal less than the required amount of attenuation as
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given by the Gustafsson gain function for most values of the SNR. The maximum

difference between the required attenuation and the actual attenuation provided by the

hybrid algorithm is about 4 dB. This means that the use of the hybrid function will result

in the noise sounding up to approximately 4 dB louder than desired. However, this has

not been noticable in the test data. This is most probably caused by underestimation of

the masking threshold which results in more noise being masked. The fact that more

noise is let through by the hybrid function represents a tradeoff between keeping the

noise perceptually equivalent to the desired noise and the speech perceptually equivalent

to the desired speech.

-20 -10 0 10 20 30
0 -

MSR (dB)

+ Gustafsson o Hybrid

Figure 5.2 Gain versus MSR for Gustafsson and Hybrid Functions

From figure 5.2 the hybrid function behaves as desired. For high MSR regions,

the speech power is much lower than the masking. This means that the speech power at

that point is much lower than the speech power in adjacent points (which contribute to

the masking threshold). As a result the SNR in those points is low and would require

70

S-5

16 -10

-15

Lrw

EEb



higher attenuation. Conversely, when the MSR is low, the masking thershold is much

lower than the speech power and naturally, the gain function should let the signal

component pass with little or no attenuation. The Gustafsson function does not exhibit

this behavior. This is because the Gustafsson algorithm does not take the MSR into

account. The hybridization with the Hs function is what allows this behavior with the

tradeoff described in the previous paragraph and illustrated in Figure 5.1. In the worst

case, the Gustafsson algorithm differs from the hybrid function by 14 dB compared to 5

dB in the previous case.
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Figure 5.3: Gain versus SNR for Gustafsson and Hybrid Algorithms

As expected, both the Gustafsson function and the hybrid function have higher

attenuation levels for lower SNRs and vice versa which is the expected behaviour of any

noise suppression system. Both the functions have similar characteristics in this plot. The

range of attenuations that are spanned by both the algorithms is approximately 13 dB.

Thus, the amount of distortion can be expected to be significantly lower than other

algorithms that span the entire range between -20 dB and 0 dB [1, 8]. The
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psychoacoustic model allows this because the amount of attenuation necessary to

perceptually achieve a desired level of noise is less than the amount of attenuation

required to achieve it mathematically. Also, for the enhancement of speech, a smaller

gain is needed to make the speech sound perceptually intact. Figure 5.3 also shows a

shortcoming of the Gustafsson gain function. For high levels of noise suppression like the

20 dB that is used to generate the data in Figures 5. 3, the Gustafsson algorithm

attenuates speech components significantly. In Figure 5.3, the maximal gain that is

applied by the Gustafsson rule is approximately -7 dB. Thus, the speech signal is always

attenuated. As for the hybrid rule, the maximum gain that is applied is around -7 dB as

well. However, the hybrid function takes into account the maximum amount of

attenuation that can be applied while keeping the speech perceptually intact. This is done

via the Hs function in the hybrid rule. Thus, the gain from the hybrid rule will result in

the output perceptually equivalent to the desired signal.

5.2.2 Perceptual Binary Forced Choice Test

A binary forced choice test was performed for the data from the hybrid function

and the EVRC Noise Suppressor with non-expert listeners. The same test was not

conducted against the Gustafsson algorithm due to the fact that the data processed with

the Gustafsson algorithm resulted in the speech being significantly lower in power than

the speech signals in both the EVRC noise suppressor and the hyrid system introduced in

this thesis. As a result the overall SNR in the output data was approximately 6 dB lower

than that from the EVRC and the hybrid function. It was thus decided that a fair

comparison could not be done. This is due to the fact that the Gustafsson algorithm has
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the goal of keeping the noise consistent without explicitly considering the speech. The

following describes the procedure of the binary forced choice test. Eight noisy speech

segments were used. They were generated by adding car noise to clean speech signals.

The test data comprised the following.

0 2 Female speaker segments with high SNR (12 dB)

0 2 Male speaker segments with high SNR (12 dB)

0 2 Female speaker segments with low SNR (4 dB)

0 2 Male speakers segments with low SNR (4 dB)

Each segment contained two sentences approximately 6 seconds in length. They were

processed using both the EVRC and the system in this thesis with a noise attenuation

factor of 20 dB.

10 subjects were asked to listen to an input segment. Then, they were asked to

listen to the input segment processed by the two systems being tested. The order in which

the outputs from the two systems were presented was random. The subjects were asked to

choose which of the two output segments was preferable. The criteria for the decision is

that the speech has to sound as close as possible to the speech in the input data and the

noise has to sound like an attenuated version of the noise in the input data. When the

subjects did not have a preference, they were asked to pick one randomly.
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The following table lists the results obtained from the binary forced choice test.

Female Male

High SNR Low SNR High SNR Low SNR
(12dB) (4dB) (12dB) (4dB)

EVRC 3 2 3 1

Hybrid 17 18 17 19

Table 5.1: Results of Binary Forced Choice Test

As is evident from the results, the algorithm introduced in this thesis is prefered over that

of the EVRC noise suppressor, especially for the low SNR data. In 88.75 % of the cases,

the hybrid function was prefered. Discussions with the subjects after the tests were

conducted revealed that for the low SNR cases, the speech in the data processed by the

hybrid system was strongly preferred especially in the edges of sentences. This is due to

the Hs function's contribution to the hybrid function which ensures that the speech error

is masked. They also reported that the noise in the data processed by the hybrid function

sounded closer in terms of frequency response to the original. The EVRC noise

suppressor was found to have a highpass response to the noise. Three of the subjects had

did not have a preference for one of the high SNR files with the male speaker and were

asked to chose randomly. For the low SNR cases, there was no such problem.
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5.2.3 Performance with Vocoders

The EVRC noise suppressor, the Gustafsson algorithm and the hybrid

system were all tested with the TIA standard EVRC vocoder [1]. The output of the noise

suppressors was coded and decoded by the vocoder and the performance was subjectively

evaluated.

The data comprised speech segments from male and female speakers

corrupted by car noise. Two levels of SNR, 15 dB and 4 dB were used. 6 input files were

tested: One with just a female voice, one with a male voice, and one with both male and

female voices one after the other. These files were tested with both SNR levels. The

segments were approximately 30 seconds in length. For each data file the following was

presented to the listener:

" The input file was.

" The file processed by the the EVRC noise suppressor.

" The file processed by the noise suppressor and the vocoder was played

" The last two steps were repeated for the Gustafsson algorithm and the hybrid
system.

The tests were conducted with 5 expert listeners who gave their preferred system and

comments on why they preferred that system. The results described here are the opinion

of the listeners of the data processed by the vocoders (after the noise suppressors).
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All 5 of the listeners preferred the hybrid system to the other two. All of

them mentioned that the speech quality using the hybrid system was preferable and that

the low SNR portions of the speech were less attenuated than that of the other two

systems. The frequency response of the hybrid system was also preferred by two of the

listeners. They noted that the results of the hybrid system did not sound as "tinny" as the

EVRC noise suppressor or as "muffled" as that of the Gustafsson algorithm.

