
Real-Time Predictive Modeling and Robust

Avoidance of Pedestrians with Uncertain,

Changing Intentions _ _____

MASACHUSETTS wd17U1E,

by OF TECHNOLOGY

Sarah Kathryn Ferguson JUN 16 2014

S.B., Aerospace Engineering LIBRARIES
Massachusetts Institute of Technology (2012)

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Masters of Science in Aerospace Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Autor......Signature redacted-
A uthor

Department of Aeronautics and Astronautics
May 22, 2014

Certified by................. Signature redacted
Jonathan P. How

Richard C. Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

Signature redacted-
A ccepted by *

Paulo C. Lozano

Associate Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee

Real-Time Predictive Modeling and Robust Avoidance of

Pedestrians with Uncertain, Changing Intentions

by

Sarah Kathryn Ferguson

Submitted to the Department of Aeronautics and Astronautics
on May 22, 2014, in partial fulfillment of the

requirements for the degree of
Masters of Science in Aerospace Engineering

Abstract

To plan safe trajectories in urban environments, autonomous vehicles must be able
to interact safely and intelligently with other dynamic agents. Due to the inherent
structure of these environments, drivers and pedestrians tend to exhibit a common
set of motion patterns. The challenges are therefore to learn these motion patterns
such that they can be used to predict future trajectories, and to plan safe paths that
incorporate these predictions.

This thesis considers the modeling and robust avoidance of pedestrians in real

time. Pedestrians are particularly difficult to model, as their motion patterns are often
uncertain and/or unknown a priori. The modeling approach incorporates uncertainty
in both intent (i.e., where is the pedestrian going?) and trajectory associated with
each intent (i.e., how will he/she get to this location?), both of which are necessary for
robust collision avoidance. A novel changepoint detection and clustering algorithm
(Changepoint-DPGP) is presented to enable quick detection of changes in pedestrian
behavior and online learning of new behaviors not previously observed in prior training
data. The resulting long-term movement predictions demonstrate improved accuracy
in terms of both intent and trajectory prediction, relative to existing methods which

consider only intent or trajectory.
An additional contribution of this thesis is the integration of these predictions with

a chance-constrained motion planner, such that trajectories which are probabilisti-
cally safe to pedestrian motions can be identified in real-time. Hardware components
and relevant control and data acquisition algorithms for an autonomous test vehicle

are implemented and developed. Experiments demonstrate that an autonomous mo-

bile robot utilizing this framework can accurately predict pedestrian motion patterns

from onboard sensor/perception data and safely navigate within a dynamic environ-
ment.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I would like to thank a number of people for contributing to this thesis and my career

at MIT. First and foremost, I would like to thank my advisor, Professor Jonathan

How, for his guidance and support in developing me as a researcher. Jon taught me to

approach research in a methodical way, by focusing on high-level problem definition

and the identification of key challenges, such that solutions to meaningful problems

can be developed. I am grateful to have had an advisor so strongly committed to my

success and growth as a student.

I would also like to thank all of the members of the Aerospace Controls Lab,

whose support and feedback has been integral to my research. I am especially in-

debted to Brandon Luders, with whom I have worked so closely on this project.

Brandon has been constantly available to answer questions, provide feedback, and

inspire new ideas. Without his help, guidance, and support, both personally and pro-

fessionally, this work would not have been possible. I am also grateful to Mark Cutler

for his hardware and ROS expertise, and incredible patience as I learned to integrate

these components. An additional thanks to everyone else who participated in the

crowd-sourced editing of this thesis, especially Trevor Campbell, Jack Quindlen, Rob

Grande, Steven Chen, Aaron Ellertson, Chris Lowe, and Ali Agha.

Finally, I would like to thank my wonderful and supportive family and friends,

whose love and encouragement truly made this thesis possible. To my parents and

sisters, thank you for your unconditional support and for always encouraging me to

reach for my dreams. To my friends from MIT, especially Aaron Koski and Reguli

Granger, you have become like a second family to me. Thank you for being there

through the highs and lows. Getting through the past few years would not have been

possible (or nearly as fun) without you.

This research has been funded by Ford Motor Company, through the Ford-MIT

Alliance. The author also acknowledges Boeing Research & Technology for support of

the test environment in which experiments were conducted.

5

6

Contents

1 Introduction

1.1 Background and Motivation

1.2 Related W ork

1.2.1 Pedestrian Modeling

1.2.2 Pedestrian/Vehicle Modeling . . .

1.3 Outline and Summary of Contributions

2 Preliminaries

2.1 Gaussian Processes

2.2 Motion Patterns and Modeling

2.2.1 Gaussian Process Motion Patterns

2.2.2 Motion Model

2.2.3 Estimation of Future Trajectories

2.3 Batch Learning of Motion Patterns . . .

3 Motion Planning with DPGP

3.1 Problem Statement .

3.2 R R -G P .

3.3 Integration of DPGP .

3.4 Application: Navigation in Structured Environments

4 Changepoint-DPGP

4.1 Problem Statement .

7

15

. 15

. 17

. 17

. 19

. 20

23

. 23

. 24

. 25

. 26

. 27

. 28

31

31

33

34

35

43

43

4.2 Changepoint Detection . 44

4.3 Trajectory Classification . 47

4.4 Trajectory Prediction . 48

4.5 Simulation Results . 50

5 Hardware Setup and Data Acquisition 55

5.1 RAVEN Testbed . 56

5.2 Autonomous Vehicle . 57

5.2.1 Pure-Pursuit Controller . 57

5.3 Dynamic Obstacle Detection . 61

5.3.1 Laser Rangefinders . 61

5.3.2 Euclidean Clustering . 62

5.3.3 Bayesian Nonparametric Mixture Model 63

6 Experimental Results 73

6.1 Implementation . 74

6.2 Static Pedestrians . 76

6.2.1 Setup . 76

6.2.2 Results . 77

6.3 Pedestrian Crosswalk . 79

6.3.1 Setup . 79

6.3.2 Results . 79

6.4 Dynamic Robots with Uncertain Intentions 80

6.4.1 Setup . 80

6.4.2 Baseline Results . 83

6.4.3 Multi-Robot Results . 84

6.4.4 Online Learning Results . 86

6.5 Summary . 89

7 Conclusions 93

7.1 Future Work. 94

8

7.1.1 Gaussian Process Predictions 94

7.1.2 Motion Planner Detection Uncertainty 94

7.1.3 Efficient Detection and Tracking 95

References 96

9

10

List of Figures

1-1 Pedestrian crosswalk scenario, demonstrating uncertainty in intent (green)

and path (blue) . 16

2-1 Trajectory derivates for GP . 27

2-2 Trajectory predictions from the finite motion model 27

2-3 DPGP clustering result given initial set of unlabeled trajectories . . . 28

3-1 Illustration of RR-GP algorithm (Source: [6]) 34

3-2 Intersection behavior models resulting from DPGP clustering 37

3-3 Representative snapshots of integrated DPGP and CC-RRT algorithms,

modified intersection scenario . 38

3-4 Representative snapshots of integrated DPGP and CC-RRT algorithms,

obstacle field example #1 . 40

3-5 Representative snapshots of integrated DPGP and CC-RRT algorithms,

obstacle field example #2 . 41

4-1 Trajectory segmentation after change in intent 49

4-2 Environment setup and pedestrian data for crosswalk experiments . . 51

4-3 Comparative prediction accuracy for baseline case of pedestrian cross-

w alk scenario . 52

4-4 Comparative prediction accuracy, subject to pedestrian change in in-

tentions at tim e = 18 s . 53

4-5 RMS of predictive error, subject to trajectories not observed in training

d ata . 54

11

5-1 Overview of hardware components and corresponding algorithms . . . 56

5-2 RAVEN testbed. 58

5-3 Autonomous rover . 59

5-4 Pure pursuit parameters (Source: [17]) 60

5-5 2D and 3D lidar. 62

5-6 Video camera still (left) and 3D lidar data (right) from Vassar Street 63

5-7 Euclidean clustering results . 64

5-8 Graphical model of the GPUDDPM (Source: [40]) 67

5-9 Results of octree spatial differencing 68

5-10 Dense and down sampled cat (left), man (middle), and horse (right)

point clouds . 69

5-11 Representative classification and tracking results for synthetic point

cloud . 70

5-12 GPUDDPM (colored) and actual (black) centroid positions for syn-

thetic point cloud . 70

5-13 Representative classification and tracking results for pedestrians in

Lobby 7 71

5-14 Tracking results for pedestrians in Lobby 7 71

6-1 Planning and prediction algorithm visualization for static and dynamic

robot scenarios . 75

6-2 Moving rover planning paths around 2 pedestrians 78

6-3 Rover avoiding pedestrian traversing crosswalk 81

6-4 Rover avoiding pedestrian on sidewalk 82

6-5 DPGP clustering of robot behaviors 83

6-6 Moving rover planning paths around 1 dynamic robot 85

6-7 Moving rover planning paths around 2 dynamic robots 88

6-8 Illustrative example of Changepoint-DPGP executing online 90

6-9 Online learning of new behavior . 91

6-10 Prediction accuracy of known and learned behaviors 92

12

List of Tables

5.1 Average error in 3D centroid position for each of the synthetic point

cloud objects . 70

6.1 Summary of hardware experiment videos 77

13

14

Chapter 1

Introduction

1.1 Background and Motivation

Autonomous vehicles operating in complex urban environments must be able to in-

teract safely and intelligently with human drivers and pedestrians. A major challenge

in planning safe trajectories through these environments is the limited ability to ac-

curately anticipate the future trajectories of these and other dynamic agents, as they

move according to a variety of complex factors (e.g., internal state, desires) that are

not directly observable. Due to the inherent structure of urban environments, drivers

and pedestrians tend to exhibit a common set of mobility patterns, which are directly

observable via state estimates.

The challenges are therefore to learn these motion patterns such that they can be

used to predict future trajectories, and to plan safe paths that avoid future collisions

by incorporating these predictions. While existing probabilistic planning frameworks

can readily admit dynamic agents with uncertain future trajectory distributions [6],

these agents typically demonstrate complex motion patterns that make modeling

future motion and quantifying uncertainty difficult.

Consider the pedestrian crosswalk scenario depicted in Figure 1-1. In order to

reliably navigate the crosswalk, the autonomous vehicle must predict both the under-

lying intent of the pedestrian (i.e., continuing along the sidewalk vs. traversing the

crosswalk, as indicated in green) and the possible trajectories corresponding to each

15

Figure 1-1: Pedestrian crosswalk scenario, demonstrating uncertainty in intent (green)

and path (blue)

intent. For example, even if it is somehow known that the pedestrian will cross the

street, his specific future trajectory is still unknown (i.e., it could be one of any of the

paths to the goal indicated in blue). Even with perfect sensing, long-term prediction

algorithms must incorporate both forms of uncertainty to enable safe planning [6, 9].

Pedestrians present particular technical challenges in the generation of long-term

predictions due to their agility and relatively unrestrictive dynamic and inertial con-

straints. Specifically, pedestrians demonstrate (i) many unique behaviors, which may

not have been previously observed, and (ii) instantaneous changes in motion behavior

following changes in intent. The primary objective of this thesis is the development

of a modeling framework that accurately predicts the future behavior of agile agents,

such that an autonomous vehicle can identify safe trajectories that avoid collision at

current and future time steps. Such a framework must be able to learn new behaviors

online and update predictions in the presence of changes in intent, while converging

to the correct intent prediction as more observations are gathered, capabilities not

currently present in existing algorithms.

16

1.2 Related Work

Existing approaches for modeling and predicting the future trajectories of pedestrians

and other dynamic agents can be classified into two categories: those that focus solely

on the pedestrian (Section 1.2.1) and those that model an interaction between the

pedestrian and autonomous vehicle (Section 1.2.2).

1.2.1 Pedestrian Modeling

Pedestrian modeling techniques can be further classified into dynamics- and pattern-

based approaches.

Dynamics-based Approaches

Dynamics-based approaches predict future trajectories by propagating an agent's dy-

namics forward in time from the current state, typically using a continuous Bayes

filter such as the Kalman filter [49]. This approach is particularly popular in target

tracking literature. Examples include the Interacting Multiple Modal Kalman filter

(IMM-KF), which selects a propagation from a bank of continuously-updated Kalman

filters by matching the agent's current mode of operation [35], and the Bayesian Oc-

cupancy filter, which applies a Bayes filter to a four-dimensional occupancy grid

representation of the agent's state space [14]. Though useful for short-term predic-

tions, the performance of these approaches degrades with increasing time horizons

because environmental features (e.g., obstacles, goal points) are not considered.

Pattern-based Approaches

Rather than directly modeling internal features, pattern-based approaches assume

that pedestrians tend to follow typical motion patterns, which can be learned and

used to predict future trajectories. Long-term predictions are therefore conditioned

both on state observations and a library of learned behavior models, rather than

on state observations alone. In practice, knowledge of motion patterns within the

17

environment is seldom available a priori, so a variety of machine learning techniques

are applied to extract motion patterns from available training data.

The most common approaches are based on the Markov property. This set of

approaches include hidden Markov models, in which the hidden state is pedestrian

intent [11, 29, 55]; growing hidden Markov models to allow for online learning [52];

and partially observable Markov decision processes to choose actions based on a dis-

tribution over pedestrian intents [8]. Because the future state prediction depends only

on the current state, these approaches are quick to react to changes in intent. How-

ever, for relatively infrequent changes in intent, the Markov assumption can be overly

restrictive, as it prevents these algorithms from becoming more certain of pedestrian

intent with additional observations.

