
CubeSat Attitude Control using Micronewton

Electrospray Thruster Actuation

by

Mark David Van de Loo

S.B., Aerospace Engineering with Information Technology, Massachusetts
Institute of Technology (2013)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

ARCHIVES
MASSACHUSETTS INBITITE

OF TECHNOLOGY

JUN 16 201

LIBRARIES

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
A u th or

Department of Aeronautics and Astronautics
May 9, 2014

Certified by
Signature redacted

Sara Seager
Class of 1941 Professor of Physics and Planetary Science

Thesis Supervisor

Signature redacted
A ccepted by

Paulo C. Lozano
Associate Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee

CubeSat Attitude Control using Micronewton Electrospray

Thruster Actuation

by

Mark David Van de Loo

Submitted to the Department of Aeronautics and Astronautics
on May 9, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Micronewton electrospray thrusters are a promising new actuator for CubeSat attitude con-
trol. Electrospray thrusters have advantages over current state of the art CubeSat attitude
actuators in mass, volume, and their ability to produce translational acceleration in addi-
tion to control moments. An attitude determination and control system was designed for a
1U CubeSat assuming commercial-off-the-shelf attitude determination hardware components
and six electrospray thrusters developed by the MIT Space Propulsion Laboratory. A high
fidelity spacecraft dynamics simulation was constructed for analysis of the performance of
the ADCS system. Attitude determination was tested with an engineering model of a 1U
CubeSat, and the entire ADCS system was tested in simulation. Results of these preliminary
tests show the use of electrospray thrusters as attitude actuators to be feasible, although
significant work remains to complete a flight-ready ADCS system.

Thesis Supervisor: Sara Seager
Title: Class of 1941 Professor of Physics and Planetary Science

Academic Advisor: Paulo C. Lozano
Title: Associate Professor of Aeronautics and Astronautics

2

Acknowledgments

There are many people I want to thank who have made the completion of this thesis possi-

ble. To Professor Sara Seager who has inspired me to dream and given me the opportunity

to work on intriguing problems. To Professor Paulo Lozano for his invaluable advice and

support throughout my time at MIT. To my TSat teammates Mary Knapp, Akshata Krish-

namurthy, and Fernando Mier Hicks who made TSat engineering model testing a reality. To

the Nexterra foundation for their generous sponsorship of the TSat project. To Alessandra

Babuscia, Chris Pong, Ian Sugel, Josh Joseph, Justin Smith, Lars Blackmore, and Carolyn

Major for their mentorship and life advice. To Marie Stuppard and Beth Marois who are two

of the most helpful people I know. To my roommate Mitch Westwood for his constant en-

couragement and motivation. To Professor Sheila Widnall for her wisdom and overwhelming

support, and to Bill Widnall for his inspiration and many great days of sailing in Marble-

head. To Maggie McConnell who always helps me to see what is important in life. And

finally, to my dad Dave, my mom Sue, my sisters Kate and Meg, and my brother Luke who

have made me who I am.

3

Contents

List of Figures 10

List of Tables 17

1 Introduction 19

1.1 CubeSats: A Developing Platform for Space Exploration 19

1.1.1 The CubeSat Standard . 19

1.1.2 Current CubeSat Mission Limitations 20

1.1.3 Motivation for Microthruster Actuation in CubeSat Attitude Control 22

1.1.4 Proposed CubeSat Missions Requiring Microthruster Actuation . . . 23

1.2 Electrospray: A Microthruster Technology 25

1.2.1 Principles of Electrospray Thrusters 25

1.2.2 Electrospray Thrusters as CubeSat Actuators 27

1.2.3 Comparison to Current State of the Art CubeSat Attitude Actuators 29

1.3 TSat: A Demonstration Mission for Electrospray Thrusters 32

1.3.1 M ission Overview . 32

1.3.2 Spacecraft Subsystems . 33

1.3.3 Preflight Testing . 33

1.3.4 Electrospray Thruster Attitude Control 35

2 System Hardware 36

2.1 Attitude Determination Sensors . 36

4

2.1.1 3-Axis Magnetometer . 37

2.1.2 Photodiode Sun Sensors . 38

2.1.3 MEMS 1-axis Gyros . 41

2.1.4 GPS Receiver . 42

2.2 Electrospray Microthruster Actuators . 43

2.2.1 Thruster Configuration . 43

2.2.2 Fundamentals of Operation . 45

2.2.3 Propulsion Power Unit . 47

2.2.4 Performance Characteristics . 50

3 System Software 53

3.1 Software Overview . 54

3.1.1 Coordinate Systems and Labels . 54

3.1.2 Flight Software State Variable Structure 58

3.2 Sensor Processing . 58

3.2.1 Sun Sensor Processing . 58

3.2.2 Gyro Processing . 59

3.3 Attitude Determination . 60

3.3.1 Attitude Measurement . 61

3.3.2 Attitude Estimator . 61

3.4 Guidance . 62

3.4.1 Ground Command Processing . 63

3.5 Attitude Control Law . 64

3.5.1 Torque Command . 64

3.6 Actuator Command Preparation . 65

3.6.1 Thrust Allocation . 65

4 High Fidelity Simulation (TSATsim) 68

4.1 Structure of the Simulation . 68

5

4.1.1 Flight Software Side . 70

4.1.2 Truth Side . 71

4.2 Simulation of Attitude Determination Hardware 71

4.2.1 G yros . 72

4.2.2 Sun Sensors . 74

4.2.3 Magnetometer . 74

4.3 Simulation of Attitude Control Hardware . 75

4.3.1 Electrospray Thrusters . 76

4.4 Simulation of Dynamics and the Space Environment 77

4.4.1 Runge-Kutta Integrator . 78

4.4.2 G ravity . 79

4.4.3 Aerodynamic Drag . 80

4.4.4 Geomagnetic Field . 80

4.4.5 Sun Position . 81

4.5 Simulation Results . 82

4.5.1 Truth Environment Data . 83

4.5.2 Attitude Determination Performance 87

4.5.3 Attitude Control Performance . 89

5 TSat 1-Degree of Freedom Testbed 96

5.1 Testbed Implementation . 96

5.1.1 Magnetic Levitation Balance . 97

5.1.2 TSat Engineering Model . 98

5.1.3 Flight Software Implementation . 99

5.1.4 Testbed Environment . 101

5.2 Attitude Determination Test . 102

5.2.1 Test Description . 103

5.2.2 Test Results . 103

5.2.3 Attempt with Constant Rotation . 106

6

5.3 Future Testing . 107

5.3.1 Rate Nulling . 108

5.3.2 Angle Command Slew . 108

5.3.3 Rate Command Slew . 108

5.3.4 Sun racking . 109

6 Future Work and Conclusion 110

6.1 Software Improvements . 110

6.1.1 Handling of Anomalies . 111

6.1.2 Sensor Processing . 112

6.1.3 GPS Processing . 114

6.1.4 Attitude Determination Filter . 114

6.1.5 Attitude Control Law . 115

6.2 Hardware Improvements . 116

6.3 Model Improvements . 116

6.3.1 Sensor Models . 116

6.3.2 Actuator Models . 117

6.3.3 Environmental Dynamics . 117

6.4 Further Testing . 117

6.4.1 1-DOF Levitation Testbed . 118

6.4.2 Flight Demonstration . 119

6.5 Conclusion . 122

A Flight Software Algorithm Pseudocode and Implementation for Analysis 123

A.1 FSW Master . 123

A.1.1 Pseudocode for tsat-gnc . 123

A.1.2 TSATsim implementation of tsat-gnc 124

A.2 Sensor Processing . 125

A.2.1 Pseudocode for gnc-sensor-processing 125

7

A.2.2 TSATsim implementation of gnc-sensor-processing

A.2.3 Inputs and Outputs of gnc-process-ss 126

A.2.4 Pseudocode for gnc-process-ss . 128

A.2.5 TSATsim implementation of gnc-process-ss 129

A.2.6 Inputs and Outputs of gnc-process-gyro 133

A.2.7 Pseudocode for gnc-process-gyro . 134

A.2.8 TSATsim implementation of gnc.process.-gyro 134

A.3 Attitude Determination . 135

A.3.1 Pseudocode for gnc-attitude-determination 135

A.3.2 TSATsim implementation of gnc-attitude-determination 136

A.3.3 Inputs and Outputs of gnc-TRIAD 137

A.3.4 Pseudocode for gncTRIAD . 141

A.3.5 TSATsim Implementation of gncTRIAD 148

A.3.6 Inputs and Outputs of gnc-attitude-kf 157

A.3.7 Pseudocode for gnc-attitude-kf . 160

A.3.8 TSATsim Implementation of gnc-attitude-kf 167

A .4 G uidance . 179

A.4.1 Pseudocode for gnc-guidance . 179

A.4.2 TSATsim implementation of gnc.guidance 180

A.4.3 Inputs and Outputs of fsw-gnd-cmd 181

A.4.4 Pseudocode for fsw-gnd-cmd . 182

A.4.5 TSATsim Implementation of fsw-gnd-cmd 182

A.5 Attitude Control Law . 184

A.5.1 Pseudocode for gnc-attitude-cl . 184

A.5.2 TSATsim implementation of gnc-attitudecl 184

A.5.3 Inputs and Outputs of gncitorque-cmd 185

A.5.4 Pseudocode for gncitorque-cmd . 187

A.5.5 TSATsim Implementation of gnc-torque-cmd 188

8

.. . 125

A.6 Command Preparation

A.6.1 Pseudocode for gnc-cmdprep

A.6.2 TSATsim implementation of gnc-cmd-prep . .

A.6.3 Inputs and Outputs of gnc-thrust-alloc

A.6.4 Pseudocode for gnc-thrust-alloc

A.6.5 TSATsim Implementation of gncithrust-alloc

A.7 ADCS Flight Software Initialization

A.7.1 Listing of readxfswcmd (from TSATsim) . . .

A.7.2 Sample fswcmd file

A.8 FSW State Variable Data Structure

B Simulation Truth State Data Structure

References

. 191

. 191

. 192

. 193

. 195

. 198

. 202

. 202

. 205

. 205

210

215

9

List of Figures

1-1 1U CubeSat with deployed antennas. (credit: Mary Knapp) 20

1-2 P-POD CubeSat Deployer [26]. 20

1-3 Drawing of an electrospray thruster assembly [4]. 25

1-4 Two assembled iEPS thruster modules [11]. 28

1-5 Scanning electron microscope image of a porous emitter array [4]. 29

1-6 MAI-201 CubeSat reaction wheel assembly [12]. 30

1-7 NanoPower solar panel [5]. 31

1-8 CAD drawing of the SPL magnetic levitation balance. (credit: Fernando Mier

H icks). 34

2-1 Honeywell HMC5843 magnetometer (credit: Honeywell). 37

2-2 Magnitude of the magnetic field experienced by TSat over one orbital period

as calculated by the TSat GNC simulation. The simulated orbit is similar to

the orbit of the International Space Station. 38

2-3 Sample magnetometer output when subjected to the geomagnetic field in the

lab and rotated through 180 degrees. 39

2-4 Sample output of two photodiode Sun sensors when rotated past a light source.

The bias value of approximately 12 mV is attributed to ambient light in the

lab and reflection of the light source. 40

2-5 Sun sensor test setup used to record the data given in Figure 2-4. 41

2-6 ADIS16251 gyro attached to a GomSpace solar panel (credit: GomSpace). . 41

10

2-7 Sample output of an ADIS 16251 gyro. 42

2-8 Surrey SGR-05U GPS receiver [9]. 43

2-9 Conceptual illustration of two thrusters that produce a control moment on

the spacecraft with zero net force. (credit: Akshata Krishnamurthy) 44

2-10 Summary of the thruster configuration trade study. Three-axis attitude con-

trol, with control about one axis that produces no net force on the spacecraft

is possible using eight thrusters. Additionally, the number of custom built

solar panels required for each thruster configuration was determined. The

implications of the number of custom built solar panels are beyond the scope

of this document. (credit: Akshata Krishnamurthy) 45

2-11 TSat six-thruster configuration provides control moments about any rota-

tional axis. 46

2-12 Drawing of a porous emitter tip showing the formation of a Taylor cone and

extraction of ions from the ionic liquid. (Credit: MIT SPL) 47

2-13 Conceptual sketch showing eight iEPS thrusters mounted on top of a stack of

three Espace PPU electronics boards [11]. 49

2-14 Sample I-V characteristics of several thrusters. Efficient thrusters such as

Boro 45 have steep I-V curves, and reach high current levels at the maximum

driving voltage. Less efficient thrusters such as Boro 37 have shallower I-V

curves, and do not reach the same high currents at the maximum driving

voltage. Since current is a continuous function of the driving voltage, there

is no theoretical minimum thrust value. The measured I-V curves of the

thrusters used for flight will be programmed into the PPU interface algorithm

to convert thruster commands from the ADCS software into driving voltages.

(credit: Fernando Mier Hicks) . 52

3-1 Structure of simulated software. 55

3-2 TSat Spacecraft Body Frame showing thrusters in the testbed configuration. 56

3-3 TSat spacecraft faces . 57

11

3-4 Thruster numbering. 57

3-5 Context of the sensor processing task. Sensor processing is the first task called

in each control cycle. It processes raw data from the Sun sensors and gyros,

preparing inputs for the attitude determination task. 59

3-6 Context of the attitude determination task. Attitude determination runs im-

mediately after sensor processing. It incorporates the processed measurements

from ADCS sensors with propagated estimates to compute an estimated at-

titude quaternion and body rates. 60

3-7 Context of the guidance task. Guidance uses the spacecraft state estimated by

attitude determination to decide the desired behavior of the satellite. Ground

commands and the spacecraft mode of operation are also incorporated in this

decision . 63

3-8 Context of the attitude control law task. The attitude control law takes in

the estimated attitude and body rates from the attitude determination task,

and the commanded attitude and body rates from the guidance task. It then

computes the actuator torque that will move the spacecraft to the commanded

state from the current state. 64

3-9 Context of the actuator command preparation task. Command preparation

allocates the commanded torque from the control law to the appropriate actu-

ators. Actuator commands are computed and sent to the actuators to impart

control moments on the spacecraft. 66

4-1 Structure of TSATsim. The "Simulation" block represents the main simu-

lation loop, which calls all of the other blocks in order at each simulation

timestep. The "Run Flight Software" block represents the simulated ADCS

flight software or "flight software side" of the simulation, while all of the other

blocks model the real world as part of the "truth side" of the simulation. . . 69

12

4-2 Context of TSATsim sensor models. The "Update Sensors" wrapper calls the

gyro, Sun sensor, and magnetometer models, and their outputs are written to

the truth state data structure. 72

4-3 Sample output of a simulated gyro. At a time of 100 seconds, a moment

is applied about the positive axis of rotation of the gyro for a duration of

approximately 30 seconds. A moment is then applied in the opposite direction

until the rate of rotation is close to zero. 73

4-4 Sample output of a simulated Sun sensor. The sensor begins facing the Sun,

and is then rotated away. 75

4-5 Sample output of a simulated magnetometer. Slow variation is observed as

the magnetometer moves in an orbit around the Earth. 76

4-6 Context of TSATsim actuator models. The actuator models are updated

based on commands from the simulated flight software. 77

4-7 Context of TSATsim space environment models. Environment models are

updated for each intermediate state of the four-stage Runge-Kutta integration. 78

4-8 Elements of the unit vector in the direction of the Sun relative to the Space-

craft Body Frame origin. On the time scale of the simulation, the position

of the Sun relative to the spacecraft may be treated as fixed, so this plot

illustrates a 90-degree rotation of the spacecraft about the positive SBF-Z axis. 83

4-9 Elements of the unit vector in the direction of the Sun relative to the SBF

origin for the duration of the slew maneuver. 84

4-10 TSATsim Boolean eclipse flag. This flag is equal to 0 during orbit day and 1

during orbit night. 85

4-11 Inertial position of the spacecraft relative to the center of the Earth in the

ECI frame. The simulated orbit is similar to the orbit of the International

Space Station with the orbital elements given in Table 4.2. 85

13

4-12 Inertial velocity of the spacecraft relative to the center of the Earth in the

ECI frame. The simulated orbit is similar to the orbit of the International

Space Station with the orbital elements given in Table 4.2. 86

4-13 Attitude determination error. Computed as the smallest angle of rotation

between the truth attitude and the flight software attitude estimate. The

error is on the order of 1 degree for the entire simulation, which is acceptable

for most CubeSat missions. The linear increase in error during the second half

of the simulation is caused by a lack of attitude measurements during orbit

n igh t. 87

4-14 Body rate determination error. Computed as the difference between the flight

software estimated body rates and the truth body rates. The error is less than

0.01 deg/sec, which is acceptable for most CubeSat missions. 88

4-15 Trace of the Unscented Kalman Filter covariance. The covariance grows dur-

ing orbit night, representing a growing uncertainty in the attitude estimate

due to the lack of a recent attitude measurement. 89

4-16 Attitude error angle. A sharp increase in attitude error is observed when a

new attitude quaternion is commanded to initiate the slew maneuver. The

attitude error returns toward zero as the maneuver is completed. 90

4-17 Attitude error angle during the steady state portion of the simulation after

the slew maneuver is complete. In steady state, the attitude error is less than

two degrees, which is acceptable for most CubeSat missions. The attitude

error grows linearly during orbit night, as a result of the growing attitude

determination error during that time. 91

4-18 Body rate error increases during the slew maneuver, since zero body rates

are commanded but the spacecraft must rotate in order to reach a new com-

manded attitude. Body rate error settles back toward zero as the slew ma-

neuver is com pleted. 92

14

4-19 Body rate error during the steady state portion of the simulation after the slew

maneuver is complete. In steady state, the body rate error remains within

±0.00025 radians per second, which is acceptable for most CubeSat missions. 92

4-20 Torque command from the flight software attitude control law. A large torque

is commanded about the positive SBF-Z axis to initiate the slew maneuver. 93

4-21 Thruster commands. Thrusters 1 and 3 are saturated to begin the rotation

for the slew maneuver. Thrusters 0 and 2 are commanded to high values to

slow the rate of rotation as the spacecraft reaches the new commanded attitude. 93

4-22 Flight software commanded attitude quaternion. A new quaternion command

is sent to the spacecraft at a simulation time of 300 seconds to initiate the

slew m aneuver. 94

4-23 Actual attitude quaternion from the truth side model. The actual attitude

quaternion converges to the commanded attitude quaternion. 94

4-24 Flight software commanded body rates. Commanded body rates are zero

throughout the simulation. 95

4-25 Actual body rates from the truth side model. Truth body rates are nonzero

between 300 and 600 seconds to allow rotation to a new commanded attitude,

but then converge to the commanded body rates. 95

5-1 Illustration of the magnetic levitation balance laser sensing system. Lasers

sense vertical displacement of the CubeSat engineering model and measure-

ments are fed back to a control law that levitates the model by varying the

strength of an electromagnet. (credit: Fernando Mier Hicks) 98

5-2 Plate attached to the bottom face of the engineering model to aid in the

measurement of the angle of rotation by the levitation balance. Angular

encoder software detects the colored circles to measure the angle of rotation

of the engineering model. 99

15

5-3 Interior of the TSat engineering model. Solar panels have been removed for

interior access. The upper board contains the NanoMind flight computer and

a memory card for data logging. NanoPower batteries are attached to the

low er board. 100

5-4 TSat engineering model levitated by the magnetic levitation balance. 101

5-5 Darkroom testbed setup for preliminary attitude determination testing. The

Sun source flashlight is visible on the right of the figure, and the TSat engi-

neering model with solar panels removed for internal access is on the left. . . 102

5-6 Attitude determination error. Calculated as the minimum angle between the

estimated and truth attitude. Attitude determination error converges to zero

in approximately 100 seconds. 104

5-7 Body rate determination error. Calculated as the difference between the es-

timated and true spacecraft body rates. The body rate determination error

converges to zero in approximately 100 seconds. 104

5-8 Attitude quaternion estimated by the TSat engineering model. The estimated

attitude converges to the true attitude shown in Figure 5-9. 105

5-9 True attitude quaternion. The true attitude remains constant throughout the

test. 105

5-10 Reflection of light by the aluminum edges of the TSat engineering model struc-

ture. Reflections are thought to cause inaccuracies in Sun sensor measurements. 107

6-1 TSat flight demonstration tests and corresponding objectives. The flight

demonstration tests will prove the ability of electrospray thrusters as CubeSat

actuators by addressing objectives 3 and 4 on the left of the figure. (credit:

Akshata Krishnamurthy) . 120

16

List of Tables

1.1 Summary of characteristics of propulsion technologies available for small space-

craft compiled from [13]. The main advantages of electrospray thrusters in-

clude high efficiency and the absence of pressure vessels and volatile propel-

lants. The main disadvantage of electrospray thrusters is the high driving

voltage required for operation. (credit: MIT Seager Group INVEST proposal) 27

1.2 Comparison of CubeSat attitude actuators. 30

3.1 GNC coordinate systems. 56

4.1 Summary of commands sent to the spacecraft during the 90-degree slew sim-

ulation. Commanded values remain active indefinitely unless they are over-

written by another call to the same command. 82

4.2 Summary of the orbit used for the 90-degree slew simulation. The orbital

elements in this table are the orbital elements of the spacecraft upon initial-

ization of the simulation (at simulation time 0.0). 82

6.1 Summary of attitude control testing on the 1-DOF Levitation Testbed in the

Astrovac vacuum chamber. Tests are designed to resemble common on-orbit

maneuvers and to verify the performance of the TSat attitude determination

and control system about 1 axis. 119

17

6.2 Description of TSat flight demonstration tests. Tests will be executed in

order of increasing "difficulty," beginning with open loop testing to measure

the performance of the electrospray thrusters, and continuing with closed loop

testing to demonstrate the capabilities of the complete attitude determination

and control system . 121

18

Chapter 1

Introduction

1.1 CubeSats: A Developing Platform for Space Ex-

ploration

1.1.1 The CubeSat Standard

A CubeSat is a type of satellite that meets design specifications developed by California

Polytechnic State University in San Louis Obispo and the Space Systems Development Lab

at Stanford University [18]. The CubeSat standard was developed with the intent of mak-

ing space more accessible to small payloads. This is accomplished both by allowing faster

development of small satellite missions through the creation of standardized commercial-

off-the-shelf (COTS) components, and by streamlining the launch process as a secondary

payload on a large launch vehicle [26]. The CubeSat specification requires that a "1U"

CubeSat have external dimensions of 10 cm x 10 cm x 10 cm, and a maximum mass of 1.33

kg. A computer drawing of a 1U CubeSat is shown in Figure 1-1.

Two or three "1U" volumes may be fixed together to form a "2U" or "3U" CubeSat

[26]. In the near future, a revised CubeSat specification will also include "6U" and possibly

even "12U" options [25]. CubeSats are commonly deployed from a spring-loaded "P-POD"

(PicoSatellite Orbital Deployer) attached to a launch vehicle aft of its primary payload, or

19

Figure 1-1: 1U CubeSat with deployed antennas. (credit: Mary Knapp)

from a JAXA deployer attached to the Japanese robotic arm of the International Space

Station [26]. The P-POD deployer is shown in figure 1-2.

Figure 1-2: P-POD CubeSat Deployer [26].

1.1.2 Current CubeSat Mission Limitations

Over the last decade and a half, many academic institutions have developed CubeSats as

educational tools and technology demonstration platforms. The low mission cost, usually less

than $200,000 makes flight experience attainable in educational situations where it would not

20

'0000/0,0

be with larger spacecraft. In addition, large organizations including NASA, The Aerospace

Corporation, and Boeing have begun to explore the potential of CubeSats as a platform for

science and commercial technology [3]. As of August 2013, 53 CubeSats were on orbit and

actively tracked by the North American Aerospace Defense Command (NORAD), and more

than 66 additional CubeSats were awaiting a launch opportunity as reported through the

NASA CubeSat Launch Initiative [25].

As CubeSat platforms have come under consideration for Earth observation, atmospheric

science, and astronomy, fundamental limitations due to weaknesses in the areas of CubeSat

attitude control and translational ability have been recognized. Attitude control refers to

control of the orientation and rotational rates of a satellite about its center of mass, while

translation refers to maneuvers involving an acceleration of the satellite's center of mass.