However, all of the listners were of the opinion that the voice coder caused more

distortion in the noise of both the Gustafsson algorithm and the hybrid function compared

to the EVRC noise suppressor. This can be attributed to the fact that the Gustafsson and

hybrid algorithms both keep the distortions in speech and noise just below the masking

threshold, i.e. the distortions are just masked. Since the voice coder codes noise poorly,

the coding error in the noise is high. When added to the noise suppression error which is

just below the masking threshold, the combined error ends up being higher than the

masking threshold and thus, is no longer masked. The listeners also noted that both the

Gustafsson algorithm and the hybrid function had some reverberation in the speech.

The results of this test show that the use of the hybrid function is feasible in terms

of audio quality (as opposed to computation load) as a front-end to voice coders. In order

to improve the tandem performance further, a combined voice coder-noise suppressor

could be designed as is described in Chapter 6.
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5.3 Processing Overhead

5.3.1 Windowing Delay

The windowing delay for this algorithm is high. This is due to the required

frequency resolution for the masking threshold estimation and the low sampling rate of 8

kHz that is used for telephony. With a 75% overlap and 320 sample window, the output

samples are delayed by 240 samples which corresponds to a delay of 30 ms. Figure 4.3

shows that the output sampes are the samples numbered 240 to 319. Since the 80 newest

samples are introduced at sample number 480 to 559, the output is delayed by 240

samples. In order to make this system suitable for real time operation, this windowing

delay has to be reduced. A higher sampling frequency will reduce the delay. Cleverer

windowing schemes could also possibly be used. A masking threshold estimation method

that requires less frequency resolution would also decrease the required window length

and reduce framing delay.

5.3.2 Computational Overhead

The most computation intensive part of this algorithm is the estimation of the

masking threshold. Computing the masking threshold for 512 frequency points requires a

nested loop of 512 operations in both levels. Equation 4.1 requires a divide operation as

well as a power operation. Also, 2 add operations and one multiply operation are required

per loop cycle. Thus, this algorithm requires a powerful processor in order to run near

real time.
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Chapter 6: Discussion

6.1 Conclusion

The hybrid function introduced in this thesis was found to perform well both in

terms of speech quality as well as noise quality with no audible musical noise. In the

informal tests, it was noted that the speech quality for the hybrid function is better than

that of the Gustafsson algorithm due to distrortion caused in the speech by the Gustafsson

algorithm. The Gustafsson algorithm caused a high of attenuation in low SNR speech as

well as attenuations of up to 10 dB for high SNR cases (above 12 dB). The hybrid

algorithm was overwhelmingly preferred both in terms of speech distortions as well as

noise distortions compared to the EVRC noise suppressor [1] in subjective tests. As a

front end to vocoders, this algorithm is also preferred. The distortion masking principle

applied selectively to speech errors and noise distortions is the key to the performance of

this algorithm.

A small amount of reverberation in the speech is an artifact of the system in this

thesis in its present form. This is caused by the large input window that is used (40 ms)

which is necessary in order to achieve the frequency resolution required to estimate the

masking threshold. Overall, the system introduced in this thesis provides a viable

alternative to the various speech enhancement algorithms that exist today.
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6.2 Future Work

In the course of this research several ideas and opportunities have arisen for

further exploration. Virags's use of the masking property in a subtractive-type algorithm

[2] opens the door to the use of the masking property in other existing algorithms; for

instance, a perceptual Wiener filter which minimizes the perceptual error. Another idea is

the use of speech production models as well as auditory models in a speech enhancement

algorithm. One possibility is a pitch filtering algorithm that uses the masking model to

ensure noise signals are masked. In the course of this research, some preliminary work on

this idea was performed; it is feasible if adequate pitch detection and filtering can be

performed. Such a system that uses both speech production and hearing models can be

expected to perform better than systems that use just the auditory models in the sense that

it can be tailored to match characteristics of speech signals as well as the hearing process.

The performance of both the Gustafsson algorithm and the hybrid algorithm in

tandem with voice coders was found to have more perceivable noise distortions than

expected. Research into the tandem operation of noise suppression systems with vocoders

is an exciting possibility. One possibility is to integrate a perceptual speech enhancement

and perceptual voice coding system whereby the bit allocation and noise suppression

would be performed such that the combination of the coding error and the noise

suppression error is masked.

Overall, the field of speech processing using psychoacoustic models is very

exciting and offers numerous opportunity for interesting work. Although the human

hearing process is far from being fully understood, the last 50 years of research in
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psychoacoustics has led to an enormous wealth of knowledge that can be exploited

further in digital speech processing.
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Appendix A: C-Code For Hybrid System

/* hybrid.c *7

/ ****************************************************************/

/* */

/* */

COPYRIGHT 1999 Qualcomm Inc. */

*/

/ ****************************************************************/

/ *****************************************************************

* Hybrid Function Noise Suppression*

* Input: The input to the function is a float pointer to the

* array of data to be noise suppressed.

* Output: There is

with the

* Written by:
* Date:

no return value. The input array is replaced

noise suppressed values.

Siddhartan Govindasamy
December 5, 1999

/* Includes */

#include <math.h>
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#include

#include

#include

#include

#include

#include

<stdio.h>

<stdlib.h>

"siddhartan.h"

"window.h"

"bark512.h"

"nstables.h"

//#define GRAPH

/* Defines */

/* testing */

//#define NOFILTER

//#define NOFFT

//#define TESTWINDOW

//#define WIENER

#define GUSTAF

/* defines for algorithm modifications */

//#define BNDCLS

//#define USEENRG

//#define TRAPWIN

#define SPECSUB

//#define CUTLOSNR

#ifndef WIENER

#define DOMASK
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#endif

#define TONALMEASURE

//#define OLDNOISECHANNELS

//#define DECIMATEADJACENTTONES

//#define USEASSEMBLY

//#define ADPTSS

#define TBLBARK

//#define MASKTEST

//#define CNT BANDS

//#define MPEGMASK

/* General defines */

TRUE 1

FALSE 0

PI (4.0*atan(l.0))

MAG

PHZ

FLATGAIN

0

1

1.0 // input gain

/* Pre-processing */

PREEMPFAC

DEEMPFAC

(-0.0)

0.0
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#define

#def ine

#define

#define
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/* Channels */

#ifndef LARGECHANS

#def ine

#def ine

#def ine

#def ine

64

0

21

63

NUMCHAN

LOCHAN

MIDCHAN

HI_CHAN

NUM-CHAN

LOCHAN

MIDCHAN

HICHAN

NUMNOISE CHAN

LONOISECHAN

HI_NOISECHAN

MIDNOISECHAN

16

0

15

5

/* Noise And SNR Estimate */

#define UPDATETHLD

#define METRICTHLD

#define INDEXTHLD

#define SETBACKTHLD

35

45

12

12

86

16

0

5

15

#else

#def ine

#def ine

#def ine

#define

#endif

#def ine

#define

#def ine

#def ine



#def ine
equals 6 */

SNRTHLD ((int)(2.25/0.375))

#ifndef LARGECHANS

#define

#else

#define

#endi f

INDEXCNTTHLD

INDEXCNTTHLD

UPDATECNTTHLD

HYSTERCNTTHLD

NORMENRG
for */

((int)50)//*1.6)

( (int) 3) //* 1.6)

(1.0) /* use (32768.0 *

/ *
fractional */

NOISEFLOOR

MIN_CHANENRG

INE

(1.0 / NORMENRG)

(0.0625 / NORMENRG)

(16.0 / NORMENRG)

#define
100logl (NORM ENRG)

#define
10loglO (NORMENRG)

#def ine

#def ine

#def ine

#define

#define

HIGHTCEDB

LOWTCEDB

TCERANGE

HIGHALPHA

LOWALPHA

ALPHARANGE

SAMPLERATE

(200.)