Gaussian process (GP) approaches have been demonstrated to be well-suited for

modeling pedestrian motion patterns, as they perform well with noisy observations

and have closed-form predictive uncertainty [18, 19, 28, 45]. Additionally, recent

work using GP mixture models enables predictions that account for both intent and

trajectory uncertainty [6]. Both sets of approaches use the entire observed trajectory

in the prediction of future state, such that certainty in demonstrated intent tends

to converge over time. Therefore, when changes in intent occur, these approaches

are much slower to detect a change than Markov-based approaches. Additionally,

existing GP classification approaches are too slow for online learning of previously

unobserved behavior patterns.

The weakness of most of these approaches is that uncertainty in intent is not

typically considered; instead, the maximum likelihood trajectory prediction is used

for motion planning [8]. Bandyopadhyay et al. [8] model a distribution over possi-

ble pedestrian intents using a variant of the Partially Observable Markov Decision

Process (POMDP), but use a simple model for trajectory prediction that assumes

pedestrians approximately follow the shortest path to their goals. Aoude et al. [6]

consider uncertainty in both intent and trajectory, with a GP model for trajectory

prediction; however, predictions are slow to recognize changes in intent and online

learning of new behaviors is not possible.

18

1.2.2 Pedestrian/Vehicle Modeling

The previous section reviews pedestrian modeling approaches that are agnostic of

the vehicle state; this section considers approaches in which an explicit interaction

between the pedestrian and vehicle is modeled. These approaches can be classified

into pursuit evasion and cooperative approaches.

Pursuit-Evasion Approaches

Pursuit-evasion approaches represent a worst-case class of predictions, in which the

dynamic agent is assumed to be actively trying to collide with the autonomous ve-

hicle [32, 37]. The predicted future trajectory of the dynamic agent is therefore the

solution to a differential game, in which the dynamic agent is a pursuer and the au-

tonomous vehicle is an evader [5]. These approaches do provide a lower bound on

safety [30], but lead to inherently conservative and unrealistic solutions in an urban

setting.

Cooperative Approaches

Cooperative approaches are those in which an explicit degree of cooperation between

the dynamic agent and autonomous vehicle is modeled, motivated by navigation in

crowded environments with high pedestrian density. Several cooperative approaches

utilize inverse reinforcement learning (IRL). Ziebart et al. [56] pedestrian trajectories

are obtained from a database via IRL, then the autonomous vehicle navigates such

that the predicted pedestrian trajectory is minimally disrupted; Henry et al. [23] IRL

is applied to generate human-like behaviors for the autonomous vehicle enabling seam-

less integration of the vehicle into crowded human environments; Waugh et al. [54] a

cooperation model is learned from human trajectory data. Trautman et al. [50] use

GPs to model the interaction between dynamic agents and the autonomous vehicle,

encoding the notion of mutual avoidance such that the autonomous vehicle will not

become stuck.

19

1.3 Outline and Summary of Contributions

This thesis proposes a novel changepoint detection and clustering algorithm (Changepoint-

DPGP) which retains the trajectory prediction accuracy of existing GP approaches

while expanding their capabilities. Coupled with offline unsupervised learning of a

Gaussian process mixture model (DPGP) [28], this approach enables quick detection

of changes in intent and online learning of motion patterns not seen in prior training

data. The resulting long-term movement predictions demonstrate improved accuracy

relative to offline learning alone in both intent and trajectory prediction.

These predictions can also be used within a chance-constrained motion planner [34]

to identify probabilistically safe trajectories in real-time. In experimental results, the

proposed algorithm is used to predict the motion of multiple dynamic agents detected

from a variety of onboard and external sensors, enabling an autonomous rover to

robustly navigate dynamic environments.

" Chapter 2 presents preliminaries for pedestrian modeling including Gaussian

processes (GPs), the GP motion model, and the algorithm for batch learning

of motion patterns (DPGP) [28].

" Chapter 3 considers application of a chance-constrained motion planning algo-

rithm (CC-RRT) to several motion planning domains of interest. This chapter

extends existing work, in which motion patterns are manually defined by an ex-

pert [6], by clustering training trajectories into representative motion patterns

using DPGP.

" Chapter 4 proposes the Changepoint-DPGP (CP-DPGP) algorithm for online

changepoint detection and clustering of observed trajectories given a prelimi-

nary set of models learned via DPGP. This algorithm leverages the efficient hy-

pothesis testing framework for changepoint detection and clustering developed

in [21] to enable quick classification and online learning of observed behaviors.

Simulation results demonstrate improved intent and trajectory prediction accu-

racy.

20

" Chapter 5 details the hardware test platform used in real-time experiments,

including the test environment with motion capture cameras for object detec-

tion and projection technology for display of planning and predictions in the

real world. A skid-steer rover with sensing capabilities for obstacle detection

and autonomous navigation is presented, in addition to a pure-pursuit control

algorithm for trajectory following with modifications for skid-steer dynamics.

Two methods for obstacle detection from 2D and 3D lidar are also proposed

and evaluated.

" Chapter 6 contributes the real-time demonstration of the proposed prediction

and probabilistic motion planning algorithms on hardware in dynamic environ-

ments. By embedding predictions of dynamic obstacles in a CC-RRT planner,

an autonomous rover is able to safely navigate around pedestrians, robots, and

other dynamic obstacles, even in the presence of changing intents and new be-

haviors. Obstacles are detected both from motion capture cameras and from

onboard sensors, demonstrating the ability of this approach to be used within

perception-driven planning.

21

22

Chapter 2

Preliminaries

This chapter presents preliminaries for Gaussian processes, modeling of pedestrian

motion patterns, and batch learning of motion patterns.

2.1 Gaussian Processes

This section summarizes relevant definitions and properties related to Gaussian pro-

cesses, obtained from Rasmussen and Williams [451 unless otherwise noted. A Gaus-

sian process (GP) is defined as a collection of random variables, any finite subset

of which has a joint Gaussian distribution with mean p(x) and covariance k(x, x').

Correlation between points is defined by the squared exponential covariance function

k(x, x') = o7 exp - - x)TL(x - x')) + 6U(x, x'), (2.1)

where 6(x, x') = 1 if x = x' and zero otherwise. This choice enforces a high correlation

between the outputs and nearby inputs. Specifically, the matrix L = diag(l) 2 is a

diagonal matrix of positive length-scale parameters 1i which informally represent the

distance between points along each axis of the input space required for function values

to become uncorrelated.

The a,, term represents within-point variation (e.g. due to noisy measurements);

the ratio of o, and cf denotes the relative effects of noise and influences from nearby

23

points. Together with L, these terms represent the set of hyperparameters 0GP. Note

that the covariance function models the correlation between data points, whereas the

hyperparameters are interpreted from the data; therefore, each GP has a unique set

of hyperparamters that can be learned (e.g. [531).

As is common in the GP literature, it is assumed that the GP has a zero mean.

In general, this assumption is not limiting since the posterior estimate of the latent

function is not restricted to zero. The elements of the GP kernel matrix K(X, X) are

defined as Kij = k(xi, xj), and k(X, xi+1) E R' denotes the kernel vector correspond-

ing to the i + 1 th measurement. The joint distribution is given by

yi K(Z, Z) + 2I k(Z, zi+1)

Yi+i % J0) kT(Z, zi+1) k(zi+i, zi+) JJ

The conditional probability can then be calculated as a normal variable with mean

J(i+1) = aTk(X, xi+ 1), (2.3)

where a = [K(X, X) + wnI]-ly are the kernel weights, and covariance

(i+1) = k(xi+l , xi+1) - kT(X, xi+,)[K(X, X) + w2IV]-k(X, xi+1). (2.4)

Due to the addition of the positive definite matrix wnI, the matrix inversion in (2.3)

and (2.4) is well defined.

2.2 Motion Patterns and Modeling

This section details the motion model applied to pedestrian motion, as previously

presented in [6, 28].

24

2.2.1 Gaussian Process Motion Patterns

A trajectory is represented as a set of observed locations in two-dimensional space

(Xi, y!), (x, yi), ... , (, yL), where L' is the total length of the trajectory t' of agent

i. Because it is assumed that trajectories are collected from sensor data, there are no

restrictions on trajectory length or discretization (i.e. trajectories need not be of the

same length, and the time steps between each observation may be irregular).

A motion pattern is defined as a mapping from each location (Xi, y') to a dis-

tribution over trajectory derivatives , , resulting in a velocity flow-field in

x - y space. Because the predicted next position of an agent can be obtained from

its current position and the trajectory derivative at that location, modeling trajecto-

ries is equivalent to modeling trajectory derivatives. This representation enables the

grouping of trajectories with similar velocity field characteristics into representative

motion patterns, regardless of the trajectory length or discretization.

GPs can be used to effectively model motion patterns. The GP serves as a

non-parametric form of interpolation between the discrete trajectory measurements

comprising each motion pattern. Specifically, given an observed (x, y) location, the

GP predicts the trajectory derivatives at that location. Because the space is two-

dimensional, each motion pattern is modeled by a pair of GPs, each mapping (x, y)

location to trajectory derivatives in the x or y direction. Figure 2-1 presents trajec-

tory derivates (blue) sampled at points on a discrete grid for a GP defined by six

pedestrian trajectories (black), demonstrating how the velocity flow field allows for

generalization of predictions to any initial state.

Referring to the discussion of GPs in Section 2.1, the assumption of zero mean

encodes the prior bias that agents are expected to remain stationary in the absence of

additional knowledge (in the form of training trajectories) at a particular location; the

squared exponential covariance function ensures that similar trajectories will result

in similar predictions [28].

GPs generalize well to regions of sparse data while avoiding the problem of over-

fitting in regions of dense data. Additionally, GP models are robust to unaligned,

25

noisy measurements and are well-suited for modeling the continuous paths underlying

potentially non-uniform time-series samples of pedestrian locations [45]. Although

standard GPs have significant computational cost, efficient methods for online use

have been developed (e.g. [15, 6]).

2.2.2 Motion Model

The motion model is defined as a finite mixture of GP motion patterns weighted

by their probability. The finite mixture model defines a distribution over the ith

observed trajectory t

M

j=1

where bj is the jth motion pattern, p(bj) is its prior probability of the jth motion

pattern, and p(tlbj) is the probability of trajectory t given bj. The number of motion

patterns M can be learned offline via an automated clustering process [28], and in

this thesis, is incremented as new behavior patterns are identified online.

The posterior probability of bj given a target trajectory t' is described by

p (bj It') c p (tJ bj)p (b), (2.6)

where the distribution p(t'lbj) is

p(tIlbj) = p x y .t, {tk z j}, (2.7)
- ~(At §i{:t, Y:t{kI ::::}, J't=O

= p y tk - Z - GP

where Zk indicates the motion pattern to which trajectory tk is assigned, {tk z - I

is the set of all trajectories assigned to motion pattern j, and OGP, 0 fG are the hy-

perpameters of the GP defining motion pattern bj.

The prior p(bj) is initialized to be proportional to the number of trajectories in

26

motion pattern j, relative to the total number of trajectories in all motion patterns.

It is updated after each prediction with the previous posterior probability.

12 P 6

10-

- L2 4 8 10 12 14 16

Figure 2-1: Trajectory derivates for Figure 2-2: Trajectory predictions

GP from the finite motion model

2.2.3 Estimation of Future Trajectories

Future pedestrian trajectories are predicted for each motion pattern using the ap-

proach of [16, 20]. This approach provides a fast, analytic approximation of the GP

output given a distribution over the input. In this application, the distribution over

the input corresponds to the uncertain position of the agent; specifically, the uncer-

tainty distribution from a prediction at time t - 1 is incorporated at time t to estimate

the agent's position at t + 1. Representative predictions are presented in Figure 2-2,

where points are mean predicted position, ellipses are propagated uncertainty, and a

darker shade of blue indicates higher likelihood.

This approach allows for an analytic prediction of the future position K time

steps into the future that is more efficient that the sampling strategy used by Aoude

et al. [6], reducing the number of queries to the GP from N -K to K where N is the

number of trajectories in the GP motion pattern [28].

27

2.50.

0-~ 0 _

-0.5- -0.5

-2- -1

.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -. 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x x

(a) Unlabeled trajectories (b) Clustered trajectories with corresponding GP
flow fields, where color indicates cluster assign-

ment

Figure 2-3: DPGP clustering result given initial set of unlabeled trajectories

2.3 Batch Learning of Motion Patterns

It is expected that observed pedestrian trajectories will demonstrate a variety of

qualitatively different behaviors. These behavior motion patterns are learned from

an input set of unlabeled trajectories by DPGP, a Bayesian nonparametric clustering

algorithm that automatically determines the most likely number of clusters without

a priori information [28]. This section reviews the DPGP algorithm, which is used to

cluster observed pedestrian trajectories into representative motion patterns in batch.

The DPGP algorithm models motion patterns as Gaussian processes, as described

in Section 2.2.1. The motion model is a mixture of motion patterns weighted by

Dirichlet process (DP) mixture weights. The DP is a distribution of discrete dis-

tributions in which the number of motion patterns is potentially unbounded. The

concentration parameter a controls the probability of new cluster formation, such

that smaller values of a result in fewer clusters. Intuitively, the parameter a enforces

the notion that there are a few motion patterns that agents tend to exhibit; therefore,

trajectories are more likely to fit existing clusters than to form new ones. In practice,

a can be considered as an additional hyperparameter to be learned from the data.

The prior probability that trajectory t' has an assignment zi to an existing motion

28

pattern bj is

p(zi = jIzi, a) = N 1+a (2.8)

where z-i refers to the motion pattern assignments for the remaining trajectories,

nm is the number of trajectories currently assigned to bj, and N is the total number

of trajectories. The probability that trajectory t' will be assigned to a new motion

pattern is

p(Zi = M + 1Izi, a) N-i (2.9)
N -1+a

where M is the total number of motion patterns.

