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Abstract

Heat transfer between a conductive solid and an adjacent convective fluid is prevalent
in many aerospace systems. The ability to achieve accurate predictions of the coupled
heat interaction is critical in advancing thermodynamic designs. Despite their growing
use, coupled fluid-solid analyses known as conjugate heat transfer (CHT) are hindered
by the lack of automation and robustness. The mesh generation process is still highly
dependent on user experience and resources, requiring time-consuming involvement
in the analysis cycle. This thesis presents work toward developing a robust PDE
solution framework for CHT simulations that autonomously provides reliable output
predictions. More specifically, the framework is comprised of the following compo-
nents: a simplex cut-cell technique that generates multi-regioned meshes decoupled
from the design geometry, a high-order discontinuous Galerkin (DG) discretization,
and an anisotropic output-based adaptation method that autonomously adapts the
mesh to minimize the error in an output of interest.

An existing cut-cell technique is first extended to generate fully-embedded meshes
with multiple sub-domains. Then, a coupled framework that combines separate dis-
ciplines is developed, while ensuring compatibility between the cut-cell and mesh
adaptation algorithms. Next, the framework is applied to high-order discretizations of
the heat, Navier-Stokes, and Reynolds-Averaged Navier-Stokes (RANS) equations to
analyze the heat flux interaction. Through a series of numerical studies, high-order ac-
curate outputs solved on autonomously controlled cut-cell meshes are demonstrated.
Finally, the conjugate solutions are analyzed to gain physical insight to the coupled
interaction.

Thesis Supervisor: David Darmofal
Title: Professor of Aeronautics and Astronautics

3



4



Acknowledgments

I would like to express my sincere gratitude to all people who have made this thesis

possible. First, I would like to thank my advisor, Prof. David Darmofal, for providing

me with the opportunity to learn from and contribute to the CFD community, and

for encouraging me during my graduate study. In addition, I would like to thank Dr.

Steven Allmaras for his very knowledgeable insight and continued commitment to my

weekly meetings. I would also like to recognize Marshall for teaching me the tools of

the trade, and for providing me with the continuous feedback I needed to learn.

This thesis would not have been possible without the relentless efforts of the entire

ProjectX team. I would like to thank past members who had built the building blocks

and who had contributed many years of their lives developing ProjectX. I would also

like to thank: Huafei for helping me climb the learning curve, and for laying down the

foundation of my work; Jun and Phil for their unbounded willingness to help solve

problems, share ideas, and drink coffee with me; Carlee, Savi, Yixuan, and Jeff for

bringing new perspectives to the team. Thank you all, and the best of luck to you.

I would like recognize people in the ACDL for creating a productive working environ-

ment: David M, Xevi, Ferran, and Hemant for sharing their ideas and encouragement;

Patrick for making me take breaks for coffee hour; Eric for his admin support and

sense of humor. I would like to thank all my friends outside the ACDL: the brothers

of Theta Chi for always extending a helping hand; Giulia and Ed (team WindX) for

encouraging me with their positivity and puns; Andras for his problem solving and

cooking skills; among many more. I would also like to give a special thanks to Erica

for inspiring me to summit my goals, strive for a healthy lifestyle, and reframe all

frustrating scenarios into positive ones.

Lastly, I would like to thank my family - Mom, Dad, and Laura - for their uncondi-

tional love and support. The past few years have been quite difficult, and I would not

be where I am today without their continuous guidance and encouragement. I wish

5



you many years of joy and health, and I am excited to be moving closer to home.

Finally, I would like to acknowledge the financial support provided by the Boeing

Company (technical monitor Dr. Mori Mani), the MIT Graduate Work Program,

and the MIT AeroAstro Department through fellowships.

6



Contents

1 Introduction 17

1.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Background ........ ................................ 19

1.2.1 Cut-Cell Methods . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 High-Order Discretizations . . . . . . . . . . . . . . . . . . . . 22

1.2.3 Output-Based Error Estimation and Mesh Adaptation . . . . 23

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Multi-Disciplinary Cut Cell Methods 29

2.1 Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Cut-Cell Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Multi-Region Intersection Algorithm . . . . . . . . . . . . . . . . . . 32

2.3.1 Merging and Quadrature . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Multi-Region Simulation . . . . . . . . . . . . . . . . . . . . . 38

3 Discretization, Error Estimation and Output-Based Adaptation 39

3.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Discontinuous Galerkin Discretization . . . . . . . . . . . . . . . . . . 40

3.2.1 Inviscid Discretization . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Viscous Discretization . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Source Discretization . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Solution Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Output Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 45

7



3.4.1 Error Localization . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Output-Based Mesh Adaptation . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Mesh Optimization via Error Sampling and Synthesis . . . . . 48

3.5.2 Extension to Cut Cells . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Cut-Cell r'-Type Corner Singularity . . . . . . . . . . . . . . 53

4 Conjugate Navier-Stokes Heat Transfer 57

4.1 Interface Conditions for Navier-Stokes CHT . . . . . . . . . . . . . . 57

4.1.1 Interface State and Discretization . . . . . . . . . . . . . . . . 58

4.2 Compressible Poiseuille Flow over a Cooled Slab . . . . . . . . . . . . 60

4.2.1 Conjugate Model . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Conjugate Manufactured Solution . . . . . . . . . . . . . . . . 62

4.2.3 Uniform Refinement Convergence Study . . . . . . . . . . . . 66

4.2.4 Adapted Solutions and Output Super-convergence . . . . . . . 67

4.3 Navier-Stokes Cooled Nozzle . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Conjugate Model . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Adapted Solutions and Output Super-convergence . . . . . . . 76

4.4 Navier-Stokes Multi-Flow Simulation . . . . . . . . . . . . . . . . . . 84

4.4.1 Conjugate Model . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.2 Adapted Solutions and Output Super-convergence . . . . . . . 86

5 Conjugate RANS Heat Transfer 95

5.1 Interface Conditions for RANS CHT . . . . . . . . . . . . . . . . . . 95

5.1.1 Interface State and Discretization . . . . . . . . . . . . . . . . 96

5.2 Compressible Flow over a Cooled Slab . . . . . . . . . . . . . . . . . 98

5.2.1 Conjugate RANS Model . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.3 Optimized Meshes . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Backward-Facing Step . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Conjugate RANS Model . . . . . . . . . . . . . . . . . . . . . 107

5.3.2 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . 108

8



5.3.3

5.3.4

Optimized Meshes . . . . . . . . . . . . . . . . . . . . . . .

Moffatt vortices and effect on heat transfer . . . . . . . . . .

6 Conclusion

6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . .

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A Governing Equations

A.1 Heat Equation . . . . . . . . . . . . . . . . . .

A.2 Compressible Navier-Stokes Equations . . . .

A.3 Reynolds-Averaged Navier-Stokes Equations .

A.3.1 The SA Turbulence Model . . . . . . .

123

. . . . . . . . . . . . . 123

. . . . . . . . . . . . . 124

. . . . . . . . . . . . . 125

. . . . . . . . . . . . . 126

B Derivation of Manufactured Solution to Compressible Poiseuille Flow131

B.1 Fully Developed Flow Assumption . . . . . . . . . . . . . . . . . . . . 131

B.2 Variable Viscosity and Thermal Conductivity . . . . . . . . . . . . . 132

B.3 Non-Dimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.4 Fluid Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.5 Solid Slab Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

139C RANS Boundary Layer Adjoint Jump

9

. 111

. 114

119

. 119

. 121



10



List of Figures

1-1 Example of a cut-cell mesh . . . . . . . . . . . . . . . . . . . . . .

1-2 Automated process of the output-based adaptive PDE solver

2-1 Multi-region interface example . . . . . . . . . . . . . . . . . . . .

2-2 Multi-region geometry representation . . . . . . . . . . . . . . . .

2-3 Background and cut mesh . . . . . . . . . . . . . . . . . . . . . .

2-4 Example of zerod and oned objects in a multi-region intersection .

2-5 Formation of twod types in a multi-regioned cut element . . . . .

3-1

3-2

3-3

3-4

3-5

3-6

3-7

Example of mesh to continuous metric field mapping . . . . . . . . .

Example split configurations with respective metric tensors (Yano [77])

Example split configurations for cut elements (Sun [71]) . . . . . . . .

Example of vertex layer (grey represents null region) . . . . . . . . .

Background mesh for r' singularity problem . . . . . . . . . . . . . .

Optimized meshes for r' singularity problem with 4000 DOF . . . . .

Metric distribution for r' singularity problem with a = 2/3 . . . . . .

4-1 Sketch of NS solid wall interface states used to compute numerical fluxes

4-2 Compressible Poiseuille flow model . . . . . . . . . . . . . . . . . . .

4-3 Numerical solution to the compressible Poiseuille flow with variable P

an d r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-4 Temperature and corresponding viscosity variation for compressible

Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-5 Uniformly refined meshes . . . . . . . . . . . . . . . . . . . . . . . . .

11

20

24

30

31

32

36

37

48

50

52

53

54

55

56

59

61

64

65

66



4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-18

4-19

4-20

4-21

4-22

4-23

4-24

4-25

4-26

4-27

4-28

4-29

4-30

4-31

4-32

4-33

4-34

12

Convergence of the density L2 error. . . . . . . . . . . . . . . . . . . 67

Poiseuille flow drag adaptation history for 16k DOF . . . . . . . . . . 69

Poiseuille flow drag adapted meshes . . . . . . . . . . . . . . . . . . . 70

Poiseuille flow drag adapted error convergence . . . . . . . . . . . . . 71

Poiseuille flow heat flux adaptation history for 16k DOF . . . . . . . 72

Poiseuille flow heat flux adapted meshes . . . . . . . . . . . . . . . . 72

Poiseuille flow heat flux adapted error convergence . . . . . . . . . . . 73

Poiseuille flow comparison of drag vs. heat flux adaptation . . . . . . 74

Cooled nozzle flow model . . . . . . . . . . . . . . . . . . . . . . . . . 75

Numerical solution to the cooled nozzle flow . . . . . . . . . . . . . . 77

Temperature solution to the cooled nozzle flow . . . . . . . . . . . . . 77

Cooled nozzle drag adaptation history for 16k DOF . . . . . . . . . . 78

Cooled nozzle drag adapted meshes . . . . . . . . . . . . . . . . . . . 79

Cooled nozzle drag adapted meshes zoom . . . . . . . . . . . . . . . . 80

Cooled nozzle drag adapted error convergence . . . . . . . . . . . . . 80

Cooled nozzle heat flux adaptation history for 16k DOF . . . . . . . . 81

Cooled nozzle heat flux adapted meshes . . . . . . . . . . . . . . . . . 82

Cooled nozzle heat flux adapted meshes zoom . . . . . . . . . . . . . 82

Cooled nozzle heat flux adapted error convergence . . . . . . . . . . . 83

Cooled nozzle comparison of drag vs. heat flux adaptation . . . . . . 84

Multi-regioned flow model . . . . . . . . . . . . . . . . . . . . . . . . 85

Numerical solution to the multi-flow problem . . . . . . . . . . . . . . 87

Temperature solution to the multi-flow problem . . . . . . . . . . . . 87

Multi-flow 24k DOF heat flux adaptation history . . . . . . . . . . . 88

Multi-flow heat flux adapted meshes . . . . . . . . . . . . . . . . . . 89

Multi-flow heat flux adapted meshes zoom . . . . . . . . . . . . . . . 90

Multi-flow heat flux adapted error convergence . . . . . . . . . . . . . 91

Multi-flow 24k DOF normalized mass flux adaptation history . . . . . 92

Multi-flow mass flux adapted meshes . . . . . . . . . . . . . . . . . . 92

Multi-flow mass flux adapted meshes zoom . . . . . . . . . . . . . . . 93



4-35

4-36

Multi-flow mass flux adapted error convergence . . . . . . . . . . . . 93

Multi-flow adapted mesh comparison (NOT TO SCALE) . . . . . . . 94

5-1 Sketch of RANS solid wall interface states used to compute numerical

fluxes....... ....................................

5-2 RANS Slab flow model . . . . . . . . . . . . . . . . . . . . . . . . . .

5-3 Numerical solution to RANS Flat Slab p=2 26k DOF . . . . . . . . .

5-4 Vertical slices of normalized solutions to RANS Flat Slab p=2 26k DO

97

99

100

F101

5-5 Interface thermal profile for RANS Flat Slab p=2 26k .

5-6 RANS Flat Slab heat flux adaptation history . . . . . .

5-7 RANS Flat Slab heat flux adapted mesh . . . . . . . .

5-8 RANS Flat Slab heat flux adapted mesh correlation . .

5-9 Backward-facing step conjugate flow model . . . . . . .

5-10 Numerical solution to BFS p=2 50k DOF . . . . . . .

5-11 Interface profiles for BFS p=2 50k DOF . . . . . . . .

5-12 BFS heat flux adaptation history over range of O's . . .

5-13 BFS heat flux adapted meshes . . . . . . . . . . . . . .

5-14 BFS heat flux adapted meshes zoom . . . . . . . . . .

5-15 Numerical solution to BFS p=2 50k DOF zoom . . . .

5-16 Moffatt Vortices p=2 50k DOF . . . . . . . . . . . . .

5-17 Mesh refinement of 'updraft' in BFS recirculation bubble

. . . . . . . . 102

. . . . . . . . 103

. . . . . . . . 104

. . . . . . . . 105

. . . . . . . . 107

. . . . . . . . 109

. . . . . . . . 111

.. .... 112

. . . . . . . . 113

. . . . . . . . 114

. . . . . . . . 115

. . . . . . . . 116

(p=2 50k DOF)117

B-1 Transformed Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 133

C-1 RANS flat slab heat flux adapted mesh . . . . . . . . . . . . . . . . . 139

C-2 RANS flat slab adjoint profiles . . . . . . . . . . . . . . . . . . . . . . 140

C-3 RANS flat slab normalized boundary layer profiles . . . . . . . . . . . 141

C-4 RANS flat slab mesh correlation (NOT TO SCALE) . . . . . . . . . 142

13



14



List of Tables

2.1 2D multi-region geometry attributes . . . . . . . . . . . . . . . . . . . 30

2.2 Information stored for zerod objects . . . . . . . . . . . . . . . . . . . 34

2.3 Information stored for oned objects . . . . . . . . . . . . . . . . . . . 34

4.1 Convergence rates of L 2 error. . . . . . . . . . . . . . . . . . . . . . . 67

15



16



Chapter 1

Introduction

1.1 Motivation

Numerical simulation has become a critical tool for engineering analysis over the last

several decades. In particular, Computational Fluid Dynamics (CFD) software has

widely been used throughout academia and industry to analyze and drive aerospace

design. As an alternative to experimental testing for certification, CFD offers rela-

tively fast turnaround times and the ability to simulate a wide range of component

designs and test conditions. Additionally, with recent advancements in algorithm de-

velopment and increased computational power, CFD solvers are becoming far more

capable in analyzing problems with complex geometry, physics, or both. However, de-

spite their widespread use, many CFD software packages still lack efficiency, reliability,

and autonomy, yielding unaffordable high-fidelity simulations, unreliable predictions

in outputs of interest, and heavy user involvement.

Depending on the size of the problem and the computational resources being used,

common high-fidelity simulations can take hours or even days to complete. Equally

inhibiting, user involvement is dominated by two factors: (1) the process of under-

standing and determining where mesh refinement is necessary in order to achieve an

accurate solution, and (2) the process of generating a corresponding mesh to conform

with the modeled geometry, which can take weeks to even months depending on the
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geometry complexity. Worse still, unreliable predictions in outputs of interest com-

pounded with the absence of solution uncertainty quantification greatly impairs the

validity of the solution, diminishes the value of the expensive analysis cycle, and can

even lead to large-scale disasters. For example, the 44,000-ton Sleipner A offshore

platform sank in 1991 due to a flawed design. Costing $700 million, this failure was

caused by a finite element analysis that underestimated the shear stress in a concrete

support structure by 45 % [38]. After further investigations, it was found that the

underestimation resulted from an under-resolved mesh with poorly shaped elements.

The analysis was performed again with a suitable mesh, and returned with a pre-

dicted structural failure occurring at a water depth of 62 meters, agreeing closely

with the actual failure depth of 65 meters [24]. Hence, the lack of reliability in the

mesh generation and error estimation process led to a catastrophic failure that could

have been avoided with proper error control.

Fortunately, mesh adaptation offers a means toward mitigating mesh reliance on hu-

man experience, and instead provides a far more reliable output prediction through a

systematic and autonomous control over the error. In conjunction, higher-order dis-

cretizations, which are becoming more prevalent in the CFD community, can further

improve the solution and output accuracy. Despite these promises, however, the mesh

generation process in an industry setting still serves as a primary 'bottleneck' in the

CAD-to-mesh-to-solution cycle [26]. A couple difficulties contributing to this bottle-

neck involve: requiring curved elements to conform to the geometry surface in order to

maintain the benefit of higher-order discretizations [7], and achieving different levels

of refinement in specific areas within the domain.

In the context of multi-disciplinary simulations where multiple governing partial dif-

ferential equations (PDE's) are solved simultaneously, many of the mesh generation

and error control issues are exacerbated by the complexity of the coupled problem.