(120.)

(HIGH TCEDB -

/* 50 -

/* 30 -

LOWTCEDB)

0.99

0.50

(HIGHALPHA - LOWALPHA)

8000
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#define

#def ine

#define
32768.0)

#define

#def ine
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#ifndef LARGECHANS

DEVTHLD

DEVTHLD

(28.0 * 4.0)

28.0

#endif

/* smoothing factors for noise and energy */

CNE_SMFAC
CEESMFAC

0.1
0.7212

/* Gain slopes for SNR based gain coeffs */

MINGAIN

GAINSLOPE

(-20.0)

0.50

/* Spectral subtraction factor */

SPECSUBFAC

/* Attenuation factor */

TONALTHLD

SPEECHTHLD

#define

#else

#define

#define
#define

#define

#define

#define (2.0)

#define

#define

(0.2)

(32)
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/* Adjustment (in dB) to the masking curve */

#define

/* Macros */

/* general */

#def ine

#define

#define

MASKADJ

min (a, b)

max (a, b)

square(a)

(0.0)

((a)< (b) ? (a) :(b))

((a)>(b)?(a): (b))

((a)*(a))

float tmp = 0.0;

int tmp_int = 1;

/* Function Prototypes */

/* Graphing functions */

#ifdef GRAPH

void master load(int graph, float* buf);

void master graph(;

void master-suspend(;

void mastervardisplay(int var, float value, char* label);

void master setup(int scroll-size, int bar size, int scatter-size);
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#endif

/* variables for display functions */

#ifdef GRAPH

extern int chsnrdisp-draw, ch gaindisp_draw, FTMagsdraw,
Threshold-draw, Threshold2_draw, SNRdraw, FiltDat draw, FiltDat2_draw,
UnFiltDat draw, Noise-draw;

extern int chsnr-disp-num, ch gain-disp-num, FTMags-num, Threshold num,
Threshold2_num, SNR num, FiltDatnum, FiltDat2_num, UnFiltDatnum,
Noise num;

extern int spec sub magsdraw, Threshold3_draw, FTMags2_draw,
gain_x_draw, gain-n draw;

extern int spec sub magsnum, Threshold3_num, FTMags2_num, gain_n num,
gainxnum;

#endif

/* Window function */

void window( float window[], int len, int kind);

/* mask threshold calculation */

void getpmask(float *, float *);

void tonalmeasure(float[], float[]);

float get-bark(int i);

void getMPEGmask(float *L, float *th, float tonality[]);
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/* The noise supression function */

void noise-suprs (float *farrayptr, int stopdisplay, short
UpdateBuf[], short VmBuf[], float TmpBuf[])

{

/* Housekeeping */

static int first = TRUE;

static unsigned long frame-cnt;

int i, j, jl, j2;

static int loop = 0;

/ ** * ***** *** ****************************************

/* Vars and vectors for windowing and preprocessing */

/ ****************************************************/

/* vars for pre-emphasis */

static float preempmem = 0.0, deemp-mem = 0.0;

/* Vectors for windowing */

static float window [BUFLEN], window overlap [OVLLEN],
overlap add[2*BUF LEN];

/* Vector for channel gains */

static float ch-gain [FFTLEN/2];

/* Vars for Processing and gain computation*/
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float databuffer [FFTLEN], data bufferTmp[FFTLEN],
Pthresh[FFTLEN/2], FTMagsTmp[FFT LEN/2;

float spec_sub_mags[FFTLEN/2];

static float spec_subfac;

float specsubenrg;

float output enrg;

static float spec subflat[FFTLEN], specsubflat mags[FFTLEN/2],
pitch-inp[128];

int pitch-number;

float offset[FFTLEN/2], tonality[FFTLEN/2];

float gain;

/* channel energy and noise vars */

static float ch-enrg [NUM CHAN], ch-noise [NUMCHAN],
chnoise_tmp[NUMNOISE_CHAN];

static float chnoise tmp-long[FFTLEN/2], chenrg tmp[NUM_NOISE_CHAN];

float enrg, snr;

float tne, tce;

int chsnr [NUMCHAN];

static float chenrglongdb [NUMCHAN];

float phz = 0.0, mag = 0.0, noisetmp[FFTLEN];

float noiser, noisei, noisephz;

float chenrgdev; /* for forced update...

float chenrgdb [NUMICHAN];

float alpha;

float gain-alpha, gainx, gainn, pregain;

/* This is vector stores the snrs as if there were the same number of
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channels as the original to use the same voice metric table */

int chsnrtmp [NUMCHAN] , chsnrcnt = 0;

/* counters for update decisions */

static int

static int

static int

int

int

updatecnt = 0;

hystercnt; /* forced update statics...

last_updatecnt;

vmsum;

update-flag, modify-flag, index cnt;

int noise_flag;

/* Variables for Display */

/* These are used to display the graphs on screen */

float chsnrdisp[FFTLEN/2];

float ch-gain-disp[FFT_LEN/2];

float FTMags[FFTLEN/2];

float PCM[FFTLEN];

FILE *Ftmpl, *F-tmp2;

/* Variables used for computation of bin based SNR */
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static int binsnr [IFFTLEN/2], bin snr-tmp [FFTLEN/2];

static float bin_enrg[FFTLEN/2];

static float bin_noise[FFTLEN/2];

float t, t i, tf;

float gainXDisp[FFTLEN/2], gainNDisp[FFTLEN/2];

float scl, sc2, sc3, sc4;

/* Functions */

void rfft (float *, int);

void initwindow (float *, int, float);

void makewindow( float window[], int len, int kind);

void get offset(float offset[], int len, float S[1, float tonality[]);

/* Init the window function, channel gains one time */

loop ++;

if (first == TRUE) {

#ifndef TRAPWIN

make_window(window, BUFLEN, HAMMING);

#else

initwindow(window, BUFLEN, (((float)OVLLEN)/((float)BUFLEN)));

#endif

/* initialize first 4 gain values to 1.0 */

chgain [0] = (chgain [1] = (chgain[2] (ch-gain[3] = 1.0)));
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/* initialize overlap add buffer */

for(i = 0; i < 2*BUF_LEN;

overlap-add[i] = 0.0;

i++)

#ifdef OLDNOISECHANNELS

for(i 0; i < NUMNOISE CHAN; i++){

j= noisechannels[i][0];

j2 noisechannels[i][1];

for(j = jl; j <= j2;

barkval[j] = i;

j++)

}

#else

for(i 0; i < NUMCHAN; i++){

jl chtbl[i] [0];

j2 chtbl[il [1];

for(j = jl;

barkval

j

[j)

<= j2; j++)

= i;

spec-sub fac = SPECSUBFAC;

}

/* Increment frame counter */

framecnt++;
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/* copy the overlapping samples from old frame into beginning of new
frame */

#ifndef TRAPWIN

for (i = 0; i < BUFLEN*OVLRATIOX_4/4; i++)

databuffer [i] = windowoverlap [i];