The probability of cluster assignment for trajectory t is obtained from the DP

prior (Equations 2.8 and 2.9) and probability of motion pattern bj given Li (Equa-

tion 2.7). Specifically, the probability that trajectory Li will be assigned to an existing

motion pattern is

p(Z, =jti, oz, OGP, OG,) oC) P(ti l bj) nj1+a ,(.0

and the probability that trajectory Li will be assigned to a new motion pattern is

p(Zi = M + 1Iti, a) OC p(tiJbj)dOGdOG (2.11)

Because exact inference over the space of GPs and DPs is intractable, samples

are drawn from this posterior distribution using Gibbs sampling techniques. At each

iteration, the DP hyperparameter a is resampled and the GP hyperparameters for

the j behavior patterns OGP, O/f are set to their maximum likelihood values given the

current trajectory clustering. For each trajectory, the assignment zi is drawn from

Equations 2.10 and 2.11.

Figure 2-3 demonstrates a representative clustering produced by the DPGP algo-

rithin given unlabeled trajectories. Full details of the DPGP algorithm are presented

29

in [28].

30

Chapter 3

Motion Planning with DPGP

This chapter considers the integration of the chance-constrained rapidly exploring ran-

dom tree (CC-RRT) motion planning algorithm with DPGP. This is a direct extension

of the work in [6], in which an expert manually clusters trajectories into represen-

tative mobility patterns. By incorporating DPGP, this motion planning framework

becomes much more accessible, as mobility patterns can be learned from the observed

data rather than manually defined.

First, the CC-RRT algorithm developed in [34] is presented (Section 3.1). As

shown, CC-RRT readily admits the inclusion of dynamic agents while maintaining

probabilistic feasibility by representing future trajectories as a time-parameterized

Gaussian mixture model. A sampling-based algorithm for reachability refinement of

GPs (RR-GP) developed in [6] is presented in Section 3.2. This algorithm allows for

the refinement of sparse GP predictions, improving predictive accuracy. DPGP is

combined with CC-RRT and RRGP (Section 3.3) to form a motion planning frame-

work that is applied to the problem of navigation through structured environments

to enable an autonomous vehicle to safely avoid moving threats (Section 3.4).

3.1 Problem Statement

This section presents the motion planning problem for dynamic obstacles with un-

certain future positions; further details are found in [6]. Consider the noisy LTI

31

discrete-time dynamics

Xt+ = f(xtut, wt), (3.1)

Wt ~A"(0, Pw), (3.2)

where xt E R'x is the state vector, ut E R"u is the input vector, and wt C Rw is

an i.i.d. process noise uncertainty acting on the system, unknown at current and

future time steps but with the known unbounded probability distribution (3.2). Here

v(a, Pa) represents a Gaussian random variable with mean a and covariance Pa.

The system is additionally subject to the state and input constraints

xt E Xt - X\X1t\ - \Xnt , (3.3)

Ut C U, (3.4)

where x, x 1t,...C, Xnt c R n are convex polytopes, U c Rnu, and the \ operator

denotes relative complement (set difference). The sets X and U define a set of time-

invariant convex constraints acting on the state and input, respectively. The sets

Xt,... , X,,t represent n, convex, polytopic obstacles to be avoided. The time de-

pendence of X in (3.3) allows the inclusion of both static and dynamic obstacles,

allowing the representation of dynamic pedestrians in this work. For each obstacle,

the shape and orientation are assumed to be known, while the placement is uncertain.

This is represented as

X±t = XP + Cft, V E Zln, (3.5)

Cjt ~ Ar(2t, Pct), V j E Zl,n(,, (3.6)

where the + operator denotes set translation and Za,b represents the set of integers

between a and b inclusive. In this model, for the jth obstacle, XO c Rnx is a con-

vex polytope of known, fixed shape and orientation, while cjt C Rfx represents an

uncertain and/or time-varying translation.

32

A dynamic agent with uncertain future position is assumed to follow one of M

possible behaviors, as determined by the DPGP algorithm. As described in Sec-

tion 2.2.2, the position distribution incorporates uncertainty in future intent and tra-

jectory given intent, with future trajectories computed as described in Section 2.2.3.

At each timestep, the probability of collision with dynamic agent j can therefore be

expressed as a weighted sum of the collision probabilities under each behavior. The

construction maintains all existing probabilistic guarantees by treating the trajectory

distribution associated with each behavior as a separate time-parameterized obstacle

with the resulting risk scaled by the intent likelihood of that behavior [61.

The primary objective of the motion planning problem is to reach some goal region

Xgoai C R'< while ensuring the input constraints (3.4) are satisfied, while the state

constraints (3.3) are probabilistically satisfied. This is represented via path-wise and

time-step-wise chance constraints; respectively,

P (Axt E Xt > 6P, P (Xt C Xt) > 6S, V t, (3.7)

where P(Q) denotes probability, A represents a conjunction over the indexed con-

straints, and 6,, 6P E [0.5, 11.

3.2 RR-GP

The RR-GP algorithm learns motion pattern models by combining Gaussian process

(GP) predictions with a sampling-based reachability refinement, which conditions

the GP predictions to enforce dynamic and environmental constraints [6]. By doing

so, the accuracy of the behavior and trajectory predictions is significantly increased

without having to increase the GP resolution. This algorithm can therefore be used to

refine sparse GP predictions, resulting in decreased computational load as compared

to dense GP predictions of comparable accuracy.

Figure 3-1 provides a visual illustration of the RR-GP approach from [6]. Gaussian

processes are learned for each behavior from observations of agents demonstrating

33

2At

At

Root 'i

Figure 3-1: Illustration of RR-GP algorithm (Source: [61)

that behavior, which are used as labeled training trajectories. Samples from those

GPs (orange dots) are taken at fixed-timestep intervals for each motion. A tree

of trajectories (brown) is then generated using those samples, taking into account

the actual size of the dynamic obstacle (green circle) and environmental obstacles

it is expected to avoid (gray). Since all trajectories remaining in the tree must be

dynamically feasible and satisfy all environmental constraints, the remaining samples

provide a conditioned estimate of the dynamic obstacle predictions at each timestep.

3.3 Integration of DPGP

The integration of the DPGP algorithm into this framework is straightforward. Given

a set of training trajectories, the DPGP algorithm clusters the trajectories into M

behavior patterns and learns a GP representation for each behavior pattern. The

number of behavior patterns M does not need to be pre-specified, and is instead

learned from the data itself. The addition of DPGP thus automates the process of

determining the motion model for each environment, improving the applicability of

the framework in [6] to new environments.

34

After the motion model has been determined, the algorithm steps are as follows.

Sparse (1 sec) predictive position distributions are generated for the learned motion

model as described in Section 2.2.3. Recall that these position distributions represent

uncertainty in both intent and path. The trajectory distribution for each intent is

refined by the RR-GP algorithm to impose dynamic and environmental constraints.

The resulting behavior distribution is modeled as a time-parameterized obstacle with

risk scaled by the intent prediction of that behavior, enabling CC-RRT to generate

safe trajectories to avoid the current and future predicted positions of the dynamic

agent, as described previously (Section 3.1).

3.4 Application: Navigation in Structured Envi-

ronments

Several examples are now provided demonstrating the ability of the CC-RRT planner

to safely avoid a dynamic obstacle via DPGP predictions. In these examples, the

DPGP predictions are enhanced with the reachability-based refinement of RR-GP [61.

The autonomous vehicle is modeled as a double integrator,

xt+1 1 0 dt 0 x dt
2 0

Yt+1 0 1 0 dt Yt 0 U + W1
+ 2 Zt t

V + 0 0 1 0 V 1 0 U Y +]
V+ 1 0 0 0 1 Vt 0 1

where dt 0.1s, subject to avoidance constraints X (including velocity bounds) and

input constraints

U {(ux, uy) I Juxl 4, uy| < 4}.

To emphasize the impact of the dynamic obstacle's uncertainty, the host vehicle's

own dynamics are assumed deterministic: wx wy 0. Trajectories are simulated

35

and executed in closed-loop via the controller

Ux = -1.5(x - rx) -3(ov - rv),

UY = -1.5(yt- rY) -3(o - r "Y),

where (rx, ry) is the reference position and (rvx, rv") is the reference velocity; the

reference rt is moved continuously between waypoints at a fixed speed of 0.35 m/s.

The speed of the target vehicle is capped at 0.4 m/s.

The dynamic agent trajectories are pre-generated for each behavior by having a

human operator manually drive a simulated vehicle through the environment via a

wireless joystick, tuned to emulate traditional, nonlinear control of an automobile.

Ten trajectories are collected for each behavior pattern at 50 Hz. Five trajectories

for each behavior are used by DPGP to train the motion model (Figure 3-2); the

remaining trajectories are randomly sampled to select the dynamic agent trajectory.

There are four possible behaviors for the target vehicle as soon as it reaches the

intersection: (a) left turn, (b) left turn after stopping for 1 s, (c) straight, and (d)

straight after stopping for 1 s.

The first scenario is the intersection scenario presented in Figure 3-3. The au-

tonomous vehicle's path history and current path are in orange, while the vehicle

itself is represented by a large orange circle. The tree and planned path are for

the most part denoted in green; however, they are shaded by risk such that riskier

nodes/branches are more red. The autonomous vehicle's objective is to reach the

goal position (green circle) while avoiding all static obstacles (black) and the dynamic

target vehicle (magenta diamond). Note that the lane boundaries are represented as

static obstacles to enforce realistic constraints on the vehicle. The blue paths indicate

the paths predicted by the RR-GP algorithm for each possible behavior, including 2u-

uncertainty ellipses; more likely paths are indicated with a brighter shade of blue.

Initially, the planner gives the autonomous vehicle a path to have it cross the

intersection (Figure 3-3a). However, as the target vehicle approaches the intersection

(Figure 3-3b) and its possible behaviors become distinct, the planner curtails the host

36

3- 3-

2- 2-

-2 .- 2__ _ _ _ _ _ _ _ _ _ _ _

- 0 2 4 6.-2 0 2 46

(a) Straight (b) Straight stop

.... I..
-1t.,.

------------ ---------------. It,,---- -- ----.-

-2 -2
-2 0 2 4 6 -2 0 2 4 6

x x

(c) Turn (d) Turn stop

Figure 3-2: Intersection behavior models resulting from DPGP clustering

vehicle's path to stop at the intersection entry. The final node in the path places the

autonomous vehicle too close to both the lane boundary constraint and predictive

distribution, so it is removed (Figure 3-3c). As the intent likelihood of the target

vehicle converges, the autonomous vehicle plans a path through the intersection,

accounting for the risk introduced by the uncertainty in future position of the target

vehicle (Figures 3-3d and 3-3e). Once it is clear that the target vehicle is turning left,

the planner notes that the intersection crossing has relatively little risk (Figure 3-3f)

and the autonomous vehicle follows a straight trajectory to eventually reach the goal.

Figure 3-4 and 3-5 give two examples for the obstacle field scenario, in which the

host vehicle is moving left-to-right while avoiding a dynamic obstacle moving in the

opposite direction. The dynamic obstacle has six possible behaviors, corresponding

to which of the three corridors it traverses in the central passage, and the two possible

37

(b) t = 4 seconds

(c) t = 12 seconds

(e) t = 24 seconds

(d) t = 20 seconds

(f) t = 52 seconds

Figure 3-3: Representative snapshots of integrated DPGP and CC-RRT algorithms,

modified intersection scenario

38

(a) t = 0 seconds

to which of the three corridors it traverses in the central passage, and the two possible

operating speeds of the agent (slow and fast).

In Figure 3-4, the CC-RRT planner quickly finds a path all the way to the goal

before the obstacle has begun to move (Figure 3-4a). However, as the dynamic

obstacle begins moving, the DPGP predictions quickly detect that the obstacle is

planning to traverse the bottom corridor, curtailing the host vehicle's planned safe

path (Figure 3-4b). However, the planner quickly finds an alternate route through

the central corridor (Figure 3-4c); though this path overlaps with several possible

behaviors, the low likelihood of those behaviors (indicated by the very light blue

shading in Figure 3-4c results in a risk of collision below the necessary threshhold.

As the host vehicle begins executing this path and the DPGP predictions become

more confident, the path is refined to reach the goal more quickly (Figure 3-4d). In

this case, the planner path for the host vehicle overlaps with the target vehicle's most

likely path, and comes close to the target vehicle's current location. However, because

the prediction model anticipates that the target vehicle will have continued moving

left to the central corridor by the time the host vehicle arrives, the path is known to

be safe. Indeed, the host vehicle is able to continue executing this path to reach the

goal safely (Figures 3-4e and 3-4f). The second example proceeds in a similar manner

(Figure 3-5).

39

F

(a) (b)

(c) (d)

-i|

(e) (f)

'igure 3-4: Representative snapshots of integrated DPGP and CC-RRT algorithms,

obstacle field example #1

40

(a) (b)

(c) (d)

(e) (f)

Figure 3-5: Representative snapshots of integrated DPGP and CC-RRT algorithms,
obstacle field example #2

41

42

Chapter 4

Changepoint-DPGP

This chapter presents an efficient trajectory classification and prediction algorithm

that has been developed to enable quick detection of changes in intent and online

learning of new behaviors not previously observed in training data, thereby improv-

ing predictive accuracy of pedestrians within the environment. The key idea is to

employ a novel changepoint detection algorithm [21] for online classification of tra-

jectory segments, decoupling classification and prediction. The resulting approach,

Changepoint-DPGP (CP-DPGP), retains the trajectory prediction accuracy of exist-

ing GP approaches while expanding their capabilities.