The ability to sufficiently resolve important regions in the domain is non-trivial for

single disciplines, let alone multiple disciplines. Often times, many industry simu-

lations that involve solid bodies interacting with fluid flow simplify the problem by

18



assuming conditions that decouple the two domains, such as using adiabatic walls

or a constant heat flux assumption, as oppose to solving the fully coupled conjugate

heat transfer (CHT) problem. Certainly, if the thermal variation within the solid

is negligible, these assumptions may apply; however, many aerospace applications

consist of thermal-fluid interactions that are highly coupled, and reliable solutions

cannot be obtained if the assumptions are maintained. Instead, a robust and au-

tonomous method for generating multi-disciplinary, adapted meshes is necessary to

conduct efficient CHT simulation. With the help of mesh adaptation, the ability to

accurately capture the coupled interaction between a fluid and solid can foster and

facilitate aerospace design by:

" mitigating crack development due to thermal shocks

" reducing hot spots in high-temperature environments

" allowing reductions in coolant flows

" determining performance metrics for heat exchangers

" increasing accuracy in predicted heat transfer coefficients

" optimizing highly coupled thermal-fluid component design

With these applications in mind, this thesis presents work toward: streamlining the

CAD-to-mesh-to-solution cycle through a cut-cell technique, utilizing high order dis-

cretizations, and integrating an error estimation and adaptation process for multi-

disciplinary conjugate heat transfer problems.

1.2 Background

1.2.1 Cut-Cell Methods

The mesh generation process for unstructured grids is often very time-consuming,

and also suffers from robustness issues involving highly anisotropic elements around

high-order curved geometries. One alternative for a streamlined and robust process

is the use of cut cells, where the computational mesh is 'cut' from a background
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mesh that is not required to conform to the geometry at hand. This process begins

with the generation of a coarse background mesh, which is then intersected with a

non-conforming geometry, or embedded geometry, to create a cut-cell mesh consisting

of arbitrarily shaped elements. Depending on the type of problem, the embedded

geometry may specify a solid body embedded in an external flow (in which case

the external mesh becomes the computational domain), or it may specify the outer

boundaries of a fully embedded domain (in which case the interior mesh becomes

the computational domain). FIGURE 1-1 illustrates an example of the latter, where a

fully embedded cut-cell mesh is formed from a background mesh intersecting with an

arbitrary embedded geometry. Without the requirement of boundary conformity, the

generation of a cut-cell mesh now only relies on an automated intersection algorithm.

However, the burden of robustness is transferred to the PDE solver, which must

now account for the resulting arbitrarily shaped elements within the cut-cell mesh.

Despite this added complexity, the automated benefits of the cut-cell technique may

still outweigh the large cost associated with a traditional boundary-conforming mesh

generation process.

(a) Background mesh (b) Arbitrary geometry

(c) Cut mesh from embedded geometry

FIGURE 1-1: Example of a cut-cell mesh
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The initial concept of cut-cell methods was first considered by Purvis and Burkhalter

[62] in 1979. In their work, the full potential equations were solved on cut Carte-

sian background meshes, which has more recently been extended to 3D meshes with

complex boundaries. For example, Young et al. [80] demonstrated an accurate and

reliable method for solving the 3D potential flow equations on complex geometry.

Their Cartesian cut-cell finite element method used Stokes' theorem to carry out the

volume integration of linear cut cells, and allowed for adaptation based on geometric

or solution features. Furthermore, Karman [43] had developed software (SPLITFLOW)

that used a Cartesian grid to solve the 3D Reynolds-Averaged Navier-Stokes (RANS)

equations. However, this technique required a priori knowledge of the location and

orientation of dominant flow features in order to properly align the Cartesian grid.

As such, Cartesian grids are limited in the direction in which anisotropic elements are

desired, and are therefore inefficient in resolving anisotropic features in Navier-Stokes

and RANS problems.

To overcome this limitation, Fidkowski and Darmofal developed a simplex cut-cell

method for 2D and 3D embedded boundary problems [32]. Combined with a high-

order discontinuous Galerkin discretization, this method used cubic splines to repre-

sent embedded geometries in two dimensions, and quadratic patches in three dimen-

sions. The method enabled anisotropic adaptation, though exhibited low quadrature

quality in arbitrarily shaped cut cells, and ill-conditioning due to small volume ratios

between element neighbors. Since then, robustness and automation improvements

of the method have occurred. For instance, Modisette developed an algorithm to

recognize canonical shapes for cut cells in two dimensions to improve their respective

quadrature quality, as well as a merging technique to improve the overall condition-

ing [51]. Additionally, Sun introduced the use of magic points for cut-cell quadrature

rules, and demonstrated the method on interface problems [72].

This improved cut-cell method becomes particularly useful in 'multi-regioned' simula-

tions, where generating interface-conforming meshes becomes far more challenging as

the number of region boundaries and interfaces increase. Several methods, such as the
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immersed interface method [46] and ghost fluid method [30], have been developed to

handle non-interface-conforming meshes, though are typically second-order accurate.

In order to achieve high-accuracy solutions to interface problems, the method must

be compatible with high-order discretizations [71]. Though the cut-cell method by

Sun produces meshes to obtain high-order solutions to a single interface problem, the

algorithm is not capable of generating cut-cell meshes for multi-disciplinary domains

with an arbitrary number of boundaries and interfaces. Hence, Sun's cut-cell method

is used as a starting point for developing a method to streamline the mesh generation

process for multi-regioned, high-order conjugate heat transfer problems.

1.2.2 High-Order Discretizations

The primary goal of high-order methods is to achieve higher fidelity solutions at a

fraction of the cost of low-order methods. Because of their ability to reduce discretiza-

tion error, high-order methods become important in complex problems that require

high accurate solutions. As an example, a heat transfer review by Peniguel illumi-

nates common low-order methods that overestimates the average Nusselt number of

a heated flat plate case by a factor of two [58]. Not only that, Peniguel expresses that

this overestimation is typical for industry RANS solvers. With the added complex-

ity of a strongly coupled conjugate heat transfer problem, the ability to control the

discretization error is paramount.

Most aerospace industry CFD methods today can only achieve second order error

convergence defined as E oc 0(h2), where E is a measure of the error, and h is a

measure of the mesh size. Generally speaking, high-order refers to a discretization's

ability to obtain a higher convergence rate r in order to achieve improved accuracy.

More specifically, high-order methods typically achieve error convergence rates that

are higher than second order: E oc 0(hr>2 ), for an L2-error measure.

In this work, finite element schemes are used to achieve high-order discretizations as

they are applicable to unstructured meshes, which can more readily tessellate models
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with complex boundary or interface geometry. They also offer an elegant extension

to high-order accurate solutions by increasing the order of basis polynomials. The

concept of increasing the polynomial order p (while maintaining a constant grid spac-

ing, h) is known as a 'p-type' method, which had originally been applied to elasticity

equations in 1981 by Babuska et al. [4]. Their study found that the p-type method

required fewer degrees of freedom to achieve a similar level of accuracy when applied

to smooth problems. In order to realize the benefits of high-order methods for prob-

lems with low regularity, however, h-type methods (one that adapts the grid spacing)

are required to control the resulting discretization error. For instance, Yano et al.

[79] demonstrated the affordability of high-order convergence by solving compressible

Navier-Stokes and RANS problems with a mesh adaptation method.

To stabilize the finite element discretization for convection-dominated problems, the

discontinuous Galerkin (DG) method is used. The DG method dates back to 1973,

where Reed and Hill first introduced it for scalar hyperbolic equations [63]. Soon af-

ter, LeSaint and Raviart [45] proved that, assuming a smooth solution with a p-order

polynomial basis, the L2-error of the DG method is O(hP), while Richter [64] proved

a decade later that convergence rates of O(hP+l) can be obtained. The method was

later extended to nonlinear hyperbolic problems by Chavent and Salzano [18] using

Godunov's flux, followed by an extension to using a Runge-Kutta explicit time in-

tegration (RKDG) by Cockburn, Shu, and co-authors [21, 20, 19, 22]. For solving

elliptic problems, Arnold and Wheeler [3, 76] developed interior penalty methods,

while Bassi and Rebay later developed the so-called BRI [8] and BR2 [9] discretiza-

tions. The BR2 scheme achieves stability for purely elliptic problems, and serves as

the viscous discretization, in this work.

1.2.3 Output-Based Error Estimation and Mesh Adaptation

Many engineering applications require the development of high-fidelity models to

accurately predict an output of interest. This development typically involves the

generation of a mesh that, through experience, is refined in areas that reduces the
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output error. For complex problems (including CHT), experience is not enough to

locate regions needing refinement a priori. Hence, an output-based adaptation frame-

work that resolves appropriate domain features in the absence of human experience is

desired. Combined with a high-order discretization and a cut-cell method framework,

mesh adaptation could enable a user to specify a required error level and a maximum

allotted time for an automated multi-disciplinary simulation. FIGURE 1-2 illustrates

an ideal flow of information to achieve an output of interest within a desired error

tolerance, Ema, and a desired solve time, rma. For a multi-disciplinary problem, the

process begins with a cut-mesh generated by intersecting the multi-regioned geometry

with an initial (coarse) background mesh. Next, the discretized PDE's are solved on

the new cut-mesh, followed by an estimation of the resulting output error. If the error

or time tolerances are not met, the estimated error is localized on an elemental level,

and the background mesh is adapted to reduce the error. This process continues until

the outputs reach an acceptable error level, or the run-time is exhausted. The three

primary modules in this process are the cut-cell framework (as discussed earlier), the

output error estimation, and the mesh adaptation procedure.

FIGURE 1-2: Automated process of the output-based adaptive PDE solver

Error Estimation

The purpose of error estimation in the adaptive process is to first determine a global

error to assess the validity of an output of interest, then localize the error to identify

which elements contribute to the global error the most. Several varieties of error

estimation have been developed to achieve these goals. A common strategy is to
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identify dominant solution features based on the areas marked by large gradients,

as shown by Baker [5]. However, large gradients in a solution do not necessarily

localize the area of greatest error. For example, small upstream perturbations can

have an effect on downstream features, despite the largest gradients occurring in the

downstream features [75]. Another method is residual-based error estimation, which

relies on calculating residual norms that bound the error. Though this method was

demonstrated to function well in one-dimensional transonic flows with shocks [81], it

has not been proven successful in two dimensions.

An improved method consists of an output-based error estimation technique that

localizes the output error by incorporating the corresponding adjoint solution from

the dual problem. The adjoint serves as the sensitivity of an output of interest to

perturbations in the primal residual, which links the output error to the local residual.

Such method is given by the dual-weighted residual (DWR) method proposed by

Becker and Rannacher [11, 12], and is used in this work to drive mesh adaptation.

The DWR method has been extended and implemented for several mesh adaptation

procedures, notably the first output-based, anisotropic adaptation method applied to

RANS problems by Venditti and Darmofal [73].

Mesh Adaptation

Given a localized error estimate, the purpose of mesh adaptation is to minimize the

output error by changing the mesh spacing (h-type adaptation). In other words, given

an amount of resources (degress of freedom), the best approximation of the output of

interest can be determined by controlling the error through mesh optimization. For

purely isotropic adaptation, the localized error from the DWR method is sufficient to

carry out a fixed fraction strategy. This technique first ranks all elements within the

computational domain by their localized error, then performs a refinement of those

with the highest error, and a coarsening of those with the lowest error. However, to

generate efficient meshes for high-Reynolds flows where boundary layers, wakes, and

shocks require a resolution with high aspect ratios, anisotropic meshes are needed.
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One way to represent an anisotropic mesh is to formulate the mesh information as a

metric tensor field that defines the size, stretching, and orientation of each element.

Though an anisotropic mesh can be fully characterized by a conforming metric field,

it still belongs to a family of metric-conforming meshes that all have similar approx-

imation properties [48, 49]. Given a metric field, several anisotropic mesh generators

such as BAMG [14, 37] can be used to generate corresponding meshes. This way,

an anisotropic mesh that conforms to a desired distribution that reduces the total

output error is possible. Peraire et al. [60] developed a method based on the Hessian

of a solution field to control the anisotropic mesh configuration. Venditti and Dar-

mofal [73] proposed an anisotropic adaptation method that relies on both the DWR

method and an anisotropy detection based on the Hessian of the Mach number, while

Fidkowski and Darmofal [32] extended this idea to high-order discretizations.

Beyond this, Yano and Darmofal [78] proposed the Mesh Optimization via Error

Sampling and Synthesis (MOESS) algorithm, which determines adapted meshes by

solving a continuous constrained optimization problem. This is done by formulating

the objective as the output error, and defining the design variables as the degrees of

freedom in a metric tensor field. The error-metric sensitivities are approximated by

first constructing split configurations for each element, then solving for the resulting

error for each configuration. As defined, this method is only capable of performing

error sampling over triangular elements, and therefore cannot be used for arbitrarily

shaped elements. However, Sun has extended this method to handle cut-cell meshes

for embedded boundary problems [71], and performs the adaptation procedure on the

background mesh. Additionally, Kudo [39] has modified the mesh adaptation method

to use a gradient-based optimization algorithm.

In the context of multi-disciplinary problems, mesh adaptation is important in re-

solving anisotropic and perhaps non-intuitive features in each sub-domain. Since

multi-regioned domains are tessellated using a cut-cell mesh, and the mesh adapta-

tion process is performed on the background mesh, the modification and generation

of a new optimized mesh is completely decoupled from the geometry at hand. Hence,
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the combined cut-cell and mesh adaptation framework allows for efficient and au-

tonomous output error minimization of multi-regioned domains, and is demonstrated

in this thesis for conjugate heat transfer problems.

1.3 Thesis Overview

This thesis presents work toward developing a robust, PDE solution framework for

CHT simulations that autonomously provides reliable output predictions. In partic-

ular, the framework is comprised of three primary components: a simplex cut-cell

technique, a high-order DG discretization, and an anisotropic output-based adapta-

tion method. The specific contributions of this thesis are as follows:

* Extension of cut-cell methods to fully-embedded, multi-regioned domains.

" Development of a coupled framework that combines separate disciplines, com-

patible with the integrated cut-cell and mesh adaptation methods.

" Demonstration of the CHT framework with high-order discretizations of the

heat, Navier-Stokes, and RANS equations.

In this thesis, CHAPTER 2 details the cut-cell algorithm used to generate multi-

regioned meshes. CHAPTER 3 provides background for the DG discretization, dual-

weighted residual output error estimation, and mesh optimization with cut-cell ex-

tensions. In CHAPTER 4, the CHT framework for the coupled heat and Navier-Stokes

equations is demonstrated, while CHAPTER 5 demonstrates the CHT framework for

the coupled heat and RANS equations.
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Chapter 2

Multi-Disciplinary Cut Cell

Methods

Many aerospace applications rely on different analysis models to support and drive

multi-disciplinary design. When coupled together, these analyses typically require

computational meshes that are capable of representing different regions separated

by arbitrary interfaces. However, generating meshes that conform to the domain

boundary and interfaces can be very time-consuming if the geometry representation

is complex. Cut-cell methods, on the other hand, do not require a mesh to conform

to the interface geometry, and instead offer an alternative mesh generation process

for multi-regioned domains. In this chapter, a two-dimensional cut-cell method for

multi-regioned domains is presented.

2.1 Geometry Definition

For multi-disciplinary problems, the geometry consists of multiple boundaries and

interfaces that form separate closed loop regions. FIGURE 2-1 illustrates an example

of a multi-regioned domain consisting of three regions, Q1, Q 2, and Q 3, separated by

interfaces, E 13 , E 12, and E 23. In two dimensions, these geometric features are uniquely

characterized by a set of nodes, faces, and face groups as defined in TABLE 2.1.
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FIGURE 2-1: Multi-region interface example

Attribute Symbol Definition

Nodes ni (Xi, yi)

Faces fij (node i, node j)

Face Groups F {fjk}, (14, ri)

TABLE 2.1: 2D multi-region geometry attributes

The nodes are defined by a set of coordinates (Xi, yi), and the faces are defined by an

ordered nodal pair. The face groups are defined by both a set of faces, {fjk}, and a left

and right region index, 1i and ri, which corresponds to a user-specified material. Each

face group F represents either an interface or boundary of the computational domain.

As such, the user-supplied interface and boundary conditions for all interfaces and

boundaries in the domain are applied through the defined face groups. Each face fjk

in face group F must be oriented in the same direction such that the left and right

region on each face when traversing from node j to node k is equal to F's respective

left 1i and right ri region index. Additionally, all face groups are required to form a

'water-tight' geometry by establishing closed loops around each region. FIGURE 2-2

shows an example of the geometry representation for a multi-region interface domain.

Here, F2 consists of the set of faces: f23, f34, and f45, and region information: 12 = 1,

r2 = 2, that uniquely defines the interface between domain Q1 and Q2. Alternatively,

boundaries define the interface between a valid region and a null region. To signify
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a null region, the corresponding region index is set to zero. For example, F3 in

FIGURE 2-2 has an associated left and right region index: 13 = 1 and r3 = 0, since

the left domain is Q, and the right domain is null. Note that face group directions

can be defined in either direction, as long as its set of faces are oriented in the same

direction, and its region information is consistent with the left and right domains.

FIGURE 2-2: Multi-region geometry representation

To approximate curvature in the geometry, cubic splines are used to represent all

boundaries and interfaces defined by the face groups. At geometric corners or interface

junctions where multiple regions intersect at a node, multiple splines are required to

represent the geometry. Once all face groups are represented by splines, the geometry

is used to generate a cut-cell mesh.

2.2 Cut-Cell Technique

The grid generation process for a cut-cell mesh begins with a background mesh, de-

noted as Th,b consisting of elements IACb, and an embedded geometry definition. Both
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the background mesh and embedded geometry definitions are not required to con-

form, and are instead used to efficiently construct cut-cell meshes consisting of mul-

tiple complex regions. Though conformity is not required, the geometry definition is

required to be fully embedded within the background mesh. FIGURE 2-3(a) shows an

example of an embedded domain within a non-conforming background mesh Th,b. To

create the cut-cell mesh, the geometry definition is intersected with Th,b, and Th,b is

separated or 'cut' into individual parts (T)) that reside completely within a single

region Qi. For instance, FIGURE 2-3(b) illustrates three elements of different regions,

C1, AC2 , and C3, resulting from the intersection of the geometry with a single back-

ground element. Once a cut-cell mesh is created using the intersection algorithm,

each element is either associated with a uniquely defined material or considered a

null element (if outside the computational domain) in which case it is disregarded.