Nanosatellite propulsion technology is largely unproven, and there are no commercially avail-

able flight-demonstrated propulsion solutions available for CubeSats [3]. Without a proven

and readily available propulsion system, CubeSat missions requiring formation flight or preci-

sion constellations are not possible. Possible objectives of interplanetary and asteroid science

missions are limited by the absence of translational control, and the inability to compensate

for atmospheric drag forces places limits on the minimum operating altitude and the mission

lifetime of CubeSats in low Earth orbit. Though nanosatellite attitude control systems are

more advanced than their translational control counterparts, a majority of nanosatellites are

still designed without active attitude control [3]. Many are passively controlled using mag-

netorquers that interact with the geomagnetic field, and some have no attitude control at

all. Reaction wheels that are compatible with the CubeSat form factor have been developed

and tested, but only a few CubeSat missions have used them in flight.

Both attitude and translation control hardware have yet to become miniaturized to the

point where achieving both attitude and translational control in a 1U satellite is reasonable.

One state of the art design for a CubeSat guidance navigation and control module developed

by the University of Texas at Austin offers translational and attitude capability in the volume

of 1U, but leaves no room for payload unless a 2U or 3U structure is used [6]. Other designs

21

that offer either attitude control or thrust capability (but not both) have been miniaturized

to approximately one half of 1U each [21],[2]. A design requiring translational control must

also have a means of controlling the spacecraft attitude since the thrust vector must be

pointed in the direction opposite the desired motion. It can thus be reasonably concluded

that designs using current state of the art hardware must have a size of at least 2U to support

a mission that requires any translational control.

1.1.3 Motivation for Microthruster Actuation in CubeSat Atti-

tude Control

Microthruster actuation presents a solution for supporting a mission that requires transla-

tional control in a 1U form factor. Since translational control requires attitude control as

explained at the end of Section 1.1.2, all proposed designs for CubeSat translational control

systems as of August 2013 contained reaction wheels for attitude actuation. Microthrusters

may be used as both translational and attitude actuators, effectively eliminating the need

for reaction wheels. The absence of reaction wheels in a microthruster-actuated attitude

control scheme eliminates a volume and mass of approximately half of 1U. Attitude control

about all rotational axes can be provided with a set of 6 microthrusters as presented in Sec-

tion 2.2. The total mass and volume of required hardware, fuel, and electronics for a single

microthruster are approximately 55 g and 0.042 liters respectively. Thus, microthruster ac-

tuation requires approximately 30% of 1U to provide full attitude and translational control.

This leaves 0.7 liters and 880 g in a 1U form factor for other spacecraft subsystems and

payload. In the case of a 2U or 3U design, the payload capacity is increased by 0.7 liters

and 880 g from what it could be without microthruster actuation.

In addition to providing advantages in the area of payload capacity, microthrusters allow

more precise and efficient translational control. Microthrusters can be mounted pointing in

several different directions on a CubeSat structure instead of the single direction allowed

by larger chemical and cold gas thrusters. Mounting thrusters facing several directions

allows a CubeSat to translate without many of the slew maneuvers that are necessary when

22

using a single large thruster for stationkeeping. The elimination of slew maneuvers enables

stationkeeping that is both more efficient and more precise. Such stationkeeping could allow

CubeSat constellations, formation flying, or even tethered missions that are not possible

when a single thruster is used for translational control.

A final advantage of microthrusters over other propulsion solutions is that they can be

designed without pressure vessels or volatile substances [16]. Since the majority of CubeSat

missions are launched as cargo or secondary payloads, pressure vessels and volatile substances

included in a design pose a risk not only to the mission success of the CubeSat but also to

the mission success of the primary payload. Since primary payloads are often several orders

of magnitude more expensive than secondary payloads, primary payload stakeholders are

reluctant to allow CubeSats with pressure vessels or volatile substances to be launched on

their launch vehicles. The absence of pressure vessels and the involatility of the fuel in

some microthruster designs eliminates many of the safety concerns that primary payload

stakeholders have with chemical propulsion systems.

1.1.4 Proposed CubeSat Missions Requiring Microthruster Actu-

ation

Many CubeSat missions that require microthruster actuation have been proposed in pub-

lished literature, and many more exist that have not been thoroughly explored. The goal

of this section is to provide a few examples of CubeSat missions that require microthruster

actuation in order to help motivate the need for development of microthruster actuated

attitude control.

As mentioned earlier, CubeSats are in the midst of a transition from a status as primarily

educational tools, to a common standardized sensor platform for commercial and government

missions. There exist a plethora of important Earth observing missions that could be effec-

tively accomplished by CubeSat constellations, as summarized by [21]. Proposed missions

range from atmospheric sounding to disaster monitoring, and from surveillance to the gath-

ering of data on the state of snow, ice, and oceans. The data gathered by these CubeSats

23

might have implications in understanding weather and storm patterns, monitoring the health

of terrestrial ecosystems, or ensuring national security.

One of the main advantages of CubeSats over larger monolithic satellites for missions such

as those described above is the ability to send many satellites into orbit within a reasonable

budget, as opposed to just one or two. The satellites in the constellation can be spaced

out around one orbital plane, or in several different planes and at various altitudes. Con-

stellations greatly increase the temporal resolution of collected data, which is very useful or

critical in many cases [10]. In order to maintain a constellation, each of the satellites must be

equipped with precision stationkeeping ability. As discussed in section 1.1.3, microthrusters

seem to be the most attractive solution for providing the combination of translational and

attitude actuation that is needed.

In addition to CubeSat constellations, another category of proposed CubeSat missions

consists of those requring formation flight. Formation flying spacecraft fly in close proximity

to one another, operating almost as a single larger spacecraft. Such a configuration could

allow for modular system construction, with different satellites performing different functions

and communicating among one another. For example, the communications module could fly

separately from the camera and data processing modules. This would allow great flexibility

in mission objectives and could potentially have great advantages in the area of mission

robustness. Alternatively, the satellites in the formation might all be involved in performing

the same task, such as forming the nodes of an array antenna or telescope. As just one

example, a concept for a formation flying solar observatory is currently being developed by

Knapp et al. [20]. Again, precision attitude control and stationkeeping are required.

Finally, CubeSat-sized spacecraft might serve as extremely useful tools in micro-gravity

asteroid exploration. A team of small probes might be able to gather data over a much

larger area than a single larger spacecraft. Microthruster actuation would be essential for

operating in the delicate microgravity environment. If the body being explored was small

enough that driving was not possible, microthrusters might even be used for moving from

one data collection site to another.

24

1.2 Electrospray: A Microthruster Technology

1.2.1 Principles of Electrospray Thrusters

An electrospray thruster is a type of microthruster that produces thrust by emitting charged

particles that have been accelerated through an electrostatic field. These charged particles

are extracted from an ionic liquid that has been carried into a microfabricated array of

porous tips by capillary action. The electrostatic field is created by placing an extractor grid

above the porous tips and generating an electrical potential difference between the grid and

the ionic liquid. The grid is aligned such that there is an opening directly above each tip,

through which the ions from that tip are emitted. A schematic drawing of an Electrospray

Thruster assembly is given in Figure 1-3.

Acceleration
grid (optional)

Ion beams

Extraction

Planar grid
emnitters

Porous
substrate

Fuel
reserve

Figure 1-3: Drawing of an electrospray thruster assembly [4].

Common metrics used to assess the capabilities of any space propulsion system include

thrust force and specific impulse. Electric propulsion systems are also typically assessed

using an electrical power efficiency metric [4]. The thrust force, F, produced by a thruster

is given by equation 1.1. Here, 5 is the average exhuast velocity of emitted particles, and d

25

is the propellant mass flow rate.

F dm
dt

Propellant economy of a thruster is represented by the thruster's specific impulse or 1,p,

given by Equation 1.2. Here, g is the acceleration due to the Earth's gravity at sea level and

the other symbols represent the same quantaties as in Equation 1.1.

I F = (1.2)ISP 9dm y-

The electrical power efficiency, q, is given by Equation 1.3, and represents the effectiveness

of the thruster in converting consumed electrical power into thrust. In Equation 1.3, P

represents the input power to the thrusters, or the product of the input current and voltage

supplied by the thruster electronics to the thruster.

1-2 dm
2 d (1.3)r'P

In comparison to chemical propulsion systems, electrospray thrusters produce an ex-

tremely low thrust, on the order of puN. The low thrust levels are a result of the small mass

(on the order of 100 amu) of the ions that are emitted. One advantage of using electro-

spray thrusters is that their low thrust levels can be used to achieve much finer translation

and rotation control than the higher thrust levels of their chemical propulsion counterparts.

Electrospray thrusters also have an advantage over other propulsion systems in propellant

economy. The Ip, of electrospray thrusters is on the order of 2500s in comparision to the

500 s - 600 s specific impulse of the most efficient chemical rockets.

The greatest advantages of electrospray thrusters as applied to CubeSats are their low

mass and volume, as well as the fact that they do not require compressed or volatile sub-

stances that could pose a risk to other satellites sharing the same launch vehicle. Table 1.1

gives a summary of the positive and negative characteristics of micropropulsion technologies

available for small spacecraft.

26

Propulsion Mono- Cold gas Bipropellant Pulsed Micro Electrospray
Technology propellant plasma ion thruster

thruster engines

I8 (s) 220 ~65 ~zz.300 ~270 2500- 2500-3500
5480

Fuel Hydrazine N2 LOX/hydrocarbon Teflon Argon/ EMI-BF4
Xenon

Moving parts Yes Yes No No No
High temper- Yes No Yes Yes Yes No
ature
Flammable Yes No Yes No No No
fuel
Pressure ves- Yes Yes Yes No Yes No
sel

High voltage No No No Yes Yes Yes

Table 1.1: Summary of characteristics of propulsion technologies available for small space-
craft compiled from [13]. The main advantages of electrospray thrusters include high effi-
ciency and the absence of pressure vessels and volatile propellants. The main disadvantage
of electrospray thrusters is the high driving voltage required for operation. (credit: MIT
Seager Group INVEST proposal)

1.2.2 Electrospray Thrusters as CubeSat Actuators

Over the last several years, large strides have been made in the development of Electrospray

Thrusters packaged as CubeSat actuators. The ion Electrospray Propulsion System (iEPS)

being developed by the MIT Space Propulsion Laboratory consists of thruster modules of

the dimension 12 mm x 12 mm x 2.5 mm, as well as supporting thruster electronics. Each

thruster module contains a porous emitter array with approximately 600 porous tips [11].

Two thruster modules are shown in figure 1-4, and a scanning electron microscope image

of a porous emitter array is shown in Figure 1-5. In the iEPS design, thruster modules are

positioned in pairs. The two modules of each pair are operated with opposite polarity, and

thus the pair emits an equal number of positive and negative ions. This is done so that the

thruster exhaust will have a net neutral charge.

Eight pairs of thrusters, along with thruster drive electronics fit in 1/3 of a 1U cubesat

[11], equivalent to approximately 300 cm 3 and 0.4 kg. Each 12 mm x 24 mm thruster pair

27

Figure 1-4: Two assembled iEPS thruster modules [11].

produces approximately 20 pN of thrust at full throttle. The thrusters are throttleable by

varying the voltage applied between the ionic liquid and the extractor grid.

The current iEPS design documented in [11] shows one possible positioning of the thrusters,

but they could be repositioned as needed to produce the desired control torques and forces

for a given vehicle. For a 1U CubeSat, a single one of the eight thruster pairs is capable

of producing a torque about the spacecraft center of mass of about 1pN-m. This seems

small, but with the small mass and inertia of a 1U CubeSat, 1[N-m will produce an angular

acceleration of approximately 0.12 rad/s 2, or almost 7 deg/s 2 . Thus, though Electrospray

Thrusters in their current form would likely not be effective as primary attitude actuators

of large spacecraft, they do present a promising case for use on CubeSat-sized platforms.

28

MIT1730 2011/01/13 20:29 LT x60 1 mm

Figure 1-5: Scanning electron microscope image of a porous emitter array [4].

1.2.3 Comparison to Current State of the Art CubeSat Attitude

Actuators

State of the art CubeSat attitude actuators include reaction wheels and magnetorquers.

Reaction wheels are a set of flywheels spun up by electric motors that store some of the

angular momentum of the spacecraft and can thus adjust its attitude. Magnetorquers consist

of coils of wire that generate magnetic dipoles when current is passed through them. These

dipoles interact with the Earth's magnetic field to produce a moment on the spacecraft. The

Maryland Aerospace MAI-201 [12] reaction wheel assembly and the magnetorquers embedded

in the NanoPower solar panels manufactured by GomSpace [5] are compared with the iEPS

electrospray thruster actuation system in Table 1.2. The MAI-201 and a NanoPower solar

panel are shown in Figures 1-6 and 1-7.

Reaction wheels are capable of producing more torque than electrospray thrusters, how-

ever they have disadvantages in the areas of mass and volume. As discussed in Section 1.1.2,

improvement in these areas is key in increasing the variety of missions available to CubeSats.

Further miniaturization of reaction wheel assemblies is difficult, due to the large number of

29

Figure 1-6: MAI-201 CubeSat reaction wheel assembly [12].

moving parts and electromechanical systems involoved. Additionally, since reaction wheels

operate on the principle of momentum storage, it is possible for them to become saturated

and unable to produce control torque. For this reason, systems that use reaction wheels as

actuators must also have a means of removing momentum from the wheels. Magnetorquers

or thrusters are thus required in addition to reaction wheels for most applications. Since

magnetorquers cannot be used in deep space, due to the absence of a geomagnetic field, the

tendency of reaction wheels to saturate presents a particular disadvantage when designing

Reaction Magnetorquers Electrospray
Wheels (GomSpace) Thrusters
(MAI-201) (iEPS)

Mass (kg) 0.73 0.03 0.44
Volume (1) 0.44 0.01 0.30

Max Torque (Nm) 0.005 0 to 3.25e-6 2.0e-6
Power Consumption (W) 2.4 0.09 5.0

Lifetime Limitations mechanical none fuel consump-
wear tion

Table 1.2: Comparison of CubeSat attitude actuators.

30

Figure 1-7: NanoPower solar panel [5].

interplanetary or asteroid exploration missions.

Magnetorquers are an attractive solution in the areas of mass, volume, and power con-

sumption. Their main disadvantage is the irregularity in the amount of torque they can

produce. Since magnetorquers operate by producing a dipole that tends to align with the

geomagnetic field, the torque available is completely dependent on the direction and strength

of the geomagnetic field at the magnetorquer's position in space. The torque produced by

the interaction between the dipole and the magnetic field can be represented as the cross

product of the dipole vector with the external magnetic field vector. Thus, magnetorquers

can never produce moments on the spacecraft about the direction of the geomagnetic field.

This is a particular problem for satellites in low inclination orbits, since the direction of the

geomagnetic field changes very little along the path of the orbit. Though high inclination

orbits do allow for torques to be applied about any axis, the set of available torques varies

over the course of an orbit, so attitude adjustments may take a long time since they can only

be made at a specific points along the orbit. A final drawback of magnetorquers is that they

are not useful for deep space exploration missions.

The main disadvantage of electrospray thrusters is their finite lifetime due to the exhaus-

tion of propellant. Though electrospray thrusters also have a lower maximum torque and a

higher power consumption than state of the art actuators, they avoid the pitfalls of satura-

31

tion and inconsistency in the magnitudes and directions of available control torques due to

reliance on the geomagnetic field. Electrospray thrusters present advantages over reaction

wheels in the areas of mass and volume, opening up more space for payloads and effectively

making it possible to fit a mission that requires precision pointing in 1U. Finally, electro-

spray thrusters have the added benefit of being able to produce delta-V and thus to act as

translational control actuators. Where reaction wheels would require a separate propulsion

module on the order of 1U in size to be able to perform translation, electrospray thrusters

require no additional equipment. The only increase in mass and volume from the attitude

actuation system would be the amount of fuel needed to perform whatever translational

maneuvers were required.

1.3 TSat: A Demonstration Mission for Electrospray

Thrusters

ThrusterSat (TSat) is a 1U CubeSat demonstration mission for iEPS electrospray thruster

technology being designed by the Seager Group in the Department of Earth, Atmospheric,

and Planetary Sciences at MIT, in collaboration with the MIT Space Propulsion Laboratory.

The goals of the TSat mission are to provide data that will be useful to future users of the

iEPS thrusters, and to create a technological foundation for future formation flying CubeSat

science missions.

1.3.1 Mission Overview

The TSat spacecraft is a 1U CubeSat, designed primarily using commercial-off-the-shelf

CubeSat components. Either six or eight pairs of iEPS electrospray thrusters will be posi-

tioned along the edges of the cube in a configuration that is capable of producing control

torques about all axes. The spacecraft will be transported to the International Space Sta-

tion by a cargo re-supply vehicle, and will be deployed via the NanoRacks CubeSat deployer

attached to the Japanese robotic arm. Upon exiting the ISS keep-out sphere, TSat will

32

perform a series of tests to characterize the performance of the iEPS electrospray thrusters

in the space environment. Once thruster performance is well characterized, additional tests

will demonstrate the capabilities of the thrusters in attitude control and the production of

delta-V for orbit changes. Data will be downlinked to a ground station at MIT.

1.3.2 Spacecraft Subsystems

Much of the TSat spacecraft is made up of commercial components. Power is provided by

six body-mounted solar panels manufactured by GomSpace. The panels each include a 1-

axis MEMS gyro, and a photodiode Sun sensor for attitude determination. The panels also

include embedded magnetorquers that may be used as attitude actuators if the thrusters

are not operating. The "NanoMind" flight computer and the "NanoPower" power supply

are also purchased from GomSpace. The structure is a custom aluminum unibody design

manufactured at MIT, and the communications subsystem consists of a Radiometrix BHX

transciever and GomSpace deployable antennas. A GPS receiver made by Surrey will provide

navigation data to the satellite. The iEPS thrusters are mounted on a PCB that also contains

the high-voltage thruster drive electronics.

1.3.3 Preflight Testing

A magnetic levitation balance was constructed in the MIT Space Propulsion Lab to help

characterize the performance of the iEPS thrusters once integrated with the TSat structure

[16]. The balance consists of an electromagnet and two laser alignment sensors suspended

from an aluminum frame. A permanent magnet is attached to the CubeSat structure. The

electromagnet imparts a force on the permanent magnets, suspending it without physical

contact to any external supports. The laser sensors measure the vertical displacement, which

is used as feedback to a controller that adjusts the magnetic field of the electromagnet so

that the CubeSat will levitate in a stable manner. The ability of the CubeSat to "float"

without contacting any external supports allows the structure to rotate without friction.

This is essential because friction could be a significant source of error since the thrust levels

33

and moments being measured are so low. A CAD drawing of the balance is shown in figure

1-8. More technical details of the magnetic levitation balance are given in Section 5.1.1.

The first objective of testing in this levitation balance is to prove that the iEPS package can

be effectively integrated with a CubeSat structure. Interactions of the thrusters with each

other and with the CubeSat structure, as well as their overall performance characteristics

will be measured.

Electromagnet

Permanent
magnet

Vertical Colored
position LEDs
sensor

Figure 1-8: CAD drawing of the SPL magnetic levitation balance.
Hicks).

(credit: Fernando Mier

A second objective of the levitation balance is to test and verify the performance of

attitude determination and control algorithms. The balance only allows rotation about one

axis, so only single-axis control will be tested. The tests will use the same three-axis attitude

estimator and controller that will be used on orbit, with outputs for the two unused axes

34

set to zero. Demonstrating single axis control using electrospray thrusters as actuators is

an important step toward the demonstration of full three-axis attitude control in space.

Preparation for this levitation balance attitude determination and control test represents

much of the work of this thesis.

1.3.4 Electrospray Thruster Attitude Control

As mentioned in the previous sections, TSat will demonstrate attitude control using elec-

trospray thrusters as actuators. By addressing a fundamental limitation of current CubeSat

technology, this demonstration will expand the variety of missions accessible to the CubeSat

platform.

The following chapters of this thesis document the design and analysis of the TSat atti-

tude determination and control system. Topics addressed include system hardware design,

system software design, simulation and analysis, and engineering model testing. The goal of

this thesis is to provide a foundation upon which microthruster attitude determination and

control systems for future CubeSats may be built.

35

Chapter 2

System Hardware

The TSat attitude determination and control system is made up of both standard commercial-

off-the-shelf (COTS) and custom hardware components. Attitude determination hardware

consists strictly of COTS parts, since the focus of this research is on control actuation.

Suppliers of the components include GomSpace, a Danish company specializing in Cube-

Sat hardware and software, and Surrey of the United Kingdom specializing in small satellite

technology. Attitude control hardware consists entirely of custom manufactured components

still in the final stages of research and development. The components are manufactured by

the MIT Space Propulsion Laboratory, and by Espace, a small company specializing in

miniaturized high voltage electronics for space applications.

2.1 Attitude Determination Sensors

The attitude determination sensors consist of a single 3-axis magnetometer, six photodiode

Sun sensors (one on each face of the spacecraft), six 1-axis MEMS gyros (primary and redun-

dant in three orthogonal axes), and a GPS receiver. The Sun sensors and magnetometers are

used to measure the orientation or attitude of the spacecraft, while the gyros measure angu-

lar rates of rotation of the spacecraft, referred to as spacecraft body rates. The GPS receiver

supplies information about the spacecraft's position in space to the attitude determination

36

software. This information must be known in order to effectively use the measurments from

the magnetometer and Sun sensors. A detailed description of how the data from the sensors

and magnetometer is used by attitude determination software to generate estimates of the

spacecraft attitude and body rates is given in Chapter 3.

2.1.1 3-Axis Magnetometer

A 3-axis magnetometer manufactured by Honeywell is built into the GomSpace NanoMind

flight computer.

Figure 2-1: Honeywell HMC5843 magnetometer (credit: Honeywell).

The HMC5843 magnetometer, shown in Figure 2-1 measures the magnitude and directon

of the Earth's magnetic field in the range from 1 nanoTesla to 0.4 milliTesla. For reference,

the magnitude of the geomagnetic field expected to be experienced by TSat is between 20 and

60 microTesla. Figure 2-2 shows a plot of the magnitude of the magnetic field experienced by

TSat over one orbital period as simulated by the TSat GNC simulation described in Chapter

4. The simulation was run based on a sample orbit with parameters similar to the orbital

parameters of the International Space station.

The magnetometer uses Honeywell's Anisotropic Magnetoresistive technology, which pro-

vides measurements with a resolution of 7 milliGauss, or 0.7 microTesla, and a signal to noise

37

.0%
cc

0
r-

%t0

0

0

E
0

0

0

CD 4000 5000

Figure 2-2: Magnitude of the magnetic field experienced by TSat over one orbital period as
calculated by the TSat GNC simulation. The simulated orbit is similar to the orbit of the
International Space Station.

ratio of 70 dB. Measurements are sent to the flight computer via an 12 C

100 Hz. Figure 2-3 shows a sample magnetometer output during a lab

engineering model was subjected to the ambient geomagnetic field in

through 180 degrees about the Spacecraft Body Frame (SBF) z-axis. A

of SBF and all other coordinate systems used is given in Chapter 3.

interface at a rate of

test where the TSat

the lab and rotated

detailed description

2.1.2 Photodiode Sun Sensors

A planar photodiode is embedded in the center of the GomSpace solar panels mounted

on each face of the Tsat structure. Manufactured by Silonex, the SLCD-61N8 photodiode

produces a voltage proportional to the cosine of the angle between the direction of the Sun

and the outward normal to the solar panel. This angle 3 is computed according to equation

2.1, where V is the output voltage of the photodiode in milliVolts and C is a constant that

38

x 14

4.

1000 2000 3000
Time (s)

a.

0 6000

5-

4 --

5-

3--
5

3.

2.

200
-- SBF-X
-- SBF-Y.