This chapter begins with a problem statement, which motivates and defines the

objective of the CP-DPGP algorithm (Section 4.1). The key components of the al-

gorithm, namely changepoint detection (Section 4.2), classification (Section 4.3), and

trajectory prediction, are presented next (Section 4.4). Finally, a demonstrative sce-

nario using pedestrian trajectories collected from a 3D lidar illustrates the advantages

of the CP-DPGP algorithm by comparing it to two existing trajectory prediction al-

gorithms (Section 4.5).

4.1 Problem Statement

The focus of this work is the accurate prediction of the future location of a moving

agent within a specific environment. It is assumed that the agent moves according to

43

both internal state and environmental features, such that observed trajectories are a

representative of both. As such, observed trajectories can be classified into common

mobility patterns defined by environmental features (e.g. obstacles, corridors, goal

locations), with outliers representative of the internal state of individual agents. Be-

cause the environment may change between the training and testing periods and new

behaviors may be exhibited online, it is necessary that this set of mobility patterns

be updated online to reflect current observations.

The objective is therefore to calculate the future position distribution of agent i

for K time steps into the future given this common set of mobility patterns

Mt

P(Xt+K, Yt+K XO:t, Yo:t) = P(Xt+K, Yt+KIXt, yt, bj),p(bj Ixo:t, YO:t) (4.1)
position distribution given b3 bj probability

where Mt is the number of learned motion patterns bj at time t.

The focus of this work is the prediction of the future position distribution of an

agent i moving according to a set of motion patterns. Future trajectories of the agent

are estimated given the Mt learned motion patterns at time t (bi, ..., bMt), with priors

p(bi), ... p(bMt), where new motion patterns are added as they are learned online.

4.2 Changepoint Detection

To effectively anticipate the motion of pedestrians, a framework is proposed to per-

form online classification of observed trajectories, in addition to learning common

pedestrian trajectories from batch data. For further details, see Grande [21]. Because

agile dynamic agents such as pedestrians may exhibit new behaviors or mid-trajectory

changes in intent, this problem is framed in the context of changepoint detection. Pre-

vious work on changepoint detection includes algorithms such as CUSUM [10], the

generalized likelihood test (GLR) [10], and the Bayesian online changepoint detection

(BOCPD) algorithm [2].

This work utilizes a variation of the generalized likelihood test (GLR) [10] to per-

form changepoint detection. The basic GLR algorithm detects changes by comparing

44

a windowed subset of data to a null hypothesis. If the maximum likelihood statis-

tics of the windowed subset (i.e. mean and standard deviation) differ from the null

hypothesis significantly, the algorithm returns that a changepoint has occurred [21].

The changepoint detection algorithm is given in Algorithm 1. At each time step,

given Gaussian process GP, the algorithm creates a new GP (GPs) with the same hy-

perparameters, but using a windowed data subset S of size ms (lines 2-4). Although

ms is domain specific, the algorithm is fairly robust to its selection; ms ~ 10 - 20

works well for most applications.

The algorithm then calculates the joint likelihood of the set having been generated

from the current GP model (the null hypothesis HO) and the new GPs (H 1). At each

step, the normalized log-likelihood ratio test (LRT) is computed as

L(y) = -(log P(S | H1) - log P(S I Ho)). (4.2)
m,

For a GP, the log likelihood of a subset of points can be evaluated in closed form as

1
log P(y I x, 0) = 2(y_ 1_(1-1 (y _ P(x)) - log I EX 11/2 + C, (4.3)2 X

where [p(x) is the mean prediction of the GP and

Exx = K(x, x) + wI - K(X, x)T(K(X, X) +w1 1K(X, x) (4.4)

is the predictive variance of the GP plus the measurement noise. The first term of the

log-likelihood accounts for the deviation of points from the mean, while the second

accounts for the relative certainty (variance) in the prediction.

Algorithm 1 uses the LRT to determine if the maximum likelihood statistics (mean

and variance) of GPs differ significantly from the null hypothesis, indicating that

the points in S are more unlikely to have been generated from the model GP. In

particular, the average over the last m LRT values (line 6) is compared to the nominal

LRT values seen up until this point (line 7). If the difference of these two values

exceeds some value 1, the algorithm returns false, indicating that this generating

45

Algorithm 1 Changepoint Detection [21]

1: Input: Set of points S, Working model GP,

2: 11 = logp(S I GP)
3: Create new GP GPs from S
4: l2 =log p(SIGPs)
5: Calculate LRT Li(y) = S (12 - l)
6: Calculate average of last m LRT:

Lm =Z m L(y)
7: Calculate average of LRT after changepoint:

Ls = _ _;l7 L3 (y)
8: i = i + 1
9: return Lm - Lss > T

model does not fit the data.

The value q can be determined based on the probability of false alarms and max-

imum allowed error [21]. The LRT values tend towards the KL-divergence of the

distributions D(HollH1). As a designer, one can then decide a maximal error that

is acceptable in the model. For the case of two GPs with different means, the KL

divergence can be determined in closed form [42]. Roughly, the KL-Divergence be-

tween two identical distributions located k standard deviations away from each other

is given by 1k. So, for example, to detect new models that are two standard devia-

tions away from the current model, q = -(2) ± 6 should be chosen, where 6 < 1 is

some slack factor to account for the fact M may not be large.

The LRT algorithm is quite robust in practice, based on the following intuition.

If the points in S are anomalous simply because of output noise, then the new GP

model created from these points will on average be similar to the current model. Ad-

ditionally, the joint likelihood given the new model will not be substantially different

from that of the current model. However, if the points are anomalous because they

are drawn from a new process, then the resulting GP model will on average be sub-

stantially different from the current model, yielding a higher joint likelihood of these

points. Lastly, instead of making a decision on a single LRT, the last m LRT's are

averaged and compared to the average LRT values seen since the last changepoint. In

practice, the LRT may have some offset value due to modeling error. Looking at the

difference between the last m values and the average LRT values makes the algorithm

46

robust to this problem.

4.3 Trajectory Classification

The previous section discussed changepoint detection, which must be distinguished

from the detection of changes in intent. A changepoint refers to the case in which

a trajectory segment fits better in a new model than the existing model to which

it is being compared; a change in intent refers to a change in the classification of

the trajectory segment (i.e. the agent was exhibiting one behavior, then switched to

another existing behavior or a new behavior entirely). The two problems are therefore

related but distinct, as changepoint detection is necessary to determine changes in

intent.

The Changepoint-DPGP algorithm is detailed in Algorithm 2. The algorithm

begins with an initial set of learned behavior motion models gP, obtained from

running the DPGP algorithm on batch training data. While the changepoint detection

algorithm does not require any initial motion models [21], in this application it is

desirable to begin with these DPGP clusters as they represent an optimal global

classification of the training trajectories. As new data points are received, they are

added to a sliding window S of length m,. After creating a new model GPS from the

points in S, the LRT is computed for GPs and for each model GP in the current

model set gP. This process determines if the points in S are statistically similar to

those in the model GP, subject to the predetermined threshold r.

In order to detect changes in intent, the algorithm maintains the set of models

Mt that the points in S fit into at each time step, representative of the current

classification of those points. Because the behavior patterns may overlap (e.g. the

blue/green and red/teal behavior patterns in Fig. 4-2b), a single classification cannot

be guaranteed, necessitating the maintenance of a model set. Changes in intent occur

when the classification changes, i.e. when the current classification M and previous

classification MA1 share no common models. Additionally, the current classification

is reset at each timestep to be the intersection of the current and previous classification

47

Algorithm 2 Changepoint-DPGP

1: Input: Set of previous behavior models gP = {GP 1 , ... , GPN}
2: while Input/Output (xt, yt) available do
3: Add (xt, yt) to S

4: Call Algorithm 3
5: if M 1 n Mt = 0 then {Change in intent detected}
6: Reinitialize priors
7: end if
8: if Mt = 0 then {New behavior detected}
9: Initialize new model GP,

10: else
11: Predict according to Sect. 2.2
12: end if
13: if Mt / 0 then
14: Mt = Mt_1 n Mt
15: end if
16: end while

17: if GP, is initialized then
18: Add (XO:T, YO:T) to GPn
19: Add GPn to set of current models gP
20: end if

sets, assuming that the current classification is not empty.

To illustrate this method, consider a pedestrian crossing a crosswalk by following

the green behavior pattern in Fig. 4-2b. Until the pedestrian reaches the crosswalk,

Mt = f{B, G}. Once the pedestrian enters the crosswalk, their classification becomes

Mt = {G}. A change in intent should not be detected at this stage, as the pedestrian

is committing to the green behavior rather than selecting a new behavior. However, if

the pedestrian switched to the teal behavior after entering the crosswalk, this would

represent a change in intent. The classification for three successive timesteps would

become Mt- 2 = {G}, Mt_1 = {G, T}, Mt = {T} and no change in intent would be

detected if T7 was not reset.

4.4 Trajectory Prediction

The predictive component of this algorithm is decoupled from classification. In gen-

eral, the future state distribution is computed as described in Section 2.2.3. However,

48

Algorithm 3 Compare to Current Models

1: Input: Set of current behavior models gP {GP 1 , ... , GPN}

2: Initialize representative model set M

3: for Each GP E 9P do
4: Call Algorithm 1 with inputs S, GP
5: if Algorithm 1 returns true then
6: Add GP to M
7: end if
8: end for

0_ 0

-4 -4

-5 -5

-6 -6

-2 0 1 2 -2 0 1 2

(a) DPGP trajectory clustering (b) CP-DPGP trajectory clustering

Figure 4-1: Trajectory segmentation after change in intent

if at any point Mt is empty, this indicates that the current model set gP is not repre-

sentative for the points in S, so a new behavior must be created. The algorithm waits

until the entire new trajectory has been observed to create the new behavior pattern,

generating predictions according to a simple velocity propagation model until the

model set becomes representative. In practice, any reasonable predictive model can

be used at this stage, as no information on the anomalous agent's current behavior is

available.

If the online data contains trajectories with changes in intent, the predictive dis-

tribution described in Section 2.2.3 will be slow to recognize it, as the prior p(bj)

relies on the entire observed trajectory. Therefore, if a change in intent is detected,

the prior probabilities are reinitialized. Likewise, if the training data contains tra-

jectories with changes in intent, DPGP will learn unique behavior patterns for each

49

trajectory containing such changes, as the entire trajectory is considered for classifi-

cation. To obtain a representative set of behavior patterns, the Changepoint-DPGP

algorithm can be used offline to reclassify these trajectories by segmenting them at

the location of the change in intent. To do so, Algorithm 2 is first called with 9P

containing those behavior patterns with more than kmin trajectories and data (xt, yt)

from trajectories in the remaining behavior patterns not in g. At line 6 and at the

end of Algorithm 2, the trajectory segment seen since the last changepoint is classi-

fied into the most likely behavior pattern. The intuition behind these modifications is

that changes in intent are agent-specific; therefore, behavior patterns containing these

trajectories are not representative of global behaviors caused by the environment.

4.5 Simulation Results

This section presents empirical results which evaluate Changepoint-DPGP on the

crosswalk scenario in Fig. 4-2, in which pedestrians have four possible behaviors (red)

corresponding to which sidewalk they are traversing, and whether they choose to

use the crosswalk. The prediction results demonstrate that prior observations of

pedestrian motion can be used to learn accurate behavior models. These models are

applied to real-time observations to make accurate, long-term predictions of complex

motion behavior, beyond what could be predicted from the observations themselves

(e.g., bearing and speed).

Three trajectory prediction algorithms are evaluated: Changepoint-DPGP, DPGP,

and a goal-directed approach using hidden Markov models (HMM). The hidden states

of the HMM are pedestrian goals, learned via Bayesian nonparametric inverse rein-

forcement learning with an approximation to the action likelihood specifying that

pedestrians head directly towards goal locations [36]. Qualitatively, the learned goal

locations are the ends of each of the training clusters. This motion model assumes that

each pedestrian heads directly toward their intended goal at some preferred speed with

an uncertainty distribution over heading and velocity, as used by [22, 8, 25] among

others.

50

(a) Environment for crosswalk experiments, where (b) Training pedestrian trajectories col-
pedestrian follows one of four possible behaviors (red) lected by Velodyne lidar and resulting
and Velodyne location is marked with green arrow DPGP velocity flow fields for each behav-

ior (separated by color)

Figure 4-2: Environment setup and pedestrian data for crosswalk experiments

Unless otherwise noted, all three algorithms were trained on five trajectories from

each of the four behavior patterns in Fig. 4-2a. Each trajectory was collected by

taking observations of an actual pedestrian traversing the environment, as observed

by a Velodyne HDL-32E lidar at the location marked in green in Fig. 4-2a. Pedes-

trians are identified from the raw Velodyne returns using the algorithm described in

Section 5.3.2. Figure 4-2b shows the training trajectories used in this experiment.

Figure 4-3 considers the baseline case in which (i) neither the training nor testing

data exhibits any mid-trajectory changes in intent; and (ii) the testing data does not

exhibit any behaviors unseen in the training data. In these results, each algorithm

is tested on five trajectories from each of the four behavior patterns (Figure 4-2a).

Figure 4-3a displays the probability each algorithm is assigned to the correct motion

pattern given the observation trajectory, averaged across all 20 trials as a function

of time elapsed, with error bars representing standard deviation. This metric mea-

sures the ability of each algorithm to identify the correct pedestrian intentions. The

likelihoods of each motion pattern serve as the intent prediction for the GP-based

approaches, with the prior probability (time = 0) based on the fraction of training

trajectories for each motion pattern. The most likely state distribution, calculated

via the forward algorithm and Markov chain propagation, describes the predicted in-

tent for the HMM approach. Figure 4-3b displays the root mean square (RMS) error

51

I- CP-DPGP .. ".DPGP - - HMM

CP-DPGP DPGP - HMM

E 1.5-

0.8

E 0.60

o 0.5

00 L

0 5 10 15 20 0 5 10 15 20
Time (sec) Time (sec)

(a) Probability of correct motion pattern (b) RMS predictive error

Figure 4-3: Comparative prediction accuracy for baseline case of pedestrian crosswalk

scenario

between the true pedestrian position and the mean predicted position (Section 2.2),

averaged across all 20 trials as a function of time elapsed. This metric captures overall

prediction accuracy subject to both intent and path uncertainty.