/* preemphasize data */

databuffer [BUFLEN*OVLRATIO_X_4/4] = FLATGAIN**farray-ptr +
PREEMPFAC * pre-empmem;

#else

for (i = 0; i < OVLLEN; i++)

databuffer [i] = windowoverlap [i];

databuffer [OVLLEN] *farrayptr;

#endif

for (i = OVLLEN + 1, j 1; i < BUFLEN; i++, j++)

databuffer [i] = FLATGAIN**(farrayptr + j) + PREEMPFAC *

FLATGAIN**(farrayptr + j - 1);

preempmem = FLATGAIN**(farray-ptr + j - 1);
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/* zero pad by FFTLEN - BUFLEN zero samples */

for (i = BUFLEN; i < FFTLEN; i++)

databuffer [i] = 0.0;

/* store the current frame data to be overlapped in next frame*/

#ifndef TRAPWIN

for (i = 0; i < BUFLEN*OVLRATIOX_4/4; i++, j++)

window-overlap [i]

+ i];

databuffer [BUFLEN - BUFLEN*OVLRATIOX 4/4

#else

for (i = 0; i < OVLLEN; i++)

window-overlap [i] = databuffer [i + (BUF LEN - OVLLEN)];

#endif

/* Apply window to frame prior to FFT */

for (i = 0; i < BUFLEN; i++)

databuffer [i] *= window [i];

#ifndef TESTWINDOW
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/* If we want to display the windowed PCM instead of PCM

copy windowed input data to display vector */

for(i = 0; i < FFTLEN; i++)

PCM[i] = data buffer[i];

/* Perform FFT on the data buffer */

#ifndef NOFFT

r fft (data_buffer, +1);

#endif

/* show the compute the FFT magnitudes*/

outputenrg = 0.0;

for( i = 0; i < FFTLEN/2; i++)

output-enrg += (sqrt(square(data_buffer[2*i]) +
square(databuffer[2*i + 1]))/FFTLEN);

for(i = 0, j = 0; i < FFTLEN; i+=2, j++)

FTMags[j] =
(float)20*loglO(sqrt((double)square(1/FLATGAIN*data buffer[i])

(double)square(/FLATGAIN*data buffer[i+l1)));

/* Estimate the energy in each channel */

alpha = (first == TRUE) ? 1.0 : CEE_SMFAC;

98



for (i = LOCHAN; i <= HICHAN; i++) {

enrg = 0.0;

ji = ch-tbl [i][0], j2 = chtbl [i][1];

for (j = ji; j <= j2; j++)

enrg += square(databuffer [2*j]) + square(databuffer [2*j+l);

enrg /= (float) (j2 - jl + 1);

chenrg [i] = (1 - alpha) * ch enrg [i] + alpha * enrg;

if (ch-enrg [i] < MINCHANENRG) chenrg [i] = MINCHANENRG;

}

#ifdef OLDNOISECHANNELS

for (i = LONOISECHAN; i <= HINOISECHAN; i++) {

enrg = 0.0;

jl = noise-channels [i][0], j2 = noisechannels [i][1];

for (j = jl; j <= j2; j++)

enrg += square(databuffer [2*j]) + square(databuffer [2*j+l]);

enrg /= (float) (j2 - j1 + 1);

chenrgtmp [i] = (1 - alpha) * chenrg-tmp [i] + alpha * enrg;

if (ch-enrgtmp
MINCHANENRG;

[i] < MINCHANENRG) ch-enrg-tmp [i] =

}

#endif

/* Estimate the energy in each bin */
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for(i = 0; i < FFT-LEN/2; i++){

enrg = square(databuffer [2*i]) + square(data_buffer [2*i+1]);

bin_enrg [i] = (1 - alpha) * binenrg [i] + alpha * enrg;

if (binenrg [i] < MINCHANENRG) binenrg [i] = MINCHANENRG;

}

/* Initialize channel noise estimate to channel energy for first four
frames */

#ifndef OLD_NOISE_CHANNELS

if (framecnt <= 4)

for (i = LOCHAN; i <= HI_CHAN; i++)

chnoise [i] = max(ch-enrg [i], INE);

#else

if (framecnt <= 16)

for (i = LOCHAN; i <= HICHAN; i++)

chnoise [ii = max(ch-enrg (i], INE);

#endif

/* Compute the channel SNR indices */

for (i LO_CHAN; i <= HICHAN; i++) {

snr 10.0 * loglO ((double) (ch-enrg [i] / chnoise [i]));

if (snr < 0.0) snr = 0.0;
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= (snr + 0.1875)

}

/* store the noise into
*/

for(i = LOCHAN;

jl = ch_tbl

appropriate vector for bin level SNR computation

i <= HI CHAN; i++) {

[i][01, j2 = ch-tbl [i][1];

for (j =jl; j <= j2; j++){

binnoise[j] = chnoise[i];

}

}

/* compute the snr in each bin */

for(i = 0; i < FFT LEN/2; i++){

snr = 10.0 * logI ((double)

if (snr < 0.0) snr = 0.0;

binsnr [i] = (snr + 0.1875)

(bin-enrg [ii / binnoise

/ 0.375;

}
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/* Compute temporary snr indices for vm sum computation based on old

channels */

#ifndef LARGECHANS

for (i = LOCHAN; i <= 15; i++) {

/* compute average

snr = 10.0 * loglO

ch-enrg[4*i+2]

snr over 4 channels */

((double) ((ch-enrg [4

+ ch-enrg[4*i+31)/ (ch

*il + chenrg[4*i+l1 +

_noise [4*i] + chnoise[4*i

+ chnoise[4*i + 2] + ch noise[4*i + 3])));

if (snr < 0.0)

chsnrtmp [i]

snr = 0.0;

= (snr + 0.1875) / 0.375;

}

vmsum =0;

/* if we use smaller channels, compute the sum using

the temporary snr vector that is the same as what we would have

had we used the original number of channels (i.e. 16) */

for (i = LOCHAN; i <= 15; i++) {

j = min(ch snrtmp[i],89);

vmsum += vm-tbl [j];
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#else

for (i = LOCHAN; i <= HICHAN; i++) {

j = min(ch-snr[il,89);

vmsum += vm tbl [j];

}

#endif

/* Compute the total noise estimate (tne) and total channel */

/* energy estimate (tce) */

tne = tce = 0.0;

for (i = LOCHAN; i <= HICHAN; i++)

tne += chnoise [i];

tce += ch-enrg [i];

}

/* Calculate log spectral deviation */

for (i = LOCHAN; i <= HICHAN; i++)

ch enrg-db [i] = 10.*loglO( chenrg [i] );
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if (first == TRUE)

for (i = LOCHAN; i <= HICHAN; i++)

chenrglong-db [i] = chenrg-db [i];

ch-enrg-dev = 0.;

for (i = LOCHAN; i <= HICHAN; i++)

chenrg-dev += fabs( ch-enrg-long db [i] - ch-enrg-db [i] );

/* Calculate long term integration constant as a function of total

/* channel energy (tce) (i.e., high tce (-40 dB) -> slow integration

(alpha 0.99), low tce (-60 dB) -> fast integration (alpha = 0.50) */

alpha HIGH ALPHA - (ALPHARANGE / TCERANGE) * (HIGHTCEDB -
10.*log10(tce));

if ( alpha > HIGHALPHA

alpha HIGHALPHA;

else if ( alpha < LOWALPHA

alpha LOWALPHA;