(a) Non-geometry-conforming background mesh (b) Example of elements cut from a back-
(grey signifies null region) ground mesh

FIGURE 2-3: Background and cut mesh

2.3 Multi-Region Intersection Algorithm

The generation of multi-region cut-cell meshes presented here is an extension of the

intersection algorithm developed by Modisette [51], which creates cut elements on only

one side of an interface to define a domain boundary. The algorithm also leverages

the implementation provided by Sun [71] where cut elements are formed on both

sides of an interface, creating two distinct domains. However, when generating cut

meshes for n-regioned domains, junction points, which join multiple regions (ie. point
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A in FIGURE 2-3(b)), are encountered, warranting additional region information to

precisely define the topology of the cut mesh. Hence, the algorithm utilizes region

information (li, r) that is specified for each face group F in order to identify and

create cut elements of unique regions.

To generate the cut mesh topology, the intersection algorithm starts by finding all

intersection points between the set of splines, indexed Sj = 1, 2, ..., nspline, and back-

ground mesh edges (ie. points B, C, and D in FIGURE 2-3(b)). For each spline, Si, a

bounding box method is used to detect all background mesh edges that are candidates

for an intersection. In particular, the global coordinates of both the spline endpoints

and any non-endpoint extrema (determined by solving a quadratic equation) are

determined, and the maximum distance between the set of coordinates defines the di-

agonal endpoints of the bounding box. The box is expanded slightly with a tolerance

of max(O.Old, 10OMP) where d is the box diagonal length and MP represents machine

precision, to ensure no intersections are missed. Then, the set of edges within the

bounding box are determined by testing whether the edge endpoints are both within

the box or, if not, whether the edges intersect the lines of the bounding box. For

each edge within the bounding box, the intersection points are determined by solving

a cubic-root problem with double precision arithmetic. Though it is possible to erro-

neously detect an intersection due to floating point errors, the intersection between a

spline and an edge is performed only once in order to prevent an inconsistent topology

based on the ordering of the intersection calculations.

Junction points are determined by finding the nodes that share multiple face groups.

Since multiple spline segments meet at junction points, the spline index, Sj, and spline

end parameter, send, of each joined spline are stored on the corresponding junction

point. Both intersection and junction points, along with all other background grid

points (ie. points S,Y, and g), are stored and referred to as zerod objects. Background

faces that are "cut" by the intersection points are then formed into separate faces

called "cut" faces (ie. face 9N, B, etc. in FIGURE 2-3(b)). Additionally, spline

segments that are "cut" by the intersection points are also formed into separate faces
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called "embedded" faces (ie. face BA A and A ). These faces, along with all

other uncut background faces, or "whole" faces, are stored and referred to as oned

objects. TABLE 2.2 and TABLE 2.3 outline the different zerod and oned object types

along with their stored information, while FIGURE 2-4 shows an illustration of both

object types on a cut mesh.

zerod object Stored Information
Grid Point - Background grid node

- Single region index m
Junction Point - {Sj}, set of spline indices of joined spline segments

- {send}, set of spline parameters of joined spline ends
Spline-face intersection - Face index of background face

- Si, spline index of background spline segment
- sin, spline parameter of intersection

TABLE 2.2 : Information stored for zerod objects

oned object Stored Information
Embedded Face - S, spline segment index

- Index of zerod endpoints
- Background element index
- Left and right region index, 1 and r

Cut Face - Background face index
- Index of zerod endpoints
- Single region index m

Whole Face - Background face index
- Index of zerod endpoints
- Single region index m

Null Face None, this face is not relevant for solving,
but is used in forming the null vertex layer
(See SECTION 3.5.2)

TABLE 2.3: Information stored for oned objects

Oned objects are combined into elements by forming closed loops around single re-

gions. Each loop that is formed is referred to as a twod object, which defines a new

cut element and its associated region. To create all loops within an intersected back-

ground element, each "embedded" face must be traversed twice in opposite directions.

The multi-regioned loop generation algorithm is detailed in ALGORITHM 1.
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Algorithm: Multi-Regioned Loop Generation

for

for all faces ej c OneD that is either an embedded face used less than twice or an
unused cut face do

if (OneD[ej].zo Zcur) then
- Set ecur
- Set Zcur to OneD[ej].zi;

else
if (OneD[ej].zi == Zcur) then

- Set ecur = ei;
- Set Zcur to OneD[ej1.zo;

end
end

end
end

end
- Assign region reur to the cut faces in the loop and to the newly constructed twod;

end
end

Algorithm 1: Multi-region loop generation algorithm
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each background element with an embedded geometry intersection Tc t do
- Set the used counter of all embedded faces to zero: ej.used = 0;
while not all embedded faces in T are used twice do

- Select an embedded face eo from a list of valid oned objects, OneD, associated with the
background element that has not been used twice;
if eo.used = 0 then

(eo unused)
- Start a loop by traversing from the initial zerod on the embedded face, setting

Zstart = OneD[eo].zo, and Zcur = OneD[eo].zi;
- Set current region reur = OneD[eo].l;

else
(eo used once)
- Start a loop by traversing opposite to the direction previously used, setting Zstart
OneD[eo].zi, and Zcur = OneD[eo].zo;
- Set current region rcur = OneD[eo].r;

end
- Set ceur = eo and Zcur = OneD[eo].zi;
while (Zcur! = Zstart) do

- Add ecur to the Loop and increment used counter: ecur.used++;

if Zcur is a junction zerod then
for all embedded faces e C OneD used less than twice do

if (OneD[e<.zo Zcur) && (OneD[e ].l == rcur) then
- Set ecur
- Set zcur to OneD[e<.zi;

else
if (OneD[e<.zi == Zcur) && (OneD[e<.r rcur) then

- Set ecur = e ;
- Set zcur to OneD[e ].zo;

end
end

end
else



FIGURE 2-4: Example of zerod and oned objects in a multi-region intersection

Since the algorithm can start with any embedded face eo, the order of the loop

generation is not unique, though the algorithm guarantees a precise definition of the

element topology when completed. As an example, FIGURE 2-5 shows the progression

of the loop generation algorithm as the twod objects in a multi-regioned background

element are constructed. To create twodi, the algorithm starts with an embedded

face, BA, and steps to junction point A. At the junction point, all oned objects

within the element are looped over, and the embedded face corresponding to the

current region, which in this case is A with 1 = 1, is selected. This is continued

until the closed loop is formed. Next, the cut faces, and g, and the twod object,

BACg, is assigned with the region index m = re,, = 1. This entire process is repeated

until all embedded faces have been traversed twice, as seen in the formation of twod2

and twod3 . Note that the algorithm, once initialized with a valid oned, always forms

loops existing only within the computational domain.

At this point, all elements with a cut face belong to a specific region, though region

information still needs to be defined on all other non-cut faces and elements within

the domain. This is required in order to distinguish the choice of physics for residual

evaluation on faces and elements of different regions. The propagation of region

information is performed by an algorithm that uses the embedded face group's left
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(a) twod 1 (b) twod 2

(c) twod 3

FIGURE 2-5: Formation of twod types in a multi-regioned cut element

and right region information and mesh connectivity to spread the region to all nodes

and faces in the cut mesh. Once this is completed, the defined region of a non-cut

element is trivially set by the surrounding face region information. The cut-mesh is

complete once all features within the domain has region identification.

2.3.1 Merging and Quadrature

With this method, it is possible to create an arbitrarily small area ratio between

neighboring elements. This large difference in area negatively affects the linear system

condition number and inhibits solution accuracy. To mitigate this issue, two elements

of the same region with a large area ratio are merged into a single larger element as

proposed by Modisette [51] and demonstrated by Sun [71]. This process is carried

through for all neighbors with high area ratios, though is not used as part of local

solves on cut elements for error synthesis (See SECTION 3.5.2).
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Furthermore, the resulting elements of the cut-cell algorithm can be of arbitrary

shape, and therefore require more robust quadrature rules in order to accurately

calculate residual terms. One method is to attempt to convert the arbitrary cut

element into a triangle or quadrilateral, since the arbitrary shapes typically have three

or four edges. This allows the cut element to be referenced to a master element so that

standard integration rules can be applied [51]. If a cut element cannot be converted

to a canonical element due to its complex shape, then an alternative quadrature rule

must be applied. In this case, "magic points", which are proven to be asymptotically

the same as Fekete points but with an improved quality measure as demonstrated by

Sun [71], are employed.

2.3.2 Multi-Region Simulation

This work focuses on designing a tool to efficiently create and solve CHT simulations.

The same solver that would be used in a single region case is used for the multi-

region case, though the residual calculation changes depending on which region is

being calculated. In order to perform the correct calculations based on the physics

involved, a region key listing all elements and corresponding regions is defined. This

allows for the correct function calls and material properties in each element when

evaluating the global residual.
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Chapter 3

Discretization, Error Estimation

and Output-Based Adaptation

This chapter first summarizes the discontinuous Galerkin (DG) method for general

conservation laws. Then the dual-weighted residual method, proposed by Becker

and Rannacher [11, 12], is shown as a means for output error estimation. Lastly, the

metric optimization framework for mesh adaptation, proposed by Yano and Darmofal

[77] and extended to handle cut cells by Sun [71], is presented.

3.1 Governing Equations

Let Q E Rd be an arbitrary, bounded domain in a d-dimensional space. The strong

form of a general time-dependent conservation law in the domain, Q, can be expressed

as:

+ V - Fi(u, x, t) - V -F"(u, Vu, x, t) = S(u, Vu, x, t),
wt

with initial condition:

u(x,0) = uo(x),

Vx E Q, t E 1 (3.1)

Vx E Q
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and boundary conditions:

B(uP '(u, Vu, x, t) - n, x, t; BC) = 0 Vx E &Q, t E I

where u(x, t) : Rmr is the mr-state solution vector in region r, FT(u, x, t) : Rmxd

is the inviscid flux, JE(u, Vu, x, t) : Rmx" is the viscous flux, S(u, Vu, x, t) : Rmr is

the source term, and B imposes the boundary condition. Note that the state rank and

residual term definitions are region dependent. For solving a conjugate heat transfer

solution, both the fluid and the solid governing equations are expressed in the general

conservative form and solved simultaneously. In this work, both the Navier-Stokes

and Reynolds-Averaged Navier-Stokes equations are coupled with the heat equation

for conjugate simulation. The formulation of these governing equations are detailed

in APPENDIx A.

3.2 Discontinuous Galerkin Discretization

Since the governing equations for fluid flow and heat conduction can be expressed

in the general conservative form, the DG discretization can be applied to the entire

conjugate domain, regardless of the number or type of regions. This allows for finite

element discretizations to extend to multi-regioned problems that are governed by

PDE's of the same general form.

For the discontinuous Galerkin discretization, let 7h be a triangulation of the domain

Q with elements, ri. Also define a function space Vh,p as:

Vh,p {v C (L 2 (Q)) e (P (,) 'r , C Th}, (3.2)

where PP represents the solution space of p-th degree polynomials on a physical

element r,. Taking the product of EQUATION 3.1 with a test function Vh,P E Vh,p, and

integrating by parts yields the weak formulation of the governing equation. Solving

the weak formulation finds a solution Uh,p C Vh,P such that:
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Vhp t' + Rh,P(Uh,p, Vh,p) = 0 VVh,p E Vh,p. (3.3)

where the weighted residual Rh,p is comprised of inviscid (Ri), viscous (RV), and

source (R') discretization terms:

Rh,p(Wh,p, Vh,p) = Rh,p (wh,p, Vh,p) + 7Zh,p(wh,p, Vh,p) + h,p (wh,p, Vh,p) (3.4)

3.2.1 Inviscid Discretization

The DG discretization of the inviscid term is given by:

R P(w, V) =-Zj vT - (w (3.5)

+ E J v + T W'(w+, ub(w+; BC); n+)
fCFb 1

+R p(W v)

where (-)+ and (-) denote trace values taken from opposite sides of a face f, n+ is

the normal vector pointing from the (+) side to the (-) side, W and 'H b are numerical

flux functions on interior and boundary faces respectively, ub is the boundary state

constructed from the interior state and a specified boundary condition, and Pi, Fb,

and E are the interior, boundary, and interface faces, respectively. R" (w, v) is the

equation-specific inviscid interface residual term that is defined for the coupled Navier-

Stokes and heat equation interface in SECTION 4.1, and for the coupled RANS and

heat equation interface in SECTION 5.1. In this work, the numerical flux function M

uses the Roe flux [66] to approximate the Riemann problem. The inviscid boundary

flux Wb , is calculated by evaluating the flux at a boundary state, Ub, which is a

function of both the interior state, w+, and a user-specified boundary condition, BC.
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3.2.2 Viscous Discretization

The viscous terms are discretized using the second method of Bassi and Rebay (BR2)

[10]. For compactness, the jump [[-]] and average {-} operators are used. For a scalar

s and vector v, the jump and averages on interior faces are defined as:

{s} = 1 (s + s-),
2

[[s]] = (s+n+ + s-n~),

1
{v} = -(v+ + v-),2

[[V]] = (V + -n+ + v- -n~)

and on boundary faces as:

{s} = S+ v=V+

[[s]] = s+n+ [[v + -n+

The viscous discretization is:

R,(w, v) - jVv - (A(w)Vw) (3.6)

- j[[[W]. {A"(w)Vv} + [[v]] - ({A(w)(Vw - rf([[wI])}

- j (w - ub)T4Vv+) - n+ + v+T (Ab (Vub - r(+ - ub))) - n+

- 7Esc(w, v)

where ub(w+, BC), Ab(ub; BC), and Vub(Vw+; BC) are chosen to specify the bound-

ary viscous flux, rf and rf are the lifting operators on an interior and boundary face

respectively, and ijf is a stabilizing coefficient. Rvsc(w, v) is the equation-specific

inviscid interface residual term that is defined for the coupled Navier-Stokes and heat

equation interface in SECTION 4.1, and for the coupled RANS and heat equation inter-

face in SECTION 5.1. For this work, the stabilization parameter is set conservatively

to qf = 6 (a value qf > 3 implies stability of the BR2 discretization for triangular
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meshes). The lifting operators, which are used to penalize jumps in the solution, are

defined in the following way: for every face f, find rf E [Vh,p]d such that for interior

faces

T T .rf () = OT .{T} VT E [V,p]d (3.7)
Th ~f

and for boundary faces

S jT re ( ) j #Tr+ -f+ VT E [VhP]d (3.8)

3.2.3 Source Discretization

The discretization of the source term uses the formulation shown by Bassi et al. [6],

which uses a lifting operator to solve for the state gradient. More specifically:

7Z, (w, v) = VTS(W, Vw + rg(w)) (3.9)

where the global lifting operator is rg : Vh,' - [Vh,P]d such that:

rg (w) = rf ([[w]]) + rf ((w+ - ub)n+) (3.10)

where rf is the local, face-wise lifting operator. Oliver [57] proved this method to

be asymptotically dual-consistent, allowing for super-convergence of an output of

interest.

3.3 Solution Technique

With the choice of a basis in the function space Vh,p, a solution to the discrete equation

can be obtained. Specifically, the steady discrete equation can be expressed as a

system of algebraic equations, which allows for finding U such that:

RS(U) = 0 (3.11)
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where R,(U) is the discrete spatial residual vector. This equation is solved using

a pseudo-time continuation and backward Euler time integration. Given an initial

discrete solution, U , a new solution after one time step, Un+1 , is determined by

solving

R (Un+1) Mt(Un+ - Un) + R9(Un+ 1 ) = 0 (3.12)

where Rt is the pseudo-unsteady residual, and Mt is the mass matrix weighted by a

local elemental time step At,. This time step is calculated based on a global CFL

number defined as:

CFL = AtA, (3.13)
h,

where h, is a measure of the element's size, and A, is the maximum characteristic

speed within the element rK. At each time step, Newton's method is used to solve

EQUATION 3.12 such that:

Un+1- U ~AU -Mt + O > R(U) (3.14)

The pseudo-time is advanced until the spatial residual's 2-norm IIR,(Un+ 1) 12 is less

than a user-specified tolerance. Additionally, the CFL number is updated and strate-

gically limited on each iteration to improve the robustness of the solver. This is done

by preventing large updates to select states, and by using a line search that controls

the unsteady residual, Rt [51].

EQUATION 3.14 is solved using a restarted GMRES algorithm [68, 69], which is pre-

conditioned with an in-place block-ILU(0) factorization [28] with minimum discarded

fill ordering [61], unless otherwise stated.
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3.4 Output Error Estimation

The estimation of output errors relies on the dual-weighted resdual (DWR) method

proposed by Becker and Rannacher [11, 12]. This method utilizes the dual problem

associated with an output of interest J in order to tie local primal residuals to the

output error. In other words, it allows for an approximation of the local output error

from numerical solutions to the primal and dual problem. First, let the output of

interest be a function of the state: J = J(u) where u C V is the exact solution to

the governing PDE, and J(-) : V -+ R is the output functional. For conjugate heat

transfer, J is typically an integral quantity on surfaces (heat flux, mass flow) or in

the domain (average temperature). Once a discrete DG solution Uh,p that satisfies

R7h,p(Uh,, v) = 0, Vv E Vh,, (3.15)

is obtained, the desired output is estimated by

Jh,p = Jh,p(Uh,p), (3-16)

where Jh,p is the discrete output functional that maintains dual consistency [57, 50].