100 - -- SBF-Z

£ -300-

00

-400-

-500
0 5 10 15 20 25 30 35 40

Time (s)

Figure 2-3: Sample magnetometer output when subjected to the geomagnetic field in the
lab and rotated through 180 degrees.

depends on the intensity of the light source. For the Sun, C is assumed to be the open

circuit voltage of the photodiode given by [24] of 400 mV. This constant will be measured

before flight. For the light source used for engineering model testing in the lab, the value

of C was determined to be C = 42.0. Since the data of all of the Sun sensors is processed

using the same value of C to produce a vector measurement of the position of the Sun, and

that measurement is subsequently normalized, the value of C used does not impact attitude

determination.

/3=cos-1 - (2.1)C

The measured angles from all of the Sun sensors are combined by the attitude determination

software, as described in Section 3.3, to produce a coarse measurement of the direction of the

Sun. This Sun vector measurement is combined with measurements from the magnetometer

39

to compute a measured spacecraft attitude quaternion.

Figure 2-4 shows a sample output of two Sun sensors. In this test, the TSat engineering

model was rotated such that two adjacent faces were pointed toward a light source, one

after the other. A noisy bias was observed in Sun sensor readings when the sensors were

not pointed toward the light source. The bias is attributed to the presence of ambient light

in the lab, and reflection of the light source by the lab bench and components of the TSat

engineering model structure. A photograph of the test setup is shown in Figure 2-5.

E

E

00
0
0

CO

50

45

40

35

30

25

20

15

10

5

0
) 5

Sun Sensor 1
-Sun Sensor 2

V V W V

10 15 2
Time (s)

3 25 30 35

Figure 2-4: Sample output of two photodiode Sun sensors when rotated past a light source.
The bias value of approximately 12 mV is attributed to ambient light in the lab and reflection
of the light source.

The output of each Sun sensor is sent to the NanoMind flight computer via an analog-

digital converter. The "typical" error in the angle measured by each Sun sensor, as reported

by GomSpace is approximately 1.85 degrees, and the "maximum" error is 3.5 degrees.

40

Figure 2-5: Sun sensor test setup used to record the data given in Figure 2-4.

2.1.3 MEMS 1-axis Gyros

A 1-axis MEMS gyro is mounted to the back of the GomSpace solar panels on each face of

the TSat structure. The ADIS16251 gyro is manufactured by Analog Devices and measures

rotation rates about the axis normal to the solar panel on which it is mounted. The gyro is

also capable of integrating the rates to compute an angle of rotation. The ADIS16251 gyro

is shown attached to the back of a GomSpace solar panel in Figure 2-6.

H2 H1 1 H3 1

Figure 2-6: ADIS16251 gyro attached to a GomSpace solar panel (credit: GomSpace).

The ADIS16251 has a resolution of 0.00458 deg/sec and data is reported to the NanoMind

flight computer at a rate of 10 Hz. The range of rates over which the measurement is

accurate is ± 20 deg/sec. Noise is expected to be approximately white and Gaussian with

41

an RMS value of 0.14 deg/sec. The gyro consumes approximately 90 mW of power in normal

operation.

Figure 2-7 shows a sample output of a gyro mounted to the TSat engineering model

structure. The test began with the structure at rest, and then experiencing a near-constant

rotation about the axis measured by the gyro.

0.1
--- Gyro Rate

0-

' -0.1 -

c -0.2-

* -0.3-

.2 -0.4-

0E -0.5-

-0.6 -

0 10 20 30 40 50
Time (s)

Figure 2-7: Sample output of an ADIS 16251 gyro.

2.1.4 GPS Receiver

The TSat design includes an SGR-05U GPS receiver built by Surrey Satellite Technology

Ltd. of the United Kingdom. The receiver will provide position measurements to the attitude

determination software. These position measurements will be used for calculation of the

expected or "true" magnetic field and Sun vectors as described in Chapter 3. The operation

of this GPS receiver and the interface with the GomSpace Nanomind are mainly outside

the scope of this document. However, it is assumed that the receiver will provide position

42

information with a "typical" error on the order of 10 m [9]. The SGR-05U is shown in Figure

2-8.

Figure 2-8: Surrey SGR-05U GPS receiver [9].

2.2 Electrospray Microthruster Actuators

TSat will use either six or eight electrospray microthruster pairs as attitude control actuators.

The decision of how many thrusters to use will be made in the future, based on the availability

of flight-ready thruster hardware. Six thrusters are sufficient for providing a control torque

about any rotational axis, but an eight-thruster configuration is preferred. From here on,

it will be assumed that mention of a single "thruster" refers to a pair of iEPS modules

positioned next to each other and operating with opposite polarity, as discussed in Section

1.2.2.

2.2.1 Thruster Configuration

A trade study was carried out to determine the number of thrusters necessary to complete

TSat on-orbit demonstrations. The demonstrations include effective 3-axis attitude control

and the ability to control rotation with no net force on the spacecraft. The ability to rotate

without imparting a net force is important for formation flight missions where precise position

control is necessary. Control torque with no net force may be achieved by positioning two

43

thrusters such that their applied moment is in the same direction, but their applied forces

are in opposite directions, as shown in Figure 2-9.

Figure 2-9: Conceptual illustration of two thrusters that produce a control moment on the
spacecraft with zero net force. (credit: Akshata Krishnamurthy)

For purposes of the trade study, a distinction was made between "balanced thrust," where

thrusters are paired as in Figure 2-9, and "unbalanced thrust," where control moments lead

to extraneous net forces on the spacecraft. The number of thrusters required was determined

for all combinations of "balanced" and "unbalanced" control axes. It was determined that

three-axis control, as well as the ability to produce a control moment with no net force

could be demonstrated with eight thrusters. The eight-thruster configuration consists of

two "unbalanced" control axes with two thrusters each, and one "balanced" axis with four

thrusters. A summary of the trade study is given in Figure 2-10.

In the event that eight flight-ready thrusters are not available for TSat, a six-thruster

configuration may be used. The six-thruster configuration consists of three "unbalanced"

control axes, with two of the four thrusters removed from the axis that is "balanced" in

the eight-thruster configuration. The six-thruster configuration will demonstrate 3-axis at-

titude control, but is not capable of producing a control moment without net forces on the

spacecraft.

From the perspective of attitude determination and control design, the six-thruster con-

figuration is identical to the eight-thruster configuration, with the exception of ADCS soft-

ware configuration constants. Since the six-thruster configuration is less complex, the design

and analysis in the remainder of this document will assume the six-thruster configuration

44

Figure 2-10: Summary of the thruster configuration trade study. Three-axis attitude control,
with control about one axis that produces no net force on the spacecraft is possible using
eight thrusters. Additionally, the number of custom built solar panels required for each
thruster configuration was determined. The implications of the number of custom built
solar panels are beyond the scope of this document. (credit: Akshata Krishnamurthy)

shown in Figure 2-11. The software modifications required to support eight, or any number

of thrusters are straightforward. These modifications are noted in the description of the

attitude determination and control software design given in Chapter 3.

2.2.2 Fundamentals of Operation

As mentioned in Section 1.2, one key component of electrospray thrusters is an array of

porous emitter tips. These tips are filled with an ionic liquid, which is a salt that is molten in

the operating temperature range of the thrusters. Many ionic liquids with varying densities,

ion masses, and other properties have been tested by electrospray researchers, and a summary

is given in [4]. The ionic liquids being considered by the MIT Space Propulsion Lab as

propellant for the iEPS thrusters are EMI-BF 4 and EMI-Im. The majority of thruster

45

Figure 2-11: TSat six-thruster configuration provides control moments about any rotational
axis.

testing to date has used EMI-BF4 as a propellant, so this document will assume that the

TSat thrusters will use EMI-BF4 unless otherwise noted. The use of EMI-Im is under

consideration as a possible upgrade to the current system, since it is more hydrophobic than

EMI-BF4. Water contamination of the propellant decreases the performance and lifetime of

a thruster, so the use of EMI-Im could alleviate the need for special packaging to shield the

thruster from humidity prior to launch. Both propellants have a vapor pressure close to zero,

so they will not evaporate or boil in the vacuum of space. In addition, they have a surface

tension sufficient to allow capillary action to carry the liquids into the porous emitter arrays

from fuel tanks located on the back side of the arrays.

A potential difference on the order of 1-2 kV is applied between the ionic liquid inside

the porous emitters and a grid positioned tens of microns above the emitter array [11]. This

causes the ionic liquid to form a sharp cone on the top of each emitter tip. This phenomenon,

called a Taylor cone, is caused by the interplay of electrostatic forces and the surface tension

of the ionic liquid. The sharp tip of the cone produces a near-singularity in the electric field,

and results in the extraction of charged droplets from the liquid that can be as small as a

46

single ion in size [4]. The size of the extracted droplets affects the performance characteristics

of the thruster, and is determined by the properties of the propellant as well as the materials

used and alignment of the thruster components. A detailed discussion of these effects is given

in [4]. In nominal operation, the iEPS thrusters extract pure ions from the ionic liquid, and

accelerate them through the openings in the extractor grid. Figure 2-12 is a drawing showing

a porous emitter tip with ionic liquid forming a Taylor cone and releasing ions. The thrust

produced by a single Taylor cone is approximately 0.1 pN [11]. However, this thrust does

not necessarily scale linearly with the number of emitters due to inefficiencies arising from

misalignment of the thruster components and interactions between emitter beams.

Figure 2-12: Drawing of a porous emitter tip showing the formation of a Taylor cone and
extraction of ions from the ionic liquid. (Credit: MIT SPL)

Detailed specifications of the current iEPS thruster assembly design, as well as informa-

tion on fabrication processes is given by [16].

2.2.3 Propulsion Power Unit

The propulsion power unit (PPU) is a key component of electrospray thruster actuation

systems, since it generates the large electrical potential differences to accelerate ions and

47

create thrust. Fitting the high voltage electronics that are required inside the CubeSat form

factor is particularly challenging, since precautions must be taken against electrical shorts

and arcing. The PPU must be fabricated in such a way that it operates reliably in the

vacuum of space and is robust to the vibrations and loads of launch.

Two PPU implementations are being independently developed for potential use with

TSat. One is being developed by Micro Aerospace Solutions of Melbourne, Florida and the

other by Espace Inc. of Hull, Massachusetts. The two designs have similar requirements,

and a future determination will be made as to which will be selected for flight based on the

demonstrated performance of the two designs in vacuum chamber testing. At the time of

this document, the Espace design had reached a higher level of maturity, having undergone

succesful testing outside vacuum. For this reason, the remainder of this document will

assume that the Espace design is used unless otherwise noted.

The current Espace PPU design consists of three electronics boards, all sized to fit inside

a 1U CubeSat. The first board is reserved for generating the high voltages required to drive

the thrusters. The driving voltages are between -1600 and 1600 Volts, creating a maximum

differential of 3200 Volts [11]. A second board contains circuitry for automatically alternating

the polarity of each iEPS module, such that every module will operate in positive and

negative modes for an equal amount of time. As discussed in section 1.2.2, each "thruster"

is made up of two iEPS modules that operate with opposite polarity at any given time.

Thus, the polarity alternation will happen simultaneously for both of the iEPS modules that

make up a given thruster. The rate of polarity alternation is configurable, but is expected

to be on the order of 1 Hz. The third of the three electronics boards provides the interface

and connections to eight thrusters. The thrusters and fuel tanks are mounted to this board

as shown in Figure 2-13. Figure 2-13 represents an example arrangement of the thrusters,

but they may be repositioned as desired to produce the desired control moments on the

spacecraft.

The inputs from the flight computer to the Espace PPU are voltage commands with 16

bit resolution [11. The current design supports six independent command channels. This

48

Figure 2-13: Conceptual sketch showing eight iEPS thrusters mounted on top of a stack of
three Espace PPU electronics boards [11].

means that even though power is supplied for eight thrusters, there will effectively be only

six control actuators. In the eight thruster case, the two channels assigned to the "balanced"

control axis will drive two thrusters each. Thrusters on the same channel will have equal

and opposite applied forces, and will thus impart no net force on the spacecraft, acting only

as attitude actuators incapable of aiding in translational maneuvers. For simplicity, the

software design presented in Chapter 3 assumes that only six thrusters are used, with each

having its own individual control channel. Expansion to the eight-thruster case requires a

change to the configuration parameters of the software.

The relationship between the voltage applied to a thruster and the amount of thrust

produced is not precisely known, and will be determined with further characterization of the

iEPS thrusters by the MIT Space Propulsion Lab. The Espace PPU feeds back measurements

of the actual voltage applied to each thruster as well as the current drawn by each thruster to

the flight computer. With further characterization of thruster performance, this data will be

used to estimate the actual thrust produced. This thrust estimate will be used as an input to

attitude determination algorithms described in Chapter 3 to reduce attitude determination

error.

Since the relationship between thruster input voltage and thrust is not precisely known,

49

an algorithm that manages the PPU interface with the flight computer will recieve thruster

commands as a fraction of the maximum avaliable thrust for each thruster. The interface

algorithm will translate these commands into the appropriate driving voltage based on the

measured relationship between voltage and thrust for each thruster. Since the maximum

thrust is a configuration parameter in the ADCS software, this command framework allows

development of attitude determination and control algorithms even though the characteristics

of the thrusters are not yet precisely known.

2.2.4 Performance Characteristics

Though precise performance characteristics of the iEPS electrospray thrusters remain yet to

be determined through more extensive testing, the theoretical principles of thruster perfor-

mance and efficiency are well developed. The thrust produced by a thruster in steady state

is described by Equation 2.2, where mh is the propellant mass flow rate and c is the exhaust

velocity as described in Section 1.2. V is the voltage applied to the thruster in Volts, I

is the currrent drawn by the thruster in Amps, - is the charge density of the ionic liquidm

propellant in units of Coulombs per kg, and q is an efficiency parameter. The maximum

value # = 1 represents an idealized thruster with no efficiency losses, and the minimum value

0 represents an inoperable thruster. The thrust F is given in Newtons.

F = mrc = 0I 2V (2.2)

The efficiency parameter 0 is only expected to reach 0.95 in the ideal case, because some

losses due to interception of the ion beam by the extractor grid are unavoidable. Interception

occurs when ions extracted from the emitter tips hit the extractor grid and are absorbed

instead of exiting the thruster through an opening in the grid. Many factors impact the

number of ions intercepted, including the quality of thruster fabrication and alignment,

defects in the materials of the thruster, and the driving voltage applied to the thruster.

50

Thruster materials may also degrade over time, causing a thruster's efficiency to decrease

over its lifetime. Determining the rate of degradation due to internal and environmental

factors is one of the TSat mission objectives.

The relationship between the current drawn by a thruster and the voltage applied, re-

ferred to as the I-V characteristic, is measured by applying a sweeping range of voltages to

the thruster and plotting the current drawn by the thruster at each voltage. This relationship

may be stored in the form of a polynomial approximation or a lookup table on the spacecraft

flight computer. Along with Equation 2.2, it will be relied upon by the thruster interface

algorithm described at the end of Section 2.2.3 to translate thrust commands from the atti-

tude control software to PPU voltage commands. Examples of measured I-V characteristics

for several different thrusters are shown in Figure 2-14. The curves have different shapes due

to the different efficiencies of each of the thrusters. All of the curves are flat in the center,

showing the startup voltage of 700 to 800 Volts required for ions to begin to be extracted.

The maximum thrust of a thruster is limited by the maximum voltage available from the

PPU. Efficient thrusters such as Boro 45 have steep current-voltage profiles, and can draw

high currents (thus creating high thrust by Equation 2.2) when the maximum driving voltage

is applied. Less efficient thrusters such as Boro 37 have less-steep current-voltage profiles,

and will reach a lower maximum current (and thus a lower maximum thrust) when the

maximum driving voltage is applied. One important note is that since the thrust is directly

proportional to the current as seen in equation 2.2, and current is a continuous function of

voltage, there is no theoretical minimum value of the thrust that can be produced. This is

applicable in cases where ultra-fine control is desired.

In addition to steady state performance, characteristics of transients in thrust during

thruster startup and commanded throttle level changes are important knowlege for precision

attitude control design. Transient behavior is expected to be dominated by PPU transients,

since transients in the thruster itself arise mainly from the dynamics of Taylor cone forma-

tion, and are thus on the order of microseconds. The PPU voltage rise time is a tuneable

parameter, where shorter rise times produce more overshoot and oscillation. The chosen

51

Current vs voltage curves of several thrusters

-Boro26 -Boro3l

(d,

E

2 0 1 0 0 0 14 0~07-0 0 20
4-;

C O

- Boro 35

-25

Boro 45 -Boro 37

10 0 00 On0 500f 60 207 00 a 0 ("Xi 9 00 , 1

75

200

Voltage (Volts)

Figure 2-14: Sample I-V characteristics of several thrusters. Efficient thrusters such as Boro
45 have steep I-V curves, and reach high current levels at the maximum driving voltage.
Less efficient thrusters such as Boro 37 have shallower I-V curves, and do not reach the same
high currents at the maximum driving voltage. Since current is a continuous function of the
driving voltage, there is no theoretical minimum thrust value. The measured I-V curves of
the thrusters used for flight will be programmed into the PPU interface algorithm to convert
thruster commands from the ADCS software into driving voltages. (credit: Fernando Mier
Hicks)

rise time is expected to be on the order of several hundred milliseconds from zero to the

maximum voltage of ± 1600 V. The length of the transient will be related to how large a

voltage jump is commanded.

52

-:: - --- --- -- - - ----

-~A--

Chapter 3

System Software

This chapter presents the functionality and mathematical basis of attitude determination

and control algorithms designed for TSat. It is written as a basic guide for implementation

of ADCS flight software, and seeks to provide a foundation upon which CubeSat attitude

determination and control systems may be constructed for future missions. Only nominal

operation is considered, with many edge cases and failure cases ignored. These special cases

will vary greatly depending upon the concept of operations and requirements of a given

mission, and handling of the cases by ADCS software will be designed once those constraints

are known.

The ADCS flight software was implemented in C for use in simulation and engineering

model testing. The C code is listed in appendix A, along with pseudocode that describes

the steps of each algorithm in detail. References are made to the sections of Appendix A

where appropriate.

Many of the algorithm names contain the acronym "GNC," which stands for guidance,

navigation, and control. GNC software consists of the general control logic of a spacecraft,

including translational navigation and translational control as well as attitude determination

and control. Thus, all of the attitude determination and control algorithms described in this

chapter are classified as part of GNC, which is why they are identified as such.

53

3.1 Software Overview

TSat attitude determination and control software is structured as a sequence of five tasks.

The sequence is repeated iteratively at a rate specified by the control cycle period configu-

ration parameter. Each iteration of the sequence is referred to as a "control cycle." In this

document, the control cycle rate is chosen to be 10 Hz.

The master attitude determination and control routine, tsat-gnc, calls a wrapper func-

tion for each of the five tasks in every control cycle. Each of the wrappers is identified

by an algorithm name containing underscores. At the beginning of each control cycle,

the sensor processing task (gnc-sensor-processing) reads and processes raw data from

the ADCS sensors. This sensor data is incorporated by the attitude determination task

(gnc-attitude-determination) to estimate the spacecraft attitude and body rates. The guid-

ance task (gnc-guidance) processes ground commands and determines the desired spacecraft

behavior based on the current mode of operation. Using this desired spacecraft behavior,

as well as the estimated spacecraft attitude and body rates, the attitude control law task

(gnc-attitude-cl) computes the control moment required to produce the desired spacecraft

behavior. Finally, this control moment is converted into actuator commands by the actua-

tor command preparation task (gnc-cmd-prep). The actuators fire, and the cycle repeats,

beginning with the sensor processing task to read in new sensor data. Figure 3-1 shows a

diagram of the overall software structure. All of the tasks update and use the values of flight

software state variables stored as members of the struct fsw. Information about the flight

software variables is given in Section 3.1.2.

3.1.1 Coordinate Systems and Labels

The coordinate systems referenced in the following sections are shown in table 3.1. The SBF

coordinate frame is illustrated in Figure 3-2, which shows the levitation testbed configuration

with only two thrusters.

The numbering of spacecraft faces is given in Figure 3-3. Solar panels, gyros, Sun sen-

sors, magnetorquers, and any other components existing only once per face are indexed and

54

Function Calls:

- 10hz

FSW Master
(tsat gnc)

Sensor Processing
(gnc sensor processing)

Attitude Determination
(gnc attitudedetermination)

Guidance
(gnc guidance)

Attitude Control Law
(gncattitude_cl)

Command Preparation
(gnc cmd prep)

Figure 3-1: Structure of simulated software.

referred to by the number of the face on which they are mounted.

The numbering of thrusters is given in Figure 3-4, assuming a six thruster configuration.

55

Table 3.1: GNC coordinate systems.

Figure 3-2: TSat Spacecraft Body Frame showing thrusters in the testbed configuration.

56

Full Name Origin X-axis Y-axis Z-axis
ECI Earth Centric Inertial Center of the Vernal cross(Z,X) Rotational

Earth Equinox Axis of
Earth

SBF Spacecraft Body Frame Geometric cen- Nominal Nominal Nominal
ter of the "aft" "Forward" "Down" normal to
face of the space- orbit plane
craft

SBF X
SBF Y
SBFZ

SBF X
SBF Y
SBF Z

Face 0 Face 1

Fe Face 4Face 3

Figure 3-3: TSat spacecraft faces.

Figure 3-4: Thruster numbering.

57

SBF X
SBF Y
SBF Z

Thruster 0

Thruster 5

Throster 4

Thrus er 1

2

Thruster 3

Face 5

Face 2

Thruster

3.1.2 Flight Software State Variable Structure

All of the flight software variables that are shared among various ADCS tasks are stored in a

single data structure, fsw. The flight software time and other status variables are updated

by tsat-gnc. Algorithm input values are read from the fsw struct, and outputs are written

to the fsw struct for use in algorithms downstream. The values in the fsw struct remain in

memory until they are overwritten by new values, and are thus constant from the end of one

control cycle until the beginning of the next. Section A.8 contains a listing of the code that

defines the fsw struct for the C implementation of the attitude determination and control

algorithms. The listing gives a list of variables included in the fsw struct, along with short

descriptions and units.

3.2 Sensor Processing

The sensor processing task (gnc-sensor-processing) converts raw data from the GNC sensors

(Sun sensors, magnetometer, gyros) into a format that can be used by the attitude deter-

mination task (gnc -attitude-determination) to create an estimate of the spacecraft attitude

state. The magnetometer data is processed by the nanomind flight computer before being

ingested by the GNC software, so only Sun sensor processing and gyro processing are han-

dled by gnc-sensor-processing. The gnc-sensor-processing wrapper calls gnc-process-ss and

gnc-process-gyro as shown in Figure 3-5. Pseudocode for gnc-sensor-processing is given in

Section A.2.1, and the C implementation used for simulation and testing is given in Section

A.2.2.

3.2.1 Sun Sensor Processing

Sun sensor processing (gncprocess-ss) computes a measured Sun vector by combining data

from the six Sun sensors. The output of each Sun sensor is assumed to be a voltage with

some maximum value in direct sunlight. The output is expected to fall off as the cosine of the

angle between the direction of the Sun and the normal to the solar panel on which the Sun

58

Figure 3-5: Context of the sensor processing task. Sensor processing is the first task called
in each control cycle. It processes raw data from the Sun sensors and gyros, preparing inputs
for the attitude determination task.

sensor is mounted. The algorithm uses this relationship to compute the cosine of the angle

between the Sun vector and each of the spacecraft body frame axes. The algorithm checks

the magnitudes of the computed cosines to determine whether at least one Sun sensor can see

the Sun. If at least one sensor sees the Sun, the algorithm sets the flag validsunvec-meas

equal to 1 and computes an SBF unit vector in the direction of the Sun, based on the

computed cosines from each Sun sensor. Checks for Sun sensor failure will be added in the

future.

Tables A.1 and A.2 give the inputs and outputs of gnc-process-ss. Pseudocode for the

algorithm is given in Section A.2.4 and the C implementation used for simulation and testing

is given in section A.2.5. Characteristics of the Sun sensors may be found in [5].

3.2.2 Gyro Processing

Gyro processing (gnc-process-gyro) performs any necessary processing or downselection of

gyro data to create attitude rate measurements for the attitude filter. In its current state,

Gyro processing is a placeholder, passing raw gyro data through directly to gnc-attitude-determination.