The Markov property prevents the HMM approach from converging to the correct

motion pattern, as the observations of current state alone are not sufficient in the case

of noisy observations (Figure 4-3a). As a result, its RMS error tends to increase over

time. On the other hand, both GP approaches exhibit convergence in the probability

of the correct motion pattern as new observations are made, which improves RMS

predictive error as well. The performance of Changepoint-DPGP and DPGP is very

similar, as is expected in the absence of changes in intent and new behaviors.

Next, each algorithm is tested on five trajectories which demonstrate a change

in pedestrian intentions. In these trajectories, the pedestrian begins to traverse the

crosswalk, but reverses direction after 18 seconds. Figure 4-4 shows the evolution of

the correct likelihood and RMS error for each algorithm in this scenario, averaged

across the trajectories. Both DPGP and Changepoint-DPGP converge on the correct

behavior prior to the changepoint (Fig. 4-4a), while HMM performance is relatively

unchanged compared to Figure 4-3b. As the change in pedestrian intention takes

place, both GP-based algorithms initially drop to zero probability, as expected. How-

52

I-CP-DPGP """.DPGP -- HMMI
CP-DPGP .".. DPGP - - HMM

1 1.5

0.8
a J

E0.6 -
U)

0.4 0.5
o 1~, I0.5

... -..-
-

0 5 10 15 20 25 0 5 10 15 20 25
Time (sec) Time (sec)

(a) Probability of correct motion pattern (b) RMS predictive error

Figure 4-4: Comparative prediction accuracy, subject to pedestrian change in inten-

tions at time = 18 s

ever, DPGP accuracy remains poor beyond the changepoint, leading to the largest

RMS errors of all algorithms (Figure 4-4b). Because DPGP relies on the entire ob-

servation history, its predictions are slow to recognize the change, leading to worse

performance. On the other hand, Changepoint-DPGP is able to selectively update

the observation history considered in the likelihood computation given changes in

intent, enabling it to achieve better accuracy than DPGP after the changepoint (Fig-

ure 4-4a). As a result, Changepoint-DPGP yields the lowest average overall RMS

error of all algorithms tested (Figure 4-4b).

Changepoint-DPGP also demonstrates the best relative prediction accuracy when

considering anomalous/new behavior patterns. In this scenario, algorithms are trained

on only three of the four possible behaviors (red, blue, green in Figure 4-2b), then

tested on five trajectories from the fourth behavior (teal in Figure 4-2b). The teal

behavior deviates from the previously-observed red behavior approximately 9 sec-

onds into the trajectory. Figure 4-5 shows the evolution of the RMS error for each

algorithm in this scenario, for the cases when the first predictions of the newly ob-

served trajectory are included and excluded. (Recall that learning occurs at the

end of the newly observed trajectory.) At 9 seconds into the experiment, when the

pedestrian behavior begins to deviate from anything observed in training data, the

53

CP-DPGP """"DPGP -- HMM -CP-DPGP DPGP -- HMM

1.5- .5

PI I'S

Y CD

05 0

0 5 10 15 0 5 10 15
Time (sec) Time (sec)

(a) Predictions for first unknown trajectory in-(b) Predictions for first unknown trajectory ex-

cluded cluded

Figure 4-5: RMS of predictive error, subject to trajectories not observed in training

data

prediction of both HMM and DPGP begins to steadily increase. On the other hand,

Changepoint-DPGP successfully identifies the new behavior and reclassifies subse-

quent trajectories. Thus it exhibits behavior similar to the baseline case, in which

predictive error decreases as the probability of the correct motion pattern converges.

Overall, Changepoint-DPGP predictive error is reduced by 62% compared to DPGP.

This demonstrates the strength of Changepoint-DPGP in cases where the training

data is not representative of the observed motion patterns, e.g. due to short periods

of data collection or environmental changes.

54

Chapter 5

Hardware Setup and Data

Acquisition

The work presented thus far has been motivated by autonomous navigation in urban

environments. Such environments are highly dynamic, often crowded with various

agents (e.g. pedestrians, other vehicles), and not presently equipped with sensors ca-

pable of providing state information for the autonomous vehicle or other agents. This

chapter presents algorithms and sensing infrastructure for control of an autonomous

vehicle, in addition to onboard and offboard detection and tracking of other agents,

to enable perception-driven navigation. The unifying theme of the hardware compo-

nents and algorithms presented is that they provide the means for the planning and

prediction algorithms discussed in Chapters 3 and 4 to be implemented in the real

world.

First, the testbed environment, capable of providing high-fidelity state estimates

and real-time display of planning and prediction information, is presented (Sec-

tion 5.1). Development and control of a small-scale autonomous vehicle is then dis-

cussed (Section 5.2), followed by algorithms for detection and tracking of dynamic

agents using offboard (3D) and onboard (2D) lidar data (Section 5.3). Because urban

environments are populated with many diverse agents, these algorithms are selected

to minimize the prior knowledge required of the environment and agents. An exten-

sion to a Bayesian nonparametric algorithm [40] is proposed for offline detection and

55

Mapping/localization

Online detection

SICK LMS lidar

U

r

Velodyne HDL-32e
V21 detection/tracking

Pioneer 3-AT
Autonomous traversal

Figure 5-1: Overview of hardware components and corresponding algorithms

tracking without any prior knowledge (Section 5.3.3).

Figure 5-1 provides an overview of the hardware components and algorithms that

are discussed in this chapter.

5.1 RAVEN Testbed

Hardware experiments are performed in the Real-time indoor Autonomous Vehicle

test ENvironment, or RAVEN [241. The RAVEN testbed is approximately 12m x 6m

in size (Figure 5-2), and contains a set of motion-capture cameras designed to track the

location of any operational vehicles [1]. Lightweight reflective markers are attached to

vehicles in order to create uniquely detectable configurations. Infrared LED cameras

placed around the room (see Figure 5-2a) record the locations where light is reflected.

A central processing unit then assimilates each camera's observations to identify the

6 degree-of-freedom (position and attitude) state of each unique marker configuration

in the room. This state data is produced and filtered at 100 Hz, with approximately

56

10 ms delay and sub-millimeter accuracy [51].

A key feature of the RAVEN testbed is the projector array, created by two

downward-facing Sony VPL-FH31 projectors [26] that are synchronized to create

a contiguous display (Figure 5-2). This display can be used to create artificial en-

vironments (e.g. project mountains, rivers, and other natural features) and provide

information about the state of vehicles within the room (e.g. exhibit battery status).

In this application, it is used to directly overlay planning and prediction algorithm

information in the real world, such that the locations of the autonomous vehicle,

obstacles, and goal, as well as the motion plan, CC-RRT tree, and predictions, are

mapped directly to their physical locations in real-time (Figures 5-2b and 5-2c).

5.2 Autonomous Vehicle

A Pioneer 3-AT rover is used as the autonomous vehicle in all experiments. The

Pioneer 3-AT is a four-wheel, four-motor skid-steer rover base, with a maximum

speed of 0.7 m/s for each wheel in either direction [38]. Its payload includes a 2D

SICK LMS-291 lidar for onboard pedestrian detection and an Intel Core i5 laptop

with 6GB RAM for computation (Figure 5-3).

5.2.1 Pure-Pursuit Controller

The rover base has internal PID speed controllers that allow for tracking of left and

right wheel velocity commands, but an additional controller is required for tracking of

a reference path. The pure-pursuit steering controller has been widely used in ground

and air vehicle applications, and has the distinct advantage of producing paths that

are kino-dynamically feasible by construction [41, 4]. The controller tracks a reference

path by adjusting the steering angle of the vehicle to compensate for the error between

vehicle heading and the angle between the vehicle and a lookahead point located on

the reference path ahead of the vehicle.

The derivation of the pure-pursuit control law for skid-steer vehicle dynamics is

described by [17]. The key idea is to modify the standard bicycle model for skid-steer

57

(a) Representative use of motion capture cameras and projectors.

(b) Projected vehicle path. (c) Detection of pedestrians.

Figure 5-2: RAVEN testbed.

58

Aers ce Controis lab

Figure 5-3: Autonomous rover

dynamics, resulting in the control law

sing
S= -+cm L sin (5.1)

2L+ la COS 7

where 0 is the commanded change in vehicle heading angle, v is the velocity control

input, la is the distance from the front axle to an anchor point aligned with the

vehicle heading in the forward direction, L, is the distance from anchor point to the

lookahead point on the reference path, and 7 is the angle between the anchor and

lookahead points (Figure 5-4).

Note that 0 = Av/L., where L, is the vehicle track (distance between the left

and right wheels) andAV = vL - VR is the differential velocity input. Therefore, the

control law is related to the system inputs (left (VL) and right (VR) wheel velocities)

59

L

Anchor Point

,,Reference
Path

Figure 5-4: Pure pursuit parameters (Source: [17])

by

AV = -Vcmd(L si , (5.2)
Li + 1"cos'q

where the forward velocity command is the average of the left and right wheel velocity

commands (Ved = (VL + VR)).

A detailed discussion regarding the selection of L, and stability analysis is pre-

sented by [31]. It is concluded that the selection of L 1 , which determines the position

of the lookahead point on the reference path, should be scheduled with speed for

improved stability. Namely, larger values of L 1 prevent the vehicle from executing

sharp turns, which leads to improved performance and stability at higher speeds. The

addition of an anchor point la ahead of the vehicle provides additional stability by

effectively pulling the vehicle by some point ahead of the axle. In this application,

the vehicle is commanded a constant forward velocity of 0.3 m/s; therefore, constant

values of 0.4 m for L, and 3 cm for 1a are chosen. This values were empirically deter-

mined to provide an acceptable tradeoff between trajectory smoothness and vehicle

responsiveness.

60

5.3 Dynamic Obstacle Detection

A combination of 2D and 3D laser rangefinders (Section 5.3.1) are used for detection

of pedestrians and other agents. These sensors are particularly advantageous because

of their high accuracy, long range, and invariance to lighting conditions. Two al-

gorithms have been implemented to cluster lidar returns into objects and track the

object centroids. The first is a simple Euclidean clustering algorithm, used for online

clustering of 2D and 3D lidar data (Section 5.3.2); the second is an extension of a

Bayesian nonparametric algorithm, used for offline clustering of 3D lidar data from

crowded environments (Section 5.3.3).

5.3.1 Laser Rangefinders

The 2D SICK LMS 291 laser rangefinder (Figure 5-5a) is mounted on the rover for

onboard detection. This lidar scans its surroundings with a radial field of vision

using infra-red laser beams. It has a sensing range of 30 meters (at 10% reflectivity,

maximum range of 80 meters), with an error of approximately 10 mm. Scans occur

at a rate of 75 Hz over a 180 degree range, with 0.25 degree angular resolution [48].

The Velodyne HDL-32E laser rangefinder (Figure 5-5b) enables 3D measurement

with a laser scan array of 32 lasers. These beams are organized in multiple planes to

provide range, bearing, azimuth, and intensity data of nearby objects. The lasers are

aligned from +10 to -30 degrees for a 40 degree vertical field of view, and the rotating

head delivers a 360 degree horizontal field of view. It has a maximum range of 70

meters and accuracy of ±2 centimeters [33]. When operating at 10 Hz, this sensor

generates upwards of 700,000 points per second. The Velodyne lidar is statically

mounted for the collection of training data, and could function as a V2J system by

providing real-time estimates. Figure 5-6 portrays a representative sample of 3D

lidar data collected on a street, in which point locations represent distance and colors

encode intensity. The corresponding camera image is presented on the left.

61

(a) SICK 2D lidar (b) Velodyne 3D lidar

Figure 5-5: 2D and 3D lidar.

5.3.2 Euclidean Clustering

A difficulty in clustering 2D and 3D lidar returns is extracting useful information in

real-time, due to the high scanning frequency and large volume of returns per scan.

The Euclidean clustering algorithm as presented in [46, 47] is extremely efficient and

can be applied for online clustering of both 2D and 3D lidar returns. Data from

these scanners is unorganized, such that the number and ordering of returns may

vary across time steps. The Euclidean clustering algorithm employs a kd-tree to

iteratively form clusters comprised of nearest neighbors that are within some pre-

specified minimum distance, rather than relying on some sort of structure within

the measurement data. Algorithm 4 summarizes the relevant clustering steps; this

algorithm generates clusters for each new scan in real time.

Performance is highly sensitive to the minimum distance dk heuristic. Specifically,

if this value is too small, a single object can be split into multiple clusters; conversely, a

62

Figure 5-6: Video camera still (left) and 3D lidar data (right) from Vassar Street

value that is too large may cause multiple objects to be merged into a single cluster.

This heuristic is therefore object-specific and particularly difficult to determine in

environments crowded with objects of varying size and shape. Additionally, because

the clusters are recreated at each time step, the algorithm is not robust to occlusion

or missed detections. Despite these issues, the algorithm can be tuned to work quite

well in practice (Figure 5-7), provided that the objects to be detected are relatively

uniform (e.g., pedestrians) and the environment is not overly crowded.

5.3.3 Bayesian Nonparametric Mixture Model

The poor performance of the Euclidean clustering algorithm in crowded environments

motivates the need for a detection algorithm that does not rely on specific heuristics.