/* Calc long term log spectral energy */

for (i = LOCHAN; i <= HICHAN; i++)

chenrg-long-db [i] = alpha*ch-enrgjlongdb [i] + (1.-
alpha)*chenrgdb [i];

}

/* Set or reset the update flag *7

updateflag = FALSE;
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if (vmsum <= UPDATETHLD) {

update flag TRUE;

updatecnt 0;

}

else if (tce > NOISEFLOOR && ch enrg-dev < DEVTHLD) {

updatecnt++;

if (updatecnt >= UPDATECNTTHLD)

update-flag = TRUE;

}

if(vm sum <= 10)

noise-flag TRUE;

else noise-flag FALSE;

if ( updatecnt last-update cnt

hyster-cnt++;

else

hystercnt = 0;

last-update_cnt = update cnt;

if ( hystercnt > HYSTERCNTTHLD

updatecnt = 0;
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/* Set or reset modify flag */

indexcnt 0;

for (i = MID_CHAN; i <= HICHAN; i++)

if (ch-snr [i] >= INDEXTHLD)

indexcnt++;

modify-flag = (index_cnt < INDEX_CNT_THLD)? TRUE : FALSE;

/* Modify the SNR indices */

if (modifyflag == TRUE)

for (i = LOCHAN; i <= HICHAN; i++)

if ((vmsum <= METRICTHLD) (ch-snr [i] <= SETBACK THLD))

chsnr [i] = 1;

/ ****** ************** *************************** **** /

/* Spectral Subtraction */

/ ***************************************************/

/* store the channel noise estimate into a vector for spectral

subtraction */
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noise tmp[O] = 1.0;

noisetmp[l] = 1.0;

noise tmp[2] = 1.0;

noisetmp[3] = 1.0;

for(i LOCHAN; i <= HICHAN; i++){

jI ch-tbl [i][0], j2 = chtbl [i][1];

for (j = jil; j <= j2; j++){

noise-tmp[j] = sqrt(ch-noise[i]);

binsnr_tmp[j] = chsnr[i];

}

}

#ifdef SPEC_SUB

/* Perform spectral subtracton on each FFT bin*/

for(i = 0; i < FFT_LEN/2; i++){

/* get magnitude of signal */

mag = sqrt(square(data-buffer[2*i]) + square(databuffer[2*i +
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/* get the phase (which is preserved) */

phz = atan2(databuffer[2*i + 1], data buffer[2*i]);

/* subtract the magnitude of the noise (not completely) */

if(!updateflag)

mag = mag - specsubfac*noise_tmp[i];

else

mag = mag - spec subfac*mag;

if(mag < 0.0)

mag = 0.0;

/* reconstruct the polar value into cartesian */

databufferTmp[2*i] 1/ATTN*mag*cos(phz);

databufferTmp[2*i + 1] = 1/ATTN*mag*sin(phz);

mag sqrt(square(data-buffer[2*i]) + square(data_buffer[2*i +
1]));

mag mag - spec subfac*noise_tmp[i];

if(mag < 0.0)

mag = 0.0;

spec-sub flat[2*i] = mag*cos(phz);

specsub flat[2*i + 1] = mag*sin(phz);
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spec subflat[2*i] = databuffer[2*i];

specsub flat[2*i + 1] = databuffer[2*i + 1];

}

#endif

/*******************************************************************/

/* Compute Gains */

/ *******************************************************************/

for(i = 0; i < FFT_LEN/2;

#ifndef USEENRG

spec subflatmags[i]
+ square(spec-sub flat[2*i + 1]

= 10 * loglO(square(spec subflat[2*i])
) );

#else

specsubflatmags[i]
specsubflat mags[i]/10) + 0.55
square(spec_subflat[2*i + 1])))

+

#endif

/* compute magnitudes after spectral subtraction for threshold
computation */
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for(i = 0; i < FFTLEN/2; i++){

if(data bufferTmp[2*il == 0.0 && databufferTmp[2*i + 1] == 0.0){

FTMagsTmp[i] = 0.0;

spec-sub mags[i] 0.0;

else{

FTMagsTmp[i] = 10 * loglO(square(databufferTmp[2*il) +
square(databufferTmp[2*i + 1]));

specsub mags[i] = FTMagsTmp[i];

}

#ifdef CNTBANDS

for(i = 0; i < FFTLEN/2; i++){

tmp getbark(i);

j = (int) get_i_bark(tmp - 0.5);

j2 (int) geti_bark(tmp + 0.5);

jI max(0,jl);

j2 = min(FFTLEN/2 - 1, j2);

tmp 0.0;

for(j = j1; j <= j2; j++){

tmp += square(data bufferTmp[2*j]) + square(data-bufferTmp[2*j +
1]);

}

tmp /= (j2 - j1 + 1);

FTMagsTmp[i] = 10*loglO(tmp);

}
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#endif

/* compute snr based on spectral subtraction results */

/*

for(i = 0; i < FFTLEN/2;

square(data
binsnrtmp[i] = 20*logl
_bufferTmp[2*i + 1]))

0(sqrt(square(data bufferTmp[2*il)

/noise-tmp[il);

}

/* Compute tonality and correction to Masking Curve*/

getoffset(offset, FFTLEN/2, databufferTmp,

/* Decimate tones that are within 3 lines of each other */

#ifdef DECIMATEADJACENTTONES

for(i = 0; i < FFTLEN/2; i++){

if(tonality[i] > TONALTHLD && tonality[i+1] > TONALTHLD

&& tonality[i + 21 > TONALTHLD){

if (FTMagsTmp[i] > FTMagsTmp[i + 1] && FTMagsTmp[il > FTMagsTmp[i
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tonality);
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tonality[i + 1] = 0.0;

FTMagsTmp [i + 1] = 0.0;

tonality[i + 2] = 0.0;

FTMagsTmp[i + 21 = 0.0;

}

else {

tonality[i] = 0.0;

FTMagsTmp[i] = 0.0;

if(FTMagsTmp[i + 1] > FTMagsTmp[i + 2]){

tonality[i + 2] = 0.0;

FTMagsTmp[i + 2] 0.0;

}

else{

tonality[i + 1] 0.0;

FTMagsTmp[i + 1] 0.0;

}

}

}

else

if(tonality[i] > TONALTHLD && tonality[i+1] > TONALTHLD){

if(FTMagsTmp[i] > FTMagsTmp[i + 1]){

tonality[i + 1] = 0.0;

FTMagsTmp[i + 1] = 0.0;

}
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else {

tonality[i] = 0.0;

FTMagsTmp[i] = 0.0;

}

}

#endif

/* Compute masking threshold */

for(i = 0; i < FFTLEN/2; i++) {

if( (i%3))

FTMagsTmp[i] = 0.0;

#ifdef MASKTEST

for(i = 0; i < FFTLEN/2; i++)

FTMagsTmp[i] = 10*loglO(square(data_buffer[2*il) +
square(databuffer[2*i + 1]));