59

Sun Sensor Processing
(gncprocessnss)

Sensor P rocesing

Gyro Processing
(gncprocesn__yro)

Attitude Determination
(gncattudedeterminatdon)

FSW Master Guidance
(tsot~gnc) K (gnc.guidnce)

Attitude Control Law
(gncatrftude~d) Function Calls:

-- 10 hz

Command Preparation
'9_- prep)L

Filtering and/or smoothing of the gyro outputs may be added in the future if necessary to

improve attitude determination performance.

Tables A.3 and A.4 give the inputs and outputs of this algorithm. Pseudocode for

gnc-process-gyro is given in Section A.2.7, and a C implementation is given in Section A.2.8.

3.3 Attitude Determination

If a valid Sun vector measurement is available, the attitude determination task (gnc-attitude-determinati<

calls gncTRIAD, which computes a measured attitude quaternion from Sun vector and

magnetic field measurements, and then calls gncattitudekf which estimates the spacecraft

attitude and rates. The implementation of this wrapper in section A.3.2 was created for

use in simulation and for engineering model testbed testing. Some details of the algorithm

will have to be adjusted for flight. The context of the algorithm is given in Figure 3-6. and

pseudocode is given in section A.3.1.

Attitude Measurement

F g r Atttud e Determination
t A t d m o n

s o w p a e s a to uenan es Attitude Estimator

FSW er uid

Attitude Control Law
enca ue..d)Function Calls:

--- 10 hz

(g c- pp

Figure 3-6: Context of the attitude determination task. Attitude determination runs im-
mediately after sensor processing. It incorporates the processed measurements from ADCS
sensors with propagated estimates to compute an estimated attitude quaternion and body
rates.

60

3.3.1 Attitude Measurement

The attitude measurement algorithm, gnc-TRIAD, calculates a measured value of the space-

craft attitude quaternion based on GNC sensor data. The TRIAD algorithm is a standard

way of fixing an attitude based on two vector measurements, as described by [22] and [1].

The algorithm first computes the "actual" direction of the geomagnetic field at the space-

craft's current position using a sixth-order spherical harmonic model described in Appendix

H of [15]. The steps of the calculation are described in detail by the pseudocode in Section

A.3.4. International Geodetic Reference Frame coefficients are read in from [14] to the flight

software state variable struct during initialization of the flight software.

After computing the "actual" magnetic field vector, B-actual, the algorithm computes

the unit vector sunvec-actual representing the "actual" direction of the Sun in the ECI

frame. The calculation propagates the position of the Sun in the ECI frame from the J2000

epoch as described in [27]. The position of the spacecraft is then subtracted from the position

of the Sun, and the resulting vector is normalized to form sunvec-actual.

Finally, the algorithm implements the TRIAD method to produce a spacecraft attitude

measurement. TRIAD compares the "actual" geomagnetic field vector and Sun vector with

measurements of the magnetic field and Sun vector from gnc-sensor-processing to calculate

att-quat, the measured value of the ECI to SBF quaternion. att-quat becomes an input to

the attitude filter.

Tables A.5 and A.6 give the inputs and outputs of the algorithm. Pseudocode is given

in section A.3.4, and a C implementation is given in Section A.3.5.

3.3.2 Attitude Estimator

This algorithm implements an Unscented Kalman Filter (UKF) to estimate the attitude

quaternion and body rates of the spacecraft. As described by [28], the UKF requires similar

computational resources to the more common Extended Kalman Filter, but handles non-

linear dynamics in a more robust way. The inputs to the UKF include attitude quaternion

measurements produced by gncTRIAD and rate measurements from the gyros. The mea-

61

surements are combined with quaternion and body rate estimates that have been statistically

propagated from the previous measurement update to produce a new estimate each time a

new measurement is available. The propagation is done by creating a set of points ("sigma

points") in the state space with a mean and variance represented by the statistics of the

filter state. These points are propagated to the time of the next new measurement using a

fourth order Runge-Kutta propagator and the nonlinear dynamics of the spacecraft system.

The mean and variance of the filter estimate is then re-calculated from the distribution of

propagated sigma points. The new measurement is used to update the mean and variance

of the estimate with standard discrete Kalman Filter measurement update equations.

The algorithm implementation includes three helper functions: modif ied-chol, propagate,

and d, a dynamics function. The modified-chol function produces the offset of the sigma

points from the estimate mean at the beginning of each propagation step. This includes a

Cholesky decomposition of the filter covariance matrix. The sigma points are chosen accord-

ing to the method proposed by Wan and Van der Merwe in [29]. The propagate function

propagates each sigma point using the d function, which contains the dynamics of the system.

Tables A.7 and A.8 give the inputs and outputs of gnc-attitude-kf. Pseudocode is given

in section A.3.7 and a C implementation is given in section A.3.8.

3.4 Guidance

The algorithms called by gnc-guidance determine what the high-level behavior of the satellite

should be based on the current mission phase, mode of operation, ground commands, and

other factors. The current implementation was created for engineering model testing and only

handles simple ground commands. For flight, the functionality will be expanded to handle

spacecraft modes of operation and science mission test plans. The context of gnc-guidance is

shown in Figure 3-7. Pseudocode is given in section A.4.1, and a C implementation is given

in Section A.4.2.

62

Figure 3-7: Context of the guidance task. Guidance uses the spacecraft state estimated by
attitude determination to decide the desired behavior of the satellite. Ground commands
and the spacecraft mode of operation are also incorporated in this decision.

3.4.1 Ground Command Processing

The fsw-gnd-cmd algorithm allows commands to be sent to the flight software while it is

running. The current implementation is designed for simulation, where command sequences

and timing are known before the simulation run begins. This implementation could be used

for testbed testing as well, but a real-time command framework will need to be developed

for flight.

In its current implementation, the algorithm looks through all of the commands read

in from the fswcmd configuration file. If there is a command that is due for execution, the

algorithm executes it. In TSATsim, the fswcmd file is read by a function called readifswcmd.

A sample fswcmd file is given in Section A.7.2 and a listing of the readifswcmd function is

given in Section A.7.1.

The inputs and outputs of fsw-gnd-cmd are given in tables A.9 and A. 10. Pseudocode is

given in section A.4.4 and a C implementation is given in section A.4.5.

63

sensor Processing

Attitude Determination

Ground Command
Processing

FSW Master Guidance
(tsotgnc) (gnc-guidance)

Attitude Control Law
(anc~asitude~.d) Function Calls:

-+ 10 hz

LCommand Preparation

3.5 Attitude Control Law

The attitude control law task (gnc-attitude-cl) produces a torque command based on the

current attitude determined by gnc-attitude-determination, and the commanded attitude

from gnc-guidance. The context of the algorithm is given in Figure 3-8. Currently the

attitude control law task only calls gnc-torque-cmd, but serves as a placeholder so that

additional algorithms may be added for the flight version of the software. Section A.5.1

gives pseudocode for gnc-attitude-cl, and a C implementation is given in Section A.5.2.

(gnenor-pr ng) Function Calls:
--- 10 hz

Attitude Deemno n
P T 10 Com a

Figure 3-8: Context of the attitude control law task. The attitude control law takes in the
estimated attitude and body rates from the attitude determination task, and the commanded
attitude and body rates from the guidance task. It then computes the actuator torque that
will move the spacecraft to the commanded state from the current state.

3.5.1 Torque Command

The gnctorquecmd algorithm implements a PID controller that calculates a commanded

actuator torque. This torque is used by command preparation to determine commands to

be sent to the thrusters or magnetorquers. The algorithm first computes the error between

the commanded and estimated attitude and body rates. Using these errors, the algorithm

implements a standard PID controller modeled after the control law in [171. The output

64

of the PID controller is a commanded torque vector, with each component representing a

torque about one of the SBF axes. This commanded torque is used by actuator command

preparation to produce commands for the thrusters and torque coils.

Tables A.11 and A.12 give the inputs and outputs of gnctorque-cmd. Pseudocode is

given in section A.5.4 and a C implementation is given in section A.5.5.

3.6 Actuator Command Preparation

The actuator command preparation task (gnc-cmd-prep) prepares individual commands for

each of the spacecraft actuators based on the torque command computed by the attitude

control law. The context of the algorithm is given in Figure 3-9. The current implementation

of gnc-cmd.prep includes only allocation of the commanded torque as thruster commands.

For flight, gnc-cmd-prep will be expanded to include allocation of commanded torque as

magnetorquer commands, or possibly as a combination of thruster and magnetorquer com-

mands. Additionally, the flight version of command preparation will incorporate actuator

commands for translational acceleration of the spacecraft. Pseudocode is given in section

A.6.1 and a C implementation is given in Section A.6.2.

3.6.1 Thrust Allocation

The thrust allocation algorithm, gnc-thrust alloc, determines the thrust levels (as a percent-

age of maximum thrust) for each thruster to produce a commanded torque on the spacecraft.

The most common method of thrust allocation requires that each thruster have a counter-

part that produces an opposite torque to that of the original thruster. Positioning thrusters

in this way allows straightforward thrust allocation by means of matrix inversion. In Cube-

Sats, however, it is undesireable to require that thrusters be placed in a precise location

relative to one another. Such requirements increase the complexity of structural design and

fabrication, and decrease the number of prefabricated COTS components that may be used.

Additionally, since many of the operational characteristics of clectrospray thruster actua-

65

Figure 3-9: Context of the actuator command preparation task. Command preparation
allocates the commanded torque from the control law to the appropriate actuators. Actu-
ator commands are computed and sent to the actuators to impart control moments on the
spacecraft.

tors are unknown, and performance and alignment may vary from thruster to thruster, the

assumption that each thruster could be given an opposite-torque counterpart is unwise.

An original method of thrust allocation was developed that requires only that the torque

produced by each thruster is precisely known, and that the thrusters are positioned such

that no plane exists that bounds the entire set of torque vectors when their magnitudes are

extended to positive infinity. The second condition ensures that the thrusters are capable

of producing a torque about any axis. This thrust allocation method is robust to thruster

failure where opposite-torque counterpart methods are not. A failed thruster is simply

removed from the list of available torque vectors, and as long as the remaining vectors are

not bounded by any plane, full control is retained.

The algorithm begins by projecting the torque command along each of the available

thruster torque vectors, and choosing the thruster that produces the torque closest to the

direction of the torque command. A level of thrust is commanded of that thruster that will

produce a torque equal to the projection of the torque command vector along that thruster's

torque vector. The algorithm then calculates the error vector between the torque command,

66

Function Calls:

-- 10 hz

Attitude Determination

FSWr Maser uidanemnw

Attitude Control Law

Thrust Allocation
- (gncethrustaoc)

Command Preparation
(grK_-ndrpP

and the actual torque that will be produced by the thruster. This error vector is projected

along each of the available thruster torque vectors, and the thruster that produces torque in

the direction nearest the error is chosen. A level of thrust determined by the projection of

the error vector on the thruster's torque vector is added to any thrust that has already been

accumulated on that thruster. The process is repeated iteratively until the norm of the error

vector is below a threshold value, or a maximum number of iterations is reached. Finally, the

algorithm scales all of the commanded thrust levels by the maximum commanded thrust level

so that the actual applied torque will be in the commanded direction even if the actuators

are saturated.

The pseudocode in Section A.6.4 outlines the steps of the thrust allocation algorithm

in detail. Tables A.13 and A.14 give the inputs and outputs of the algorithm, and a C

implementation is given in Section A.6.5.

67

Chapter 4

High Fidelity Simulation (TSATsim)

A simulation of spacecraft dynamics, the space environment, and TSat attitude determina-

tion and control software was developed for analysis and testing of the algorithms described

in Chapter 3. The purpose of the simulation is to verify attitude determination and control

performance, and to demonstrate the behavior of the spacecraft in various orbits and on-

orbit scenarios. The fundamental components of the simulation (TSATsim) are simulated

flight software and a model of real world dynamics. These two components run completely

independently, with actuator commands and sensor data passed back and forth to simulate

the data interface between real flight hardware and software. Both the flight software and

the real world or "truth" components of the simulation are designed in a modular way, so

that the implementation of improvements to increase the fidelity of any part of the model

are straightforward. In addition, the truth side of the simulation was designed to be adapted

for use as a hardware in the loop simulator.

4.1 Structure of the Simulation

TSATsim is made up of two parts: a "truth side" model of spacecraft dynamics and the space

environment, and a "flight software side" implementation of TSat attitude determination and

control algorithms. The only data that is shared between the two sides of the simulation

68

are the sensor outputs simulated by the truth model and the actuator commands produced

by the flight software. This exchange of data imitates the interface between the real flight

software and flight hardware. The simulation is managed by a main loop that runs each of

the components of the truth model. The main loop also keeps track of the truth time, and

runs the flight software master routine at the rate specified by the flight software control cycle

period. The control cycle rate is configurable as discussed in Section 3.1, but is assumed to

be 10 Hz for purposes of this document. The structure of TSATsim is illustrated in Figure

4-1, where the "Run Flight Software" block represents the flight software side, and the rest

of the blocks make up the truth side.

Update Sensors
(update-..sensors)

Process Sensor Data
(processensor data)

Simulation Run Flight Software
(run..sim) (tsatgnc)

Update Actuators
(update actuators)

Integrate
(integrate)

Figure 4-1: Structure of TSATsim. The "Simulation" block represents the main simulation
loop, which calls all of the other blocks in order at each simulation timestep. The "Run
Flight Software" block represents the simulated ADCS flight software or "flight software
side" of the simulation, while all of the other blocks model the real world as part of the
"truth side" of the simulation.

Each iteration of the main simulation loop first logs data from both the truth and flight

69

software state data structures for plotting. The sensor update is called, using truth state

information to simulate magnetometer, Sun sensor, and gyro outputs. In the case of hardware

in the loop simulation, the simulated sensor outputs may be replaced by real sensor data. The

sensor outputs are transferred from truth state variables to flight software state variables,

and if an entire control cycle period has elapsed since the last time the flight software was

run, the flight software uses sensor data to produce actuator commands as described in

Chapter 3. Next, the actuator update is called, using the actuator commands to calculate

the resulting truth forces and moments imparted on the spacecraft. Finally, the truth state

is propagated forward to the next simulation timestep, incorporating moments and forces

from the actuators and the environment, and the truth time is updated.

The main loop runs once every simulation timestep. The simulation timestep is a con-

figuration parameter read from an initialization file (rwparam), and represents the time

resolution of the simulation. For this document, the simulation timestep was set to 10 ms,

or 1/10 of a control cycle. In general, the simulation timestep must be several times smaller

than the control cycle period to generate valid simulation results. In addition, the simula-

tion rate (inverse of the simulation timestep) should be at least twice the rate of any rates

modeled in a particular simulation run for that run to produce valid results.

4.1.1 Flight Software Side

The flight software side of the simulation is made up of the algorithms described in Chapter

3 and Appendix A. All of the flight software algorithms are implemented in C for TSATsim

since the real flight software will also be implemented in C. The implementation of attitude

determination and control algorithms in the real flight software will thus be nearly identical

to the implementation of the algorithms that will be tested and verified in TSATsim before

flight. This workflow seeks to minimize the number of errors and bugs that arise in attitude

determination and control algorithms during the process of implementing the algorithms on

the flight computer.

70

4.1.2 Truth Side

The truth side of the simulation consists of algorithms that model each of the TSat sensors

and actuators and the dynamics of the space environment. The truth side algorithms are

implemented in C++. The algorithms are organized as functions, each of which model a

specific spacecraft component or environmental factor. These functions are managed by the

wrapper functions shown on the right side of Figure 4-1. For components with multiple

instances, such as the gyros, the wrapper functions call the corresponding component model

multiple times.

Truth state variables are stored in a single data structure. The truth state data structure

contains all variables used by more than one component of the truth side simulation. These

variables include information about the space environment, such as the position of the Sun,

and the magnetic field experienced by the spacecraft, as well as spacecraft hardware states

and sensor outputs. A full listing of variables included in the truth state data structure is

given in Appendix B.

The truth side architecture was designed to be easily adaptable to incorporate design

changes and new information about the performance characteristics of components. Since

the electrospray thrusters, the thruster electronics, and the spacecraft are all still in the

design process, many of the component models have been simplified until designs have been

finalized and a more precise knowledge of the component characteristics is available from

testing. When more precise performance characteristics for a particular component become

available, it will be straightforward to update the corresponding component model. Such

updates will increase the fidelity of the simulation by means of non-invasive and easily

trackable code changes.

4.2 Simulation of Attitude Determination Hardware

TSATsim models the ADIS16251 1-axis MEMS gyro described in Section 2.1.3, the SLCD-

61N8 planar photodiode described in Section 2.1.2, and the HMC5843 3-axis magnetometer

71

of Section 2.1.1. The sensor models are called by the sensor update wrapper, as illustrated

in figure 4-2. The sensor models compute simulated sensor outputs based on the current

spacecraft and environment state stored in the thruth state data structure. The outputs

are written to their own variables of the truth state data structure where they are made

available to be read in by the flight software side.

Update Sensors
(update-sensors)

Process Sensor Data
(process-sensor data)

Run Flight Software
(tsatgnc)

Update Actuators
(update..actuators)

Integrate
(integrate)

Gyro
(ADIS16251)

Sun Sensor
(gsp11O diode)

Magnetorneter
(HMc5843)

Figure 4-2: Context of TSATsim sensor models. The "Update Sensors" wrapper calls the
gyro, Sun sensor, and magnetometer models, and their outputs are written to the truth state
data structure.

4.2.1 Gyros

The model of the ADIS16251 1-axis MEMS gyro in TSATsim models all relevant output

data of the real gyro, including "alarm" and "new data" Boolean flags. Each time the model

runs, "alarm" and "new data" flags are defaulted to false, and the model then checks to see

whether the internal sampling period of the gyro has elapsed. If a new sample is due, the

72

Simulation
(runlsim)

model transforms the truth spacecraft body rates to the gyro axes and extracts the gyro

frame z-axis rate. Gaussian noise is added to the output and the final value replaces the old

rate value in the gyro rate register. The contents of the gyro rate register are preserved until

they are overwritten, as in the real system, so there is a potential for stale data in the event

of a gyro anomaly. A sample output of one simulated gyro is shown in Figure 4-3.

--- Simulated Gyro Outputi

. I

I . -

50 100 150
Time (s)

200 250

Figure 4-3: Sample output of a simulated gyro. At a time of 100 seconds, a moment is
applied about the positive axis of rotation of the gyro for a duration of approximately 30
seconds. A moment is then applied in the opposite direction until the rate of rotation is
close to zero.

Some improvements that would increase the fidelity of the gyro model include modeling

latency in the availability of gyro data to the attitude determination software, and modeling

quantization of the output. Additionally, the gyro noise model may be improved with more

test data from the real gyros.

73

0.04

0.03

0.02

0.01

-0.01 -

-0.02 -

-0.03 -

CL

U)

-U0.0
0

E
c5

-n0n 'l0 4
0 300
I

I

a - I

a

4.2.2 Sun Sensors

The TSat design includes six photodiode Sun sensors, one on each face of the spacecraft. The

photodiode Sun sensor model in TSATsim computes the angle measured by a Sun sensor

based on the spacecraft attitude and position relative to the Earth and the Sun. The truth

state data structure contains a Boolean "eclipse" flag that is true if the Earth is between the

spacecraft and the Sun. In the case of eclipse, the angle read by the Sun sensor is set to w/2

radians since this value signals to the flight software that the Sun sensor does not detect the

Sun. If the spacecraft is not in the shadow of the Earth, the Sun sensor model calculates the

position vector of the Sun relative to the spacecraft in the ECI coordinate frame. Positions

of the Sun and spacecraft in the ECI coordinate frame are maintained in the truth state

data structure as described in more detail by section 4.4. The position vector of the Sun

is transformed to the SBF coordinate frame by means of the truth attitude quaterion, and

then to the solar panel frame of the appropriate Sun sensor. The angle between the Sun

vector and the normal to the solar panel is calculated by means of a dot product, and if the

angle is greater than the edge of the Sun sensor field of view (w/2) it is set equal to r/2.

Gausian noise is added to the angle, and finally the angle is converted to a voltage that will

be an input to the flight software. A sample output of one simulated Sun sensor facing the

Sun and then rotating away is shown in Figure 4-4.

Possible future updates to increase Sun sensor model fidelity include modeling quantiza-

tion and latency introduced by the analog-digital converter that processes the photodiode

voltage and accounting for the effects of thermal variation on the performance of the photo-

diode.

4.2.3 Magnetometer

The TSATsim magnetometer model is the simplest of the sensor models. The model trans-

forms the magnetic field vector from the truth state to the SBF coordinate frame by means

of the truth attitude quaternion, and then to the magnetometer frame. Gaussian noise is

added to each component of the magnetic field measurement, and the components are con-

74

400 ' '___Simulated Sun Sensor Output

E 350-

= 300-

O 250-
0

200-
()
U 150-

100
4).

.!S 50-

E

-50
'

0 50 100 150 200 250 300 350
Time (s)

Figure 4-4: Sample output of a simulated Sun sensor. The sensor begins facing the Sun, and
is then rotated away.

verted from units of Tesla to Gauss. The model maintains a count of the time since it was

last run, and only updates the output vector in the truth data structure at the rate that

the real flight computer samples magnetometer data. A sample of simulated magnetometer

data is given in Figure 4-5.

Updates that would increase the fidelity of the magnetometer model include a more

accurate noise model based on test data, and modeling the effects of magnetic fields produced

by other spacecraft components such as magnetorquers.

4.3 Simulation of Attitude Control Hardware

The actuator models in TSATsim compute forces and moments imparted on the spacecraft

based on the commands received from flight software. These forces and moments are com-

bined by the actuator update wrapper function and eventually used by the integrate function

to propagate the truth state of the spacecraft forward. The iEPS electrospray thruster is

75

0.5
0 --- SBF-X

0.4-,-- SBF-Y
--- SBF-Z.

0.3-
0
L-

O0.2
E

0.1

0 0
V

E

0 5 10 15 20 25 30 35 40
Time(s)

Figure 4-5: Sample output of a simulated magnetometer. Slow variation is observed as the
magnetometer moves in an orbit around the Earth.

the only actuator currently modeled in TSATsim. A magnetorquer model should be added

in the future. The context of actuator models is illustrated in Figure 4-6.

4.3.1 Electrospray Thrusters

The current electrospray thruster model in TSATsim simply assumes that the commanded

thrust is produced precisely. Many critical improvements to this model are required to

accurately represent the behavior of the actuators. Transients in thrust at thruster startup,

shutdown, and during throttle level changes must be accounted for. In addition, uncertainty

in thruster alignment and thruster placement must be modeled. Latency and quantization

of thruster commands introduced by the PPU should also be considered. These changes

were left as future work since the electrospray thrusters and PPU have yet to be rigorously

tested, and many of the performance characteristics are not precisely known.

76

Simulation
(run..sim)

Update Sensors
(updateisensors)

Process Sensor Data
(process.sensor data)

Run Flight Software
(tsat-gnc)

Electrospray Thruster
(splectrosproy)

Update Actuators _
(update actuators) Magrv tir

Integrate
(integrate)

Figure 4-6: Context of TSATsim actuator models. The actuator models are updated based
on commands from the simulated flight software.

4.4 Simulation of Dynamics and the Space Environ-

ment

TSATsim models the dynamics of the spacecraft and the space environment by propagating

the kinematic truth states forward each simulation timestep using a fourth order Runge-

Kutta integrator. The fourth order Runge-Kutta method is widely used as a computationally

efficient algorithm for numerically solving second order differential equations, such as those

of Newtonian dynamics [15]. The accumulated error is on the order of O(h 4), where h is

the integration timestep. The 10 ms simulation timestep used for this document results

in error of the propagated spacecraft position on the order of millimeters. During each

integration, the truth state variables that represent the space environment are updated

four times, once for each intermediate state in the Runge-Kutta algorithm. The wrapper

77

function that updates all of the space environment states is update-environment. Each call

to update-environment produces forces and moments resulting from gravity, aerodynamics,

and the geomagnetic field. It also updates the position of the Sun. The context of the

update-environment function, along with the integrator and space environment models is

shown in Figure 4-7.