A variety of existing methods have been developed for 3D lidar sensors; however,

these methods rely on prior knowledge of the environment and objects to be tracked,

which is incorporated into pre-trained and/or heuristic detectors with complex object-

specific dynamic models for tracking [39, 43, 7]. This is undesirable for cases in which

63

(a) Top-down lidar and corresponding forward-facing camera views of 2D clustering

(b) Unclustered 3D lidar data (c) Clustered 3D lidar data

Figure 5-7: Euclidean clustering results

64

Algorithm 4 Euclidean Clustering [46]

1: Input: Point cloud dataset P
2: Create kd-tree representation for P
3: Initialize clusters C = 0, queue of points to be checked Q 0
4: for all pi E P do
5: Add pi to current queue Q
6: for all pj E Q do
7: Query kd-tree for set P of point neighbors of p3 within distance dk
8: Add all neighbors b' E P. that have not been processed to Q
9: end for

10: Add Q to C, resetQ 0
11: end for

there is incomplete and/or inaccurate prior information about the objects to be en-

countered. In an urban setting, there is a large number of objects, some of which

may appear less frequently (e.g., strollers, pets, wheelchairs) than more common ob-

jects (e.g., pedestrians, vehicles). While common objects are likely to appear quickly

in training data, infrequently observed objects are unlikely to appear unless a large

amount of training data is collected.

A time-dependent Bayesian nonparametric mixture model that does not rely on

any prior knowledge of the objects or environment, originally developed for detection

and tracking of arbitrary objects from video data [40] is extended for use with 3D

lidar data. The algorithm is first summarized, with detail devoted to the changes

necessary for lidar data, followed by experimental results from synthetic and real-

world experiments.

Generalized Polya Urn Dependent Dirichlet Process Mixture Model

The Generalized Polya Urn Dependent Dirichlet Process Mixture Model (GPUD-

DPM) allows for the number of clusters (corresponding to the number of objects)

at each time step t to be inferred. Figure 5-8 provides a graphical model of the

GPUDDPM. Each observation xi,t is associated with an assignment variable ci,t that

represents its assignment to cluster Ok,t, where k E {1, ... , Kt} and Kt is the total

65

number of clusters. The GPUDDPM can be defined generatively as

mnk,tlM,t-1, C1:Nt,t, p ~ D(mk,t_1, C1:Nt,t, p)

Ok,tIk,t-1 P(Ok,t Ok,t-1) if k < Kt

Go if k = Kt+1

Ci,tJM1:Kt,t, a1l C M :Kt,t, Ce)

xi,t Ici,t, 0 1 : Kt, t ~1. F(Oci,t, t)

for all times t and clusters k. The Binomial distribution D(mk,t_1, cl:Nt,t, p) over the

size of cluster k at time t (defined as mk,t) given the cluster's previous size, current

assignments, and deletion parameter p, combined with the Categorical distribution

C(ml:Kt,t, O) over the assignment variable ci,t given the current sizes of all clusters and

concentration parameter a, comprise the Generalized Polya Urn. The distributions

for F, Go, and P(Ok,tI1,t_1), respectively representing object appearance, appearance

prior, and object movement, are application-specific.

The object appearance, appearance prior, and object movement distributions,

specified by F, Go, and P(OktIk,tl1), are the same as those used by [40]. Specifically,

the observation x at each time t is represented by a draw from the object appearance

distribution, which is the product of a multivariate normal and multinomial distri-

bution. Intuitively, the spatial features of each object are therefore represented by

an ellipsoid, whereas the intensity features associated with each object are assumed

to be similar. The appearance prior is the product of a normal-inverse-Wishart prior

placed on the multivariate normal parameters and a Dirichlet prior placed on the

multinomial parameter. The transition kernel representing object movement is kept

general to allow for tracking of arbitrary objects, and therefore represented by auxil-

iary variables.

The Sequential Monte Carlo sampler (particle filter) is implemented to perform

inference. The algorithm is fully detailed in [40].

66

M ~k = 1-,...,Kt

Ct_- i Ct

t = L ..., T

Figure 5-8: Graphical model of the GPUDDPM (Source: [40])

Data Extraction

Due to the high volume of data points at each time step, it is necessary to preprocess

the data by determining points of interest. Specifically, points that undergo motion

are extracted to yield observations of the form x = (xs, xf, t), where x' is the spatial

location of the pixel, xf is a collection of local image features around the pixel, and

t is the time index. For 3D lidar data, x' C 1R3 and xf is a V dimensional vector

representing the intensity distribution around each point. The set of possible intensity

values was partitioned into V bins and xf contained the counts of the surrounding

points in a cube of length L with an intensity value in one of the bins.

The point clouds output by the Velodyne must first be organized before obser-

vations can be extracted. Octrees are an efficient method for spatial indexing. The

octree recursively subdivides 3D space into eight octants, terminating when the length

of the smallest voxel (analogous to a pixel) is below a user-specified threshold. A tree

structure in which each internal node has exactly eight children represents this subdi-

vision, where each node contains the indices of data points within the boundaries of

the corresponding octree division. The structure of the octrees describing two distinct

point clouds can be recursively compared to detect spatial changes that are beyond

some threshold [47].

This procedure is somewhat problematic in comparing point clouds that differ by

one time step because the changes undergone by moving objects are not sufficient to

67

(a) Initial point cloud (b) Detection of moving objects

Figure 5-9: Results of octree spatial differencing

overcome false positive detections. Specifically, the laser scanner beams do not fall

on the same point in space with each rotation and measurements become sparse with

increasing range. The combination of these factors causes stationary objects that

are far away (such as the walls bounding the room) to be falsely detected as moving

objects unless the spatial difference threshold is sufficiently high. Therefore, spatial

changes are detected for point clouds that differ by 2 seconds, such that the spatial

difference computed for moving objects is larger than the false detections.

Figure 5-9 displays results of this data extraction procedure for one frame. Moving

pedestrians are correctly extracted (Figure 5-9b); however, three stationary pedestri-

ans near the top right corner are not detected because they are stationary (Figure 5-

9a).

Results

In order to test the GPUDDPM on 3D lidar data in isolation, a synthetic data set was

created, consisting of three objects (man, cat, horse) from the Point Cloud Library

data set [47] moving at varied speeds and trajectories for 60 frames. In each frame, the

objects were randomly down sampled to approximately 40 points each, as shown in

Figure 5-10, in order to more accurately represent the returns from an actual sensor.

Note that this test is not entirely realistic for a single sensor, as the point clouds do

not occlude each other during movement and the entire surface is detected (rather

68

(a) Dense (b) Down sampled

Figure 5-10: Dense and down sampled cat (left), man (middle), and horse (right)

point clouds

than the partial surface that would be detected by a single sensor). However, it is

still useful for testing the model under idealized conditions.

The model is able to accurately classify and track the points belonging to each

of the three objects. Figure 5-11 displays representative classification and tracking

results for the synthetic point cloud objects (man, cat, horse), where color indicates

the current cluster assignment, ellipses represent the covariance in each plane, and the

thick black lines indicate the tracked centroid position over time. Tracked centroid

positions from the GPUDDPM model (colored) are compared to the actual (black)

centroid positions in Figure 5-12.

Trajectories exhibiting sharp corners, such as those executed by the man (blue

in Figures 5-11 and 5-12) were the most problematic. This trajectory exhibited the

highest average error, 0.428 meters, where the objects were restricted to a cube of

approximately 7 x 7 x 7 total meters. As Table 5.1 demonstrates, average error

was affected by speed in addition to trajectory smoothness. The slowest-moving

object (cat) had the lowest average error in all relevant dimensions (the horse did not

translate in the z-direction). Overall, tracking performance was very good, with the

largest average error representing just 6.1% of the available space.

This algorithm was also implemented on two crowded data sets from Lobby 7 on

MIT's campus collected on different days. Results of a representative classification

(Figure 5-13) and tracking (Figure 5-14) are presented. In the tracking results, blue

and red lines indicate trajectories collected on a day with (red) and without (blue)

69

Figure 5-11: Representative classifica-

tion and tracking results for synthetic

point cloud

-5 10

Figure 5-12: GPUDDPM (colored)
and actual (black) centroid positions

for synthetic point cloud

Table 5.1: Average error in 3D centroid position for each of the synthetic point cloud

objects

x [m] y [m] z [m]
Man (blue) 0.428 0.209 0.360
Cat (green) 0.097 0.093 0.057
Horse (red) 0.260 0.398 0.037

construction blocking the center of the space. Because there is no ground truth by

which the model estimates can be judged, an empirical discussion replaces accuracy

results. In general, the algorithm is observed to be able to successfully track pedes-

trians in crowded environments; however, problems arise as pedestrians get closer

to the laser scanner, casting "shadows" that occlude proportionally larger sections

of the environment, or when pedestrians are not moving. The largest drawback of

this algorithm is its high time complexity; inference took approximately one hour per

minute of point cloud data collected at 5 Hz.

70

12

10
-2 -

-1 6
-4

0 2

1 0

Figure 5-13: Representative classifica-
tion and tracking results for pedestri-
ans in Lobby 7 Figure 5-14: Tracking results for

pedestrians in Lobby 7

71

1 .

0.5

0-

-1.5

72

Chapter 6

Experimental Results

This chapter presents experimental results which evaluate Changepoint-DPGP on

real-world problem domains of varying complexity. The prediction results demon-

strate that prior observations of pedestrian motion can be used to learn behavior

models. These models are applied to real-time observations to make accurate, long-

term predictions of complex motion behavior, beyond what could be predicted from

the observations themselves. The CC-RRT planner is then demonstrated to select

safe paths which are risk-aware with respect to possible pedestrian intentions, their

likelihood, and their risk of interaction with the host vehicle.

First, the software implementation of the experimental setup is presented (Sec-

tion 6.1), followed by experimental results. The first set of experiments (Section 6.2),

in which the rover plans and executes paths to avoid one or more pedestrians, demon-

strates the efficacy of the obstacle detection and vehicle control algorithms discussed

in Chapter 5. Predictions of future position are not included; pedestrians are modeled

as static obstacles with uncertain locations. In the second set of experiments (Sec-

tion 6.3), the rover must plan safe trajectories to avoid a pedestrian in a crosswalk

environment utilizing Changepoint-DPGP predictions to determine whether or not

the pedestrian will cross. The final set of experiments (Section 6.4) involves the rover

driving around multiple small dynamic robots whose behaviors are known or learned

online.

73

6.1 Implementation

The online planning and control algorithms have been implemented in a multi-threaded,

real-time Java application. The software implementation consists of four primary

modules, each in a separate thread. The vehicle thread updates the position of the

vehicle both in simulation and real-world experiments; it is run in real-time, and

operates continuously until a collision has occurred or the vehicle has safely reached

its final goal. The CC-RRT thread grows the tree and sends the current best path

to the vehicle thread at a fixed rate. A unique thread is launched for each obstacle,

which updates the state both in simulation and real-world experiments, in addition

to maintaining predictions of the likelihoods and future state distributions of possi-

ble behaviors where appropriate. Finally, the communications thread receives vehicle

and obstacle state data and broadcasts the path waypoints via WiFi, utilizing the

Robotic Operating System (ROS) [44].

The rover itself has an onboard laptop with Intel Core i5 processor and 6 GB

RAM. The laptop receives path waypoints via WiFi and communicates with the

rover to send commands and receive state updates via a serial connection. It is also

connected to the SICK lidar via a high-speed serial connection, enabling the detection

of dynamic obstacles as described in Section 5.3, which are sent to the appropriate

obstacle threads via wireless.

To demonstrate the planning and prediction algorithms, a visual overlay maps

the CC-RRT and Changepoint-DPGP situational awareness directly onto the phys-

ical environment using an array of overhead projectors (Section 5.1); representative

visualizations for two scenarios are presented in Figure 6-1. In these figures, and all

subsequent experiments discussed in this chapter, the white region on the overlay

represents feasible portions of the environment for the rover. However, this region

does not represent the entire feasible space; the projectors span the full width of the

feasible space, but not its length. Therefore, the rover may have feasible paths that

take it outside of the projected overlay to reach goal waypoints.

Figure 6-1 shows representative CC-RRT trees grown for the rover to reach a goal

74

-Z

(a) Static robots

(b) Dynamic robots

Figure 6-1: Planning and prediction algorithm visualization for static and dynamic

robot scenarios

75

waypoint while avoiding two static (Figure 6-1a) and dynamic (Figure 6-1b) robots.

In the overlay, the rover is represented by a large orange circle, while each robot is

represented as a magenta octagon. In the experiments throughout this chapter, both

pedestrian and robot obstacles are represented by the same magenta polygon. The

goal region for the rover is marked in yellow. The CC-RRT tree (thin edges) and

selected path for execution (thicker edges, with circular nodes) are nominally colored

green; however, the color is shaded from green to red to indicate higher-risk segments

of both tree and path. Dynamic obstacle predictive distributions of future position

(square nodes, with 2 - uncertainty ellipses) are shown in blue, with darker shades

indicative of higher likelihoods (Figure 6-1b).

6.2 Static Pedestrians

The first set of experiments serves as an introduction to the testbed environment

and performance of the hardware components, data acquisition algorithms, and CC-

RRT planner in isolation. These experiments motivate the need for predictions of the

future behavior of dynamic obstacles in an uncertain world.

6.2.1 Setup

In these experiments, the autonomous rover must safely navigate around one or more

pedestrians to reach a sequence of goal waypoints (Figure 6-1a). Rather than waiting

for the rover to exactly reach each goal, the planner switches to the next goal once

the rover is within one meter of the goal. Each pedestrian is detected and tracked

by the onboard 2D lidar as a potential obstacle. Detections are mapped to the

global environment using the location of the rover as determined by the motion-

capture system. The CC-RRT planner treats each pedestrian as a static obstacle

with uncertain placement due to sensor noise. If a pedestrian drops out of the lidar

field-of-view, the obstacle associated with that pedestrian persists for several seconds

before disappearing.