#endif

#ifdef DOMASK

#ifdef MPEGMASK

getMPEG mask(FTMagsTmp, Pthresh, tonality);
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#else

getpmask(FTMagsTmp,

#endif

#endif

#ifdef MASK-TEST

r-fft(TmpBuf, +1);

for(i = 0; i < FFT_LEN/2;

spec_subflat mags[i]
square(databuffer[2*i + 1]))

i++)

= 10*loglO(square(data-buffer[2*i]) +

for(i = 0; i < FFTLEN/2;

databuffer[2*i] += pow(10, (Pthresh[i/2])/20)*TmpBuf[2*il*2;

databuffer[2*i + 11 += pow(10, (Pthresh[i/2])/20)*TmpBuf[2*i +

for(i = 0; i < FFTLEN/2;

FTMags[i] = 10*1og1O(square(data-buffer[2*i])
square(databuffer[2*i + 1]));

for(i = 0; i < FFT_LEN/2; i++)

FTMagsTmp[i] =
10*loglO(square(pow(10,(Pthresh[il)/20)*TmpBuf[2*i]))
square(pow(10, (Pthresh[i])/20)*TmpBuf[2*i+1]);
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1]*2;
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i++)

+
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// for(i = 0; i < FFTLEN/2; i++)

// FTMags[i] = 10*loglO(square(TmpBuf[2*i]) + square(TmpBuf[2*i +

// FTMags[i] = sqrt(square(TmpBuf[2*i]) + square(TmpBuf[2*i +

if (loop 107){

F_tmpl fopen("Mask.dat",

for(i = 0; i < FFT_LEN/2; i++){

fprintf(Ftmpl, "%f\t%f\t%f\t%f\t%f\n", Pthresh[i],
FTMagsTmp[i], i*15.625, specsubflatjmags[i], FTMags[i] );

}

fclose(F-tmpl);

}

r-fft(TmpBuf,

#endif

-1);
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#ifdef BNDCLS

scl = 0.0;

for(i = 0; i

sci += bin

sc2 =

for(i

sc2

sc3 =

for(i

sc3

sc4 =

for(i

sc4

sci

sc2

sc3

sc4

#endif

< FFTLEN/8; i++)

_snr-tmp [ i];

0.0;

= FFTLEN/8; i < 2*FFTLEN/8; i++)

+= binsnrttmp[i];

0.0;

= 2*FFTLEN/8; i < 3*FFTLEN/8; i++)

+= binsnr tmp[i];

0.0;

= 3*FFTLEN/8;

+= binsnr tmp

(FFTLEN/

(FFTLEN/

(FFTLEN/

(FFTLEN/

i < 4*FFTLEN/8; i++)

[ii;

8)

8)

8)

8)

for(i = 0; i < FFTLEN/2; i++){

gainalpha

gainalpha

gainalpha

= 0.8* (binsnrtmp[il - SNRTHLD) - 34;

= pow(10, gainalpha/20);

= min(max(gain-alpha, 0.0), 1.0);
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#ifdef BNDCLS

if(i < FFTLEN/8)

gain-alpha = .39* (scl - SNRTHLD)

else

if(i < 2*FFTLEN/8)

gainalpha = .39* (sc2 - SNRTHLD) - 13;

else

if(i < 3*FFTLEN/8)

gainalpha = .39* (sc3 - SNRTHLD) - 13;

else

if(i < 4*FFTLEN/8)

gain-alpha = .39* (sc4 - SNRTHLD)

gain-alpha = min(max(gainalpha, 0.0), 1.0);

#endif

#ifdef MPEGMASK

offset[i] = 0.0;

#endif

gainx = Pthresh[i] - offset[i] - spec subflatmags[i];

gainx = 1.0/ATTN - pow(10, gain x/20.0);

gainx = max(1.0, gain-x);

gainXDisp[i] = 20*loglO(gain-x);

#ifndef GUSTAF
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gainn = Pthresh[i] - 20.0*log1O(noisetmp[i]);

gain n = pow(10, (Pthresh[il -
offset[i])/10)/square(noisetmp[i]);

gainn = sqrt(gainn);

gain-n = 1.0 + gainn;

gainn = min(gain-n, 1/ATTN);

gainNDisp[i] = 20*log1O(gainn);

gain = (gainalpha)*gainx + (1.0 - gainalpha) * gainn;

//gain = gainx;

chgain[i] = min(gain, 1/ATTN);

chgain[i] = max(gain, 1.0);

#ifdef WIENER

ch-gain[i] = 1/(ATTN)*(binenrg[i] - binnoise[i])/bin enrg[i];

#endif

#else

gain n = pow(10, (Pthresh[i] -
offset[i])/10)/square(noise-tmp[i]);

gainn = sqrt(gainn);

gainn = ATTN + gainn;

gain-n *= 10.;
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chgain[i] = min(gainn, 10);

#endif

}

ch-gain[FFTLEN/ 21 = 0.0;

for(i = 0; i < FFTLEN/2; i++) {

#ifndef NOFILTER

databuffer[2*i] *= chgain[i];

databuffer[2*i + 1] *= ch-gain[i];

#endif

}

#ifdef ADPTSS

if(update-flag){

spec_subenrg = 0.0;

for(i = 0; i < FFT_LEN/2; i++){

specsub-enrg += (sqrt(square(databufferTmp[2*i]) +
square(databufferTmp[2*i + 1])) / FFT_LEN);

}
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specsub fac += (specsub enrg - ATTN*output enrg) /output-enrg;

}

#endif

/* Update the channel noise estimates */

#ifndef OLDNOISECHANNELS

if (update flag == TRUE)

for (i = LOCHAN; i <= HICHAN; i++) {

chnoise [i] = (1.0 - CNESMFAC) * chnoise [i] +

CNESMFAC * ch-enrg [i];

if (chnoise [i] < MINCHANENRG) ch-noise [i] = MINCHANENRG;

if (updateflag == TRUE){

/* Use the old, wider channels for noise estimate */

for (i = LONOISECHAN; i <= HINOISECHAN; i++) {

chnoise tmp [i] = (1.0 - CNESMFAC) * ch-noisetmp [i] +

CNESMFAC * ch-enrgtmp [i];

if (chnoisetmp [i] < MINCHANENRG) ch noise-tmp [i]
MINCHANENRG;
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}

/* copy back into chnoise vector */

for(i = LOCHAN;

ch-noise[i]

i <= HICHAN; i++) {

= chnoisetmp[i/4];

}

}

#endif

#ifdef GRAPH

for(i = 0; i < FFTLEN/2;

FTMagsTmp[i] = 10*log1O(square(data-buffer[2*i]) +
square(databuffer[2*i+l]));

}

#endif

#ifndef NOFFT

r-fft (databuffer,

#endif

#endif

#ifndef TRAPWIN

-1);
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/* perform overlap add */

for(i = 0; i < BUF_LEN; i++)

overlapadd[i + BUF_LEN*OVL_RATIO_X_4/4] += databuffer[i];

/* de-emphasis */

*farrayptr = 0.4639*overlapadd[BUF_LEN*OVL_RATIO_X_4/4] +
DEEMPFAC*de-emp-mem;

for(i = 1; i < FRMLEN; i++)

*(farray-ptr + i) = WINDOW_GAIN_FAC*overlapadd[i +
BUF_LEN*OVL_RATIO_X_4/4] + DE_EMPFAC * *(farrayptr + i - 1);