Update Sensors
(update sensors)

Process Sensor Data
(process-sensor data)

Run Flight Software
(tsat~gnc)

Update Actuators
(update actuators)

Integrate
(integrate)

Update Environment
(update-environment)

Update Gravity
(update-gravity)

Update Aero Drag
(update_aero)

Update Geomagnetic
Field

(updateB)

_- Update Sun Vector
(update sunvec)

Figure 4-7: Context of TSATsim space environment models. Environment models are up-
dated for each intermediate state of the four-stage Runge-Kutta integration.

4.4.1 Runge-Kutta Integrator

The TSATsim fourth order Runge-Kutta integrator propagates a thirteen-element state vec-

tor. The spacecraft position and velocity vectors contribute three elements each, and the

ECI to SBF attitude quaternion and rotational body rates about the SBF axes make up

the other seven elements. The Runge-Kutta integrator combines four Euler intergrations,

each of which use a helper function that returns the derivative of each of the thirteen ele-

78

Simulation
(run.sim)

ments of the state vector. Since the values of the derivatives are dependent on the state,

the update-environment function is called by the derivative helper function to update en-

vironmental forces and moments at each of the intermediate Runge-Kutta states. Thus,

models of gravity, aerodynamic drag, the geomagnetic field, and the position of the Sun are

updated four times during each Runge-Kutta integration. Since these updates are all based

on intermediate integration states, update-environment is called one additional time after

the entire Runge-Kutta integration is complete. Other parts of the simulation that depend

on the simulated space environment thus use values calculated from the current spacecraft

state, instead of from an intermediate state left over from the integration process.

4.4.2 Gravity

A J2 model of the Earth's gravitational field, discussed in [23], calculates the gravitational

force on the spacecraft. The gravitational potential of the Earth is approximated as equation

4.1, where 1t is the product of the universal gravitational constant and the mass of the Earth,

Re is the radius of the Earth, J2 is a zonal harmonic coefficient, and r and # are the distance

from the center of the Earth and the elevation above the equatorial plane. The force of

gravity that acts on the spacecraft center of mass is the opposite of the gradient of the

potential function, as shown in Equation 4.2.

Urav =T - -P + (R)2 (3sin2(G) _ 1) (4.1)
r J2 2 (41

z z
sin(#)

r X 2 + y2 + Z 2

Fgrav - VU(x, y, z) (4.2)

In its present state, the model ignores gravity gradient torque. In the future, the model

should be augmented to simulate higher order zonal and tesseral harmonics, as well as

moments imparted by gravity. These updates will increase the fidelity of the simulation, but

79

in most scenerios their effect on the behavior and performance of the simulated spacecraft

will be negligible.

4.4.3 Aerodynamic Drag

TSATsim uses a simple aerodynamic model to calculate the forces due to drag. The drag

force is calculated according to equation 4.3, as described by [27]. Cd is the drag coefficient

of the spacecraft, A is the cross section area , p is the density of the atmosphere, and v,e is

the velocity of the spacecraft relative to the air.

Fdrag = (CdAp Vrel 2 Vrei (4.3)
2 Vrel

In computing the cross section area, the model assumes that the shape of the spacecraft is

a perfect cube with edges 10 cm in length. The velocity relative to the air is computed from

the ECI spacecraft velocity and the rotation rate of the Earth. The atmosphere is assumed

to be rotating with an angular velocity equal to that of the Earth's surface. The drag

coefficient and the atmospheric density are read from a configuration file during initialization

of the simulation. In order to model missions with a large variation in altitude (and thus in

atmospheric density) the model could be adjusted to read in a lookup table of density based

on the altitude. In the current model, moments imparted on the spacecraft by aerodynamic

forces are ignored.

4.4.4 Geomagnetic Field

The geomagnetic field is modeled in TSATsim using the Spherical Harmonic Model described

in Appendix H of [15]. This model assumes the Earth's magnetic field to be the gradient

of a scalar potential function which is represented by a series of spherical harmonics. The

potential, V is given by Equation 4.4, where a is the equitorial radius of the Earth, g, and

hT are Gaussian coefficients, r is the distance from the center of the Earth to the spacecraft,

80

0 is the coelevation, and 0 is the East Longitude from Greenwich [15].

k a (n+1)n
V(r, 0, a (n 5(g' cos m# + h' sin m4)Pn" (0) (4.4)

n=1 r M=0

The International Geomagnetic Reference Field (IGRF) consists of a set of Gaussian

coefficients g' and h'7 determined empirically by a least-squares fit to measurements of the

field. TSATsim uses a 13th order model, so n ranges from 1 to 13 and m ranges from 0 to 13.

The value of a adopted for use with the IGRF coefficients is 6371.2 km. New values for the

IGRF coefficients are released periodically by the International Association of Geomagnetism

and Aeronomy. The 11th generation values or IGRF-11 are the latest available, and were

current as of December 2009. The rate of change of each of each of the coefficients is also

published, and is used to correct for drift that has occured since the date of the coefficients

themselves. TSATsim reads the IGRF Gaussian coefficients and their time derivatives from

a text file during initialization of the simulation. The values in the text file were copied from

[14].

4.4.5 Sun Position

TSATsim models the position of the Sun in the ECI coordinate frame with the mathematical

basis described in Chapter 5 of [27]. The calculation begins with the Julian date, stored as

part of the truth data structure, and proceeds to calculate the mean longitude of the Sun

in a mean of date frame and the mean anomaly for the Sun. The mean longitude and mean

anomaly are used to approximate the ecliptic longitude and to calculate the distance between

the Earth and the Sun. The Earth-Sun distance becomes the magnitude of the Sun vector.

The ecliptic longitude is combined with an approximation of the obliquity of the ecliptic to

find the direction of the Sun vector.

81

4.5 Simulation Results

A 90-degree slew maneuver about the positive SBF Z-axis was simulated to demonstrate

the capabilities of TSATsim and generate sample simulation results. The spacecraft was

initialized with the positive SBF X-axis (face 0) facing the Sun and zero body rates. At a

simulation time of 300 seconds, a commanded attitude quaternion with the negative SBF

Y-axis (face 4) facing the Sun and the SBF Z-axis unchanged was sent to the spacecraft.

This commanded attitude quaternion was retained for the remainder of the simulation. A

summary of the commands sent to the spacecraft during the simulation is given in Table 4.1.

Simulation Time (sec) 11 Spacecraft Command
000.00 Attitude quaternion commanded to [0.0000, -0.3596,0.8295,0.4272]
000.00 Rotational body rates commanded to [0.00,0.00, 0.00] (rad/sec)
300.00 Attitude quaternion commanded to [0.2542,0.2542, -0.8886,0.2844]

Table 4.1: Summary of commands sent to the spacecraft during the 90-degree slew simula-
tion. Commanded values remain active indefinitely unless they are overwritten by another
call to the same command.

The spacecraft was placed in a simulated orbit similar to that of the International Space

Station, with orbital elements given in Table 4.2. The slew maneuver took place during

orbit day. The simulation was run for 6000 seconds, which is slightly longer than one orbital

period.

Semimajor axis 6805.640 km
Eccentricity 0.001005
Inclination 51.6866 deg

Longitude of ascending node 43.6302 deg
Argument of perigee -61.6666 deg

True anomaly 59.6506 deg

Table 4.2: Summary of the orbit used for the 90-degree slew simulation. The orbital elements
in this table are the orbital elements of the spacecraft upon initialization of the simulation
(at simulation time 0.0).

82

4.5.1 Truth Environment Data

Data from the truth side about the position and environment of the spacecraft validate that

it is indeed in the intended orbit, and successfully completes the prescribed slew maneuver.

Figure 4-8 shows a plot of each of the elements of a unit vector in the direction of the Sun,

in the Spaceraft Body Frame (SBF). The Sun vector initially lies along the positive SBF-

X axis, and at a time of 300 seconds begins a rotation toward the negative SBF-Y axis,

where it remains for the rest of the simulation. A close-up view of the Sun vector during

the slew maneuver is shown in figure 4-9. From Figure 4-9 it is clear that the duration of

the maneuver is approximately 300 seconds, and that it takes place between the absolute

simulation time of 300 seconds and 600 seconds.

1000 2000 3000
Time (s)

4000 5000 6000

Figure 4-8: Elements of the unit vector in the direction of the Sun relative to the Spacecraft
Body Frame origin. On the time scale of the simulation, the position of the Sun relative to
the spacecraft may be treated as fixed, so this plot illustrates a 90-degree rotation of the
spacecraft about the positive SBF-Z axis.

Figure 4-10 shows a plot of the TSATsim truth side eclipse flag. The value of this Boolean

flag is 1 if the spacecraft is in the shadow of the Earth, and 0 otherwise. The eclipse flag

83

1.5

1

0.5

0

-0.5[-

U-
Co)
C
C

C

0
C

0
C
.2

-- SBF-X
- SBF-Y
-. SBF-Z

-1 .

-1i
0

I 'i

300 350 400 450 500
Time (s)

550 600 650 700

Figure 4-9: Elements of the unit vector in the direction of the Sun relative to the SBF origin
for the duration of the slew maneuver.

shows that the maneuver takes place during orbit day, and that orbit night occurs between

absolute simulation times of approximately 2800 and 5500 seconds.

Figures 4-11 and 4-12 show the position and velocity of the spacecraft relative to the

center of the Earth in the ECI frame. Position and velocity data shows that the spacecraft

was initialized in the desired orbit.

84

1.
-- SBF-X
-- SBF-Y

SBF-Z1

0.5

in

-0.5

ILM
C,)

CO)

0

.2

-1

-1.r, I

2

1

0

0 1000 2000 3000
Time (s)

4000 5000 6000

Figure 4-10: TSATsim Boolean eclipse flag. This flag is equal to 0 during orbit day and 1
during orbit night.

^ x 106

1000 2000 3000 4000
Time (s)

5000 6000

Figure 4-11: Inertial position of the spacecraft relative to the center of the Earth in the ECI
frame. The simulated orbit is similar to the orbit of the International Space Station with
the orbital elements given in Table 4.2.

85

--

4)
cc

C-

*0

a)
0)

0.8-

0.6-

0.4-

0.2-

- ECI-X
- ECI-Y
-- ECI-Z

W-

4

C 2

0

(D -

-4

0

1000 2000 3000
Time (s)

4000 5000

Figure 4-12: Inertial velocity of the spacecraft relative to the center of the Earth in the ECI
frame. The simulated orbit is similar to the orbit of the International Space Station with
the orbital elements given in Table 4.2.

86

800C

6000

4000

2000
00

> 0

t -2000

C -4000
CD)

-6000

-8000'-
0 6000

-- ECI-X
--- ECI-Y
-- ECI.-Z

4.5.2 Attitude Determination Performance

The data in this section illustrates the attitude determination performance of the spacecraft

over the course of the simulation. The attitude determination error is visualized by com-

puting the minimum angle of rotation between the truth attitude and the flight software

attitude estimate. Error in estimation of the spacecraft body rates is computed by subtract-

ing the estimated body rates from the truth body rates. Figure 4-13 shows the attitude

determination error angle, and Figure 4-14 shows the error in estimation of the body rates.

Note that units of degrees are used for these two figures instead of radians.

1.4

3 1.2-

1
0

0.8 -

0.6-

E0.4

0.2-

0-

-0.2

E0.4
0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 4-13: Attitude determination error. Computed as the smallest angle of rotation
between the truth attitude and the flight software attitude estimate. The error is on the
order of 1 degree for the entire simulation, which is acceptable for most CubeSat missions.
The linear increase in error during the second half of the simulation is caused by a lack of
attitude measurements during orbit night.

One feature of note in Figure 4-13 is the linear growth of the attitude determination error

from shortly before 3000 seconds until well after 5000 seconds. This time period coincides

with the time of eclipse, or orbit night shown in Figure 4-10. This occurs because the cur-

rent formulation of the attitude determination algorithms does not allow UKF measurement

87

0.05
-- SBF-X

0.04- - SBF-Y
0.03- - SBF-Z

0% 0.02

2 0.01
0

-0.010

E -0.01

-0.02

-0.03

-0.04
0

-0.05
0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 4-14: Body rate determination error. Computed as the difference between the flight
software estimated body rates and the truth body rates. The error is less than 0.01 deg/sec,
which is acceptable for most CubeSat missions.

updates unless a measurement of all the UKF states is available. During eclipse, the Sun is

not visible and thus no quaternion measurement is available. The UKF covariance grows as

seen in Figure 4-15, and the attitude estimate drifts according to any error in the estimated

body rates. This behavior is likely tolerable for many simple CubeSat missions, especially

given that power constraints may limit the use of thrusters during eclipse. When the space-

craft regains a line of sight to the Sun, the attitude determination error and UKF covariance

decrease dramatically.

For missions requiring more precise attitude determination during orbit night, it may be

beneficial to adjust the formulation of the UKF to use the available gyro data through the

time of eclipse. One way that this might be implemented is called dynamic replacement,

where the gyro biases are estimated by the Kalman filter instead of the body rates, and

the estimated body rates are determined by combining the gyro measurments with the bias

estimates. There are other potential advantages to using dynamic replacement that came to

light during hardware testing and are discussed in Chapter 5. A more in-depth discussion of

88

0.09

0.08

3 0.07-

0.06-
cc

g 0.05-
I.

0.04
0

0.03

: 0.02-

0.01-

0 1000 2000 3000 4000 5000 6000
Time (s)

Figure 4-15: Trace of the Unscented Kalman Filter covariance. The covariance grows during
orbit night, representing a growing uncertainty in the attitude estimate due to the lack of a
recent attitude measurement.

the potential benefits and implementation details of an attitude filter with dynamic model

replacement is given in the future work section of Chapter 6.

4.5.3 Attitude Control Performance

Attitude control performance is characterized by the attitude error and body rate error.

These are not to be confused with the attitude determination error and the body rate

determination error discussed in the previous section. The attitude error is the angle of

rotation between the true spacecraft attitude and the commanded spacecraft attitude, while

the body rate error is the difference between the actual and commanded body rates. Figure

4-16 shows the attitude error. The error starts small, spikes with the change in commanded

attitude quaternion that initiates the slew maneuver, and then settles back toward zero as

the spacecraft slews to the new commanded attitude. Figure 4-18 shows the spacecraft body

rate error. The body rate error also spikes during the slew maneuver since the commanded

89

body rates remain at zero, but the spacecraft must rotate to reach the new commanded

attitude. The body rate error also settles toward zero as the slew maneuver is completed.

The actual and commanded attitude quaternions and body rates are shown at the end of

the section in Figures 4-22 through 4-25.

Figures 4-17 and 4-19 show the more precise features of the attitude and body rate errors

during the steady state portion of the simulation, after the completion of the slew maneuver.

The attitude error remains within 2 degrees, and the body rate error remains within t

0.00025 radians per second. The attitude error grows linearly during the period of eclipse,

due to the corresponding growth of the attitude determination error during that time. The

body rate error does not grow during the period of eclipse but spikes at the beginning of the

orbit day when the spacecraft corrects for the attitude error accumulated during eclipse.

40

20

0 -20-

~-40-

-60-

-80-

-100
0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 4-16: Attitude error angle. A sharp increase in attitude error is observed when a new

attitude quaternion is commanded to initiate the slew maneuver. The attitude error returns

toward zero as the maneuver is completed.

The actuator torque commanded by the flight software attitude control law is shown in

Figure 4-20. A large torque in the SBF-Z direction is commanded by the controller at a

simulation time of 300 seconds to begin the slew about the SBF-Z axis. Figure 4-21 shows

90

2

0--

-2

-3
1000 2000 3000 4000 5000 6000

Time (s)

Figure 4-17: Attitude error angle during the steady state portion of the simulation after
the slew maneuver is complete. In steady state, the attitude error is less than two degrees,
which is acceptable for most CubeSat missions. The attitude error grows linearly during
orbit night, as a result of the growing attitude determination error during that time.

the commands sent to each of the six thrusters. The thruster commands are the result of the

thrust allocation law, and cause the thrusters to produce the commanded control torque.

91

4

1000 2000 3000
Time (s)

4000 5000 6000

Figure 4-18: Body rate error increases during the slew maneuver, since zero body rates are
commanded but the spacecraft must rotate in order to reach a new commanded attitude.
Body rate error settles back toward zero as the slew maneuver is completed.

2000 3000
Time (s)

Figure 4-19: Body rate error during the steady state portion of the
maneuver is complete. In steady state, the body rate error remains

per second, which is acceptable for most CubeSat missions.

simulation after the slew
within ±0.00025 radians

92

0.025 -

0.02-

0.015

0.01-

0.005 -

4)

"0

0
M)

- SBF-X
- SBF-Y
- SBF-Z

Un7

0n
0

2.51

1.

0.
(U.

0.

M-

-1.

- SBF-X
2 - SBF-Y

5 -SBF-Z

5-

0

5

*1

5-

1000 4000 5000 6000

1 -

-- SBF-X
SBF-Y -
SBF-Z

1000 2000 3000 4000
Time (s)

5000 6000

Figure 4-20: Torque command from the flight software attitude control law. A large torque
is commanded about the positive SBF-Z axis to initiate the slew maneuver.

1- 0
- Thruster 0

.- Thruster 1
E 0.8- - Thruster 2
E Thruster 3E
o 0.7 Thruster 4
S0.Thruster 5

10.5

0.4-

0.3
0

-0.2

,.0.1

n
0 1000 2000 3000

Time (s)
4000 5000 6000

Figure 4-21: Thruster commands. Thrusters 1 and 3 are saturated to begin the rotation for
the slew maneuver. Thrusters 0 and 2 are commanded to high values to slow the rate of
rotation as the spacecraft reaches the new commanded attitude.

93

(
14,

I-12

E 10

S8

4
0

U

2
GD

U.0

-2L
0

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
4000 5000 6000

Figure 4-22: Flight software commanded attitude quaternion. A new quaternion command
is sent to the spacecraft at a simulation time of 300 seconds to initiate the slew maneuver.

1000 2000 3000
Time (s)

4000 5000 6000

Figure 4-23: Actual attitude quaternion from the truth side model. The actual attitude
quaternion converges to the commanded attitude quaternion.

94

- scalar
- vector[1]

vector[2]
vector[3]

C2

0

a
E
E
0
0

0 1000 2000 3000
Time (s)

- scalar
- vector[1]
- vector[2]

- vector[3]
C
0
c

0
C)

I-

1

0.8

0.6-

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
C

7

0 1000 2000 3000
Time (s)

4000 5000 6000

Figure 4-24: Flight software
throughout the simulation.

commanded body rates. Commanded body rates are zero

1000 2000 3000
Time (s)

4000 5000 6000

Figure 4-25: Actual body rates from the truth side model. Truth body rates are nonzero
between 300 and 600 seconds to allow rotation to a new commanded attitude, but then
converge to the commanded body rates.

95

1
- SBF-X

8 - SBF-Y
6 - SBF-Z

4-

2-

n

ca

0

cc

0
0

0.

0.

0.

0.

-0.

-0.

-0.

-0.

2

4

6

8

1

0. n9z;~

0.0

0.01

0.0

0.00

0

- SBF-X
SBF-Y

2- SBF-Z

5

1

5-

-u.005 -0

..

Chapter 5

TSat 1-Degree of Freedom Testbed

The TSat 1-DOF levitation testbed is designed to test the performance of attitude deter-

mination and control hardware and software as an integrated system. The testbed consists

of a magnetic levitation balance constructed by Fernando Mier Hicks of the MIT Space

Propulsion Laboratory (SPL), a TSat engineering model, and a light source that simulates

the Sun [16]. For attitude control tests, the apparatus will be placed inside the SPL Astrovac

vacuum chamber so that the electrospray thrusters may be operated. Preliminary attitude

determination tests have been attempted, while attitude control testing remains completely

as future work.

5.1 Testbed Implementation

The TSat engineering model is suspended from the frame of the magnetic levitation balance

using magnetic forces. There is no physical contact between the balance and the engineering

model. The balance allows the engineering model to rotate freely about the SBF-Z axis.

Translational motion of the engineering model and rotation about SBF-X and SBF-Y axes

are not allowed by the testbed. The effects of small translational disturbances, and rotational

disturbances about the SBF-X and SBF-Y axes are thought to be nearly negligible. The

disturbances are thought to be damped out by magnetic moments that align the spacecraft

96

along the SBF-Z axis. This alignment and damping of disturbances must be validated in

future testing.

Separate from the balance/engineering model apparatus is a light source to simulate the

Sun. For attitude determination testing, an LED flashlight was used to generate Sun sensor

readings. For future attitude control testing, a more powerful Sun source may be required

to generate power through the solar panels in order to power the thrusters for long duration

tests.

5.1.1 Magnetic Levitation Balance

The magnetic levitation balance levitates the TSat engineering model by means of an elec-

tromagnet suspended from an aluminum frame. The electromagnet attracts a permanent

neodymium magnet that is attached to a bracket on top of the engineering model. Two laser

beams are projected into photodiode sensors just above and below an aluminum cylinder

attached to the engineering model as shown on Figure 5-1. The photodiodes sense slight

vertical motion of the engineering model, which is fed back to a PID controller that actuates

the electromagnet. Since the aluminum cylinder that partially blocks the laser beams is sym-

metric, the control law is unaware of the rotation of the engineering model, and in turn the

engineering model rotates freely. A CAD drawing of the levitation balance is shown in Chap-

ter 1 as Figure 1-8, and a photograph of the levitation balance with the TSat engineering

model is shown in Figure 5-4.

The levitation balance measures the angle of rotation of the engineering model by means

of a camera positioned below the engineering model, looking up along the axis of rotafion.

The camera detects elements of color on the corners of the engineering model and tracks them

as they rotate. Angular encoder software configured by Fernando Mier Hicks of MIT SPL

then synthesizes an angle of rotation based on the varying positions of the colored elements.

LEDs may be used, but for the attitude determination tests red, green, yellow, and blue ink

circles were sufficient. The plate shown in Figure 5-2 was attached to the bottom face of the

engineering model. The rotation angle measured by the levitation balance may eventually

97

Figure 5-1: Illustration of the magnetic levitation balance laser sensing system. Lasers sense
vertical displacement of the CubeSat engineering model and measurements are fed back to
a control law that levitates the model by varying the strength of an electromagnet. (credit:
Fernando Mier Hicks)

be used as a "truth" measurement for attitude determination testing. However, future work

is needed to increase the accuracy of the measurement since the accuracy is currently on

the order of t 1 degree. This is the same order of magnitude as the expected attitude

determination error.

5.1.2 TSat Engineering Model

The TSat engineering model was designed and constructed by systems engineer Mary Knapp.

Almost all of the components of the engineering model are identical or extremely similar to

the flight hardware components described in Chapter 2. The one major exception is the

structural frame, which is modified to allow easy access to the internal components of the

satellite and to support a bracket with a permanent magnet for interface with the levitation

balance. Additionally, several of the sensors are absent from the engineering model. Only

three of the model's solar panels are equipped with a Sun sensor and a gyro. Therefore, the

three redundant gyros and three of the six Sun sensors are not available. The panels with

Sun sensors and gyros are placed on face 2, face 3, and face 4 (+Z,-X,-Y). The absence of

98

Figure 5-2: Plate attached to the bottom face of the engineering model to aid in the mea-
surement of the angle of rotation by the levitation balance. Angular encoder software detects
the colored circles to measure the angle of rotation of the engineering model.

Sun sensors on the other faces poses a particular challenge since a Sun vector measurement,

and thus an attitude measurement is only available when the Sun is within the 90-degree

field of view of the panels on face 3 and face 4, for 1-axis planar rotation. A photograph

of the engineering model suspended by the levitation balance is shown in Figure 5-4. The

electronics boards inside the engineering model structure, including the flight computer and

power system, can be seen in Figure 5-3.

5.1.3 Flight Software Implementation

Micro Aerospace Solutions (MAS) of Melbourne, Florida was contracted to develop the TSat

flight software platform to augment the software provided by the manufacturer. The flight

software platform handles low level sensor and actuator interfaces, data logging, telemetry,

and other system level tasks. The TSATSim C implementation of the attitude determination

and control software was integrated with the TSat flight software platform by MAS, and

slight changes were made for efficiency and interfaces with other parts of the software.