76

Table 6.1: Summary of hardware experiment videos

Filename Description Section
1 video1.mov 2 static pedestrians 6.2

2 video2.mov 1 pedestrian traversing crosswalk 6.3

3 video3.mov 1 pedestrian remaining on sidewalk 6.3

4 video4.mov 1 dynamic robot, baseline scenario 6.4

5 video5.mov 2 dynamic robots, baseline scenario 6.4

6 video6.mov 1 dynamic robot, online learning 6.4

All videos are located at http://acl.mit.edu/videos/f erguson-sm/video#.mov -

insert # from table above. Copies were also included in the submission of this thesis to

MIT.

6.2.2 Results

In Video 1 (Table 6.1), the rover safely navigates through a sequence of 6 goal way-

points while avoiding 2 pedestrians; image stills from a relevant interaction in Video 1

are presented in Figure 6-2. Here, the planner identifies a path to the next goal, but

is unaware of a pedestrian standing on that path, as the pedestrian is not within the

lidar field of view (Figure 6-2a). As the rover turns, this pedestrian is detected by the

lidar, whereas the original pedestrian is lost (Figure 6-2b). The original path is ruled

probabilistically infeasible and the rover identifies an alternative path (Figure 6-2c),

which it follows to safely reach the goal (Figure 6-2d).

This scenario motivates the need for predictive models of future behavior for

dynamic obstacles in uncertain, real-world environments. Sensors have limited capa-

bilities (e.g. the onboard lidar has a limited field of view), so the planner's obstacle

data may become out-of-date or miss pedestrians entirely. As such, the planner may

generate paths that would collide with pedestrians because it cannot see them; fast

(1 second) tree updates and replanning are therefore essential for safe navigation.

Planning for uncertain future positions, rather than uncertain current location as in

this experiment, reduces the risk of collision with dynamic obstacles [6].

77

(a)

(b)

(c)

(d)

Figure 6-2: Moving rover planning paths around 2 pedestrians

78

6.3 Pedestrian Crosswalk

The second set of experiments demonstrates the use of predictive distributions given

onboard sensing of obstacles. To mimic a real-world scenario, training and testing

data is collected from two separate sensors for two different pedestrians with unique

walking speeds and gaits.

6.3.1 Setup

Recall the scenario described in Section 4.5, in which pedestrians at a crosswalk

have four possible behaviors, corresponding to which sidewalk they are traversing,

and whether they choose to use the crosswalk. In this experiment, the rover must

safely travel along the street flanked by the two sidewalks and pass through the

crosswalk. To do so, the planner uses the same training trajectories presented in

Section 4.5 to generate predictions for a live pedestrian as detected by the moving

rover. Training trajectories are collected from a stationary 3D Velodyne lidar; online

testing trajectories are generated from an onboard 2D lidar and mapped into the

global frame using the location of the rover as determined by the motion-capture

system. Two different individuals serve as pedestrians in the training and testing

data.

6.3.2 Results

In Video 2 (Table 6.1), the rover safely avoids a pedestrian to navigate through a

crosswalk. Figure 6-3 provides a time series progression of this scenario. Initially,

the vehicle plans a path directly to the goal, as the future position of the pedestrian

is not projected to interfere (Figure 6-3a). At the first time step, all behaviors are

equally likely (Figure 6-3a); however, the probability of the behaviors on the opposite

side of the street correctly converge to zero within one time step (Figure 6-3b). As

the likelihood of the crossing behavior converges, the planner terminates the path

before the projected collision point (Figure 6-3c) allowing the pedestrian to safely

cross before continuing on to the goal (Figure 6-3d).

79

Video 3 (Table 6.1) and Figure 6-4 proceed in a similar fashion. Because the

pedestrian starts slightly ahead of the previous scenario, the vehicle initially plans

a path that terminates before the crosswalk, allowing for the possibility that the

pedestrian may cross (Figure 6-4a). Due to the uncertainty in whether or not the

pedestrian will cross, the planner keeps this shortened path to enable the rover to

safely react if the pedestrian does enter the crosswalk (Figure 6-4b) until the timing is

such that the pedestrian and vehicle will not collide (Figure 6-4c). As the pedestrian

passes by the crosswalk, the motion pattern probability converges to the straight

behavior and the vehicle is able to safely reach its goal (Figure 6-4d).

6.4 Dynamic Robots with Uncertain Intentions

The final set of results demonstrates both the efficiency and online learning capabili-

ties of Changepoint-DPGP. Predicted future distributions are generated for multiple

dynamic robots in real time, enabling the rover to safely operate in a constrained

environment and avoid several other dynamic agents (Section 6.4.3). Previously un-

observed behaviors are learned online, enabling robust avoidance where simple ve-

locity propagation methods fail. Together, these results advance the state of the art

capabilities of existing algorithms.

6.4.1 Setup

In these experiments, the autonomous rover must safely navigate around one or more

small iRobot Create vehicles [27] ("robots") to reach a sequence of goal waypoints.

The planner provides the rover with a fixed sequence of goal waypoints to reach, one

goal at a time, located at the four corners of the testing environment. Each robot is

detected and tracked by the high-fidelity motion capture system. The robots travel

at a forward speed of 0.2 m/s; the rover travels slightly faster at 0.3 m/s.

The robots exhibit one of three possible behavior patterns (Figure 6-5). These

behaviors are clustered by DPGP from 15 trajectories (5 per behavior) collected

offline. Once the robot reaches the darkened area behind the projector display, it is

80

(a)

(b)

(c)

(d)

Figure 6-3: Rover avoiding pedestrian traversing crosswalk

81

(a)

(b)

(c)

(d)

Figure 6-4: Rover avoiding pedestrian on sidewalk

82

1 .5

0-

19

0 1 2 3 4 5 6
X

Figure 6-5: DPGP clustering of robot behaviors

sent a new set of waypoints. As these waypoints may comprise an alternate behavior

pattern, the likelihoods are always reset once the robot receives a new trajectory.

To introduce additional uncertainty in the robot position, 10% noise is added to

each waypoint sent to the robots during both the offline training and online testing

phases. In the projected display, gray lines indicate the nominal robot trajectories

(e.g., Figure 6-6).

6.4.2 Baseline Results

In the baseline scenario, a single robot exhibits the three behavior patterns in Figure 6-

5, all of which are known. In Video 4 (Table 6.1), the rover safely navigates through

a sequence of 16 goal waypoints while avoiding this robot. Figure 6-6 provides an

example of an interesting rover/robot interaction. Initially, the planned path does not

reach the goal, due to an anticipated overlap with one of the dynamic robot's possible

behaviors (Figure 6-6a). The planner finds a feasible path to the goal, during which

time the predictions of the robot's have converged, making this path risky (Figure

83

6-6b). The planner prunes this node and the rover comes to a stop and waits for the

robot to pass (Figure 6-6c); once the robot has done so, the planner identifies a new

path reaching the goal (Figure 6-6d).

6.4.3 Multi-Robot Results

In the multi-robot scenario, two robots exhibit the three behavior patterns in Figure 6-

5, all of which are known. In Video 5 (Table 6.1), the rover safely navigates through

a sequence of 10 goal waypoints while avoiding both dynamic robots. Figure 6-7

provides an example of a particularly interesting interaction, in which predictions are

utilized to enable the rover to safely reach the goal. The goal is directly behind the

rover (Figure 6-7a), but the initial planned path diverts far to the right side (Figure 6-

7b). In doing so, the planner avoids both possible future predicted behaviors of the

visible robot, as the two remaining behaviors are approximately equally likely. As the

robot commits to the outermost behavior (blue in Figure 6-5), the current planned

path becomes too risky (Figure 6-7c) and the planner identifies a more direct route

to the goal (Figure 6-7d).

As the second robot comes into view, its predicted behavior distribution interferes

with the rover's path, so the planner updates the path to lead the rover to a safe

position within the environment (Figure 6-8e). The planner then finds a new path

to the goal (Figure 6-8f), which becomes unsafe as the robot commits to the middle

behavior (green in Figure 6-5), forcing the removal of risky path nodes (Figure 6-

8g) and generation of a more conservative plan (Figure 6-8h). As this interaction

demonstrates, accurate predictions of both intent and trajectory are necessary for

safe navigation, as the planner must incorporate a distribution over all possible future

behaviors to have sufficient planning and reaction time.

This section concludes with a remark on computational complexity. Because the

predictive distribution for each obstacle is dependent only on the current position

and learned behavior models, and each obstacle is run as a separate thread, the

predictions are efficiently parallelized. In theory, there are no limitations from a pre-

dictive standpoint on the number of obstacles considered; in practice, computational

84

(a)

(b)

(c)

(d)

Figure 6-6: Moving rover planning paths around 1 dynamic robot

85

resources may be a limiting factor. The CC-RRT algorithm considers each behavior

of each robot as an obstacle, so from a planning standpoint the scaling is linear in

both the number of dynamic agents and behaviors [6].

6.4.4 Online Learning Results

In the online learning scenario, the robot executes the inner- and outermost behaviors

(red and blue in Figure 6-5, respectively), but only the innermost trajectories are

provided as training data. This section begins with an illustrative example of the

Changepoint-DPGP algorithm, followed by a comparison of the predictive error for

the known and learned behaviors.

Fig. 6-8 illustrates how Changepoint-DPGP behaves when a new behavior pattern

is observed repeatedly. (To avoid obscuring the predictions, the planning tree is not

visualized in this figure, and the planned and executed rover paths are shown in dark

and light orange, respectively.) Initially, the only known behavior is the innermost

cycle (denoted by 1), so the autonomous rover is certain that the robot will pass

between it and the goal and modifies its path accordingly. At 8 seconds, Changepoint-

DPGP recognizes that the robot is executing a new behavior. Predictions are then

generated assuming that the robot will continue at its current velocity with increased,

linearly-scaling uncertainty. The planner modifies its planned paths to the goal to

reflect this shift in perceived behavior at 25 and 36 seconds.

After 92 seconds, the algorithm has learned the entire trajectory that it has just

observed as a new behavior. As the robot begins its second cycle, it still assigns the

highest likelihood to the known behavior (behavior 1), based on the prior distribution

of observed training and test trajectories still favoring this behavior. However, the

new behavior is now included as an additional behavior prediction. By 97 seconds,

the algorithm is fully confident that the robot is executing the newly-learned, and

shifts its likelihoods accordingly. The predictions for the new behavior accurately

reflect the trajectory executed by the robot with reduced uncertainty. Based on this

reduced uncertainty, the planner knows that the robot will turn before intersecting

with the autonomous rover's planned path, and thus continues to execute that path.

86

(a)

(b)

(c)

'(d)

87

(e)

(h)

Figure 6-7: Moving rover planning paths around 2 dynamic robots

88

This scenario was executed for 2.5 minutes with no collisions.

Video 6 begins after Changepoint-DPGP has detected that the robot is execut-

ing a new behavior, as indicated by the velocity propagation predictions. After the

robot has completed its first trajectory, the new behavior pattern is learned and

incorporated in future predictions, (Figure 6-9a). This video is particularly interest-

ing because the robot suffers from a control issue during the execution of its first

trajectory, causing the learned behavior pattern to have a large kink (Figure 6-9b).

Because the GP predictions smooth potentially noisy data, the predicted trajectory

is smoothed as it becomes clear that the robot is traveling straight (Figure 6-9c). The

predicted position given the portion of the trajectory in which the robot did not suffer

from control issues is, as expected, a better representation of the actual trajectory

executed by the robot (Figure 6-9d).

An additional scenario was executed, in which the robot similarly suffered from a

control issue in the same location. In both scenarios, the robot alternated between the

inner- and outermost behaviors, where the first used predictions from training data

and the second was learned online. The average predictive error for these scenarios

is presented in Figure 6-10. For both behaviors, the intent quickly converges to the

correct behavior pattern after the vehicle has committed to one of the behaviors

(Figure 6-10a). Notably, even though the known behavior starts with a higher prior

probability (since more trajectories have been observed), the intent probability quickly

drops to around 50% until the robot commits to a behavior. This is desirable, as the

two behaviors initially overlap and are indistinguishable. The predictive error in the

learned behavior is higher than that of the known behavior (Figure 6-10b) because

the GP defining the learned behavior has fewer data points and observed trajectories

suffered from several controller issues.

6.5 Summary

Experiments have been presented which motivate the need for predictive models of

dynamic agents and evaluate Changepoint-DPGP on scenarios of varying complexity.

89

Figure 6-8: Illustrative example of Changepoint-DPGP executing online

90

(a)

(b)

(c)

(d)

Figure 6-9: Online learning of new behavior

91

-Known behavior ""Leaed behavior Known behavior Learned behavior

1-
E 4-

0.8 3.5

E 0.6- 3

- a W2.5-
0.4 -

-~ 02
0.2|-

1.5-

0 10 20 30 0 10 20 30
Time (sec) Time (sec)

(a) Probability of correct motion pattern (b) RMS predictive error

Figure 6-10: Prediction accuracy of known and learned behaviors

Results demonstrate that Changepoint-DPGP can be used to learn representative

models of pedestrian and robot motion, from both offline and online data. Predictions

generated from these models can be incorporated into a CC-RRT path planner to

enable safe navigation through a dynamic world. The sampling-based nature of the

motion planner allows for fast replanning in the presence of new and/or unexpected

behaviors, such that a feasible path to a safe location within the environment is

generated. This helps to prevent collision, as it is particularly unsafe to wait for

updated path plans in an uncertain and dynamic world.