/* save last sample for de-emphasis in next frame */

de-emp-mem = *(farrayptr + FRMLEN - 1);

/* shift up overlap add buffer for next round */

for(i = 0; i < (2*BUFLEN - FRMLEN); i++)

overlapadd[i] = overlapadd[i + FRMLEN];

for(i = (2*BUFJLEN - FRMLEN); i < (2*BUFLEN); i++)

overlap-add[i] = 0.0;

#else
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for(i = 0; i < FRM LEN; i++){

*(farray-ptr + i) = databuffer[OVLLEN/2 + i];

}

#endif

/* the next call won't be the first frame to be processed */

first = FALSE;

/* sum up the snr s for the channels to display */

#ifdef GRAPH

tmp = 0.0;

for(i = LOCHAN; i <= HI_CHAN; i++)

tmp += pow(10,0.375/10*ch_snr[i]);

#endif

/* write the update flag and voice metric sum in this frame into update
buf this is repeated for FRMLEN times in order to align
it with the input & output files */

for( i = 0; i < FRMLEN; i++){

UpdateBuf[i] = pow(2, 13) * updateflag;

if(vm sum > METRIC_THLD)
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VmBuf[i] 32764/2;

else VmBuf[i] 0.0;

}

/* Graphing */

#ifdef GRAPH

for(i = 0; i < FFTLEN/2; i++)

ch-gaindisp[i] = 20*loglO(ATTN*ch-gain[il);

/* display the variables and graphs*/

#ifdef VARGAIN

mastervardisplay(2, updateflag, "UPDATE_FLAG");

#endif

if(ch-snr-dispdraw == 1)

masterload(ch_snr_dispnum, PCM);

if(chgain-dispdraw == 1)

masterload(ch-gaindispnum, ch gain-disp);

if(FTMagsdraw == 1)

master-load(FTMags-num, FTMags);
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if(Thresholddraw

masterload(Thresholdnum,

for(i=0; i < FFT_LEN/2; i++)

chsnrdisp[il = (float)binsnrtmp[i];

if(SNRdraw == 1)

masterload(SNR-num, ch_snr_disp);

if(UnFiltDatdraw == 1)

master load(UnFiltDat-num, FTMags); // ftmags

if(FiltDatdraw == 1)

masterload(FiltDat_num, FTMagsTmp);

if(FiltDat2_draw == 1)

master-load(FiltDat2_num, FTMagsTmp);

if(Threshold2_draw == 1)

master load(Threshold2_num, Pthresh);

//ftmagstmp

//pthrest

for(i = 0; i < FFTLEN/2;

noise-tmp[i] = 20* loglO(noise_tmp[i]);

if(Noisedraw == 1)

masterload(Noisenum, noise-tmp);

if(FTMags2_draw 1)

masterload(FTMags2_num, FTMags);

if(Threshold3_draw == 1)
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//ftmags
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masterload(Threshold3_num,

if(specsub_mags-draw == 1)

master_load(specsub-magsnum, specsubmags);

if(gain-x-draw == 1)

master_load(gain-x-num, gainXDisp);

if(gain_n-draw == 1)

master_load(gain-n_num, gainNDisp);

master-graph();

master suspend();

#endif

} /* end noisesuprs () * /

/ ***********************************************************************

void init window (float *x, int n, float ovlap)

{

int i;

float arg;

int n1;

/* use smoothed trapezoidal window */

n1 = (int) ceil(ovlap * n /2.);

126

Pthresh); //pthresh



arg = 2.*atan(1.)/nl;

for (i=O; i<nl; i++)

x[i] = pow( sin( (i+0.5)*arg ), 2. );

}

for (i=n1; i<n-nl; i++)

x[i] = 1.;

}

for (i=n-nl;

x[i] =

i<n; i++)

pow( sin(

{

((i-n)+.5)*arg ), 2. );

}

return;

} /* end of initwindow() */

void getpmask(float *L, float *th)

{

float s[FFTLEN/2];

int u,v;

double sum;

double uth-part,intermedvariable;

float t, t-i, t-f;

int SIZE = FFTLEN/2;
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-24 - 230/31.25 + .2*L[O];

for ( v=1; v<SIZE; v++)

s[v] = -24.-230.*FFTLEN/((v)*SAMPLERATE)+.2*L[v];

for ( u=0; u<SIZE; u++){

sum 0.;

for ( v=1; v<u; v++){

if(L[v] > 0.0 ){

intermed variable = L[v]-s[v]*(get-bark(v)-get-bark(u));

sum += pow(10.0, intermedvariable/20);

}

}

for( v=u+1; v<SIZE;v++){

if(L[v] > 0.0){

intermed variable = L[v]-27.* (getbark(v)-get-bark(u));

sum += pow(10.0, intermedvariable/20);

}

I

th[u] = (float)10.*(loglO(sum));

}

} /** end thresh **/

/ *********************************************************************/
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void tonal.

{

_measure(float in[], float out[])

int i, j, mag, phz, loop = 0;

float mag_l[FFT_LEN/

float phzl[FFTLEN/

magest[FFTLEN/2 1

curmag[FFTLEN/2],

2], mag2[FFTLEN/2];

2], phz_2[FFT-LEN/2];

phzest[FFT_LEN/2];

curphz[FFT_LEN/21;

float chaosmeasure[FFTLEN/2], tmp;

/* get magnitude and phase of input */

for(i = 0; i < FFTLEN/2; i++){

cur-mag[i] = sqrt(square(in[2*i]) + square(in[2*i + 1]));

cur phz[i] = atan2(in[2*i + 1], in[2*i]);

/* compute estimate of magnitude and phase of input */

for(i = 0; i < FFTLEN/2;

magest[i] = mag_1[i]

phz-est[i] = phz_1[i]

i++) {

+ (mag_1[i] - mag_2[i]);

+ (phzl[i] - phz_2[i]);

}

/* compute the chaos measure */

for(i = 0; i < FFT_LEN/2; i++){
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tmp = square(mag-est[il - cur mag[il);

tmp += square(phz-est[i] - cur-phz[i]);

tmp (float)sqrt((double)tmp);

tmp /= (cur mag[i] + (float)abs((double)magest[i]));

tmp max(0.05, min(0.5, tmp));

chaosmeasure[i] = tmp;

}

/* map chaos measure to tonal measure */

for(i = 0; i < FFT_LEN/2; i++){

out[i] = -0.43*loglO(chaosmeasure[i]) - 0.299;

}

for(i = 0; i < FFTLEN/2; i++){

mag_2

phz_2

magi

phz_1

[i]

[ii

[ii

[i]

= magj[i];

= phz-l[i];

= curmag[i];

= cur-phz[i];

}

} /* end tonal measure */

/ *****************************************************************/
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void get offset(float offset[], int len,

{

int i, j, j1, j2;

int firstbark, barksize;

float tmp = 0.0, Gm = 0.0, Am = 0.0;

#ifdef TONALMEASURE

tonalmeasure(S, tonality);

for(i = 0; i < FFTLEN/2; i++){

tonality[i] = max(tonality[i], -0.17);

tonality[i] = min(tonality[i], 0.26);

tonality[i] = tonality[i] + 0.17;

tonality i] *= 2.32559;

// tmp+= tonality[i];

// offset[i]
(1 - tonality[i])*5.5;