Several small engineering model-specific adjustments were made to the attitude deter-

mination software. First, panel 0 was swapped with panel 3 due to inadequate cable and

harness length. The result is that Sun sensor 3 and gyro 3 are on spacecraft face 0. Sun sen-

99

Figure 5-3: Interior of the TSat engineering model. Solar panels have been removed for
interior access. The upper board contains the NanoMind flight computer and a memory
card for data logging. NanoPower batteries are attached to the lower board.

sor 3 looks in the negative SBF-X direction, and gyro 3 measures rotation about the negative

SBF-X axis. Sun sensor 0 and gyro 0 do not exist in the engineering model. The second

adustment consists of an alteration to the dynamics equations of the UKF. When computing

the derivative of a state, the engineering model UKF assumes the angular acceleration about

the SBF-X and SBF-Y axes to be zero, regardless of the moments applied by actuators. As

discussed in Section 5.1.1, the levitation balance is believed to counteract any moments that

would cause rotation about the SBF-X and SBF-Y axes. Third, the "measured" magnetic

field value is artificially fed to the software since the magnetic levitation creates a complex

and noisy magnetic field that is not representative of the space environment. Finally, the

Sun sensor readings of all Sun sensors except for Sun sensor 3 and Sun sensor 4 are auto-

matically assumed to be zero. This is to reduce noise from ambient light in the room and

from disconnected (missing) Sun sensors. Sun sensor 2 is assumed to read zero because the

Sun source is in the plane normal to the SBF-Z axis.

During the attitude determination testing in Section 5.2, attitude determination and

control software was run at a rate of 2 Hz. This was slowed from the design rate of 10 Hz

due to constraints on the processing power of the flight computer. In the future, steps may

100

Figure 5-4: TSat engineering model levitated by the magnetic levitation balance.

be taken to increase the efficiency of the attitude determination and control software to allow

a faster control cycle rate. The TSat flight software platform logs ADCS telemetry data to

a removeable memory card during each control cycle for review.

5.1.4 Testbed Environment

For full attitude determination and control testing, the levitation balance and engineering

model will be placed inside the Astrovac vacuum chamber in the MIT Space Propulsion

Lab. A vacuum safe light source will also be placed in the chamber, away from the levitation

balance apparatus. The lab and the inside of the chamber will be dark, except for light

emitted from the light source "Sun." The vacuum chamber will be pumped down to simulate

the vacuum of space and to allow electrospray thruster operation.

101

Several attitude determination tests were attempted outside the vacuum chamber as

described in Section 5.2. The levitation balance and engineering model were placed in a

darkroom, and an LED flashlight was placed approximately 1 meter away in the horizontal

plane of the engineering model as a Sun source. The flashlight was directed at the axis of

rotation of the engineering model. The testbed setup for this preliminary attitude determi-

nation testing is shown in Figure 5-5.

Figure 5-5: Darkroom testbed setup for preliminary attitude determination testing. The
Sun source flashlight is visible on the right of the figure, and the TSat engineering model
with solar panels removed for internal access is on the left.

5.2 Attitude Determination Test

Preliminary testing of TSat attitude determination hardware and software was attempted

using the TSat 1-DOF levitation testbed. Thrusters were not mounted on the engineering

model vehicle, and thus no control was tested. The test was carried out with the engineering

model at rest, and showed convergence of the attitude filter to the true attitude and body

102

rates. A second attempt with the engineering model in motion was less successful, prompting

suggestions for improvements to the attitude filter and to characteristics of the external

design.

5.2.1 Test Description

The engineering model was suspended from the levitation balance, with the negative SBF-

X axis (spacecraft face 3) facing toward the Sun source. The engineering model remained

stationary in this attitude for the duration of the test. The "measured" magnetic field was

set to point along the positive SBF-Z axis for the entire test.

The attitude determination software on the engineering model was initialized with arbi-

trary estimates of the body rates and attitude quaternion. It was run at a rate of 2 Hz for a

test duration of 5 minutes. The goal of the test was to observe convergence of the attitude

filter to the true attitude quaternion and body rates. A secondary objective was to gather

data on the performance and behavior characteristics of the attitude determination sensor

hardware.

5.2.2 Test Results

The attitude filter successfully converged to the true attitude quaternion and body rates in

a time of approximately 100 seconds. This is an acceptable duration for attitude acquisition.

Figure 5-6 shows a plot of the attitude determination error angle in degrees, and Figure

5-7 shows a plot of the body rate determination error. Both errors converge to zero. The

estimated and truth attitude quaternions are plotted in Figures 5-8 and 5-9.

103

50 100 150
Time (s)

200 250 300

Figure 5-6: Attitude determination error. Calculated as the minimum angle between the es-
timated and truth attitude. Attitude determination error converges to zero in approximately
100 seconds.

50 100 150
Time (s)

200 250 300

Figure 5-7: Body rate determination error. Calculated as the difference
mated and true spacecraft body rates. The body rate determination error
in approximately 100 seconds.

between the esti-
converges to zero

104

20

C
0

4)

a
4)

'0
a)

0

-20

-40

-60

-80

-100

10

5-

0

-- 1

0-2

-5

10
cc
C
.- 15

~-20

. 25

-30

0
p

-I _ ffI I

--- SBF-X
-- SBF-Y'

-SBF-Z

0 50 100 150
Time (s)

Figure 5-8: Attitude quaternion estimated by the TSat engineering
attitude converges to the true attitude shown in Figure 5-9.

model. The estimated

0.8

0.6

r 0.4.

3 0.2

o 0

S-0.2 ____

-0.4-

-0.6

-0.8-

0 50

Figure 5-9: True attitude quaternion.
test.

100 150
Time (s)

200 250 300

The true attitude remains constant throughout the

105

0.8

0.6

0.4

0.2

0

-0.6

-0.8

- scalar
- vector[1]

- vector[2]
vector[3]

0

.E

cc

E
0)

-1
200 250 300

-- scalar
-- vector[1]
- vector[2]

- vector[3]

-

5.2.3 Attempt with Constant Rotation

Another test was attempted with the engineering model set in motion, rotating at a near-

constant rate about the SBF-Z axis. This test was not able to show attitude filter convergence

because Sun vector measurements were too sparse. Due to the absence of Sun sensors on two

of the four faces in the SBF X-Y plane, a Sun vector measurement was only theoretically

possible during one quarter of the 360-degree rotation. The observed availability of Sun

vector measurements was much less than this theoretical limit. The presence of a full set of

Sun sensors in flight will make Sun sensor measurements theoretically possible at all times

during orbit day. However, the factors that prevented Sun vector measurements while both

engineering model Sun sensors faced the light source may still affect the flight system and

must be mitigated.

The TSat engineering model structure has reflective aluminum edges as seen in Figure

5-10. This reflection affects the intensity of the light that is detected by the photodiode

Sun sensors, particularly when the edge faces the light source directly. The reflective effects

make Sun sensor angle measurements unpredictable, since the relationship between angle

and light intensity becomes much more complicated than a simple cosine. In the constant

rotation attitude determination test, the reflection was thought to prevent the Sun sensors

from reaching their detection threshold at most angles of rotation. In future testing, the

aluminum structural edges may be masked with a light absorbent coating to mitigate the

reflective effects and produce more accurate Sun sensor measurements.

In addition to mitigating reflective effects of the structural frame, the attitude filter could

be adjusted to be more robust to situations where Sun vector measurements are sparse. In

its current configuration, the Unscented Kalman Filter only performs a measurement update

when there is an available attitude quaternion measurement. The result is that constantly

arriving gyro data is not used, except for at the comparatively few times that an attitude

measurement is available. In flight, an attitude measurement will nearly always be available,

except during eclipse. For the engineering model, however, attitude measurements are hardly

ever available due to missing Sun sensors. In the event of a sensor failure, similar factors

106

Figure 5-10: Reflection of light by the aluminum edges of the TSat engineering model struc-
ture. Reflections are thought to cause inaccuracies in Sun sensor measurements.

could arise in flight as well.

Dynamic replacement, an alternative UKF formulation described in Chapter 4 for the

purpose of handling attitude determination during eclipse, also offers a solution to the prob-

lem of sparse Sun sensor data. The dynamic replacement UKF formulation is described in

more detail in the future work section of Chapter 6. Since it relies more heavily on the

gyro output, it may more easily mitigate situations where attitude sensor measurements are

sparse.

5.3 Future Testing

Several future tests are planned using the TSat 1-DOF levitation testbed in the MIT SPL

Astrovac vacuum chamber to validate the performance of TSat attitude determination and

control hardware and software as an integrated system. These tests are representative of some

of the maneuvers that will be demonstrated in flight. The capabilities to be demonstrated

in the planned tests are applicable to many satellite missions and on-orbit scenarios.

107

5.3.1 Rate Nulling

The first of the planned tests is a body rate nulling test. The TSat engineering model will

be initialized at an arbitrary constant rate of rotation about the SBF-Z axis. A commanded

attitude quaternion and commanded body rates of zero will be sent to the flight software.

Normal operation of the attitude determination and control system will proceed to remove

the initial rotational rate, and position the engineering model with zero body rates in the

commanded attitude. This test is similar to the detumble phase of a mission, but is also

applicable to any part of the mission where a stable attitude is needed.

5.3.2 Angle Command Slew

The second planned test is a slew maneuver through a commanded angle. The TSat engi-

neering model will be initialized with zero body rates and an arbitrary attitude. An attitude

quaternion command corresponding to some angle of rotation about the SBF-Z axis will be

sent to the flight software, and the engineering model will proceed to rotate to the com-

manded quaternion. This maneuver might be applicable in observation missions to turn a

camera toward a point of interest, or in missions requiring rendezvous and docking.

5.3.3 Rate Command Slew

The third test planned is a slew maneuver at a commanded rate. The TSat engineering

model will be initialized at an arbitrary attitude with zero body rates. A rate command

about the SBF-Z axis, and a set of attitude commands corresponding to that rate will be

sent to the flight software. The engineering model will slew about the SBF-Z axis at the

commanded rate. This type of maneuver might be used for tracking of a ground station with

a directional antenna.

108

5.3.4 Sun Tracking

The fouth planned test consists of Sun tracking. In this test, the Sun source will be slowly

moved in a circular path around the TSat engineering model. The engineering model will be

commanded to keep one face toward the Sun source, and will rotate as necessary to keep the

face pointed directly at the Sun. This capability is not yet implemented in flight software,

but might be very useful in a spacecraft safe mode to ensure adequate power generation.

109

Chapter 6

Future Work and Conclusion

Significant progress has been made toward a flight-ready attitude determination and control

system using electrospray microthrusters as attitude actuators. In order to fully demonstrate

the ability and advantages of electrospray thrusters, work must be continued in several ar-

eas. Improvements to attitude determination and control software are necessary to make

the system more robust to the unknowns of the space environment and to handle hard-

ware anomalies. Small hardware improvements are needed to help produce better quality

sensor data and thus more accurate attitude determination performance. Improvements to

modeling and simulation are needed to make ADCS analysis more credible, and further engi-

neering model testing is necessary to demonstrate the performance of the complete attitude

determination and control system on the ground. Finally, a flight demonstration must be

carried out to definitively prove the effectiveness of electrospray thruster actuated attitude

determination and control for CubeSats.

6.1 Software Improvements

Some features of the TSat attitude determination and control software have not yet been

implemented, and several shortcomings of the current software have been discovered through

simulation and testing. As discussed in the introduction of Chapter 3, the current implemen-

110

tation of the ADCS software ignores edge cases and hardware failures. These cases must be

addressed in order to complete a robust ADCS system. Additionally, GPS data processing

and the handling of disturbances by sensor processing algorithms must be implemented.

In testing of the attitude determination system on the TSat 1-DOF levitation testbed,

shortcomings of the Unscented Kalman Filter formulation were exposed when Sun sensor

data was sparse. In simulation, thruster command chatter resulting in potentially unneces-

sary use of propellant was observed. Addressing these shortcomings of ADCS software is an

important step toward a successful and robust attitude determination and control system

for flight.

6.1.1 Handling of Anomalies

A key characteristic of a robust attitude determination and control system is the ability to

perform successfully in situations that fall outside the nominal operation of the spacecraft.

Such anomalies might include the failure of an attitude determination sensor or an attitude

actuator. The anomaly might also be the result of a failure of another spacecraft component

that imposes linmitations on the ADCS system, such as a solar panel failure limiting the

available power for thrusters. Anomalies caused by the failure of attitude determination

and control hardware components will likely have the greatest impact on the ADCS system.

ADCS software should be updated to detect these anomalies, and to take an appropriate

action based on the anomaly detected.

Checks for a failed Sun sensor should be added to the Sun sensor processing algorithm.

Failure of a Sun sensor could be detected by comparing the output of sensors on opposite

faces of the spacecraft, to ensure that both do not output a nonzero reading at the same

time. If a Sun sensor failure is detected, measurements taken using the failed sensor should

be ignored until the spacecraft is commanded otherwise following analysis of the situation

on the ground. In addition to detecting failure of an individual Sun sensor, the Sun sensor

processing algorithm should cross-check computed Sun vectors with previous Sun vector

measurements. If the difference between the current and previous measurements is too large,

111

the current measurement should be ignored. This will prevent large jumps in the measured

attitude as a result of a noisy Sun vector measurement. In a similar manner, magnetometer

measurements should be compared with previous magnetometer measurements and discarded

if the difference is too large. This will prevent transient magnetic fields within the spacecraft

from affecting the accuracy of the quaternion measurements used by the attitude filter.

Gyro failures should be detected in the gyro processing algorithm by comparing measured

body rates with the body rate estimates computed by the attitude filter in the previous con-

trol cycle, as well as with the rates measured by the redundant gyros. If the redundant gyro

measurement and the estimated body rate are consistent, but the primary gyro measurement

is not, the redundant gyro should be used in place of the primary gyro until the spacecraft

is commanded otherwise. In this situation, the original primary gyro would fill the role of

the redundant gyro.

A new algorithm should be added to detect failure of a thruster or PPU channel. The

thruster failure detection algorithm should compare the predicted angular acceleration com-

puted by thrust allocation with the numerical derivative of the spacecraft body rates esti-

mated by the attitude determination filter. In the event of a discrepancy, the failed thruster

should be removed from the list of available control moments, so that it will not be used

by thrust allocation until the spacecraft is commanded otherwise following analysis of the

situation on the ground.

6.1.2 Sensor Processing

During nominal operation, characteristics inherent to the attitude determination sensors, as

well as factors arising from integration of the sensors with the rest of the spacecraft will

cause inaccuracies in sensor data. TSat sensor procesing should be improved to remove as

many of the effects of these internal and external factors as possible.

The Sun sensors, gyros, and magnetometer will all be subject to thermal variations.

The Sun sensors and gyros will be most affected since they are on the external faces of

the spacecraft, while the temperature of the magnetometer may not vary greatly since it is

112

mounted on an electronics board inside the spacecraft. In order to properly correct for the

effects of temperature on gyro and Sun sensor readings, TSat sensor processing should use

data from temperature sensors on the solar panels. The behavior of the Sun sensors and

gyros as a function of temperature is provided by their manufacturers and must be verified

through testing in a thermal chamber.

During preliminary testing of the TSat engineering model, the behavior of the Sun sensors

was irregular. The output signals appeared highly quantized, and showed a low signal to

noise ratio when the angle between the light source and the outward normal to the sensor

was large. The resolution of the signal was not high enough to successfully measure angles

more than approximately 30 degrees from the outward normal. When the engineering model

was set in motion with a rotational rate of approximately 45 degrees per second, the Sun

sensors were unable to detect the light source. The irregularity in Sun sensor behavior was

attributed in part to nonuniformity and the lack of intensity of the LED flashlight used as a

light source. However, the observed irregularity may also have been a result of reflections or

structural dynamics that will be present in flight as well as in testbed testing. Future testing

should use a light source more representative of the Sun, and should include improvements

to the TSat engineering model structure to reduce reflection, as discussed in section 6.2.

Once the behavior of the Sun sensors in the presence of the new light source is characterized,

thresholds should be established in Sun sensor processing so that noise and stray reflected

light will be ignored.

Gyro bias is ignored in the current implementation of TSat ADCS flight software. The

bias of flight gyros should be measured prior to flight, and gyro processing should be updated

to take this bias into account. In addition, gyro processing may be modified to estimate the

gyro bias by means of a Kalman Filter, or by comparison with the redundant gyros in order

to maintain a current bias value over the course of the mission. It is possible that gyro

bias may also be included as a state in the main attitude determination filter if the filter is

updated to use dynamic model replacement as recommended in Section 6.1.4.

Data from the magnetometer will potentially be altered by magnetic fields produced by

113

other spacecraft components. A check should be added to sensor processing to ensure that

magnetometer data is not used during operation of any components that significantly affect

the credibility of the data. Components that have a significant effect on the magnetic field

inside the spacecraft should be identified through engineering model testing.

6.1.3 GPS Processing

The attitude determination and control software design of Chapter 3 assumes that the inertial

position of the spacecraft will always be known. The Surrey GPS receiver described in

Section 2.1.4 will provide the position and velocity of the spacecraft to the flight software.

This information will arrive at irregular intervals as it becomes available, and will be in

an Earth-Centric-Earth-Fixed (ECEF) coordinate frame that is fixed to the rotating Earth.

The GPS processing algorithm must translate the GPS position and velocity from the ECEF

reference frame to the TSat ECI frame. GPS processing should use the position and velocity

data to update the state of a Runge-Kutta propagator that will propagate the spacecraft

position and velocity forward in time until the next GPS update. Attitude determination

algorithms should use the propagated ECI position values as inputs where needed.

6.1.4 Attitude Determination Filter

As discussed in Chapter 5, attitude filter convergence was not achieved by the TSat engi-

neering model when it was set in motion at a nearly constant rate of rotation on the 1-DOF

levitation testbed. The failure to achieve attitude filter convergence was attributed partly to

the sparsity of Sun sensor measurements. However, weaknesses of the attitude filter formu-

lation were also recognized. First, the UKF in its current formulation is unable to perform a

measurement update except when a valid attitude quaternion measurement is available. All

of the constantly arriving gyro data is thus ignored while the filter waits for a Sun sensor

measurement. Using all of the gyro data would reduce drift of the filter state away from

the true attitude and body rates. Second, the UKF is highly dependent on a model of the

physical spacecraft dynamics. The model is imperfect, especially in the testbed environment

114

where air resistance and magnetic forces are present that are not accounted for. Model

imperfections inhibit the convergence of the UKF.

A promising solution to both of the major weaknesses of the current attitude filter formu-

lation is the use of dynamic model replacement. Discussed in detail by [19] and [8], dynamic

model replacement uses the error state Kalman Filter formulation instead of the total state

formulation. This means that instead of estimating the attitude, the filter estimates the

attitude error. The "measurements" that are inputs to the filter are the difference between

the measured attitude and an attitude estimate maintained by integrating the gyro rates.

Use of the error state formulation with dynamic model replacement removes the reliance on

modeling of the high frequency dynamics of the spacecraft system, and instead relies on the

comparatively low frequency dynamics of the gyro biases. This is a common approach for

spacecraft attitude determination systems. The UKF implemented by TSat attitude deter-

mination software should be updated to use an error state formulation with dynamic model

replacement in order to allow filter convergence despite the sparsity of Sun sensor measure-

ments and the presence of unmodeled spacecraft dynamics. The new UKF formulation will

make attitude determination more robust, both in testbed testing and in flight.

6.1.5 Attitude Control Law

In simulation, thruster commands showed a noisy behavior of firing for very short durations,

visible in Figure 4-21. The noisy firing behavior, referred to as "chatter," is a result of the

control law attempting to maintain zero body rate and attitude errors while the attitude

estimate drifts due to UKF dynamics. The controller believes that the attitude and body

rates are changing at a higher frequency than they truly are, and thus corrects for these

nonphysical dynamics only for the attitude estimate to drift back in the opposite direction.

Chatter is undesirable because it uses fuel without increasing attitude accuracy. In order to

remove the chatter, a controller deadband should be placed in the thrust allocation algorithm.

If the conmanded torque is less than the deadband threshold, no thrusters will be fired.

This will allow the attitude estimate to drift to the order of magnitude of the attitude

115

determination error and will avoid wasting propellant.

6.2 Hardware Improvements

As discussed in Section 6.1.2, the behavior of Sun sensors was unpredictable when the TSat

engineering model was set in motion and rotated past the light source. One possible cause of

the erratic Sun sensor data is reflection of light by the aluminum edges of the TSat structure

as shown in Figure 5-10. This reflection could be a factor in flight, as well as in testbed

testing. In attempt to reduce reflection and increase the quality of Sun sensor readings, the

edges of the TSat structure should be covered with a light-absorbent coating. The light

absorbing edges will allow more light to reach the Sun sensors instead of scattering into the

environment when the edges of the structure point toward the light source.

6.3 Model Improvements

Model improvements that increase the fidelity of the TSATsim simulation would give more

credibility to the analysis performed, and increase confidence that the attitude determination

and control system will operate successfuly in flight. Currently, the simulation accurately

models the behavior of the spacecraft and the environment, but ignores higher order dynam-

ics. The eventual goal of the simulation is to mimic the behavior of each of the spacecraft

components and the effects of environmental factors to the highest degree of accuracy possi-

ble. The simulation is structured so that models of spacecraft components and environmental

phenomena may be upgraded individually in a way that is noninvasive to the rest of the sim-

ulation.

6.3.1 Sensor Models

Simulation of imperfections in sensor data should be added to each of the TSATsim sensor

models. In the current implementation of TSATsim, all of the sensor models add random

116

noise to sensor measurements. In addition, sensor biases and drift should be modeled for the

Sun sensors, gyros, and magnetometer. Effects of the environment such as thermal variation

of the Sun sensor outputs and the effects of other spacecraft components on the magnetic

field experienced by the magnetometer should also be added to the attitude determination

sensor models.

6.3.2 Actuator Models

In the current implementation of TSATsim, the simulated iEPS electrospray thrusters pro-

duce thrust exactly as commanded without latency or noise. Thruster command latency,

transients following changes in the commanded thrust level, and uncertainty in the actual

thrust force produced must be added to the thruster model. In addition, the behavior of the

PPU and its interface with the flight computer should be modeled once the PPU design is

finalized and tested. When more complete thruster performance data is available, thruster

efficiencies and degradation over time should be added to the simulation as well.

6.3.3 Environmental Dynamics

The environmental dynamics model in the current implementation of TSATsim includes the

forces imparted on the spacecraft by gravity and aerodynamic drag. The gravity model uses

J2 zonal harmonic terms. The fidelity of the environmental model should be increased by

upgrading the gravity model to use J4or higher terms, and by simulating moments imparted

on the spacecraft by gravity, aerodynamics, and the geomagnetic field. Simulation of forces

and moments produced by solar radiation pressure should also be added.

6.4 Further Testing

Completion of TSat attitude determination and control system testing is the final step toward

demonstrating the effectiveness and feasibility of electrospray thrusters as attitude control

actuators for CubeSats. First, the performance of the TSat ADCS system in 1 axis must be

117

verified on the 1-DOF levitation testbed described in Chapter 5. After the system has been

debugged and verified, a flight demonstration will show that TSat is capable of performing

a variety of attitude maneuvers in space.

6.4.1 1-DOF Levitation Testbed

Future testing on the TSat 1-DOF Levitation Testbed is discussed at the end of Chapter

5. First, the attitude determination system must be re-tested outside of the Astrovac vac-

uum chamber with a more uniform Sun source than the source used for the tests described

in Chapter 5. The edges of the TSat structure should be covered with a light-absorbent

coating, and the attitude filter should be revised to incorporate dynamic model replacement

as discussed in Section 6.1.4. Planned attitude control tests inside the Astrovac vacuum

chamber include a rate nulling test, a rate command slew, an angle command slew, and a

Sun tracking test. The planned attitude control tests are summarized in Table 6.1.

118

Test Name Description I Application

Rate nulling Initialize enginering model at an ar- Detumble and precision
bitrary rate of rotation. Send a com- pointing
manded quaternion and zero body
rates to the flight software. En-
gineering model ADCS nulls body
rates and holds engineering model in
commanded attitude.

Rate command slew Initialize engineering model at an Sensor scanning and
arbitrary attitude angle with zero ground station tracking
body rates. Command a rotation
about the SBF-Z axis. Engineering
model rotates at constant rate.