The true output error is then expressed as

8 true J- Jhp= -Rh,p(Uh,p,? (3.17)

where the adjoint 0 is the sensitivity of the output J with respect to perturbations

in the solution residual Rh,p. More formally, the adjoint solution 4 E W =_ V + Vh,,

satisfies

)Z[u, Uh,p](w, 4') = Dl,[ uh,p](w), Vw C W. (3.18)

where Rhp[u, Uh,p] : W x W - R and Jp[U, Uh,p] : V -+ R are the mean-value

linearizations defined as
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]Z,[U, ULh,p] (W, V) 10 'RI,~[±( - O)'Uh,p] (w, v)dO (.9

/10, pO 1(.9
h p [U, fh,p] (W ) - O6 + ( )Uh,p] (w )dO ( . 0

Here, 1'p[z](p , -) and J, [z](.) denote the Frchet derivative of Rh,p(-, -) and Jh,p(-)

with respect to the first argument evaluated about the state z. Since the adjoint solu-

tion b generally cannot be computed from EQUATION 3.18, it is instead approximated

by $h,p+1 in an enriched space Vh,p+1 D Vh,p, computed from a linearization about

Uh,p:

Rhp+l[Uh,p (V, /h,p+1) - J,p+1[Uh,p](V), Vv C Vh,p+1. (3.21)

Thus, the output error can be estimated by

Etrue ~ -7h,p(h,p, V)h,p+1). (3.22)

The error in approximating the adjoint in an enriched space could become significant

for coarse meshes, though Yano [77] showed that it is sufficiently accurate for the

purpose of mesh adaptation. Additional details of the method and derivation can be

found in several reviews [34, 44, 31].

3.4.1 Error Localization

In order to achieve error gradients for mesh optimization, a localized error estimate

is calculated on every element rK via

7r = Rh,p(h,p, V4h,p+1 ) (3.23)

This localized error can be interpreted as a weighted product of the local primal error
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and the local adjoint error, implying that accuracy in the error estimation requires

accurate solutions to both the primal and dual problem.

Summing the local error estimate across all elements gives an error estimate for the

output J:

S a r/s, (3.24)

which can be used for an error model in mesh adaptation.

3.5 Output-Based Mesh Adaptation

The goal of mesh adaptation is to optimize a triangulation Th in order to achieve

greater accuracy in output predictions. Since many aerospace analyses involve physi-

cal features that warrant highly anisotropic meshes (ie. boundary layers, shocks, etc.),

it is important for mesh adaptation schemes to handle and manipulate anisotropic

information for simplex elements. One method of representing this information is

through the formulation of a metric tensor M, which is a symmetric positive defi-

nite matrix that encodes the size and orientation of an element rK [73].

Though a single metric tensor M, can be discretely defined for each element in

a mesh, a continuous metric field {M(x)}c, can also be created to facilitate the

optimization process. FIGURE 3-1 illustrates the mapping between a discrete mesh and

a continuous metric tensor field. For a given mesh, there exists a unique conforming

metric field; however, given a metric field, several non-unique discrete meshes can

conform. Furthermore, the metric field, as proven by Yano [77], has a direct influence

over the output error for the DG discretization. Thus, the error in heat flux for a

conjugate heat transfer problem, for example, can be controlled by manipulating the

metric field.
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generation
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FIGURE 3-1: Example of mesh to continuous metric field mapping

In this work, the metric optimization framework proposed by Yano and Darmofal [77]

and extended to handle cut-cell meshes by Sun [71] is applied to multi-region con-

jugate problems. The Bidimensional Anisotropic Mesh Generator (BAMG) [15, 37],

developed by INRIA, is selected for generating all two-dimensional metric conforming

meshes, and a gradient based method, described by Kudo [39], is chosen for optimizing

the metric field.

3.5.1 Mesh Optimization via Error Sampling and Synthesis

In this section, a short review of the Mesh Optimization via Error Sampling and Syn-

thesis (MOESS) algorithm developed by Yano and Darmofal [77] and the extension

to cut cells developed by Sun [71] is presented.

The goal of mesh adaptation is to manipulate the triangulation T, in order to achieve

higher accuracy in output predictions. This can be done by finding the optimal

triangulation Th* where

T* = arg inf (Th) subject to C(Th) < dOftarget (3.25)

where E(.) is the error functional, and C(.) measures the cost or number of degrees of

freedom (DOF) within Th. Since the triangulation Th is defined by nodal coordinates

and connectivity, the above discrete optimization problem is generally intractable. Us-

ing Loseille and Alauzet's proposed continuous relaxation of the optimization problem
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[47], the continuous metric field, M A {M(x) },,], is optimized to find the optimal

metric field, M*, where

M arg inf (A4) subject to C(M) < N (3.26)
A4

The cost functional C(M) is defined as

C(M) = I c, /det(M (x))dx (3.27)

where cp is the reference element degrees of freedom normalized by its size. Note that

for multi-disciplinary applications where the number of conservative states between

regions are different, the cost model could be adjusted to reflect the differences in

degrees of freedom. Here, all regions have equal weightings in the cost model, and

extensions to varying weights is left for future work. Since each elemental error

contribution % is assumed to be a function of the elemental metric tensor, 77,

il,(M,), the output functional £(M) can be approximated by

F(M) q r rs(M ) (3.28)

where the local error function rs(Ms) is constructed by a surrogate model due to the

analytical expression generally being unknown.

Local Error Sampling

A local error surrogate model is created by detecting the change in error when solving

on different split configurations of a particular element. FIGURE 3-2 displays the

original configuration Co, the different types of split configurations Ci considered,

and the respective implied metrics tensors Mc2 . For each configuration Ci, the local

problem is solved by setting the boundary fluxes on Ci assuming the solution on

neighboring elements do not change. From this, a localized error estimate associated

to Ci is calculated from the local dual weighted residual:

?7Ci = 17Zh,p(uh P, Ibh,p+1 ) (3.29)
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FIGURE 3-2: Example split configurations with respective metric tensors (Yano [77])

Error Model Synthesis and Metric Optimization

The surrogate error model is synthesized once the set of metric-error pairs (Mci, r) Iconfig

are obtained. As proposed by Pennec et al. [59], the change in the metric tensor be-

tween the original Co and new Ci configuration, or the step matrix Sci, is determined

based on the affine-invariant logarithmic map:

Sci C log (Mc1/2McM ) i = 0, ... , 1config (3.30)

where the aggregated metric of the new configuration, Mci, is determined by an

affine invariant interpolation of the sub-elemental metrics, as shown by Caplan [16].

Additionally, the corresponding change in error is:

fc, log('i1jC./~ ) (3.31)

Once the step pairing samples (Sci, fc,) I 1" I are obtained, a linear model is con-

structed via least squares: find a semi-definite positive matrix R, E Sym+ such that:

nconfig

R7 = arg min (RI : Sci fc) 2  VIE Th (3.32)
RCESymd j=1

where A: B ZE=1 AijBij and R, is called the rate matrix corresponding to an
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element K. From this, the local error model is constructed as:

rl(S) = qc0 exp(tr(RS,)). (3.33)

Given a local error and cost model, the constrained optimization problem in EQUA-

TION 3.26 is solved using a gradient-based optimization algorithm as shown by Kudo

[39].

3.5.2 Extension to Cut Cells

As provided by Sun [71], the same mesh adaptation framework is extended to handle

cut cells for interface problems. The cut mesh Th is generated from the intersection

of a background mesh Th,b and the curved embedded geometry. Since the continuous

metric representation of a triangulation breaks down for a cut mesh Th, the metric of

the background triangulation Mb is instead optimized in the same manner:

M* = arg inf I(Mb) subject to C(Mb) < N (3.34)

where S(Mb) and C(Mb) are evaluated on the cut mesh Th. This is the same

formulation as before except that the error functional S(Mb) is approximated by

E(Mb) = : Th(MA) (3.35)
b GTh, b

where T11b is the sum of the error contributions from all cut elements created from the

background element Kb. Furthermore, the local sampling is performed in the same way

except that elements intersecting with the geometry require the generation of sub-

cut-meshes to determine the error sample pairs (Sci, fc) Iccnlg for each background

element configuration. FIGURE 3-3 shows an example of different configurations for

cut elements. Note that for background elements on the boundary with most of its

area dominated by a null region, a particular split configuration may not intersect

with the computational domain, yielding a zero change in the computed error.
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(a) Configuration C1  (b) Configuration C2  (c) Configuration C3

FIGURE 3-3: Example split configurations for cut elements (Sun [71])

Once the local error pairings are computed, the error model synthesis and optimiza-

tion is performed in the same manner as before, though special treatment is required

for vertices and elements outside the computational domain.

Null Vertex Metric

For null background elements, which are completely outside the computational do-

main , the local error is set to zero, and the corresponding vertex metric is not

included in the optimization. Nevertheless, the null vertices still require a defined

metric, Mcvsn.ui, in order to generate an adapted background mesh, Thb. For im-

proved efficiency, null elements should be as coarse as possible. However, since the

metric of null vertices near boundaries can have an impact on the metrics of valid

vertices within the computational domain, the null vertex metrics are calculated to be

as large as possible without having a strong influence over the valid vertices' metric.

This is done with the help of vertex layers that control the growth of metrics defined

on null vertices based on the vertices' degree of separation from the computational

domain [71]. An example of a vertex layer is shown in FIGURE 3-4. Using this method,

each vertex is identified with a vertex layer number C(v), and only those in the zero

layer L(v) = 0 have metrics that are optimized. Note that vertices that are connected

to faces with a portion inside the computational domain are also assigned to the zero

vertex layer, L(v) = 0, despite their location being outside the computational do-
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main. For the remaining vertices, C(v) > 0, the metric is determined from an affine

averaging of neighboring metrics, as defined by Pennec et al. [59], compounded with

a growth factor y. In particular,

A4 = -7 )-W.nighbor, (3.36)

where A4 ,neighbors is the affine average of all neighboring metrics at vertices with two

degrees of separation or less: £(Vneighbors) E {max(O, £(v) -1), max(0, 1(v) -2)}, and

-y is set to 0.9. Note that the characteristic length scales of a metric scale inversely

with the magnitude of the eigenvalues.

1

0

0

1

2
FIGURE

-1 n n n 1

3-4: Example of vertex layer (grey represents null region)

The above method for integrating cut cells with mesh adaptation is leveraged for

conjugate heat transfer models. Since the mesh adaptation process is performed on

the background mesh Thb for cut-meshes, the algorithm is completely decoupled from

the geometry. This allows for efficient application of the mesh adaptation method to

general models consisting of multiple regions defined by complex geometry.

3.5.3 Cut-Cell r'-Type Corner Singularity

Here, optimization of a cut mesh using the mesh adaptation procedure defined in

SECTION 3.5.1 with the cut-cell extensions described in SECTION 3.5.2 is demonstrated.
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To test for mesh optimality, a computed mesh distribution is compared to that of an

analytically derived distribution. In particular, the optimal anisotropic element size

distribution for a 2D function with a ra-type corner singularity (as derived by Yano

[77]) is used. For elliptic problems, this type of singularity appears at geometric

corners, and is defined by

u(r, 0) = r' sin[a(0 + 0)] (3.37)

where r = VX/ + x2 is the radius from the origin, tan(0) = X2 /xi, a > 0 is the

singularity strength constant, and 00 is the offset angle. Yano [77] proved that the

optimal mesh grading near the corner becomes stronger as a decreases or as the

order of polynomial basis functions p increases. Yano also demonstrated that, for a

boundary conforming mesh, the optimal mesh distribution is achieved when using a

similar mesh adaptation algorithm. For the case presented here, a background mesh

is intersected with a unit square geometry (FIGURE 3-5) and is optimized by adapting

to the solution's L 2 error. The resulting optimized background meshes for p = 1 and

p = 3 with 4000 DOF and singularity strength a = 2/3 are shown in FIGURE 3-6.

1.5 -

-0.5 -

-0.5 0 0.5 1 1.5
x

(a) Initial Background Mesh

FIGURE 3-5: Background mesh for r' singularity problem
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FIGURE 3-6: Optimized meshes for ra singularity problem with 4000 DOF

The optimized meshes correctly show a stronger mesh grading toward the singularity

located at the origin, especially for p = 3, and have nearly isotropic elements within

the computational domain. For this problem, the optimal mesh is fully isotropic,

though occasional anisotropic elements are observed near the geometry boundary,

which propagate through the null region. The development of anisotropic elements

is due to a poor construction of the error model on particular cut cells. If the cut

element occupies only a small fraction of the background element, the error of cer-

tain split configurations (see SECTION 3.5.2) could result in a zero change in error,

yielding insufficient information to effectively construct a useful error model. Since

the metrics at null vertices are determined from their neighboring vertex metrics, the

anisotropy propagates through the null region. Nevertheless, the elements within the

computational domain still closely achieve the optimal distribution.
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FIGURE 3-7 shows the distribution of the element size, h, within the computational

domain versus the distance from the singularity, r, for p = 1 and 3 for 1000 and

4000 DOE. The element size h is determined by the elemental implied metric: h =

det(A4) 1/4 , and the distance r is measured from the singularity at the origin to

the centroid of each element. The optimal values of h and r vary linearly in a log-log

space with a slope of kanalytic = 0.44 and 0.67 for p = 1 and 3, respectively. From the

distribution data, a linear regression is computed to show that the mesh adaptation

procedure with cut elements achieves optimal distributions.
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10,
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(a) p = 1

FIGURE 3-7: Metric distribution

(b) p = 3

for r' singularity problem with a = 2/3
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Chapter 4

Conjugate Navier-Stokes Heat

Transfer

Conjugate Heat Transfer (CHT) refers to the process of heat exchange between a

conductive solid and an adjacent convective fluid. Several engineering applications,

such as turbine blade cooling, high-speed re-entry thermal control, and regenerative

cooling, rely on accurate predictions of both fluid and solid temperature and heat

fluxes. In this chapter, both the cut-cell method developed in CHAPTER 2 and output-

based adaptation described in SECTION 3.5 are utilized to accurately model conjugate

heat transfer between a solid and laminar flow. SECTION 4.1 details the application

of the DG formulation to a NS-heat interface, as proposed by Sun [71], while the

following sections demonstrate the framework's capability for CHT problems.

4.1 Interface Conditions for Navier-Stokes CHT

For the 2D conjugate heat transfer problem, interfaces define the boundary between

a fluid and solid sub-domain. The fluid is governed by the Navier-Stokes equations

with a conservative state vector u = [p, pu, pE]T, while the solid is governed by

the heat conduction equation with a state vector U( = T. See APPENDIx A.1 and

APPENDIx A.2 for a detailed formulation of the heat and Navier-Stokes equations.
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At the interface, three constraints are imposed:

U =V = 0,

T( ) = T ) )

K(1)VT(1) -nul) = - 2) VT () - n , 2

no - slip condition

temperature continuity

heat flux continuity

where or is the thermal conductivity.

The above interface conditions are set by defining the numerical fluxes of the residual

interface terms in the DG discretization appropriately.

4.1.1 Interface State and Discretization

The inviscid and viscous interface discretization definition relies on the construction

of a coupled interface state, uE, which is used to compute each domain's numerical

flux. As proposed by Sun [71], the choice of the constructed interface state is:

U [ 0

pM{T}JR

and uf = {T} (4.1)

where {T} = 0.5(T(1) + T (2 )) is the average temperature across the interface. FIG-

URE 4-1 shows an illustration of the interface states used in the interface residual

evaluation.

With this interface state definition, the inviscid interface discretization term for i =

1, 2 on each domain Qj, is set to:

7in(wv) =

f Ez +T (w+ u(f; n()) (4.2)

where the fluid inviscid flux is the inviscid boundary flux calculated with the interface

state: W1 = 70(u(j), and the solid inviscid flux is set to zero: W(2) = 0.
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FIGURE 4-1: Sketch of NS solid wall interface states used to compute numerical fluxes

For ease of comparison between interface and non-interface residual terms, the viscous

discretization presented in SECTION 3.2 is repeated here:

VvT . (A(w)Vw) (4.3)

[[[w]]T- { T (w)Vv} + [[v]]- ({A(w)(Vw - 7frf([[w]]))})]

[(w - ub )TMvV+) -n+ + v+T (Ab (Vu - qfr' (w+ - ub))) - n+

- v nrSc(w, v)

The viscous interface residual term for i = 1, 2 on each domain Q4, is chosen as:

- uM))T(A( I)vV()) +

_(2) T 2)VV(2) +
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where the coupled viscous fluxes, Ao - n('), are defined by:

-(1)
Au

A-(2)

Sn(l) =
(A( 17 1) - n(l))mass

(A 1)o 1  - n(1))momentum

0.5((A uo, - n(1))energy + ) o 2) - n(l))

= 0.5((A ouj - n(2))energy + K )2) - n (2)).

(4.5)

(4.6)

The viscosity matrix is computed using the interface state: A) = A(') (u( ), and the

lifted gradient, a1 ), is given by:

(M = Vw - 7fr E>) (wO) - u ) (4.7)

where rf is a stabilizing coefficient, and rr, is the local lifting operator defined by:

T T . r(o) (#)= I OTT+ - n(i)
VT E [VM d

Note that (Ag,71 - n(1 ))energy is the same as the heat flux, jUoM - n(l), since the

interface state, U , satisfies the no-slip condition. Finally, additional analysis on

the current interface boundary condition is recommended to determine adjoint con-

sistency and other discretization properties.