92

Chapter 7

Conclusions

This thesis has developed a framework for long-term trajectory prediction and robust

avoidance of pedestrians and other dynamic agents in real-time, even when these

agents exhibit previously unobserved behaviors and/or changes in intent. A key

contribution is the Changepoint-DPGP algorithm, which uses a likelihood ratio test

and offline clustering algorithm (DPGP) for efficient online classification of behaviors.

This algorithm is able to learn new behavior patterns online and quickly detect and

react to changes in intent. Unlike most approaches in the literature, accuracy in terms

of both intent and trajectory prediction is considered; predictive results demonstrate

improved accuracy over those approaches that do consider both forms of uncertainty.

These predictions are embedded within a chance-constrained motion planner (CC-

RRT), such that probabilistically feasible trajectories can be identified in real time.

Algorithms for pedestrian detection and autonomous navigation are implemented and

developed. Experiments in several challenging environments demonstrate that this

framework enables an autonomous rover to accurately predict the motion patterns of

dynamic agents from various sources of sensor/perception data and safely navigate

within a dynamic world.

93

7.1 Future Work

This section explores several ways in which the work in this thesis could be further

extended.

7.1.1 Gaussian Process Predictions

In this thesis, GP predictions are tied to specific points within the environment,

necessitating the collection of unique training trajectories for each new environment.

A possible direction for future work is the generalization of the GP model to new

environments. By relating training data to specific environmental features rather than

a global coordinate frame, and relating features from one environment to another, the

GP model from one environment can be scaled to fit another. This will make the

predictions more applicable in the real world, such that data can be collected from

a subset of environments and applied to a global scenario (e.g., training data from

a subset of intersections within a city can be applied to generate GP models for all

intersections).

7.1.2 Motion Planner Detection Uncertainty

As motivated by the pedestrian experiments in Section 6.2, in which detections were

lost due to limited lidar field of view, an extension for the motion planner is also

proposed. In addition to considering collision risk, a bound on belief distribution of

obstacles within the environment can also be incorporated in the cost function. As

the vehicle moves from node to node, the predictive distribution for the obstacles

future position can be leveraged, such that the vehicle attempts to get updated mea-

surements of particularly uncertain obstacles more frequently when these obstacles

are outside of the sensor field of view or occluded. See [3, 12] for possible examples.

94

7.1.3 Efficient Detection and Tracking

Lastly, as discussed in Section 5.3.3, efficient detection and tracking of obstacles

without the specification of shape, dynamics, and other heuristics remains an open

problem. A possible direction is the use of efficient clustering methods (e.g., [13]) using

Dependent Dirichlet Processes with the Generalized Polya Urn Dependent Dirichlet

Process Mixture Model (GPUDDPM) algorithm [40].

95

96

Bibliography

[1] Motion Capture Systems from Vicon, 2011. 14 Minns Business Park, West Way,

Oxford OX2 0JB, UK http://www.vicon.com/.

[2] Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint

detection. arXiv preprint arXiv:0710.3742, 2007.

[3] Ali-akbar Agha-mohammadi, Suman Chakravorty, and Nancy Amato. FIRM:

Sampling-based feedback motion planning under motion uncertainty and im-

perfect measurements. International Journal of Robotics Research (IJRR),

33(2):268-304, 2014.

[4] Omead Amidi and Chuck E Thorpe. Integrated mobile robot control. In Fibers'

91, Boston, MA, pages 504-523. International Society for Optics and Photonics,

1991.

[5] Georges S. Aoude, Brandon D. Luders, and Jonathan P. How. Sampling-based

threat assessment algorithms for intersection collisions involving errant drivers.

In Proceedings of the IFAC Symposium on Intelligent Autonomous Vehicles,

Lecce, Italy, September 2010.

[6] Georges S. Aoude, Brandon D. Luders, Joshua M. Joseph, Nicholas Roy, and

Jonathan P. How. Probabilistically safe motion planning to avoid dynamic ob-

stacles with uncertain motion patterns. Autonomous Robots, 35(1):51-76, 2013.

[7] Max Bajracharya, Baback Moghaddam, Andrew Howard, Shane Brennan, and

Larry H Matthies. A fast stereo-based system for detecting and tracking pedes-

trians from a moving vehicle. The International Journal of Robotics Research,

28(11-12):1466-1485, 2009.

[8] Tirthankar Bandyopadhyay, Chong Zhuang Jie, David Hsu, Marcelo H Ang Jr,

Daniela Rus, and Emilio Frazzoli. Intention-aware pedestrian avoidance.

97

[9] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David Hsu,

Wee Sun Lee, and Daniela Rus. Intention-aware motion planning. In Algorithmic

Foundations of Robotics X, pages 475-491. Springer, 2013.

[10] Michele Basseville and Igor V Nikiforov. Detection of abrupt changes: theory

and applications. Journal of the Royal Statistical Society-Series A Statistics in

Society, 158(1):185, 1995.

[11] Maren Bennewitz, Wolfram Burgard, Grzegorz Cielniak, and Sebastian Thrun.

Learning motion patterns of people for compliant robot motion. The Interna-

tional Journal of Robotics Research, 24(1):31-48, 2005.

[12] B. Burns and 0. Brock. Sampling-based motion planning with sensing uncer-

tainty. In IEEE International Conference on Robotics and Automation (ICRA),

pages 3313-3318, Roma, Italy, April 2007.

[13] Trevor Campbell, Miao Liu, Brian Kulis, Jonathan P. How, and Lawrence Carin.

Dynamic clustering via asymptotics of the dependent dirichlet process. In Ad-

vances in Neural Information Processing Systems (NIPS), 2013.

[14] Christophe Cou6, C6dric Pradalier, Christian Laugier, Thierry Fraichard, and

Pierre Bessiere. Bayesian occupancy filtering for multitarget tracking: an auto-

motive application. The International Journal of Robotics Research, 25(1):19-30,

2006.

[15] Lehel Csat6 and Manfred Opper. Sparse on-line gaussian processes. Neural

computation, 14(3):641-668, 2002.

[16] Marc P. Deisenroth, Marco F. Huber, and Uwe D. Hanebeck. Analytic Moment-

based Gaussian Process Filtering. In L. Bouttou and M. Littman, editors, In-

ternational Conference on Machine Learning (ICML), pages 225-232, Montreal,

Canada, June 2009. Omnipress.

[17] Vishnu R. Desaraju. Decentralized path planning for multiple agents in com-

plex environments using rapidly-exploring random trees. Master's thesis, Mas-

sachusetts Institute of Technology, Department of Aeronautics and Astronautics,

Cambridge MA, September 2010.

[18] David Ellis, Eric Sommerlade, and Ian Reid. Modelling pedestrian trajectory

patterns with gaussian processes. In Computer Vision Workshops (ICCV Work-

98

shops), 2009 IEEE 12th International Conference on, pages 1229-1234. IEEE,

2009.

[19] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier. Probabilistic navigation

in dynamic environment using rapidly-exploring random trees and gaussian pro-

cesses. In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 1056-1062, Nice, France, September 2008.

[20] Agathe Girard, Carl Edward Rasmussen, Joaquin Quintero-Candela, and Roder-

ick Murray-smith. Gaussian process priors with uncertain inputs - application to

multiple-step ahead time series forecasting. In Advances in Neural Information

Processing Systems, pages 529-536. MIT Press, 2003.

[21] Robert C. Grande. Computationally efficient Gaussian process changepoint de-

tection and regression. Master's thesis, Massachusetts Institute of Technology,

Department of Aeronautics and Astronautics, Cambridge MA, June 2014.

[22] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics.

Physical review E, 51(5):4282, 1995.

[23] Peter Henry, Christian Vollmer, Brian Ferris, and Dieter Fox. Learning to navi-

gate through crowded environments. In Robotics and Automation (ICRA), 2010

IEEE International Conference on, pages 981-986. IEEE, 2010.

[24] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-time indoor au-

tonomous vehicle test environment. IEEE Control Systems Magazine, 28(2):51-

64, April 2008.

[25] Tetsushi Ikeda, Yoshihiro Chigodo, Daniel Rea, Francesco Zanlungo, Masahiro

Shiomi, and Takayuki Kanda. Modeling and prediction of pedestrian behavior

based on the sub-goal concept. In Robotics: Science and Systems, 2012.

[26] Sony Electronics Inc. Sony vpl-fh3l projector, 2014.

[27] iRobot Corporation. iRobot Create programmable robot, 2010.

[28] Joshua Joseph, Finale Doshi-Velez, A. S. Huang, and N. Roy. A Bayesian

nonparametric approach to modeling motion patterns. Autonomous Robots,

31(4):383-400, 2011.

99

[29] Richard Kelley, Monica Nicolescu, Alireza Tavakkoli, C King, and G Bebis. Un-

derstanding human intentions via hidden markov models in autonomous mobile

robots. In Human-Robot Interaction (HRI), 2008 3rd ACM/IEEE International

Conference on, pages 367-374. IEEE, 2008.

[30] J. K. Kuchar and L. C. Yang. A review of conflict detection and resolution

modeling methods. IEEE Transactions on Intelligent Transportation Systems,

1(4):179-189, 2002.

[31] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. P. How. Mo-

tion planning in complex environments using closed-loop prediction. In AIAA

Guidance, Navigation, and Control Conference (GNC), Honolulu, HI, Aug 2008.

(AIAA-2008-7166).

[32] R. Lachner. Collision avoidance as a differential game: Real-time approximation

of optimal strategies using higher derivatives of the value function. In Proceed-

ings of the IEEE International Conference on Systems, Man, and Cybernetics,

volume 3, pages 2308-2313, 1997.

[33] Velodyne Lidar. Hdl-32e lidar, 2012.

[34] Brandon Luders, Mangal Kothari, and Jonathan P. How. Chance constrained

RRT for probabilistic robustness to environmental uncertainty. In AIAA Guid-

ance, Navigation, and Control Conference (GNC), Toronto, Canada, August

2010. (AIAA-2010-8160).

[35] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan. Interacting multiple

model methods in target tracking: a survey. Aerospace and Electronic Systems,

IEEE Transactions on, 34(1):103-123, 2002.

[36] Bernard Michini, Mark Cutler, and Jonathan P. How. Scalable reward learn-

ing from demonstration. In IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2013.

[37] T. Miloh and S.D. Sharma. Maritime collision avoidance as a differential game.

Institut fur Schiffbau der Universitat Hamburg, 1976.

[38] Adept MobileRobots. Pioneer 3-at, 2013.

[39] Luis E Navarro-Serment, Christoph Mertz, and Martial Hebert. Pedestrian detec-

tion and tracking using three-dimensional ladar data. The International Journal

of Robotics Research, 29(12):1516-1528, 2010.

100

[40] Willie Neiswanger and Frank Wood. Unsupervised detection and tracking of

arbitrary objects with dependent dirichlet process mixtures. arXiv preprint

arXiv:1210.3288, 2012.

[41] S. Park, J. Deyst, and J. P. How. Performance and Lyapunov stability of a

nonlinear path-following guidance method. AIAA Journal on Guidance, Control,

and Dynamics, 30(6):1718-1728, November-December 2007.

[42] WD Penny and SJ Roberts. Bayesian multivariate autoregressive models with

structured priors. Technical report, Oxford University, 2000.

[43] Anna Petrovskaya and Sebastian Thrun. Model based vehicle detection and

tracking for autonomous urban driving. Autonomous Robots, 26(2-3):123-139,

2009.

[44] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A.Y. Ng. ROS: an open-source robot operating system. In ICRA Workshop on

Open Source Software, volume 3, 2009.

[45] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for

Machine Learning. The MIT Press, December 2005.

[46] Radu Bogdan Rusu. Semantic 3d object maps for everyday manipulation in

human living environments. KI-Kiinstliche Intelligenz, 24(4):345-348, 2010.

[47] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl).

In Robotics and Automation (ICRA), 2011 IEEE International Conference on,

pages 1-4. IEEE, 2011.

[48] SICK. Sick lms-291, 2014.

[49] H.W. Sorenson. Kalman filtering: theory and application. IEEE, 1985.

[50] Pete Trautman, Jeremy Ma, Richard M Murray, and Andreas Krause. Robot

navigation in dense human crowds: the case for cooperation.

[51] M. Valenti, B. Bethke, G. Fiore, J. P. How, and E. Feron. Indoor Multi-Vehicle

Flight Testbed for Fault Detection, Isolation, and Recovery. In AIAA Guidance,

Navigation, and Control Conference (GNC), Keystone, CO, August 2006 (AIAA-

2006-6200).

101

[52] Dizan Vasquez, Thierry Fraichard, and Christian Laugier. Incremental learning

of statistical motion patterns with growing hidden markov models. Intelligent

Transportation Systems, IEEE Transactions on, 10(3):403-416, 2009.

[53] Yali Wang and Brahim Chaib-draa. A marginalized particle gaussian process

regression. In NIPS, pages 1196-1204, 2012.

[54] Kevin Waugh, Brian D Ziebart, and J Andrew Bagnell. Computational ratio-

nalization: The inverse equilibrium problem. arXiv preprint arXiv:1308.3506,

2013.

[55] Qiuming Zhu. Hidden markov model for dynamic obstacle avoidance of mobile

robot navigation. Robotics and Automation, IEEE Transactions on, 7(3):390-

397, 1991.

[56] Brian D Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, Kevin Pe-

terson, James A Bagnell, Martial Hebert, Anind K Dey, and Siddhartha Srini-

vasa. Planning-based prediction for pedestrians. In Intelligent Robots and Sys-

tems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 3931-

3936. IEEE, 2009.

102