Angle command slew Initialize engineering model at an Precision pointing and
arbitrary attitude angle with zero sensor positioning
body rates. Command another atti-
tude angle with zero body rates. En-
gineering model rotates to the com-
manded attitude.

Sun tracking Move Sun source along a circular Power generation and
path around the engineering model. Sun observation
Engineering model tracks the Sun,
rotating to keep a single solar panel
pointed toward it.

Table 6.1: Summary of attitude control testing on the 1-DOF Levitation Testbed in the
Astrovac vacuum chamber. Tests are designed to resemble common on-orbit maneuvers and
to verify the performance of the TSat attitude determination and control system about 1
axis.

6.4.2 Flight Demonstration

The flight demonstration of the TSat electrospray thruster actuated attitude determination

and control system is designed to achieve four objectives. The objectives include operation

of the electrospray thrusters in space, characterization of thruster performance, precision

attitude control, and the ability to produce delta-V or translational acceleration. A series

of eight tests will achieve these four objectives. The tests are shown in Figure 6-1 and are

numbered in order of increasing "difficulty."

119

Objectives 1 & 2

Operation of Thrusters
in Space and

Characterization of
Thruster Performance

Thruster Tests

Test 1: Turn on each thruster individually

Test 2: SpIn-up/spin-down about one-axis

Test 3: Orbit rate control
Objective 3

Precision Attitude Test 4: Track ground station
Control

Test 5: Slew maneuvers and precision pointing

Objective 4 Test 6: Drag compensation maintaining attitude

AV Capability Test 7: Change of plane

Test 8: Powered de-orbit

Figure 6-1: TSat flight demonstration tests and corresponding objectives. The flight demon-
stration tests will prove the ability of electrospray thrusters as CubeSat actuators by ad-
dressing objectives 3 and 4 on the left of the figure. (credit: Akshata Krishnamurthy)

In some of the earlier tests, thrusters are turned on and off manually, and the TSat

attitude control algorithms are not used. These manual tests are classified as "open loop."

Later tests incorporate the entire attitude determination and control system and are classified

as "closed loop." Table 6.2 gives a description of each test, including whether it is open loop

or closed loop.

120

L

Test Number Events Control Scheme
1 Turn on thruster n for 30 s. After 30 s, turn off Open loop

and null all body rates using torque coils. Repeat
for thrusters n = 0 to 7.

2 Spin-up/Spin-down about SBF Y-axis: Turn on Open loop
thrusters 0 and 1. When a pre-determined rate
is reached, turn off thrusters 0 and 1, and turn
on thrusters 2 and 3. When rate is close to zero
or after maximum time, turn off all thrusters and
null all body rates using torque coils.

3 Set up and actively maintain orbit rate keeping Closed loop
one face pointed at the ground for an entire orbit.

4 Track ground stations pointing one face towards Closed loop
them for an entire orbit.

5 Point all 6 faces toward the Sun one after the Closed loop
other, stopping to minimize attitude error in each
orientation. Ideally completed within 1 orbit
day.

6 Compensate for the effects of drag with prograde Closed loop
thrust by operating thrusters on one face using
off-modulation to maintain attitude along the ve-
locity vector, over a period of approximately 1
week.

7 Alter orbit inclination. Closed loop
8 Maintain retrograde pointing and lower orbit Closed loop

semi-major axis by as much as possible, for the
length of a battery discharge cycle.

Table 6.2: Description of TSat flight demonstration tests. Tests will be executed in order
of increasing "difficulty," beginning with open loop testing to measure the performance
of the electrospray thrusters, and continuing with closed loop testing to demonstrate the
capabilities of the complete attitude determination and control system.

121

6.5 Conclusion

Electrospray microthrusters will play a critical role in the future of space exploration. With

advantages over reaction wheels and magnetorquers for missions requiring translational con-

trol or operation outside of low Earth orbit, electrospray thrusters are an attractive choice

of attitude control actuators for CubeSats. Enabled by electrospray thrusters, constellations

of CubeSats are capable of many Earth observation, astronomy, and even deep space science

missions.

A CubeSat attitude determination and control system was developed using COTS hard-

ware components for attitude determination, and electrospray microthrusters as attitude

actuators. Preliminary testing in simulation showed attitude control accuracy on the order

of 2-3 degrees. The attitude error was dominated by error in attitude determination, which

could be reduced by using custom attitude determination hardware components.

Contributions of this research include a high fidelity simulation framework and a modu-

lar CubeSat attitude determination and control software implementation that will serve as

a foundation for future development of microthruster actuated CubeSats. A novel thrust

allocation algorithm was developed to address the possibility that each thruster might have

unique characteristics, and to minimize the amount of precision alignment necessary during

CubeSat fabrication. Attitude determination and control software was implemented on an

engineering model flight computer, and preliminary testing of the engineering model gath-

ered performance data for COTS sensors and suggested improvements to the preliminary

ADCS design. Preliminary simulation results show that using electrospray microthrusters

as CubeSat attitude actuators is feasible and effective.

Moving forward, revision of the ADCS design and engineering model testing of attitude

control about one axis will produce a flight-ready attitude determination and control system.

This work will lead directly to an on-orbit demonstration that will showcase the potential

impact of electrospray thrusters in the field of CubeSat attitude control, and on the future

of space exploration.

122

Appendix A

Flight Software Algorithm

Pseudocode and Implementation for

Analysis

A.1 FSW Master

A.1.1 Pseudocode for tsat-gnc

This section contains pseudocode for tsathgnc, the master ADCS routine. An implementation

of tsat-gnc in C is given in section A.1.2.

1. Read and process data from GNC sensors. (call gnc-sensor-processing)

2. Compute an estimate of the spacecraft attitude quaternion and body rates. (call

gnc-attitude-determination)

3. Run guidance logic that determines the target behavior of the spacecraft. (call gnc-guidance)

4. Run the attitude control law. (call gnc-attitude-cl)

5. Prepare thruster commands based on the output of the control law. (call gnc-cmd-prep)

123

6. Update the software's knowledge of time and julian date.

A.1.2 TSATsim implementation of tsat-gnc

This section lists the TSat GNC analysis simulation implementation of tsat-gnc.

1 /* tsatgnc . cc

2 Main Functionality of TSat ADCS Flight Software

3 Written for TSat ADCS analysis

4 Mark Van de Loo, Spring 2013

#include <stdio .h>

#include "tsatgnc .h"

int tsat-gnc(fswstate *fsw)

{

//read sensor data

gnc-sensor-processing (fsw);

//run attitude determination

gnc-attitude-determination (fsw);

//run guidance

gn-guidance (fsw);

//run attitude control law

gnc-attitude-cl (fsw);

//run command preparation

124

gnccmd-prep (fsw);30

31

32

33

34

fsw->time-cntr +=1;

fsw->time = fsw->timeentr *fsw->cyc _period;

35 fsw->jd = fsw->jd0 + fsw->time-cntr *fsw->cyc-period /86400.0;

36

37

38 return(0);

39 }

A.2 Sensor Processing

A.2.1 Pseudocode for gnc-sensor-processing

" Process sun sensor data. (call gnc-process-ss)

" Process gyro data. (call gnc-process-gyro)

A.2.2 TSATsim implementation of gnc-sensor-processing

This section lists the TSat GNC analysis simulation implementation of gnc-sensorprocessing.

1 /* gnl-sensor-processing. c

2 Algorithm for onboard processing of GNC sensor data. Processes data

3 from sun sensors , magnetometer, and gyros.

Written as part of TSat ADCS analysis

Mark Van de Loo, September 2013

4

5

6

7

8

125

9 #include <stdio.h>

10 #include <math.h>

11

12 #include " gnc -sensor -processing .h"

13

14

15 int gnc-sensor-processing(fswstate *fsw)

16 {

17

18 //Magnetometer

19 //B..magnetoineter assumed to be updated by Nanomind black box for now.

20

21 //Sun Sensors

22 gnc-process-ss (fsw);

23

24 //Gyros

25 gnc-process-gyro (fsw);

26

27

28 return(0);

29 }

A.2.3 Inputs and Outputs of gnc-process-ss

126

Table A.1: Inputs to gnc-process-ss

GNC Analysis Variable Units Description Value comes from...

sunsensor-raw milliVolts Vector contain- GomSpace solar panels

ing the output (rw/process-sensor-data.cc)

value of each sun

sensor

ss-thresh cosine Threshold value fsw-config

below which a

sun sensor is

considered not

to see the sun

Table A.2: Outputs of gnc-process-ss

GNC Analysis Variable Units Description Value goes to...

valid-sunvec-meas boolean =1 if there is a Attitude Determination

valid sunsensor

measurement,

=0 otherwise

sunvec-meas unit Direction of the Attitude Measurement

vector Sun computed (gncTRIAD)

based on sensor

readings

127

A.2.4 Pseudocode for gnc-process-ss

1. Calculate the cosine of the angle measured by each sun sensor. Angles are measured

with respect to the outward normal to the sun sensor/solar panel plane.

cos(3) 40 0 (A.1)
400.0

Where V is the raw voltage reading from the sun sensor. This uses the value of the

"typical" open circuit voltage of 400 milliVolts given by the photodiode datasheet, and

assumes a voltage of 0 milliVolts when no light is being absorbed.

2. Determine whether at least one sun sensor gives a nonzero reading. (i.e. not in eclipse)

Loop through sun sensors, and if the value of cos(3) calculated in the previous step is

above a threshold value, set the valid-sunvec-meas flag to 1.

3. If all sensors give a zero reading, then skip all remaining sun-sensor-related steps and

set sunvecmeas = 0. Else, continue with the remaining steps.

4. Calculate the SBF-X component of the sun vector. First compare the cos(3) values

of sun sensors 0 and 3. If the reading of sun sensor 3 is greater than the reading

of sun sensor 0, sensor 0 should read zero since faces 0 and 3 cannot see the sun

simultaneously. The SBF-X component of the measured sun vector is then given by

- cos(13), the opposite of the cosine of the angle between the sun and the outward

normal to sensor 3. If the reading of sensor 0 is greater than that of sensor 3, then

the SBF-X component of the measured sun vector is given by cos(3) of sensor 0. The

number labeling of spacecraft faces is shown in figure ??. The number of a sun sensor

128

corresponds to the face on which it is mounted.

if: cos(3) 3 > cos(,6)o

then: sunveCmeas, = - cos(3) 3

else: sunvecmeas2 = cos()o

if: sunvecmeas < threshold

then: sunvecmeas, = 0 (A.2)

5. Repeat the previous step with sensor 1 taking the place of sensor 0 and 4 taking the

place of 3 to find the SBF-Y component of the measured sun vector.

6. Repeat with sensor 2 taking the place of 0 and 5 taking the place of 3 to find the

SBF-Z component.

7. Normalize the measured sun vector.

sunvecmeas
sunvecmeas snvecmeas (A.3)

8. Check for faults. (TBR)

A.2.5 TSATsim implementation of gnc-process-ss

This section lists the TSat GNC analysis simulation implementation of gnc process-ss.

1 /* gnc-sensor-processing . cc

2 Algorithm for onboard processing sun sensor data.

3 Written as part of TSat ADCS analysis

4 Mark Van de Loo, February 2014

5 */

129

6

7

8 #include <stdio.h>

9 #include <math.h>

10

11 #include "gnc-process-ss .h"

12

13

14 int gnc-processss (fswstate *fsw)

15 {

16

17 //Sun Sensors

18 //convert from sensor output units to a cosine.

19 //Value output by sensor in milliVolts . 400 is the "typical" open

20 //circuit voltage from the photodiode data sheet . ss-meas is the sun

21 //sensor measured value of the cosine

22 //between the vector normal to the solar panel containing the sensor

23 //(positive outwards) and the vector from the spacecraft cg to the

24 //sun.

25 double ssmeas [fsw->num-panels];

26 int panel;

27 for(panel = 0;panel < fsw->numnpanels; panel++){

28 ss-meas [panel] = (fsw->sunsensor-raw [panel]) / 400.0;

29 }

30

31 //Determine whether we can see the sun

32 fsw->valid-sunvec-meas = 0;

33 for(panel = 0;panel < fsw->num-panels; panel++){

34 if(ss-meas [panel]>fsw->ss-thresh){

35 fsw->valid-sunvec-meas = 1;

36 break;

37 }
38 }

39

130

40 //calculate sun vector from sun sensor cosine measurements:

41 if (fsw->validsunvecmeas){

42 //SBF-X component of Sun Vector

43 if(ss-meas [3] > ss-meas[0]){

44 fsw->sunvec-meas [0] -ss-meas [3];

45 }
46 else{

47 fsw->sunvec-meas [0] ss-meas [0];

48 }
49 if(fabs(fsw->sunvec-meas [0]) < fsw->ss-thresh){

50 fsw->sunvec-meas [0] = 0.0;

51 }
52 //'IODO: add FAULT if panels 0 and 3 see sun at the same time

53

54

55 //SBF-Y component of Sun Vector

56 if(ss-meas[4] > ss-meas[1]){

57 fsw->sunvec-meas [1] -ss-meas [4];

58 }
59 else{

60 fsw->sunvec-meas [1] ssmeas [1];

61 }
62 if(fabs(fsw->sunvec-meas[1]) < fsw->ss-thresh){

63 fsw->sunvec-meas [1] = 0.0;

64 }
65 // T ODO: add FAULT if panels 1 and 4 see sun at the same time

66

67

68 //SBF-Z component of Sun Vector

69 if(ss-meas[5] > ss-meas[2]){

70 fsw->sunvec-meas [2] -ss-meas [5];

71 }
72 else{

73 fsw->sunvec-meas [2] ss-meas [2];

131

74 }
75 if(fabs(fsw->sunvec-meas[2]) < fsw->ss-thresh){

76 fsw->sunvecmeas [2] = 0.0;

77 }
78 //TODO: add FAULT if panels 2 and 5 see sun at the same time

79

80

81 //normalize sunvec-meas

82 double sm-mag = sqrt (pow(fsw->sunvec-meas [0] ,2) + pow(fsw->sunvec-meas [1] ,2) +

83 pow(fsw->sunvec-meas [2] ,2));

84 if (smnmag > 0.3) {

85 int i ;

86 for(i = 0;i<3;i++

87 fsw->sunvecmeas [i] = fsw->sunvecmeas [i] / sm-mag;

88 }

89 }

90 else{

91 fsw->valid-sunvec-meas = 0;

92 int i2;

93 for(i2 = 0;i2<3;i2++){

94 fsw->sunvec-meas[i2] = 0.0;

95 }
96 }

97

98 }

99 else{

100 int i;

101 for(i =0; i <3; i++){

102 fsw->sunvec-meas[i] 0.0;

103 }

104 }

105

106 // TODO:

107 //Add check for single sun sensor failure by comparing 2 sensor soln

132

108 // with 3 sensor soln.

109

110

111

112 return(0);

113 }

A.2.6 Inputs and Outputs of gnc-process-gyro

Table A.3: Inputs to gnc-process-gyro

133

GNC Analysis Variable Units Description Value comes from...

gy-gyro-out rad/sec Vector con- GomSpace solar panels

taining the (rw/process-sensor-data.cc)

contents of the

"gyro-out" reg-

ister for each

gyro

Table A.4: Outputs of gnc-process-gyro

A.2.7 Pseudocode for gnc-process-gyro

1. Transfer the contents of the gy-gyro-out registers into the body-rates variable. Even-

tually this may be updated with some sort of filter. (TBR)

body _rates(axis) = gy-gyro-out(axis) (A.4)

A.2.8 TSATsim implementation of gnc_processgyro

This section lists the TSat GNC analysis simulation implementation of gnc-process-gyro.

1 /* gnc-process-gyro . cc

2 Algorithm for onboard processing of gyro measurements.

3 Written as part of TSat ADCS analysis

4 Mark Van de Loo, February 2014

5 */

6

7

8 #include <stdio.h>

9 #include <math.h>

134

GNC Analysis Variable Units Description Value goes to...

body-rates (TBR) rad/sec Spacecraft body Attitude Controller (TBU)

rates in SBF

computed from

gyro readings

(TBR)

#include "gncprocess-gyro.h"

gnc-process-gyro(fswstate *fsw)

10

11

12

13

14

15

16

17

18

19

20

21

ind < 3; ind++){

fsw->bodyratesmeas [ind] = fsw->gygyro-out [ind];

22 }

23

24

25

26

27 return(0);

28 }

A.3 Attitude Determination

A.3.1 Pseudocode for gnc-attitude-determination

This pseudocode corresponds to an implemention of gnc.attitude-determination suitable for

analysis and engineering model testbed testing. It will have to be adjusted for flight.

1. If there is a valid sunvector measurement available from sensor processing this cycle:

call gncTRIAD.

Else: Set the measured attitude quaternion att-quat-meas to a zero rotation.

2. If use-attitude-kf ==true: call gncattitudekf.

135

int

{

//Gyros

int ind;

for (ind = 0;

Else: Set the attitude quaternion and body rates estimates equal to the measured

attitude quaternion and body rates.

A.3.2 TSATsim implementation of gnc-attitude-determination

This section lists the TSat GNC analysis simulation implementation of the algorithm. The

current implementation of this wrapper is for analysis and engineering model testbed testing.

It will have to be adjusted for flight.

1 /* gncattitude-determination . cc

2 Wrapper for attitude determination tasks . Includes creating an

3 attitude measurement , kalman filtering , related propagation , etc .

4 Written as part of TSat ADCS analysis

5 Mark Van de Loo, September 2013

6 */

7

8

9 #include <stdio.h>

10 #include <math.h>

11

12 #include "gnc-attitude-determination.h"

13

14

15 int gnc-attitude-determination(fswstate *fsw)

16 {

17

18

19 //use sensor data to compute attitude measurenient

20 if(fsw->valid-sunvec-meas){

21 gne-TRIAD (fsw);

22 }
23 else{

24 int quatind;

136

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

return (0);

}

A.3.3 Inputs and Outputs of gncTRIAD

137

for (quatind =0; quatind <3; quatind++){

fsw->att-quat-meas [quatind] = 0.0;

}
fsw->att-quatmeas [3] = 1.0;

}

if (fsw->useattitude-kf){

//use KF to estimate attitude quaternion and rates

gncattitudekf (fsw);

}
else{

int quatindi;

for (quatind= 0; quatind1 <4;quatind1++){

fsw->attquat [quatind1] = fsw->attquatmeas [quatind1];

}
int wind;

for(wind = 0; wind <3;wind++){

fsw->body -rates [wind] fsw->body-rates-meas [wind];

}
}

Inputs to gncTRIAD

GNC Analysis Variable Units Description Value comes from...

B-magnetometer Gauss Geomagnetic NanoMind (rw/pro-

field vector as cess-sensor-data.cc)

measured by

the 3-axis mag-

netometer in

Spacecraft Body

Frame

sunvec-meas unit Direction of gnc-sensor-processing

vector the Sun as

computed from

sun sensor

measurements

jd days Current Julian tsat-gnc

date

jd-igrf data days Julian date cor- fswparam

responding to

the timestamp

of the IGRF

data used in the

spherical har-

monic magnetic

field model

Continued on next page

138

Table A.5:

Table A.5: Algorithm Inputs (continued)

GNC Analysis Variable liUnits Description Value comes from...

pos.eci meters Position vector GPS/propagator (TBU)

of spacecraft in

ECI

igrf -g n/a IGRF G co- fswigrf

efficient for

spherical har-

monic magnetic

field model

igrf _h n/a IGRF H co- fswigrf

efficient for

spherical har-

monic magnetic

field model

igrf _gdot n/a Time rate of fswigrf

change of IGRF

G coefficient for

spherical har-

monic magnetic

field model

Continued on next page

139

Table A.5: Algorithm Inputs (continued)

GNC Analysis Variable Units Description Value comes from...

igrfhdot n/a Time rate of fswigrf

change of IGRF

H coefficient for

spherical har-

monic magnetic

field model

PI n/a 3.14159265359 initializeifsw

Table A.6: Outputs of gncTRIAD

GNC Analysis Variable Units Description Value goes to...

B-actual nTesla Geomagnetic Telemetry

field vector

calculated from

IGRF spherical

harmonic model

in ECI frame

sunvec-actual unit Direction of Telemetry

vector the Sun as

computed from

julian date

Continued on next page

140

Table A.6: Algorithm Outputs (continued)

GNC Analysis Variable Units JDescription Value goes to...

att-quat (TBR) quaternionSpacecraft atti- Attitude Controller (TBU)

tude quaternion.

Transforms vec-

tors from ECI to

SBF.

A.3.4 Pseudocode for gncTRIAD

1. Define the order of the spherical harmonic geomagnetic field model to be k = 6 (6th

order).

2. Define the earth radius used by the IGRF as a = 6371.2e3. This is a parameter that

was chosen when this particular model was constructed.

3. Define difyear to be the time elapsed in units of years between the timestamp of the

IGRF data and the current time:

(dif year) =
(jd) - (jdigrfdata)

365.25
(A.5)

Where jd is the current julian date (decimal value) and jd-igrfdata is the julian date

of the IGRF data timestamp.

4. Calculate T, the time elapsed in units of julian centuries since the J2000 epoch (Vallado

T (jd) - 2451545.0
36525.0

(A.6)

141

5. Calculate gmst, the current greenwich mean sidereal time in seconds (Vallado p. 194):

(gmst) = 67310.54841 + ((876600.0) (3600.0) + 8640184.812866)T

+0.093104T 2 - 6.2 x 10- 6T3 (A.7)

6. Reduce gmst to fall between 0 sec and 86400 sec (per Vallado):

(gmst) = (gmst) mod 86400 (A.8)

7. Convert gmst to radians. Define a., to be the Greenwich mean sidereal time in radians:

1 7F
a = (gmst)2 4 0 180 (A.9)

8. Let x, y, and z be the three components of the spacecraft position vector in ECI frame.

9. Let r be the magnitude of the ECI spacecraft position vector i.e.

the spacecraft CG to the center of the earth.

10. Calculate the geocentric latitude (declination) of the spacecraft:

6 = atan2(z, V/x 2 +y 2)

11. Calculate the sidereal time (right ascension) of the spacecraft:

a = atan2(y, x)

the distance from

(A.10)

(A.11)

12. Define the coelevation.

=

2
(A.12)

142

13. Calculate the longitude of the spacecraft:

= a - ag (A.13)

14. Calculate the factors Sn,m to be used in the Schmidt functions according to Wertz eqn.

H-7.

S0,0 = 1
2n - 1

Sn,O = Sn-1,O

(A. 14)Snm = Snm-i (n - m + 1)(O3 + 1)
'V m-+m

Where 6. is the Kronecker delta: 6,,= 1 if i = j, and 0 otherwise.

15. Combine the factors S,m with the Gaussian coefficients as described by Wertz eqn.

H-6.

9 ,.Sn,

(A.15)hn'm = Sn,mhmn

16. Calculate the K"n,m coefficients according to Wertz eqn. H-9.

Knm (n - 1) 2 - m 2

(2n - 1)(2n - 3)

K'"= 0

for n > 1

for n = 1 (A.16)

143

17. Calculate the Gauss functions, P"nm according to Wertz eqn. H-8.

P 0'0 - 1

Pnn = sin()p"

P",m = cos()Pn-l'm -- Kn'mPn- 2 ,m

18. Calculate the partial derivatives of P'", with respect to 0 as shown in Wertz eqn.

H-10.

apoo-
0

a__,_ -(n-n,n-1 + (CO)pn 1,- 1
-= (sin 0) 8 cs6P "1

. jpn-1,mpO,0

ao

QDn-2,m

for n > 1

(A.18)= (cosO) a - (sin O)P n-l'" - K' n__86 ao

19. Note from Wertz (eqn. H-11) that the number of sine and cosine evaluations can be

reduced by using:

cos mO = cos((m - 1) 0 + 0)

= cos((M - 1)#0) cos 4 - sin # sin((m - 1) 0) (A.19)

20. Calculate the B field according to Wertz eqn. H-12. B, is radial outward positive,

B0 is the coelevation component (South positive), and B0 is the asimuthal component

144

(A.17)

with East positive.