4.2 Compressible Poiseuille Flow over a Cooled

Slab

In this section, the optimal order of convergence of the DG scheme applied to a

compressible laminar flow over a cooled slab using cut-cell methods is demonstrated.

First, a uniform refinement study is performed to demonstrate the optimal L2-error

convergence rates for the CHT framework. Then, adaptation tests are performed
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to show super-convergent rates in both drag and heat flux error. To compute the

L2-error of the conservative states, an analytical manufactured solution for a varying

viscosity compressible flow is developed.

4.2.1 Conjugate Model

FIGURE 4-2(a) shows a sketch of half of the computational domain used to model the

conjugate heat transfer channel flow while FIGURE 4-2(b) shows the separate regions

of the full model.

V

y=h symmetric centerline

Characteristic u(y) varying u,T,p Characteristic
inflow outflow

y= -x

noslipwall

q=0 q=0

y - -H - prescribed T,,L

(a) Sketch of half of the computational domain (b) Region definition

FIGURE 4-2: Compressible Poiseuille flow model

The fluid domain is bounded by an inflow, outflow, and solid wall interfaces. The

solid domain of thickness H is bounded by left and right adiabatic walls, a Dirichlet

temperature condition on the outer wall, and a fluid interface on the inner wall. In this

work, the channel height was chosen to be (2h) = 2 and the slab thickness, H = 0.8.

Solutions are obtained for an inlet Reynolds number of Reh = 10,000, set by the non-

dimensionalized viscosity with reference to the inlet conditions: p = p/(PrefVrefh) =

1/Reref = 10-4 . Additionally, a Prandtl number of Pr = 1, a specific heat ratio

of -y = 1.4, and a conductivity ratio of "as/" = 10 is set. The inflow and outflow

conditions are weakly enforced by calculating a boundary flux based on a boundary

state constructed from the analytical solution and interior information. With a fully
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developed flow assumption, the analytical solution comprises of a constant pressure

field with source terms used to drive the compressible flow.

4.2.2 Conjugate Manufactured Solution

An analytical solution is derived to verify optimal convergence rates for a variable

viscosity fluid region's solution coupled with a solid region's solution (see APPENDIX B

for a detailed derivation). In the fluid region Qf, this manufactured solution assumes

a variable viscosity and thermal conductivity that follows Maxwell's molecular theory.

In the solid region Q., a sinusoidal source term is used to manufacture a solution that

is outside the polynomial space. Together, these analytical solutions are given by:

Fluid

U* = 2T3 (s* 2 - 2s*) (4.9)

Vf = 0 (4.10)

T; = - - (S*4 - 4s*3 + 6s*2 - 4s*) (4.11)

Solid

xyua 2Ts= Tsin(y + H) + f - TCOs(H) y + T - Tsin(H) (4.12)
( s3hTi

where s* is a non-dimensionalized coordinate scaled by the non-dimensional temper-

ature (T*ds* = dy*), Ta is a reference temperature, 6, 3, and 6 are non-dimensional

numbers, T is a source coefficient, and T is the constant non-dimensional interface

temperature set to Ti = 20.0. The density and energy profile is then determined from

the state equation and internal energy definition:

P 1
p = E = cT + -v 2  (4.13)RT 2

In order to achieve the correct interface temperature, the outer wall Dirichlet condi-

tion T is:
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T (kTJ3 - Tcos(H) (-H) + T- Tsin(H) (4.14)
\n83hT )

Furthermore, the fluid and solid domain source terms required in manufacturing this

analytical solution are:

0

Sf= Ss = z rssin(y + H)
0

puf

where f is a force coefficient set to six times the reference viscosity: f = 6po.

The addition of these source terms along with appropriate boundary conditions (de-

fined by the analytical solution) is sufficient to solve the problem. Given the analytical

solution, the total drag and heat flux across the interface is determined exactly by:

D = (2L)Po = 2L po- = 2.234668913653411 x 10- (4.15)
ay YO 6
aT T2pQ = (2L)rf = 2 LrfTa = 3.905778470148311 x 10-3 (4.16)
iBy f 3hT

where L = 2 is the interface length. FIGURE 4-3 shows the resulting fluid's streamwise

velocity, density, and Mach from solving on a 40x80 uniform triangular mesh with

p = 3. Vertical slices of the solution remain constant in the streamwise direction, and

are also illustrated as a function of the vertical coordinate y. Furthermore, FIGURE 4-

4 shows the same plots for temperature throughout the entire computational domain,

as well as the viscosity assuming Maxwell's molecular theory.
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FIGURE 4-3: Numerical solution to the compressible Poiseuille flow with variable p and r
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FIGURE 4-4: Temperature and corresponding viscosity variation for compressible Poiseuille
flow

As expected, all states preserve their 1-D profiles. The streamwise velocity and tem-

perature plots in the fluid regime reveal a similar variation in y as the incompressible

Poiseuille case, though are inherently different under the same conditions. The si-

nusoidal source variation of temperature in the solid is also observed, as well as the

discontinuity in the temperature derivative at the interface in order to enforce a con-

stant heat flux between two mediums of different thermal conductivities. Lastly, the

viscosity variation due to the temperature dependence, as well as a maximum value

corresponding to the maximum temperature at the channel centerline is verified.
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4.2.3 Uniform Refinement Convergence Study

In order to verify proper convergence of the DG scheme with a CHT problem, a

convergence study on the conservative states' L 2 error is performed. Uniformly re-

fined triangular meshes (FIGURE 4-5) are used as background meshes to determine

the L 2 error rate of convergence. For each refinement, the Poiseuille flow geometry

is intersected with the background mesh to create a new cut-cell mesh. Solutions

are then obtained by using a direct solver (UMFPACK[25]). The L 2 error for each

conservative variable is calculated by integrating the numerical error (based on the

analytical solution) using a quadrature rule over. For the fluid conservative states, the

integration is computed over the fluid domain, while the temperature L 2 is calculated

only in the solid domain. For the discontinuous Galerkin method, the L2 error of the

conservative variables is expected to converge at a rate of p + 1 where p is the order

of the polynomial bases used to represent the solution.
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FIGURE 4-5: Uniformly refined meshes
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FIGURE 4-6 and TABLE 4.1 show the respective convergence rates

refinement study.

100

10~1
h/ho

10 0

FIGURE 4-6: Convergence of the density L 2
error.

for the uniform

p pu pv pe T.

0.65 1.26 1.04 1.31 0.70

p = 1 3.43 2.64 2.48 2.46 3.02

3.02 2.15 2.18 2.07 3.02

2.24 1.97 2.30 2.00 2.55

1.27 1.69 1.44 1.60 0.86

p = 2 4.29 4.00 3.72 4.00 5.89

3.87 4.05 3.72 3.47 4.61

3.11 3.08 3.41 3.04 3.16

1.19 1.64 1.41 1.78 0.66

p = 3 5.74 5.67 5.34 5.68 5.86

4.80 4.68 4.67 4.16 7.63

4.03 3.99 4.52 3.99 4.12

2.02 2.67 2.47 3.55 0.69

p = 4 6.86 6.90 5.89 5.88 8.84

5.55 5.55 5.64 5.09 7.79

mprec

TABLE 4.1: Convergence rates of L 2 error.

The convergence rates of the fluid conservative state's L 2 error asymptotically ap-

proach the p + 1 optimum as the mesh is refined. The solid's temperature L 2 error

rates for p = 1, 2, 3 also approach p + 1 with an applied sinusoidal source function.

For p = 4, the solid's temperature rate appears to have a similar trend as in the

other p-order cases, and would approach the p + 1 optimum, though the error reaches

machine precision (mprec) at the finest mesh level beforehand.

4.2.4 Adapted Solutions and Output Super-convergence

In this section, mesh adaptation is performed on the compressible Poiseuille conjugate

problem to demonstrate super-convergent rates of interface output errors. For the

case at hand, both the drag and heat flux outputs on the interface are calculated and
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used to solve the dual problem in order to determine a dual weighted residual for

error estimation and mesh adaptation. Lu [50] has shown that the implementation

of dual consistent boundary conditions is important for achieving super-convergent

functional output results. Likewise, interface conditions for CHT problems using a

DG scheme need to be dual consistent in order to ensure super-convergent rates.

Consider a general DG discretization of the primal problem:

Rh,p(uh,p, Vh,p) = 0, VVh E Vh,, (4.17)

where Rh,p is a semi-linear form derived from the weak formulation. Interest is given

to interface outputs defined by:

J = J(u) - j rAN Vu( -n( ds (4.18)

where g, is a function defined on an interface E. In order for the discrete output,

Jh,p(uh,p), to yield dual consistency for a nonlinear system, the exact dual solution,

, must satisfy:

R's,,[u](vhP, 4) = J'h ,P[u1(vh,[ ) VVh, E , (4.19)

where Wh,p - Vh,p + V represents all functions existing in both the discrete solution

and adjoint functional space, and (-)'[u] denotes the Frechet derivatives with respect

to u. Hartmann [36] and Oliver [56] provide detailed derivations of dual consistent

DG discretizations for nonlinear systems.

When super-convergence of the output error is achieved using the BR2 scheme, the

rate of convergence approaches h 2p where h is a characteristic length scale of the

mesh:

J(u) - Jh,p(Uh,p) < Ch 2, (4.20)
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Since h scales with the number of degrees of freedom (h ~ 1/V/DOF), the super-

convergent rate of h2, can also be expressed as DOF-P. A formal proof of dual

consistency of the functional output Jh,p (uh,) for scalar interface problems is given

by Sun [71], though additional analysis to prove dual consistency for the current

nonlinear interface discretization is left for future research.

Drag Adapted Compressible Poiseuille Flow

Here, the same analytical compressible Poiseuille flow solution shown in SECTION 4.2.2

is selected to perform a super-convergence study by adapting to drag on both of the

no-slip wall interfaces. The error in the output is computed over a range of p-order's

and degrees of freedom (DOF), and plotted to show the convergence. For each case,

20 adaptation iterations are computed to ensure adaptation convergence as illustrated

in FIGURE 4-7, and the corresponding p = 1 and p = 3 meshes are shown in FIGURE 4-

8. The computed output from the last 8 adaptation iterations is then averaged to

represent the optimal discrete solution at a given p-order and DOF. A true output

error is computed by taking the difference between the computed average and the

exact analytical output solution given in EQUATION 4.15. The resulting errors and

convergence rates are shown in FIGURE 4-9.
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(a) Drag vs. adaptation iteration (b) Drag error estimate convergence

FIGURE 4-7: Poiseuille flow drag adaptation history for 16k DOF
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FIGURE 4-9: Poiseuille flow drag adapted error convergence

As shown in the drag adaptation error history, both p = 1 and p = 3 16k DOF

solutions converge in ~ 12 adaptation iterations from a coarse, uniform grid. In the

final adapted meshes, highly anisotropic refinement is observed in the fluid near the

interface, which grows rapidly into very coarse elements in the solid and null regions.

This is because the calculated drag on the interface is insensitive to perturbations in

the solid region's solution compared to perturbations in the fluid region's solution.

As such, super-convergent rates of DOF-P (h2 P) for p = 1, 2, and 3 are achieved for

the drag error, though the rates are sub-optimal for the calculated error in heat flux

across the interface. This is due to the lack of refinement in the solid region, which is

required to properly resolve the temperature distribution for heat flux calculations.

Heat Flux Adapted Compressible Poiseuille Flow

Performing the same procedure as above, but adapting to heat flux instead yields

improved error convergence results for the heat flux output. Again, a true output error

is computed by taking the difference between the computed average from the last 8

adaptation iterations and the exact analytical output solution given in EQUATION 4.15.

FIGURE 4-10 shows the convergence history for a p = 1 and p = 3 solution relative

to the exact solution, while FIGURE 4-11 shows the corresponding meshes. Both the

drag and heat flux are again computed over meshes of increasing degrees of freedom,

and the resulting output error convergence is shown in FIGURE 4-12.
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FIGURE 4-12: Poiseuille flow heat flux adapted error convergence

As illustrated in the heat flux adaptation error history, both p = 1 and p = 3 16k

DOF solutions converge in ~ 12 adaptation iterations from a coarse, uniform grid.

The p = 3 solution achieves over 4 orders of magnitude improvement in the heat flux

error compared to that of the p = 1 solution. In the final adapted meshes, highly

anisotropic refinement is still observed in the fluid near the interface, though many

degrees of freedom are diffused throughout the rest of the fluid region and the solid

regions. This grid distribution occurs due to the heat flux output's larger region of

influence. As such, super-convergent rates of DOF-P (h2 P) for p = 1, 2, and 3 are

achieved for the heat flux error, and several orders of magnitude improvement in the

computed heat flux accuracy is realized.

Super-convergent rates are also achieved for the drag error, though the error levels

are higher than those found when adapting to drag. The preservation of drag's super-

convergent rates is due to sufficient resolution of the boundary layer in the heat flux

adapted meshes. Conversely, the increased error in drag is caused by the relocation

of degrees of freedom away from the boundary layer into the rest of the fluid and

solid regions. This shows that adapting to heat flux can yield accurate predictions in

both drag and heat flux outputs, while adapting to drag may impede the accuracy in

heat flux predictions. For comparison, a side by side view of the drag and heat flux

adapted meshes for p = 1 and p = 3 is shown in FIGURE 4-13.

73

- P1
- P2

10 - 102



0.4

0.2

-0.2

-0.4

-0.4 -0.2 0 0.2
x

0.4

0.2

-0.2

-0.4

-0.4 -0.2 0 0.2
x

(a) Drag adapted p=1 16k DOF zoom (b) Heat flux adapted p=1 16k DOF zoom

0.4 0.4

0.2 0.2

0 -0

-0.2 -0.2

-0.4 -0.4

-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2
x x

(c) Drag adapted p=3 16k DOF zoom (d) Heat flux adapted p=3 16k DOF zoom

FIGURE 4-13: Poiseuille flow comparison of drag vs. heat flux adaptation

4.3 Navier-Stokes Cooled Nozzle

The coupled interaction between a heated fluid and a cooled solid is found in many

aerospace applications, including heat exchangers, secondary flows in turbomachinery,

and manifolds in rocket engines. Though these applications typically consist of highly

turbulent and/or reacting flows, the case presented here demonstrates a benchmark

capability of the CHT framework in computing solutions for laminar dominated flows.
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4.3.1 Conjugate Model

FIGURE 4-14(a) and FIGURE 4-14(b) show the separate regions and sketch of the

computational domain used to model the conjugate heat transfer laminar nozzle flow.
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FIGURE 4-14: Cooled nozzle flow model

For the case presented here, the inflow condition is set by a uniform flow with a

non-dimensionalized total pressure and temperature calculated from a reference Mach

Mre = 0.4. In particular, the total pressure and temperature are non-dimensionalized

by inlet reference conditions, and are calculated by:
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Pt P(1+ M ) ) (1+ 2 ef)N (4.21)
PrefVref Pref ref

T T__ T(1+ 1̂ M e ) _ (1+ 22Mref)

Kf/cV Vef/Cv 'yT- 1)M2ef

Solutions were obtained with an inlet Reynolds number of ReH = 10,000, set by the

non-dimensionalized viscosity with reference to the inlet conditions: - = P/(PrefVref H) =

1/Reref = 104 where H = 1 represents the full channel height. The thermal conduc-

tivity ratio Kr is set to Kr = Ks/f = 700 with a Prandtl number Pr = 1, and the fluid

viscosity varies with temperature according to Sutherland's law. The solid domain

of length L = 2 is bounded by adiabatic walls, a fluid interface on the bottom wall,

and rectangular "cooling channels" that represent a cooling manifold. The cooling

channel boundary condition is imposed through a Robin boundary condition:

-rVT = h(T - Tc) (4.22)

where T, is the cooling temperature, and h is the convective heat transfer coefficient

set to h = 5K,. For this problem, the primary outputs of interest are drag and heat

flux along the interface wall.

4.3.2 Adapted Solutions and Output Super-convergence

In this section, mesh adaptation is performed on the cooled nozzle conjugate problem

to demonstrate the super-convergence of interface output errors on a curved geometry

using cut-cell methods. For this case, the primary outputs of interest are total drag

and heat flux along the interface wall, and mesh adaptation is performed with respect

to each output.
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Numerical Solution to Cooled Nozzle Flow

FIGURE 4-15 shows the resulting fluid's density, streamwise momentum, and Mach

from solving on a well refined heat flux adapted 50k DOF p = 3 mesh, while FIG-

URE 4-16 shows the coupled fluid/solid temperature and resulting thermal distribution

within the solid.
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FIGURE 4-15: Numerical solution to the cooled nozzle flow
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FIGURE 4-16: Temperature solution to the cooled nozzle flow

As expected in a fluid solution with a Prandtl number Pr = 1, a growing thermal

and viscous boundary layer with similar growth rates is observed. A maximum Mach
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number of Mmax = 0.627 at x = 0 is detected, and, due to blockage effects, the

exit free-stream Mach remains well above the inlet Mach. The leading edge of the

solid reaches a maximum temperature of Tmax = 12.57, and the cooling channels help

maintain a cooler temperature distribution throughout the solid.