(1 - tonality[i])*(14.5 + getbark(i));// +

}

for(i = 0; i < FFTLEN/2; i++){

Gm *= (square(S[2*i])

Am += square(S[2*i])

+ square(S[2*i + 1]));

+ square(S[2*i + 1]);

}
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Gm pow(Gm, 1/(FFTLEN/2));

Am /= (FFTLEN/2);

tmp Gm/Am;

tmp 10*loglO(tmp);

tmp = min((tmp/(-60)), 1);

i < FFTLEN/2; i++){

offset[i] = tmp*(14.5 + getbark(i))

offset[i] *= fabs(tmp + tonality[i]

+ (1 - tmp)*5.5;

- 1) - MASKADJ;

}

#endif

} /* end get-offset */

float get-bark(int i)

{

float tmp;

#ifdef TBLBARK

return barkval[i];

#else

tmp = (float) i;

tmp *= ((float)SAMPLERATE)/((float)FFTLEN);

return 26.81f*tmp/(1960. + tmp)

for(i = 0;

- 0.53f;
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#endif

} /* end getbark */

int get_i_bark(float z)

{

return (int) ((1960.0f*z + 1038.8f)/(26.68f - z)) / SAMPLE-RATE *
FFTLEN;

}

void estimatenoise(float in[, float out[l)

{

int i, j, lo-barkline, hi bark line, count;

static int first = TRUE;

float z, enrg, alpha;

alpha = (first == TRUE) ? 1.0 : CEESMFAC;

for(i = 0; i < FFTLEN/2; i++){

z = get-bark(i);

lo barkline = get-i-bark(z - 0.5);

hibarkline = get-i-bark(z + 0.5);

enrg 0;

for(j lobarkline; j <= hibark line; j++);

}
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void getMPEGmask(float *L, float *th, float tonality[])

{

float s[FFTLEN/21;

int u,v;

double sum;

double uth-part,intermedvariable;

float t, t-i, t-f, tmp;

int bark-u, bark-v, i-bark-v;

int lwb, up-b;

float dz;

int SIZE = FFTLEN/2;

for(u = 0; u < SIZE; u++){

bark_u

sum = 0

= get-bark(u);

.0;

lw_b = get i-bark(barku - 3);

up-b = get i-bark(barku - 1);

up b = min(up-b, SIZE);

lw_b = max(lw-b, 0);

for(v = lw-b; v < up-b; v++){

0.I*bark_v

barkv = getbark(v);

dz (float) abs( barku - bark-v);

tmp L[v];

tmp += -1.525 - 0.175 * barkv - 0.5 - 4 * tonality[v) -
* tonality[v];
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tmp += 17 * (dz + 1) - (0.4*L[v1 + 6);

sum += pow(10, tmp/10);

}

lw b

up b

up b

lw_b

= get-i-bark(bark_u - 1);

= get i-bark(barku);

= min(up-b, SIZE);

= max(lw b, 0);

for(v = lw-b; v < upb; v++){

bark v = get bark(v);

dz (float) abs( barku - bark v);

tmp L[v];

tmp += -1.525 - 0.175 * barkv - 0.
rkv * tonality[v];

tmp += (0.4*L[v] + 6) * dz;

sum += pow(10, tmp/10);

5 - 4 * tonality[v] -

get i-bark(bark-u);

getji-bark(barku + 1);

= min(up-b, SIZE);

max(lw-b, 0);

for(v = lw-b; v < upb; v++){

bark_v = get bark(v);

dz (float) abs( barku - bark-V);

tmp L[v];

tmp += -1.525 - 0.175 * barkv - 0.
rkv * tonality[v];

tmp += - 17 * dz;

sum += pow(10, tmp/10);

5 - 4 * tonality[v] -

135

0. 1*ba

}

lw_b

upb

up-b

lw_b
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lw_b

up-b

up-b

lw_b

= getji-bark(bark_u + 1);

= getji-bark(bark_u + 8);

= min(up-b, SIZE);

= max(lw b, 0);

for(v = lw_b; v < up-b; v++){

barkv = get-bark(v);

dz (float) abs( barku - bark-v);

tmp L[v];

tmp += -1.525 - 0.175 * barkv - 0.5 - 4 * tonality[v] -
0.1*bark v * tonality[v];

tmp += -1*(dz - 1)*(17 - 0.15*L[v]) - 17;

sum += pow(10, tmp/10);

}

th[u] = 10*loglO(sum);

} /** end thresh **/
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Appendix B: Voice Metric Table (Table 4.1)

SNR Index Voice
Metric

0 2

1 2

2 2

3 2

4 2

5 2

6 2

7 2

8 2

9 2

10 2

11 3

12 3

13 3

14 3

15 3

16 4

17 4

18 4

19 5

20 5

21 5

22 6

23 6

24 7

25 7

26 7

27 8

28 8

29 9

30 9

31 10

32 10

33 11

34 12

35 12

36 13

37 13

38 14

39 15

40 15

41 16

42 17

43 17

44 18

45 19

46 20

47 20

48 21

49 22

50 23

51 24

52 24

53 25

54 26

55 27

56 28

57 28

58 29

59 30

60 31

61 32

62 33

63 34

64 35

65 36

66 37

67 37

68 38

69 39

70 40

71 41

72 42

73 43

74 44

75 45

76 46

77 47

78 48

79 49

80 50

81 50

82 50

83 50

84 50

85 50

86 50

87 50

88 50

89 50
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Appendix C: Voice Activity Detection Algorithm

update_flag = FALSE
/* the updateflag is set when the voice metric sum is very low,
indicating that the SNR in the frame is low */

if (VM_SUM =< UPDATETHLD) {
update-flag = TRUE
updatecnt = 0

/* This logic takes care of the situation when the SNR may be high but
the spectrum isn't changing very much. This case will occur when the
noise increases in power. The SNR will be high and so the above check
will not catch the noise. So, a check is added to see if the spectrum
does not change much compared to the long term average spectrum for
several frames. Also, a check is needed for the case of the total energy
being below the noise floor. This is so that the spectrum is not
averaged for really small energies. */

else if ((Et > NOISEFLOORDB) and (longtermdev < DEVTHLD))
{

updatecnt = updatecnt + 1
times the

spectral deviation is small */

if( update cnt >= UPDATECNThTHLD)
deviation stays

update-flag = TRUE

/* count number of

/* if the spectral

small for many frames set
the update flag */

/* some hysterisis logic is also needed in order to prevent the
update_cnt from creeping up over a long period of time. This will ensure
that the update-flag is set only when the spectral deviation is small
for a number of frames that are fairly continous */

if(update-cnt == last update-cnt)

hystercnt = hystercnt + 1
else

hystercnt = 0

last-updatecnt = update cnt

if(hyster-cnt > HYSTERCNTTHLD)

/* if the spectral
deviation isn't

high, => the update cnt is
the same, increase the
hysterisis count */

/* if the updatecnt has
changed i.e. this

frame has low long
term deviation */

/* update the last
update count */

/* if the spectral
deviation is small

for a number of
continous frames
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start the update
count from scratch
again */

updatecnt = 0

the values of the thresholds are used as in [1] are as follows: UPDATETHLD = 35, NOISEFLOORDB
= 0, DEVTIILD = 28, UPDATECNT_THLD = 50, HYSTERCNTTHLD =6.
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