Drag Adapted Cooled Nozzle Flow

Here, a super-convergence study is performed by adapting to drag on the no-slip

wall interface. The error in the output is computed over a range of p-order's and

degrees of freedom (DOF), and plotted to show the convergence. For each case, a

number of adaptation iterations are computed to ensure adaptation convergence as

illustrated in FIGURE 4-17, and the corresponding p = 1 and p = 3 meshes are shown

in FIGURES 4-18 and 4-18. Note that the p = 3 case has a limited number of adaptation

iterations due to convergence issues originating from a cut element on the interface. It

is suspected that the issue is caused by the interface discretization formulation. The

computed output from the last 8 adaptation iterations is then averaged to represent

the optimal discrete solution at a given p-order and DOE. A "true" output error is

computed by taking the difference between the computed average output and the

output from an adapted grid of 50k DOF (deemed "exact"). The resulting errors and

convergence rates are shown in FIGURE 4-19.
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FIGURE 4-17: Cooled nozzle drag adaptation history for 16k DOF
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As depicted in the drag adaptation error history, both p = 1 and p = 3 16k DOF

solutions converge in ~ 10 adaptation iterations from a moderately refined uniform

grid. In the final adapted meshes, anisotropic refinement resolves the boundary layer

near the interface, and coarsens elements throughout the solid and null regions. With

high resolution of the boundary layer, super-convergent rates of DOF~P (hP) for

p = 1, 2, and nearly 3 are achieved for the drag error. Though near optimal rates

are also observed for the calculated heat flux error across the interface, the level of

accuracy is much lower than in the drag prediction. This degradation is due to the

lack of refinement in the solid region, which is necessary for resolving the temperature

for heat flux calculations, especially near the cooling channels.

Heat Flux Adapted Cooled Nozzle Flow

Performing the same procedure as above, but adapting to heat flux instead yields near

super-convergent rates for the heat flux and drag error, though degrades the accuracy

in computing drag. FIGURE 4-20 shows the convergence history for a p = 1 and p = 3

solution, while FIGUREs 4-21 and 4-22 show the corresponding meshes. Note again

that the interface discretization is suspected for causing convergence issues, which

ultimately limits the number of converged adaptation iterations achieved for the p = 3

case to 5. As such, both the drag and heat flux outputs are computed by averaging

over the last 5 adaptation iterations, and the resulting output error convergence is

shown in FIGURE 4-23.
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FIGURE 4-20: Cooled nozzle heat flux adaptation history for 16k DOF
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FIGURE 4-23: Cooled nozzle heat flux adapted error convergence

As shown in the heat flux adaptation error history, both p = 1 and p = 3 16k DOE

solutions converge in ~ 10 adaptation iterations from a moderately refined uniform

grid. In the final adapted meshes, anisotropic refinement is still observed in the fluid

near the interface, which is still important for heat flux calculations, though several

degrees of freedom are dispersed throughout the solid with strong mesh grading on the

corners of the cooling channels. As such, the heat flux error converges with near super-

convergent rates of DOF-F (h2 P) for p = 1 and 2, and the magnitude in error is greatly

reduced compared to the drag adapted case. For p = 3, a partial degradation in the

error convergence is observed presumably due to the limited number of converged

solutions.

The drag error convergence also maintains near-optimal rates when adapting to heat

flux for p = 1 and 2, similar to the trend found in the compressible Poiseuille flow

case in SECTION 4.2.4. However, the magnitude in drag error is about an order of

magnitude higher than the case where the mesh is adapted to drag. This loss in

accuracy is caused by the strong mesh grading at the corners of the cooling channels,

which leaves fewer degrees of freedom in the boundary layer. Nonetheless, the bound-

ary layer is still well resolved when adapting to heat flux, whereas the solid region

receives far less refinement when adapting to drag. These results show that adapting

to heat flux performs moderately better in achieving accurate predictions in both the

heat flux and drag outputs, whereas adapting to drag is best if the output of interest
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is drag alone. A side by side view of the drag and heat flux adapted meshes for p = 1

and p = 3 is illustrated in FIGURE 4-24 to clearly show the effects on the mesh by the

choice of output used for mesh adaptation.

-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0
x x

0.1 0.2

(a) Drag adapted p=1 16k DOF zoom (b) Heat flux adapted p=1 16k DOF zoom

-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
x x

(c) Drag adapted p= 3 16k DOF zoom (d) Heat flux adapted p= 3 16k DOF zoom

FIGURE 4-24: Cooled nozzle comparison of drag vs. heat flux adaptation

4.4 Navier-Stokes Multi-Flow Simulation

This case demonstrates the capability of the DG CHT framework in computing accu-

rate solutions for models consisting of multiple fluid and solid domains. The ability

to efficiently and accurately predict cooling flow rates for passages of complex ge-

ometry and coupled high heat transfer rates is pivotal in early design phases, and
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is of high interest for turbomachinery and rocket engine applications. Though these

fields typically observe turbulent and/or reacting flows in design, the case shown here

focuses on the capability of the CHT framework in computing high-order solutions

for multiple laminar flows, which can be extended to turbulent or reacting flows.

4.4.1 Conjugate Model

FIGURE 4-25(a) and FIGURE 4-25(b) show the separate regions and sketch of the

computational domain used to model the conjugate heat transfer between multiple

flows.

SOLID II

-1 -0.5
x

FLUID II

0 0.5 1

(a) Region definition

Adiabatic Adiabatic Sli-WallWalls T.= Ttl/2 Walls
Static P T 2Pt)a
Outflow Inflow

1: Slip-Wall

- T 1Pt1a
- Inflow

No-Slip
Interfaces

Static P
Outflow _

Slip-Wall

-1 -0.5
x

0 0.5 1

(b) Sketch of computational domain

FIGURE 4-25: Multi-regioned flow model
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For this case, both inflow conditions are set by uniform counter-flows with a non-

dimensionalized total pressure and temperature calculated from a reference Mach

M1ef = Me = 0.5. In particular, the total pressure and temperature are calculated

by EQUATION 4.21 where the reference conditions are defined by the core flow (fluid I)

inlet conditions. Solutions to the two flows are also obtained with Reynolds numbers

of Rel = 100 and Re2 = 10, 000, set by the non-dimensionalized viscosity with

reference to the core flow (fluid I) inlet conditions: = y /(PrefVref H) = 1/Re =

10-2 i1, 10-4| =2 where H = 1 represents the entire core flow channel height. The
1 21 2 2/K2 K3 = 2 Ithermal conductivity ratios are r1= r/r = 1, r=Kr/rf= 7 l, and r = r/d

100. The Prandtl numbers are PrI = 0.71 and Pr2 = 0.1, and both fluid's viscosity

vary with temperature according to Sutherland's law. The solid I domain is bounded

by adiabatic walls to the left and right, and fluid interfaces. The boundary condition

on the top wall of solid II is a Dirichlet temperature condition that sets the wall

temperature to T = T/2.

4.4.2 Adapted Solutions and Output Super-convergence

Here, mesh adaptation is performed on the multi-flow problem to demonstrate super-

convergent rates of output errors on a more complex multi-regioned cut mesh. For

this problem, the primary outputs of interest are the secondary flow's (fluid II) mass

flux and the heat flux along the secondary flow's interface walls.

Numerical Solution to Multi-Flow Model

FIGURE 4-26 shows the resulting fluid's density and streamwise momentum from solv-

ing on a 24k DOF p = 2 mesh while FIGURE 4-27 shows the multi-regioned coupled

temperature.
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FIGURE 4-26: Numerical solution to the multi-flow problem
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FIGURE 4-27: Temperature solution to the multi-flow problem
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In both fluid solutions, a growing viscous boundary layer is observed, while a pro-

nounced thermal boundary layer is apparent only in the secondary flow. The sec-

ondary flow forms a 'dense' film layer along the colder outer surface, and the thermal

gradient penetrates the hot inner wall closer to the secondary flow outlet.

Heat Flux Adaptation

A super-convergence study is performed by adapting to heat flux on the secondary

flow's no-slip wall interfaces. The error in the output is computed over increasing p-

order's and degrees of freedom (DOF). For each case, a series of adaptation iterations

are computed to ensure adaptation convergence as illustrated in FIGURE 4-28. The

corresponding p = 1 and p = 2 meshes are shown in FIGURE 4-29 and FIGURE 4-

30. The computed output from the last 8 adaptation iterations is then averaged to

represent the optimal discrete solution at a given p-order and DOE. A "true" output

error is computed by taking the difference between the computed average output

and the output from a p = 2 adapted grid of 50k DOE. The resulting errors and

convergence rates are shown in FIGURE 4-31.

0 2
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P2 50k DOF

-2
10

-4
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4 6 8 10 12 14 16
Adaptation Iterations

(a) Heat flux vs. adaptation iteration

0 5 10
Adaptation Iterations

15

(b) Heat flux error estimate convergence

FIGURE 4-28: Multi-flow 24k DOF heat flux adaptation history
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(c) Heat flux adapted p=2 24k DOF

FIGURE 4-29: Multi-flow heat flux adapted meshes
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(a) Heat flux convergence (b) Mass flux convergence

FIGURE 4-31: Multi-flow heat flux adapted error convergence

As illustrated in the heat flux error history in FIGURE 4-28, both p = 1 and p = 2

24k DOE solutions converge in ~ 12 adaptation iterations from a moderately refined

uniform grid. The adapted meshes show a strong mesh grading within the secondary

flow path in order to resolve the boundary layer for accurate convective heat flux

calculations. Additionally, the computed heat flux error converges near the super-

convergent rate of DOF4 (h2 P) for p = 1, and 2, as well as the secondary flow mass

flux. Nevertheless, adapting to the interface heat flux yields greater accuracy in the

predicted heat flux over the predicted mass flux.

Mass Flux Adaptation

Performing the same procedure as above, but adapting to the secondary flow mass

flux instead yields improved mass flux predictions, though the accuracy in the heat

flux output degrades. FIGURE 4-32 shows the convergence history for a p = 1 and

p = 2 solution, while FIGURES 4-33 and 4-34 show the corresponding meshes. Again,

both the mass and heat flux outputs are computed by averaging the last 8 adaptation

iterations, and the resulting output error convergence is shown in FIGURE 4-35.
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FIGURE 4-32: Multi-flow 24k DOF normalized mass flux adaptation history
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(b) Mass flux adapted p= 2 24k DOF

FIGURE 4-33: Multi-flow mass flux adapted meshes
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FIGURE 4-35: Multi-flow mass flux adapted error convergence

As depicted in the mass flux error history in FIGURE 4-32, both p = 1 and p = 2

24k DOF solutions converge in - 12 adaptation iterations from a moderately refined

uniform grid. The adapted meshes again show a strong mesh grading within the
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secondary flow path in order achieve sufficient resolution for accurate mass flux cal-

culations. Additionally, the mass flux error converges near the super-convergent rate

of DOF-P (h2P) for p = 1, and 2, as well as the interface heat flux output. Since the

prediction in the mass flux output greatly improves with mass flux adaptation, and

the heat flux prediction is relatively insensitive to the adapted output choice, mass

flux adaptation performs better in achieving accurate predictions in both heat and

mass flux outputs.

Though the differences are subtle, the heat and mass flux adapted meshes have dis-

tinguishable features. To better see the differences, a scaled side by side view of the

heat and mass flux adapted meshes for p = 1 and p = 2 is shown in FIGURE 4-36.

Observed is a greater resolution of the viscous boundary layer on both secondary flow

interface walls for the mass flux adapted mesh. Since this resolution encompasses the

same refined areas in the heat flux adapted case, it is expected that adapting to mass

flux would achieve better predictions for a combined interest.
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FIGURE 4-36: Multi-flow adapted mesh comparison (NOT TO SCALE)
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Chapter 5

Conjugate RANS Heat Transfer

In this chapter, the same conjugate heat transfer framework developed for laminar

CHT is applied to RANS calculations. Since many aerospace applications involve

high-Reynolds turbulent flows, the ability to solve the conjugate problem in these en-

vironments becomes of high engineering interest. For the models presented here, the

Spalart-Allmaras (SA) turbulent model [70] is used to close the Reynolds Averaged

Navier-Stokes equations on the fluid domain, while the steady state heat conduction

equation is simultaneously solved on the solid domain. SECTION 5.1 details the ap-

plication of the DG formulation to a RANS-heat interface, SECTION 5.2 shows the

convergence of a baseline flat slab case, and SECTION 5.3 demonstrates the capabil-

ity and importance of high-order, mesh-adaptive, cut-cell methods for multi-regioned

conjugate RANS problems.

5.1 Interface Conditions for RANS CHT

For 2-D conjugate RANS heat transfer, the fluid is modeled with the RANS-SA

equations with a conservative state vector u( = [p, pu, pE, pj ]T, while the solid

is modeled with the heat conduction equation with a state vector U( = T. See

APPENDIx A.1 and APPENDIx A.3 for a detailed formulation of the heat and RANS-

SA equations.
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Just as in the Navier-Stokes CHT interface, the same three constraints at the interface

are imposed:

U =V = 0,

T(1) = T2),

K(1)VT(1) - nul) =- VTN -nN,

no - slip condition

temperature continuity

heat flux continuity

where KT is the thermal conductivity.

5.1.1 Interface State and Discretization

The inviscid and viscous interface discretization definition again relies on the con-

struction of a coupled interface state, uE, which is used to compute each domain's

numerical flux. The choice of the constructed interface state is:

0

pl)0{T}

0

and U f{T}

where {T} = 0.5(T(l) + T(2)) is the average temperature across the interface. FIG-

URE 5-1 shows an illustration of the interface states used in the interface residual

evaluation.

The inviscid and viscous discretization for the RANS solid wall interface directly

follows the definition for the NS solid wall interface given in SECTION 4.1.1 with the

addition of the SA equation. The resulting coupled viscous fluxes, Au ( ), for

i = 1, 2 on each domain Qj, are defined by:

96

U(1 (5.1)



-(1)
Ao- n(l) =

- (2)
Aur n(2)=

(A(1coT) - n(l))mass

(A(1)o,1 n(1)momnentumn

0.5((A()o, - n(1))energy + K (02) - n())

(A(1)orgy -n())SA

0.5((A(1)o,(1 - n ())energy + K (2 o 2) - n (2)).

where the viscosity matrix is computed using the interface state: A() A E(u?)),

and the lifted gradient, uh, is given by EQUATION 4.7. Again, additional analysis

on the current interface boundary condition is recommended to determine adjoint

consistency and other discretization properties.

FIGURE 5-1: Sketch

(pv)(1)
(pE)(1)

(pf) (1)

of RANS

-!;OLID:0WALL'.
INTERFACE

(1) (2)

0 0 (0 JT (2)

0

solid wall interface states used to compute numerical fluxes

97

(5.2)

(5.3)



5.2 Compressible Flow over a Cooled Slab

The compressible flow over a cooled slab problem serves as a benchmark capability

of the CHT framework in computing solutions for conjugate turbulent flows. Nu-

merous computational studies have been performed on the single fluid discipline for

RANS flow along a flat plate. Nguyen et al. [55] presents solutions using a high-order

discontinuous DG method, while Freeman and Roy [33], and NASA's turbulence mod-

eling resourcel provide solutions obtained by finite volume codes. Furthermore, Sun

[71] has demonstrated the application of an adaptive cut-cell framework to subsonic

RANS-SA RAE2822 airfoil cases.

Beyond the single discipline case, several investigations on the laminar conjugate flat

slab problem have been performed. Mosaad [52] obtained a closed-form solution to

the conjugate flat plate problem assuming an approximate boundary layer profile, and

studied the effects of the local Brun number, while Kanna et al. [42] and Vynnycky

et al. [74] used an analytical solution to investigate the effects of Reynolds number,

Prandtl number, and thermal conductivity ratio on the interface Nusselt number.

Similar analyses with additional heat sources are provided by Cole [23] and Rizk et

al. [65].

Here, a conjugate RANS flat slab problem is developed to investigate the robustness

of the mesh adaptation algorithm when applied to a coupled RANS and heat equation

interface problem.

5.2.1 Conjugate RANS Model

The model for the conjugate RANS case is based on the flat plate model used in a

NASA turbulence modeling resource 2, which consists of a Mach M = 0.2 flow with

a Reynolds number ReL = 5 x 106 for a L = 1 solid wall boundary. Under similar

conditions, a flat slab model is developed with the addition of a solid region of length

1http://turbmodels.larc.nasa.gov/flatplate-sa.html
2http://turbmodels.larc.nasa.gov/flatplate.html
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2L and thickness L. FIGURE 5-2(a) and FIGURE 5-2(b) show the separate regions and

sketch of the computational domain used to model the conjugate heat transfer over

a cooled slab.

1. I - .

I. .T( 11) 0
t/Pej = 1.02828,

Tt/Tref = 1.008,
S=0

P/PreI = 1.0
slip wall

adiabatic no-slip interface adiabatic
-0.5- -0.5 solid wall solid wall

T. =T14

-1 - ,-,T, =, -14

-0.5 0 0.5 1 1.5 2 -0.5 0 0.5 1 1.5 2
X X

(a) Region definition (b) Sketch of computational domain

FIGURE 5-2: RANS Slab flow model

The fluid region has a uniform inflow with a slip-wall entrance leading into a solid

wall interface. The inlet condition is set by a non-dimensionalized total pressure and

temperature calculated from a reference Mach Mef = 0.2, and a free-stream SA

working variable state is set to pi = 3. In particular, the total pressure and tem-

perature are calculated by EQUATION 4.21 where the reference conditions are defined

by the inlet conditions. Solutions to this case are obtained with a Reynolds num-

ber of ReL = 50, 000, set by the non-dimensionalized viscosity with reference to the

inlet conditions: 71 = I/(PrefVrefL) = 1/ReL = 2 x 10-5 where L = 2 represents

the length of the flat slab interface. The solid domain of thickness L is bounded by

adiabatic walls on the left and right, a Dirichlet temperature condition on the lower

wall that sets the wall temperature to a fourth of the free-stream stagnation temper-

ature: T = T/4, and a fluid interface on the upper wall. This case uses a Prandtl

number of Pr = 0.72, a specific heat ratio of 7 = 1.4, and a conductivity ratio of

Kr = Ks/rf = 10' to model the interaction between air and metal. Additionally, the

fluid viscosity varies with temperature according to Sutherland's law. The primary

output of interest studied for this case is the total heat flux on the slab interface.
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5.2.2 Numerical Solution

FIGURE 5-3 illustrates the Mach, SA conservative state pi', and temperature profiles

of the conjugate solution to a p = 2 26k DOF case adapted to the total interface heat

flux, while FIGURE 5-4 shows a series of solutions at vertical slices of constant x along

the interface. A similar growth in both the momentum and thermal boundary layer

is observed, and the thermal distribution within the solid peaks at the leading edge

of the slab. Also detected is an undershoot of I/ just prior to reaching the free-stream

value near the edge of the boundary layer.
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FIGURE 5-3: Numerical solution to RANS Flat Slab p=2 26k DOF
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In order to characterize the amount of heat flux through the interface, the Stanton

number, which is typically used to describe the heat transfer in forced convection

flows, is calculated. As reference, the Stanton number can be approximated through

the Reynolds analogy as one half the skin friction: St = Cf/ 2 , assuming Pr = 1.

FIGURE 5-5 shows interface profiles of the non-dimensional temperature (9), skin

friction (Cc), and Stanton number (St) along the interface. The local temperature

and Stanton number are functions of x, and are given by:

_ T(x) - T,
6(x) =

aT

St(x) = - ay
(PUeCp(T (x) - Te)
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where T and To, are the slab lower wall and fluid free stream temperature, respec-

tively, If is the fluid's thermal conductivity, and all states ()e are evaluated at the

edge of the boundary layer as a function of x. Note that for an open flat plate geom-

etry, ()e equates to the free stream value (.. In calculating the Stanton number,

the heat flux at the interface was determined by extracting the total energy viscous

flux on the interface. Since the state gradients evaluated at arbitrary locations are

'noisy', a moving-average smoother was used to generate the heat flux trend along

the interface. From this, the Stanton number appears to follow the same trend as the

skin friction, and is slightly greater than 1/2Cf.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

FIGURE 5-5: Interface thermal profile for RANS Flat Slab p=2 26k

5.2.3 Optimized Meshes

A series of cases are constructed to observe the behavior of the cut-cell mesh adap-

tation algorithm when adapting to the interface heat flux. For each case, several

adaptation iterations are computed until the error estimate of the output of interest

converges. At each adaptation iteration, both the primal and dual adjoint solutions
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are converged in order to accurately calculate the localized dual weighted residual er-

ror used in optimizing the mesh. FIGURE 5-6 shows an example of the total heat flux

and heat flux error estimate converging from a coarse uniform grid in approximately

25 adaptation iterations, while FIGURE 5-7 illustrates the domain geometry overlaid

by the initial and optimized background meshes for p = 1 and p = 2 with 26k DOE.

Additionally, FIGURE 5-8 shows mesh refinement near the edge of the boundary layer

where a jump in the heat flux adjoint is observed. Note that a positive heat flux q is

defined as heat transfer from the fluid to the solid domain.
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FIGURE 5-6: RANS Flat Slab heat flux adaptation history
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FIGURE 5-7: RANS Flat Slab heat flux adapted mesh
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FIGURE 5-8: RANS Flat Slab heat flux adapted mesh correlation

The mesh adaptation process noticeably transforms a coarse uniform background

mesh into an optimized mesh that strongly resolves the boundary layer and coarsens

all other regions. Since the meshes are optimized for heat flux calculations, the

strongest mesh grading in the solid occurs near the leading edge where the heat

transfer is greatest, and more degrees of freedom are devoted to the solid region

than in the fluid free-stream. Additionally, excess refinement is observed near the

edge of the boundary layer due to a noticeable jump in the heat flux adjoint from the

mass equation. Interestingly enough, the adjoint jump appears to correspond with an

undershoot of the SA working variable near the edge of the boundary layer. Further

details are given in APPENDIX C.
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5.3 Backward-Facing Step

In this section, a conjugate backward-facing step (BFS) problem is developed to

demonstrate the capability of the CHT framework in computing accurate solutions for

models consisting of turbulent flows with separation and recirculation regions. These

solutions are useful for determining viscous forces, thermal stresses, and temperature

distributions in turbulent channels with complex geometry. Many experimental and

numerical studies have been performed on the single fluid discipline BFS problem

for laminar and turbulent flow, and can be found in Barton [29], Armaly et al. [2],

Thangam [67], among many more. Biswas et al. [13] have demonstrated the formation

of Moffatt eddies [40, 54] near the inner corner of the backward facing step as the

Reynolds number is lowered. Such flows can be approximated as Stokes flow, yielding

eddies that circulate in counter-rotating directions and have a strength that decays

exponentially as the inner corner is approached. Furthermore, NASA has published

a turbulence modeling resource for the BFS problem3 , which is used as a baseline

model for the conjugate model.

In addition to the single discipline studies, a few investigations have been carried out

for the laminar conjugate BFS problem. Kanna and Das [42] studied the conjugate

heat transfer for a 2D laminar wall jet over a BFS, where the effects of Reynolds

number, Prandtl number, slab thickness ratio, and thermal conductivity ratio were

found to be more significant near the recirculation region. Additionally, Kanna and

Das [41] developed a benchmark conjugate model for the laminar BFS problem, and

found that high thermal gradients were observed near the reattachment location,

though the peak Nusselt number occurred further downstream. It was also found

that the average Nusselt number increases with either an increased Reynolds number,

Prandtl number, or thermal conductivity ratio, and that the temperature is reduced

to a minimum value near the recirculation region for a cold wall solid.

3http://turbmodels.larc.nasa.gov/backstep-val.html
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Here, a conjugate RANS BFS problem is constructed to determine the effects of

varying solid wall temperatures on the overall interface temperature and heat flux

distribution, especially near the recirculation region. In addition, meshes are adapted

to the total heat flux on the interface in order to both achieve accurate solutions and

determine areas of greatest influence and sensitivity.

5.3.1 Conjugate RANS Model

The conjugate RANS backward-facing step problem comprises of both a fluid and a

solid region (FIGURE 5-9(a)) whose coupled solutions are solved simultaneously. The

fluid region and conditions of the conjugate model is based on the NASA turbulence

modeling resource for the BFS problem4 . FIGURE 5-9(b) shows the sketch of the

computational domain and conditions used to model the conjugate RANS backward-

facing step problem.

10- No-Slip Wall

10 Slip Wall beginning at x=-110

5- 5- ~ T Pt a - Static P
- Inflow Outflow

00 Sli //a //llH=
0 -SpWal No-Slip

Interfaces
Adiabatic diabatic

-5
-150 -100 -50 0 50 -150 -100 -50 0 50

x not to scale X not to scale

(a) Region definition (b) Sketch of computational domain

FIGURE 5-9: Backward-facing step conjugate flow model

The fluid domain consists of a uniform inflow condition with a slip wall entrance on

the top and bottom, a static pressure outflow, an adiabatic no-slip wall on the top,
4http://turbmodels.larc.nasa.gov/backstep-val.html
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and a solid wall interface on the bottom. The inlet condition is set by a uniform flow

with a non-dimensionalized total pressure and temperature calculated from a reference

Mach Mref = 0.128, and a free-stream SA working variable state is set to pL' = 3. The

total pressure and temperature are calculated by EQUATION 4.21 where the reference

conditions are defined by the inlet conditions. Solutions to this case are obtained with

a Reynolds number of ReH = 36, 000, set by the non-dimensionalized viscosity with

reference to the inlet conditions: 77 = pU/(prefVref H) = 1/ReH = 2.7x 10-5 where H =

1 represents the step height. The respective fluid wall length and solid slab thickness

are 11OH and 5H before the step, and 50H and 4H after the step. The left and right

walls are set to be adiabatic, while the bottom wall uses a Dirichlet temperature

condition that sets the wall temperature Tw to a fraction 0 of the incoming fluid's

total temperature. Additionally, the fluid viscosity varies with temperature according

to Sutherland's law. This model uses a Prandtl number of Pr = 0.72, a specific heat

ratio of y = 1.4, and a conductivity ratio K, = Ks/Kf = 1000, which corresponds to

a conductive wall. As reference, the conductivity ratio between titanium and air is

kr ~ 1000.

5.3.2 Numerical Solution

For this problem, the varying wall temperature's effects on the fluid solution is of

interest. FIGURE 5-10 illustrates the Mach, SA conservative state pip, and temperature

profiles of the steady conjugate solution solved on a p = 2 50k DOF heat flux adapted

mesh with 0 = 0.7,1.3. The Mach and pLi profiles appear fairly insensitive to the

range of changes in 0, though differences in magnitude still occur. For / > 1, heat

is transferred from the solid to the fluid, yielding higher temperatures and therefore

lower densities (affecting pip) and Mach numbers in the boundary layer. Additionally,

the largest changes in the fluid temperature are observed near the leading edge of the

interface, as well as near the backward-facing step.
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FIGURE 5-10: Numerical solution to BFS p=2 50k DOF
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Similar to the flat slab case, the amount of heat flux through the interface is charac-

terized by calculating the Stanton number. Recall that the Stanton number can be

approximated though the Reynolds analogy as one half the skin friction: St = Cf /2,

assuming Pr = 1. FIGURE 5-11 shows interface profiles of the non-dimensional tem-

perature (0), heat flux (q), skin friction (Ci), and Stanton number (St) along the

interface. A positive heat flux q is defined as heat transfer from the fluid to the solid

domain. The local temperature and Stanton number are functions of x, and are given

by:

aT

O(x) = T(x)-T, St(x) = -y (5.5)
TW - TO (PU) eCp (T (x) - Te)

where T and To are the solid lower wall and fluid free stream temperature, respec-

tively, rf is the fluid's thermal conductivity, and all states (He are evaluated at the

edge of the boundary layer as a function of x. In calculating the Stanton number, the

heat flux at the interface was determined by extracting the total energy viscous flux

on the interface, and the boundary layer edge profiles were extracted from data along

a line just outside the boundary layer. Again, a moving-average method was used to

smooth the heat flux profile. From this, the Stanton number appears to follow the

same trend as the skin friction, only deviating within the recirculation zone where

the skin friction reverses sign while the direction of heat transfer does not. Though

the heat flux is greatest for 3 = 0.7 and # = 1.3, the Stanton number for 3 = 1.3

is the lowest (also reflected in Cf) due to the normalization by AT where (AT), 1 .3

is largest. Additionally, the Stanton profile shows that there is greater heat transfer

occurring near the leading edge as oppose to near the backward-facing step. This is

because the heat transfer rate, dependent on the convective flow speed, is much lower

in the recirculation region, despite the greater change in temperature.
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FIGURE 5-11: Interface profiles for BFS p=2 50k DOF

5.3.3 Optimized Meshes

For each of the BFS slab wall temperature conditions, 3, mesh adaptation was per-

formed in order to refine the mesh with respect to the total interface heat flux. For

each case, several adaptation iterations are computed until the error estimate of the

output of interest converges. FIGURE 5-12 shows the heat flux (q) and heat flux error

estimate (Sq) adaptation history for a range of O's. For convergence comparison, the

heat flux is normalized by the optimized, or final mesh output. Each of the cases

converge in approximately 15 adaptation iterations, and the converged error estimate

for # = 0.7 and 1.3 is highest, indicating a greater uncertainty in cases with higher

heat transfer rates.
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FIGURE 5-12: BFS heat flux adaptation history over range of O's

FIGURE 5-13 illustrates the scaled domain geometry overlaid by the interface heat flux

adapted meshes for p = 2 solutions with 50k DOF and / = 0.7,1.3. The optimized

meshes are found to be generally insensitive to the changes made to the solid wall

temperature, though small changes are observed near the backward-facing step due

to the change in size of the recirculation zone for different O's (See SECTION 5.3.4).

This effect is seen more clearly in FIGURE 5-14, where the mesh refinement along a

curve within the recirculation zone visibly shifts downstream with increasing /.
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5.3.4 Moffatt vortices and effect on heat transfer

Looking more closely at the backward-facing step, the presence of multiple counter-

rotating vortices are discovered. These vortices, known as Moffatt vortices, have

a strength and size that decays exponentially as the inner corner is approached.

FIGURE 5-15 illustrates the vortices by overlaying Mach profiles near the backward-

facing step with flow streamlines for # = 0.7 and 1.3. The corresponding skin friction

and Stanton distribution are also provided in FIGURE 5-15. From these figures, it
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appears that the size of the 'recirculation bubbles' grows with increasing 3, and that

the reattachment point moves farther downstream. The streamline paths are used to

find the location of the core flow reattachment point, which is verified with a zero skin

friction. Within the recirculation bubble between x = 2 and x = 3, a minimum skin

friction is observed due to a large negative flow velocity; however, a local maximum

in the Stanton number occurs farther downstream around x = [4, 5]. This is caused

by the competing effects of a large convective heat transfer coefficient near the region

of high skin friction and a high temperature gradient near the reattachment point as

illustrated in FIGURE 5-15.
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Looking even closer at the corner, the formation of 3 independent counter-rotating

vortices is clearly visible. FIGURE 5-16 illustrates these vortices via streamlines on

top of the temperature profile near the corner of the backward-facing step, as well

as the corresponding skin friction and Stanton profiles. Again, the location of the

stagnation point between the primary and secondary vortex is verified by observing

where the skin friction is zero. A stagnation point also occurs between the secondary

and tertiary vortex at x = 0.1, though only the location of the former stagnation

point is pointed out on the skin friction plot. Just as before, the Stanton number

exhibits another local maximum that occurs as a compromise between the local heat

flux coefficient and temperature gradient.
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Furthermore, the curved feature that has been refined by mesh adaptation is discov-

ered to correspond to an 'updraft' from the primary recirculation bubble. FIGURE 5-17

shows the Mach distribution near the backward-facing step corner and displays the

primary recirculation bubble's updraft matching with the refinement of the overlaid

optimized mesh for = 0.7 and 1.3. Though the heat transfer in the recirculation

zone is not the highest in the overall flow, the local influence of the updraft is large

enough to warrant mesh refinement. Moreover, a downstream shift in the refinement

curve, corresponding to a 'growth' in the recirculation bubble, is apparent when in-

creasing 3. From the feature's refinement and movement, it is deduced that the

updraft of the primary recirculation bubble has significance in determining both the

downstream and local heat flux near the backward-facing step.
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FIGURE 5-17: Mesh refinement of 'updraft' in BFS recirculation bubble (p=2 50k DOF)

As a final point, the refined features in the mesh have been utilized to identify regions

where the physical flow has significant influence on the output of interest. Though

experienced users are able to identify general regions that require refinement, dis-

tribution of degrees of freedom in an efficient manner is not trivial, especially when

features within the optimal mesh transforms under different conditions. With the

addition of geometric or physical complexity, mesh adaptation becomes an essential
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tool to not only accurately predict outputs of interest, but also to gain insight into

non-intuitive physical phenomena, as demonstrated.
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Chapter 6

Conclusion

6.1 Summary and Conclusions

This thesis presents work toward developing a robust, PDE solution framework for

CHT simulations that autonomously provides reliable output predictions. More

specifically, the framework is comprised of a simplex cut-cell technique, a high-order

DG discretization, and an output-based adaptation method. The cut-cell method is

an extension of the method developed by Sun [71] to handle multi-regioned embedded

domains, while the mesh adaptation algorithm, based on the work of Yano [77] with

modifications by Kudo [39], was applied to conjugate heat transfer problems.

The cut-cell method was expanded to incorporate multi-regioned geometries, and was

demonstrated for a variety of conjugate heat transfer models consisting of multiple

regions and curved interfaces. The new cut-cell method was also applied to an r"-

type corner singularity problem to demonstrate the effective ability of cut cells with

adaptation to achieve a mesh that conforms to a desired metric field. Additionally,

the combination of the cut-cell method with mesh adaptation allowed for a more

efficient and streamlined approach to solving multi-physics problems.

For Navier-Stokes CHT problems, the DG discretization applied to coupled regions of

different physics yielded p + 1 optimum convergence rates in each of the conservative
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state's L 2 error. Mesh adaptation with respect to the interface heat flux was found to

be important in achieving accurate predictions of the heat flux across the interface.

For the cooled nozzle case, two noticeably different optimized meshes were generated

by the mesh adaptation algorithm, depending on the output of interest. Near super-

convergent rates for both drag and heat flux were observed when adapting to heat flux,

though the accuracy in the heat flux output degraded when adapting to drag alone.

The finding suggested that heat flux adaptation performs better than drag adaptation

when computing a combined prediction in both drag and heat flux, whereas drag

adaptation is necessary if drag is the only output of interest. Despite the output error

convergence appearing to achieve near super-convergent rates, it is still recommended

that additional analysis on the current interface boundary condition is performed to

determine adjoint consistency and other discretization properties. Lastly, both the

secondary flow mass flux and interface heat flux in the multi-flow problem converged

with near super-convergent rates and resulted in similar optimized meshes. This

implies that an accurate computation of the mass flux relies on resolving similar

domain features that are equally important in computing the interface heat flux.

Nevertheless, adapting to the secondary flow mass flux appeared to perform better in

achieving accurate predictions in both the mass flux and heat flux, whereas heat flux

adaptation is marginally favorable when interested in heat flux alone.

The CHT framework was applied to coupled RANS discretizations. The interface

discretization, based on the work of Sun [71], was implemented for a flat slab and

backward-facing step conjugate problem. The mesh adaptation process is capable of

robustly and autonomously transforming a coarse uniform background mesh into an

optimized mesh with highly resolved domain features pertinent to achieving accurate

predictions in heat transfer. With the help of mesh adaptation, non-trivial features,

such as Moffatt vortices in the backward-facing step problem, were identified. Finally,

optimized meshes allowed for greater physical insight to the coupled interaction at

interfaces.
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6.2 Future Work

Listed here are several areas identified for future work.

Interface boundary analysis

The interface discretization and conditions defined in this work were based on the work

of Sun [71], who had proved dual consistency for scalar interface problems. Though

near super-convergent rates were observed in the Navier-Stokes CHT problems, a

dual consistency analysis is still required. Additionally, further analysis is necessary

to determine consistency in the properties of the interface discretization with respect

to the boundary and interior discretizations.

Three-dimensional conjugate heat transfer problems

While only two-dimensional problems were developed in this work, the modifications

made to the cut-cell intersection method to handle multi-regioned domains can be

extended to three-dimensional cut-cell algorithms. Furthermore, along with addi-

tional analysis, the DG discretization for interface problems is already suitable for

higher dimensions. Lastly, efficient quadrature rules, and merging techniques are al-

ready developed for three-dimensional cut-cell problems [71], and are also applicable

to multi-regioned interface problems.

General multi-disciplinary simulation

The CHT framework presented here was developed to provide a modular approach to

forming multi-disciplinary simulations. For multi-disciplinary applications where the

number of conservative states between regions are different, the cost model constraint

in the mesh adaptation method can be adjusted to reflect the differences in degrees

of freedom. Additionally, extensions can be made to simulate coupled regions gov-

erned by different PDE's, such as aeroelastic (fluid-solid) or combustion (fluid-fluid)

simulation. However, this would require the capability to handle moving boundaries

or interfaces between domains, which can be achieved with cut-cell methods. Though
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cut-cell methods can autonomously generate non-conforming meshes with respect to

moving geometries, they would require modifications for increased efficiency. Un-

steady adjoint analysis and output-based adaptation would also require additional

development.
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Appendix A

Governing Equations

In this work, three primary governing equations are considered: the heat equation,

the Compressible Navier-Stokes equations, and the Reynolds-Averaged Navier-Stokes

equations. These equations can all be written in the general conservation form:

Vx E Q, t E I (A.1)t+ V - P(u, x, t) - V - J: (u, VU, x, t) = S(U, VU, x )at

where u(x, t) : Rmr is the m,-state solution vector in region r, P (u, x, t) : Rmrxd is

the inviscid flux, Fv(u, Vu, x, t) : R', d is the viscous flux, and S(u, Vu, x, t) : Rm,

is the source term. Note that the state rank and residual term definitions are region

dependent.

A.1 Heat Equation

The steady state heat equation is given by:

-V - (iVT) = 0 (A.2)

where K, is the solid's thermal conductivity and T is the temperature. The solution

to this equation has a state rank m = 1 with temperature being the conservative

state. In terms of the general conservative form given by EQUATION A.1, the inviscid
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flux, i, is zero, and the viscous flux F = (F', F') is given by:

Fv = S 9TX 9x0

=v OT
Y y (A.3)

Additionally, the source term, S, is also set to zero, unless otherwise stated.

A.2 Compressible Navier-Stokes Equations

The conservative state vector used for the 2-D compressible Navier-Stokes equations

is U = [p, pu, pv, pElT, where p is the density, u and v are the respective x and y-

directional velocities, and E is the specific total internal energy.

fluid, the sheer stress T is given by:

+
axi

+ OiA Vk
aXk

For a Newtonian

(A.4)

where p is the dynamic viscosity, and A = -2/3p is the bulk viscosity coefficient.

Under this assumption, the inviscid flux vector Ti = (F', F') is:

Pu

Pu + p

Puv

puH

F>

, P =

Pv

Pay

pv2 + p

pvH

(A.5)

and the viscous flux vector F = (F', Fv) is:

0

(A.6)

2 p(2 ' - 2-v)u + . ±2u 2-v-v aFTf
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0

F = 2a(A.7)
,2 a8v - a'

3 3x ay xa

where p is the static pressure, H E + p/p is the specific total enthalpy, T is the

temperature, and rf is the thermal conductivity. The state equation in terms of the

conservative variables is:

p = (-Y - l)p E - I(U2 + v2) (A.8)

while the dynamic viscosity is modeled by Sutherland's law:

P = pref(T) ref (A.9)
Tref T + Ts

unless otherwise stated. With a specific heat at constant pressure cp = yR/(y - 1)

and a specified Prandtl number Pr, the thermal conductivity, Kf, is determined by:

K = (A.10)

A.3 Reynolds-Averaged Navier-Stokes Equations

The Reynolds-Averaged Navier-Stokes Equations (RANS) are derived by time-averaging

the Navier-Stokes equations after applying Reynolds decomposition. The form of the

RANS equations is given by:

ap + ax (fifi) = 0,at axj

a WO +aP>+ p±ji ) = [2(it + pt) ( oi - ,&uk 6)1
at Oxj axj 3 Oxk
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at 2 Oxj 2pa h+ i~i

= Ac . + P OT+ a i 2(/ + p-tt) (Si 1k 6i
axj _(Pr Prt )I Ox Oxj 3 Oxk

where p is the density, ui is the i-directional velocity, p is the pressure, e is the

internal energy, h is the enthalpy, T is the temperature, sij = 1 + 3 ) is the

strain-rate tensor, p is the dynamic viscosity, pt is the dynamic eddy viscosity, Pr

is the Prandtl number, and Prt is the turbulent Prandtl number. The (.) notation

indicates Reynolds-averaging, while the (.) denotes Favre-averaging.

The RANS equations carry an unknown variable (eddy viscosity At), which requires

an additional equation for closure.

A.3.1 The SA Turbulence Model

The closure of the RANS equations can be achieved by introducing a turbulence model

that governs the transport of the eddy viscosity pt. In this work, the SA turbulence

model [70] is chosen to close the RANS equations since it has been shown to be

accurate for most attached and partially separated aerodynamic flows [35, 27, 17].

Here, the implemented SA turbulence model along with the negative model variations

[57, 1] is presented.

The conservative state vector for the 2-D RANS-SA equations is u = [p, pu, pv, pE, pi]T

where 1, is the working variable for the SA model. The working variable i is related

to the eddy viscosity pt by:

Pt if'' ;> 0 (A. 11)
0, i < 0
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foi = - I , =Xx3 + CX vi
(A.12)

where v = p/p is the kinematic viscosity. The inviscid flux vector TF = (F', F') for

2-D RANS-SA is given by:

pu

pu2 +p

pUV

puH

pi'u /

pUv

pv + p

pvH

p'v /

(A.13)

and the viscous flux vector T7 = (F', Fv) is:

0
2 I (2 49U _

,/- (2au -y a)

'(2- + a) v

1 Di0

0

2uV uc,+v u\I1&u+ \ /9T

faD

/

'I

(A.14)

(A.15)

(A.16)P' = (p + pt)
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and the SA diffusion coefficient r/ is:

TI = P(1 + xfn)

fn =

1.0,

cnl + X3

CnI - 3'

(A.17)

1 > 0
(A. 18)

The RANS-SA system also incorporates a source term of the form:

0

0

0

0

P D+b2P a' ai
Or &Xk &Xk

(A.19)

0- 8xxx _

The production term, P, is given by:

-Ca1(1 -- ft 2 )p5i,

P = b 
k)

Cbl(1 - ctM)PSi1,

where the laminar suppression term ft2 is:

ft2 = ct3exp(-ct4 x2)

(A.20)

(A.21)

S(c+2S + c 3S)
(Cv3 - 2cv2 )S -

>_ ; -Cv2S

S < -c, 2 S

where S = V2QigQQ1 is the magnitude of the vorticity, Qjj = 1 ( - , and the

near-wall correction term is:
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K2 d2

where d is the wall-distance.

The destruction term, D, is given by:

(cifW -
PO'p- u 2

cb ) d2

f C 6 (1/
6

fw=g 6 + C63
(9 +w3s;

, g = r+ Cw 2 (r - r),

The turbulence model constants are set to: cbl = 0.1355, - = 2/3, Cb2 = 0.622,

K = 0.41, cwi = Cbi/K 2 + (1 + C2)/U, Cw2 = 0.3, Cw3 = 2, cvI = 7.1, Cv2 = 0.7,

CO3 = 0.9, ct3 = 1.2, Ct4 = 0.5, ci, = 16, and Prt = 0.9.

Note that the SA trip terms are not included in this work and therefore do not appear

in the source term.
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with fv2 =1 x
1 + xfV1

(A.23)

where

p>0
(A.24)

and (A.25)
$S2d2
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Appendix B

Derivation of Manufactured

Solution to Compressible Poiseuille

Flow

The derivation of a quasi-1D compressible Poiseuille flow solution starts with the as-

sumption of a fully developed flow. For a variable viscosity and thermal conductivity,

an additional coordinate transformation that is scaled by the solution temperature,

as shown by Myong [53], is required. Here, the analytic solution is derived and used

for convergence study purposes.

B.1 Fully Developed Flow Assumption

In a fully developed flow (both hydraulically and thermally), all conservative variables

are steady (ut = 0) and the pressure gradient 1 is non-zero. In order to find an

analytic solution, a driving body force is used to balance the viscous force - ay

as oppose to the pressure gradient, and a constant pressure is assumed:
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mass : 0 =0

x - mom: - - = pfay ay

y-mom: 0 =0

energy: - Pu + FIf = puf
ay ( y ay

where f is a constant. This body force varies linearly with density and performs work

on the flow, warranting a source term in the energy equation.

B.2 Variable Viscosity and Thermal Conductivity

With a temperature dependent viscosity, the x-momentum equation cannot be solved

independent of the energy equation. However, the coupled system can be analytically

solved if the viscosity and thermal conductivity is assumed to vary with temperature

according to Maxwell's molecular theory with reference to the interface temperature

Ti:

p(T ) =poTIT ( B. 1)

Kf (T) = oT/T, (B.2)

B.3 Non-Dimensionalization

The first step in performing the derivation is to non-dimensionalize the equations,

followed by performing a coordinate transformation as shown by Myong [53]. Here,

the following dimensionless variables, as inspired by Myong [53], are used:
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U* = U/Ua,

Pr =
KO

T* = T/Ta

0 M Ua
yVRT

where T is a prescribed interface temperature, Ua is a reference velocity, and T is a

reference temperature.

Next, a new coordinate variable s is introduced by:

Tds = dy , T*ds* = dy* (B.3)

FIGURE B-1 shows the deviation between the newly transformed coordinate s* and

the physical coordinate y*.

Scaled Coordinate
5

7 0.2 0.4 0.6 0.8
y*

(a) Coordinate Comparison

Scaled Coordinate Difference

0.015 - - - - - - -- -

0 0.2 0. 0 . .8

5 ---.. .-.. ......... ..... ...............

_0 0.2 0.4 0.6 0.8
y*

(b) Coordinate Deviation

FIGURE B-1: Transformed Coordinates

Transforming the governing equations with this new non-dimensional variable allows

for an analytical solution to be derived.
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B.4 Fluid Solution

Velocity Profile

To start, The x-momentum equation is used to determine the fluid velocity profile.

fp=
Oy

Ou
y) (B.4)

= 8 (ruaTu*

p= I UaTa2 T2 u*

h2TT Os*2

_2_* fph2T P
as*2 /IwUaTa2 pR

a2U* T 6
9S *2 Ta6

au* T___
__- s* +C1

au* = TE e , Cs* + C2
as* Ta6

u Ta6 8 2 ±Cs* + C2

Applying the no-slip condition (u*(O) = 0) and no shear stress at the centerline

(2- (1) = 0) gives the final velocity profile:

U*= -T (s*2
2Ta6

- 2s*) (B.5)

Temperature Profile

In order to determine the fluid temperature profile, EQUATION B.5 is used to solve

the non-dimensionalized and transformed energy equation.
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a
fpu =-

fpu = -U--k Dy)

fpu

ay

0 =pw ( 2*)2
T h2 ay * )

108
h hy*

Ta

Th a

( ,TTa OT*
Tih Oy*J

s* Th Os*

2u u 2T3

62 T 3 (S - 1)
a

D2T* (-y - 1)Pr M2 2 T 3 i 2

DS*2 (2T3 -1

Introducing the non-dimensional variable =

profile becomes:

T(S* - ) +
12

(_y - 1)PrM2E2T3

a2T3 ' the temperature

C1s* + C2 (B.7)

Applying a prescribed interface temperature (T*(0) = Ti/Ta) and zero heat flux at

the centerline (OT* (1) = 0) gives the final temperature profile:

T- /
T* = - H (s*4 - 4s*3

Ta 12
+ 6s*2 - 4s*)

Coordinate Transformation and Ta

To determine the physical-coordinate temperature profile, the reference temperature,

Ta, is derived from the coordinate transformation definition:
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Oy

(B.6)

(Ou 2
(-p

( T)

a y

a 2T*

as*2

(B.8)

Oy 'f y

Oy

p0 aU * 2

= T Th h2 ( s* )



T*as* = ay*
11I T*s* = y*

o Jo

f T*as* = y*(1) - y*(0)

Ti + =j - = 1
Ta 15

(B.9)

Since E cx 1/Ti and consequently / oc 1/T, a new variable that is independent of Ta,

= OTa, is defined. Combining this with the result above yields a fifth order system

for Ta:

a 2~a 15
(B.10)

The solution to this system gives the value of Ta, which is used to fully define the

velocity and temperature profile. Having the velocity and temperature profile defined,

the density distribution is determined from the state equation using an assumed

constant pressure.

B.5 Solid Slab Solution

The solid's temperature profile is governed by the heat conduction equation:

a2T
energy: -=s 2 = 0ay2

For convergence studies, it is desired to have an analytical solution that is not within

the polynomial space. Therefore, a source term must be added to ensure a solution

outside the polynomial space. In this case, a sinusoidal source term is added:
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-KS r2 TKssin(y + H)

where H is the slab thickness. This results in the following profile:

T,= TSi(y + H) + Cly + C2 (B.11)

For the conjugate problem, temperature and heat flux continuity at the interface

must be enforced. By setting the solid wall heat flux equal to that of the fluid

(KS 2T -f-2-f) at the interface, the solid-side temperature gradient is determined

to be:

T

Oy s inter face
= ( xhTi )\ 7 Ts3i (B.12)

This along with the interface temperature condition (T(O) = Ti) gives the resulting

temperature profile:

T, = TSin(y + H) KS 3hT
- TCOS(H)) y + T - TSifn(H)

In order to properly bound this profile, an exact temperature state is required on the

lower wall boundary:

(hfT/
T= T

K83hTi
- TCOS(H) ) (-H) + T - TSifn (H)

137

(B.13)

(B. 14)



138



Appendix C

RANS Boundary Layer Adjoint

Jump

The conjugate RANS case developed in SECTION 5.2 yields optimal meshes with highly

resolved features along the edge of the boundary layer. With the solid Dirichlet

condition set to a fourth of the fluid's free-stream total temperature, the interface

encounters high heat transfer from the fluid to the solid. FIGURE C-1 shows the

refinement near the boundary layer for a p = 2 26k DOF case at two different locations

along the solid wall interface. In this high heat transfer case, jumps in the heat flux

adjoint for the mass and momentum equations are observed. FIGURE C-2 illustrates

the heat flux adjoint solutions to the mass, x-momentum, energy, and SA equations

at x = 0.15 and x = 1.0.

0.02 0.04

0.016 0.03

0.01 0.02

0.005 0.01

-0.005 -0.01

-0.01 -0.02

UxD 1

(a) p=2 26k DOF x = 0.15 (b) p=2 26k DOF x = 1.0

FIGURE C-1: RANS flat slab heat flux adapted mesh
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FIGURE C-2: RANS flat slab adjoint profiles

For the heat flux adjoint solutions to the mass and momentum equations, a 'reverse'

adjoint boundary layer still forms, though an additional forward convecting jump is
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observed. For the energy equation, the heat flux adjoint reaches a maximum near

the interface wall since a positive perturbation in the energy would lead to a larger

thermal gradient and hence a higher heat flux through the interface (recall that the

heat flux from the fluid to the solid is positive). Additionally, the heat flux adjoint

solution to the SA equation exhibits only a forward convecting profile, suggesting that

the production and destruction terms have a stronger influence over the interface heat

flux than the convective terms. Since both the primal and dual solutions are important

in controlling the output error, the mesh adaptation method is expected to resolve

error contributions originating from both primal and dual features. Presumably, the

jump in the heat flux adjoint solution to the mass equation is influenced by the SA

equation since there is a correlation between the adjoint jump and an undershoot in

the conservative SA working variable. FIGURE C-4 shows both the heat flux adjoint

to the mass equation and the conservative SA working variable overlaid with scaled

meshes in order to visualize the interaction. Furthermore, FIGURE C-3 illustrates

slices of the boundary layer profiles at x = 0.15 and x = 1.0.

0.03 0 0.2 0.4 0.6 0.8 '
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(a) x = 0.15
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FIGURE C-3: RANS flat slab normalized boundary layer profiles
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FIGURE C-4: RANS flat slab mesh correlation (NOT TO SCALE)

In addition to the results presented here, a single-disciplinary fluid case with a con-

stant temperature wall condition was developed. The wall temperature was set

equivalent to the flat slab's lower wall temperature, and yielded very similar results.

Though these results may reveal a new behavior of the SA turbulence model under

high heat transfer conditions, further investigation is still required.
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