8V
Brz -

k an+2

-- E- (i+
n=1

1) (g' M cos mb + hn'" sill m<.)P' m (0)
m=O

k
1 V

n=1

an+2 nDP ' m (O)
r (gfl'" cos mo + h"'" sin m#) DO

m=O

-1 DV -1 k an+2
BlDS- S m(-g' m sin m4 + h"'" cos m#)P"'"(0)r sin 0 (9# sin , r

n(1 mA2
(A.20)

21. Convert to a less absurd coordinate system i.e. ECI (Earth Centric Inertial).

Wertz eqn. H-14)

(See

B, = (Bcos 6 + Bo sin6) cos a - B0 sin a

By = (B, cos 6 + B0 sin 6) sin a + B0 cos a

B = (Br Sil 6 - B0 cos 6) (A.21)

22. Construct "actual" magnetic field unit vector in ECI from B calculated in the previous

step.

Baduai = BIJ|BI| (A.22)

23. Contstruct "measured" magnetic field unit vector in SBF from magnetometer output.

Bmeas = Bmagnetometer / IBmagnetometer (A.23)

24. Caluclate the mean longitude of the sun in mean of date frame. (Vallado p. 297)

AM = 280.460 + 36, 000.771TUT1 (A.24)

145

25. Calculate the mean anomaly for the sun using approximation TTDB TUT1.

degrees.

M = 357.5277233 + 35, 9 9 9.050 3 4 TTDB

M = Am mod 360 (A.25)

26. Approximate the ecliptic longitude according to Vallado p.280.

Aecliptic = Am + 1.914666471 sin(M) + 0.019994643 sin(2M) (A.26)

(Approximate ecliptic latitude to be 0.)

27. Calculate the distance from the earth to the sun in meters according to Vallado p. 281.

rmag = 1.000140612 - 0.016708617 cos(M) - 0.000139589 cos(2M)

rmag rmag * 149597870700 (A.27)

28. Calculate the (approximate) obliquity of the ecliptic

c = 23.439291 - 0.013 0 0 4 2TTBD (A.28)

29. Compute the position of the sun in ECI frame. Units should be meters.

rsuni = rmag cos(Aeciptic)

rsun2 = rmag cos(E) sin(Aeciptic)

rsun3 = rmag sin(E) sin(Aecliptic) (A.29)

146

Units are

30. Compute "actual" ECI unit vector in the direction of the sun.

Ufractual
s

31. Let the vector r, represent the "actual" magnetic field unit vector.

Bactuai

32. Define the vector r2 as the cross product of the "actual" magnetic field unit vector and

the "actual" sun unit vector.

2 =- Bactuai x rsunactual (A.32)

33. Define the vector r3 as the cross product of r1 and r2.

r3 = rl x r 2 (A.33)

34. Define the vector si as the "measured" magnetic field unit vector.

(A.34)

35. Define the vector S2 as the cross product of the "measured" magnetic field unit vector

and the "measured" sun unit vector.

(A.35)S2 =Bmeas x rSUnas

36. Define the vector $3 as the cross product of si and s2.

(A.36)s3 =
8 i X S2

147

(A.30)

(A.31)

si =::- Bmeas

37. Construct ECI to SBF transformation matrix A. (Shuster p. 115)

A= [si S2 s 3][ri [r2 r 3]T

38. Construct ECI to SBF attitude quaternion q from transformation matrix A.

q4 = (1 + All + A 22 + A33)2(scalar)
2

qi = (A 23 - A 32)
4q 4
1

q2 = (A31 - A 13)
4q4
1

q3 = 1q(A12 - A 2 1)
4q4

(A.37)

(A.38)

39. Normalize and properize the attitude quaternion. This is the "measured" attitude.

q

If q4(scalar) < 0

q = -q

qmeas = q (A.39)

A.3.5 TSATsim Implementation of gnc-TRIAD

This section lists the TSat GNC analysis simulation implementation of gncTRIAD.

1 /* gncTRIAD. cc

2 Implementation of the TRIAD algorithm for computing a measured

3 spacecraft attitude from two measured vectors. In this case the

4 measured vectors are the geomagnetic field and the direction of the sun.

148

Implemented for TSat ADCS analysis

Mark Van de Loo, September 2013

#include

#include

#include

#include

<stdio .h>

<math. h>

"gncTRIAD. h"

customnmath.h"

int gncTRIAD(fswstate *fsw)

{

//Compute "triue" magnetic field vector in ECI

int k = 6; //order of model

double a = 6371.2e3; //IGRF Earth Radius (not the same as mean earth radius)

double difyear ; //number of years between IGRF data timestamp

//(01/01/2010) and present date.

difyear = (fsw->jd - fsw->jd-igrfdata)/365.25;

double T = (fsw->jd -2451545.0)/36525.0; //Julian Centuries since J2000

//(Vallado p. 194)

double gmst = 67310.54841 + (876600.0*3600.0 + 8640184.812866)*T

+ 0.093104*pow(T,2.0) - 6.2e-6 * pow(T,3.0);//Vallado p.194

gmst = fmod(gmst,86400);

double alphag = gmst *(1.0/240.0)*(fsw->PI/180.0); //converting from seconds

//to radians - this is the

//Greenwich mean sidereal time

//For convenience and to make things easier to read:

149

double x, y, z, r;

x = fsw->pos-eci [0];

y = fsw->pos-eci [1];

z = fsw->pos-eci [2];

r = sqrt(pow(x,2)+pow(y,2)+pow(z,2));

double delta , alpha, theta , phi;

delta = atan2(zsqrt(pow(x,2)+pow(y,2))); // geocentric latitude or declination

alpha = atan2(y,x); // sidereal time (right ascension)

theta = fsw->PI/2.0 - delta;

phi = alpha - alphag; 7/ longitude

int nm;

double S[6+1][6+1]; //see Wertz eqn (H-7)

S[0][0] = 1;

for(n = 1;n<k+1;n++){

S[n][0] = S[n-1][0]*((2.0*n - 1.0)/n);

for(m = 1;mn+1;m++){

S[n] [m] S[n][r-i] * sqrt (((n - m + 1.0)*((m==1)+1.0)) / (n+m));

}
}

double g[6+1][6+1];//see Wertz eqn (H-6)

double h[6+1][6+1];

for(n = 0;n<k+1;n++){

for(m = 0;nKn+1;m++){

//also account for changing IGRF coefficients

g[n][m] = S[n][m] * (fsw->igrfg [n][m] + (fsw->igrf-gdot [n][m]

h[n][m] = S[n][m] * (fsw->igrfh [n][m] + (fsw->igrf-hdot [n][m]

}
}

* difyear));

* difyear));

71

72 double K[6+1][6+1]; //see Wertz eqn (11-9)

150

for(n = 1;n<k+1;n++){

for (m = 0 ;m<n+1;m++){

i f (n==1) K[n] [m] = 0.0;

else{

K[n][m] = (pow((n-1),2) - pow(m,2)) / ((2.0*n - 1.0)*(2.0*n - 3.0));

}
}

}

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Wertz eqn (H-8)

P[n-1][n-1];

* P[n-1][m];

* P[n-1][m] - K[n][m]*P[n-2][m];

double dP[6+1][6+1]; //see Wertz eqn (H-10)

dP[0][0] = 0.0;

for(n = 1; n<k+1 ; n++){

dP[n][n] = (sin(theta) * dP[n-1][n-1]) +

for (m = 0; nKn ; m++){

if (n==1){

dP[n][m] = (cos(theta) * dP[n-1][m])

}
else{

dP[n][m] = (cos(theta) * dP[n-1][m])

- (K[n] [m]*dP [n-2][m]);

(cos(theta) * P[n-1][n-1]);

- (sin(theta) * P[n-1][m]);

(sin(theta) * P[n-1][m])

151

double P[6+1][6+1]; //see

P[0][0] = 1.0;

for (n 1; n<k+1 ; n++){

P[n][n] = sin(theta) *

for (m = 0; m<n ; m++){

if (n==1){

P[n][m] = cos(theta)

}
else{

P[n][m] = cos(theta)

}
}

}

107 }

108 }

109 }

110

111

112 double Br, Btheta, Bphi; //see Wertz eqn (H-12)

113 double tempi;

114 Br = 0.0;

115 for (n=1;n<k+1;n++){

116 tempi = 0.0;

117 fo r (m=0;nKn+1;m++){

118 tempi = tempi + ((g[n][m] * cos(m*phi)) + (h[n][m] * sin(m*phi))) * [n[m];

119 }
120 Br = Br + (pow((a/r),(n+2.0)) * (n+1.0) * tempi);

121 }

122

123 Btheta = 0.0;

124 for (n=1;n<k+1;n++){

125 tempi = 0.0;

126 for (m=0;nKn+1;m++){

127 tempi tempi + ((g[n][m] * cos(m*phi)) + (h[n][m] * sin(m*phi))) * dP[n][m];

128 }
129 Btheta Btheta - (pow((a/r),(n+2.0)) * tempi);

130 }

131

132 Bphi = 0.0;

133 for (n=1;n<k+1;n++){

134 tempi = 0.0;

135 fo r (m=0;nKn+1;m++){

136 tempi = tempi + m*((-g[n][m] * sin(m*phi)) + (h[n][m] * cos(m*phi))) *P[n][m];

137 }
138 Bphi = Bphi - (pow((a/r),(n+2.0)) * tempi);

139 }

140 Bphi = Bphi * (1/sin(theta));

152

141

142

143

144 //Calculate Magnetic Field (should be in nanoTesla)

145 double B[3];

146 B[0] = (Br*cos(delta) + Btheta*sin(delta))*cos(alpha) - Bphi*sin(alpha);

147 B[1] = (Br*cos(delta) + Btheta*sin(delta))*sin(alpha) + Bphi*cos(alpha);

148 B[2] = (Br*sin(delta) - Btheta*cos (delta));

149 double B-mag;

150 B-mag = sqrt (pow(B[0] ,2)+pow(B[1] ,2)+pow(B[2] ,2));

151 fsw->B-actual [0] = B[0]/Bmag; //unit vector

152 fsw->B-actual [1] = B[1]/B-mag;

153 fsw->B-actual[2] = B[2]/B-mag;

154

155

156

157

158 //Unit vector for Measured magnetic field

159 double B-measmag;

160 double B-meas [3];

161 B-meas-mag sqrt (pow(fsw->Bnmagnetometer [0] ,2)+pow (fsw->B-magnetometer [1] ,2)

162 +pow(fsw->Bnagnetometer [2], 2));

163 B-meas [0] fsw->B-magnetometer [0] / B-meas-mag;

164 B-meas [1] fsw->B-magnetometer [1] / Bmeas-mag;

165 B.meas [2] fsw->B-magnetometer[2]/B-meas-mag;

166

167

168

169

170

171 //Coinpute "true" sun vector in ECI

172 double lambdaM = 280.460 + 36000.771*T;// Mean longitude of the sun in MOD frame.

173 lambdaM = finod (lambdaM ,360 .0);

174

153

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

154

double M = 357.5277233 + 35999.05034*T; // Mean anomaly for the sun.

// Uses approximation T-IDB TiUT1

M = fmod (M, 360);

double lambda-ecl = lambda-M + 1.914666471*sin (M*(fsw->PI/180.0))

+ 0.019994643* sin (2*M*(fsw->PI/180.0)); // Ecliptic longitude approximation

double rmag = 1.000140612 - 0.016708617*cos(M*(fsw->PI/180.0))

- 0.000139589*cos(2*M*(fsw->PI/180.0));// Distance from earth to sun in AU

rmag = rmag*149597870700; //convert to meters;

double eps = 23.439291 - 0.0130042*T;//Obliquity of the ecliptic

double sunvec [3];

sunvec [0] = rmag*cos(lambda-ecl*(fsw->PI/180.0));

sunvec [1] = rmag*cos (eps*(fsw->PI/180.0))* sin (lambda-ecl*(fsw->PI/180.0));

sunvec [2] = rmag*sin (eps*(fsw->PI/180.0))*sin (lambda-ecl*(fsw->PI /180.0));

//sun vector in ECI frame [meters]

double sunvec-mag ;

sunvec-mag = sqrt (pow(sunvec [0] ,2)+pow(sunvec [1] ,2)+pow(sunvec [2] ,2));

fsw->sunvec-actual [0] = sunvec [0] /sunvec-mag;
fsw->sunvecactual [1] = sunvec [1] / sunvec-mag;

fsw->sunvec-actual [2] = sunvec [2] /sunvec-mag'; //unit vector in ECI frame

//

/ /V are " actual" vectors , W are measured vectors

209

210 double ri [3];

211 double r2 [3];

212 double r3 [3];

213 double si [3];

214 double s2 [3];

215 double s3 [3];

216

217 //rl V-actual-1

218 int i;

219 for(i=0;i <3; i++){

220 rI [i] = fsw->B-actual [i;

221 }

222

223 //r2 = cross (V-actual-1 , Vactual2)/magnitude(cross (V-actual_, VactuaL2))

224 cross (fsw->B-actual , fsw->sunvec-actual , r2);

225 double r2_mag;

226 r2-mag = sqrt(pow(r2[0],2)+pow(r2[1],2)+pow(r2 [2] ,2));

227 int j ;

228 for (j=0;j <3;j++){

229 r2[j] r2[j]/r2-mag;

230 }

231

232 //r3 cross (rI ,r2)

233 cross(rl ,r2 ,r3);

234

235

236 //1sl W-neas-1

237 int indk;

238 for (indk=0;indk<3;indk++){

239 s [indk] Bmeas [indk];

240 }

241

242 //s2 cross (W-meas_ ,W.ineas_2)/magnitude(cross (Wieas1, W-meas-2))

155

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

int row;

int col

for (row =

A1 [row]

A1 [row]

A-1 [row]

}

for (c

A-2

A-2

A-2

0; row <3; row++){

[0] = si [row];

[1] = s2[row];

[2] = s3 [row];

ol=0;col <3;

[0][col] =

[1][col] =

[2][col] =

Co
ri

r2

r3

1++){

[col

[col];

[col];

}

mult-3x3(A-1 ,A2,A);

//From Wertz p 415:

cross (B-meas, fsw->sunvec-meas , s2);

double s2-mag;

s2-mag = sqrt(pow(s2[0],2)+pow(s2[1],2)+pow(s2[2] ,2));

int 1;

fo r (1=0;1 <3; I++){

s2[] = s2[I]/s2_mag;

}

//s3 cross(sl ,s2)

cross(si,s2,s3);

//ECI to SBF Transformation Matrix

double A[3][3];

double A-1[3][3];

double A-2[3][3];

156

277 fsw->att-quat-meas[3] = 0.5*pow((1+A[0][0]+A[1][1]+A[2][2]) ,0.5);

278 fsw->attquat-meas[0] = 1.0/(4.0*fsw->att-quat-meas[3])*(A[1][2]-A[2][1]);

279 fsw->att-quat-meas[1] = 1.0/(4.0*fsw->att-quat-meas[3])*(A[2][0]-A[0][2]);

280 fsw->att-quat-meas[2] = 1.0/(4.0*fsw->att-quatmeas[3)*(A[0][1]-A[1][0]);

281

282 //Normalize and properize

283 double att-quatmeas-mag;

284 att-quat-meas-mag = sqrt (pow(fsw->att _quat -meas [0] ,2)+pow(fsw->attquat-meas [1] ,2)

285 +pow(fsw->att-quat _meas [2] ,2)+pow(fsw->attquat-meas [3] ,2));

286

287 int quatind;

288 for(quatind = 0;quatind<4;quatind++){

289 fsw->att-quatrmeas [quatind] = fsw->att-quat-meas [quatind]/att-quat-meas-mag;

290 }

291

292 if(fsw->att-quat-meas [3] <0.0){

293 for (quatind = 0; quatind <4; quatind++){

294 fsw->attquat-meas [quatind] = -1*fsw->att._quatmeas [quatind];

295 }

296 }

297

298

299 return(0);

300 }

A.3.6 Inputs and Outputs of gnc-attitude-kf

157

Table A.7: Inputs to gnc-attitude-kf

GNC Analysis Variable Units Description Value comes from...

att-quat quat ECI to SBF this algorithm

rotation quater-

nion

body-rates rad/sec Spacecraft body this algorithm

rates about SBF

axes

Q-kf matrix Kalman Fil- this algorithm

ter estimate

covariance

k-kf n/a Constant design fswparam

parameter for

UKF

alpha-kf n/a Constant design fswparam

parameter for

UKF

beta-kf n/a Constant design fswparam

parameter for

UKF

W-kf matrix Kalman Filter fswparam

process noise

covariance

valid-sunvec-meas bool Valid sunvector gnc-TRIAD

measurement

flag

Continued on next page

158

Table A.7: Algorithm Inputs (continued)

GNC Analysis Variable Units Description Value comes from...

att-quat-meas quat Measured atti- gncTRIAD

tude quaternion

body-rates-meas rad/sec Measured body gnc-sensor-processing

rates

R-kf matrix Kalman Filter fswparam

sensor noise

covariance

cyc-period sec Length of tSat fswparam

GNC flight soft-

ware cycle

I kg-m2 Spacecraft iner- initializeifsw

tia matrix

Mitot N-m Total moment gnc-thrust-alloc

imparted on

spacecraft

Table A.8: Outputs of gncattitude-kf

GNC Analysis Variable Units Description Value goes to...

att-quat quat ECI to SBF attitude controller, this al-

rotation quater- gorithm

nion

Continued on next page

159

Table A.8: Algorithm Outputs (continued)

GNC Analysis Variable Units Description Value goes to...

body-rates rad/sec Spacecraft body attitude controller, this al-

rates about SBF gorithm

axes

Q-kf matrix Kalman Fil- this algorithm

ter estimate

covariance

A.3.7 Pseudocode for gncattitudekf

1. Define n = 7 as the dimension of the state space for this system. The state vector is

the following, where the first four elements represent the attitude quaternion of the

spacecraft, and the next three elements represent the spacecraft body rates.

q2

q3

q4

wix

WY

Wz

(A.40)

(A.41)

160

2. Form 2n + 1 sigma points xki according to the following logic:

X (0) =

for i [1,n]

for i E [1, n]

(A.42)

(A.43)

(A.44)

Here, ((n + A)Q)[represents the Zth column of the matrix ((n + A)Q)T, found

through a Cholesky decomposition. Q represents the estimate covariance. The Cholesky

decomposition may be done as follows, or in a more efficient way if one is known. The

following steps represent the current implementation of the modified-cholesky helper

function in the tSat simulation.

* Define X = (f(n +A)Q)T.

decomposition.

. Set X0 ,o = 1Qo o.

This is what we are solving for in the Cholesky

Where the subscripts denote the element in the zeroth row

and the zeroth column of the matrix.

" Fori E [1,n-1]:

Qs~ = ,'

" For j 1, n - 1]:

j-1

X, Qjj -ZX
k=O

for i E [j + 1,1n-1]:

xj,=

j-1

- Z i,k X
k=O

(A.45)

(A.46)

(A.47)

(A.48)Aj~k)

* Multiply each element of the current X by the constant / + A to find X

161

W(= + (V (n+ A) Q) T

X+n= - (VI n + A)Q)T

(n + A)T. A is a combination of design parameters given by

A = a2(n + k) - n. (A.49)

a and k are read in from a config file and n = 7 is the length of the state vector

given in equation A.41.

3. Propagate each of the sigma points x(forward one filter timestep using a fourth-order

Runge-Kutta propagator. Assume the system dynamics to be the following:

4j= Qq (A.50)

4 -1 u) (A.51)

Where q is the ECI to SBF attitude quaternion, I is the inertia of the spacecraft about

the center of mass, w is a vector representing spacecraft body rates about SBF-X,

SBF-Y, and SBF-Z axes, and ' represents the total moment applied to the spacecraft

as calculated by GNC thrust allocation. Q is given by the following:

0 Wz -Wy WX

Q = Wz 0 WX WY (A.52)
JY _Wx 0 WZ

-WX -WY -W~z 0

The fourth-order Runge-Kutta propagator requires a helper function that returns the

instantaneous derivative of each of the system states based on the system dynamics.

In the tSat GNC simulation, this helper function is called d. It takes in a state as

represented by equation A.41 and returns the left hand side of equations A.50 and

162

A.51 based on that state.

Note about levitating testbed mode: The flight software must support a levitat-

ing testbed mode that will be used to run tests on an engineering model in the TSat

levitating testbed. In the testbed, spacecraft motion will be constrained to rotation

about the SBF-Z axis. Thus, in the levitating testbed mode, the d helper function

should set the SBF-X and SBF-Y components of the body-rate derivative W to zero

before returning the derivative. Thus, for the levitating testbed mode only, equa-

tion A.51 should effectively become:

[[0 0 1 *j-' (- & x I&)) (A.53)

A flight software configuration flag should be created to select between levitating

testbed and flight modes upon flight software initialization.

As in the case of Cholesy decomposition, the fourth-order Runge-Kutta propagator may

be implemented by the most efficient method known, provided the system dynamics

given in equations A.50 and A.51 are used. The following steps represent the current

implementation of the propagate helper function in the tSat GNC simulation.

* Evaluate the derivative of the state represented by the sigma point K11 using the

d helper function, and define the constant k1 .

ki = (dt) x d(x 9) (A.54)

Where (dt) is the length of the filter timestep in seconds.

" Define a new intermediate state xist, as the Euler propagation of the original

state x i to a point half way through the filter timestep.

Xint,1 = X_ + 0.5k, (A.55)

163

" Find the derivative of the intermediate state xist,1, and define the constant k2.

k2 =(dt) x d(Xint,1) (A.56)

* Define another intermediate state Xint,2 as the Euler propagation of the original

state xdi, using the derivative of the first intermediate state, , to a

point half way through the filter timestep.

Xint,2 = X(i+ 0.5k2 (A.57)

* Find the derivative of the intermediate state Xint,2, and define the constant k3 .

k3 = (dt) x d(Xint,2) (A.58)

* Define a third intermediate state Xint,3 as the Euler propagation of the original

state xki, using the derivative of the second intermediate state, Xint,2,

this time through the full filter timestep.

Xint,3 =xdi + k3 (A.59)

* Find the derivative of the intermediate state Xint,3, and define the constant k4.

k4 =(dt) x d(Xint,3) (A.60)

* Define a final state Xint,4 in the following way.

Xint,4k + 2k 2+ 2k 3 + k4

6
(A.61)

* Normalize and properize the quaternion elements of Xint,4.

164

. Return the final state Xint,4 as the propagated sigma point xk.

Xk Xint,4 (A.62)

4. Use the propagated sigma points xk to approximate the filter estimate '4lk_1 and

covariance QkIk-1 just before the measurement update.

m

Wkl S (x (A.63)

Qk~k-1 - 5 W x k k-1)(Xk - Xklk-l)+W_1 (A.64)
j=1

where W, and W, are the unscented transform weights:

WA) = (A.65)
8 (n + A)

WA(0) A + (1 - 2 + 3) (A.66)
(n + A)

1
WCG) = WC) = (A.67)

S C 2(n + A)

and a and / are design parameters. n = 7 is the size of the state vector. In the current

implementation, the unscented transform weights are calculated each time through the

algorithm. However, the weights may be calculated manually and read in as config

values in the interest of conserving processor time. Wk_1 is the Kalman Filter process

noise covariance read in from a config value.

5. If a new valid measurement vector is ready from sensor processing: Update the filter

estimate and covariance with quaternion and body rate measurements using the dis-

crete Kalman Filter equations. The unscented transform is not necessary here since

165

the measurement is assumed to be linear.

(A.68)

(A.69)

Xkjk Xkjk-1 + Lk(yk - -k4k-l)

QkIk (I - Lk)QkIk-l(I - Lk)T + LkRkL T

Lk QkIk-1(Qklk-1 + Rk)- 1

Where

(A.70)

yk is the measurement vector, in the same format as the state vector of equation A.41.

Rk is the Kalman Filter sensor noise covariance read in from a config file.

Else: Do not perform the measurement update.

&kIk = kIk1

Qkjk = Qkk-1

(A.71)

(A.72)

6. Update flight software state attitude estimate and Kalman Filter covariance.

X =34k

Q =Qkjk

(A.73)

(A.74)

7. Normalize and properize the attitude quaternion estimate (First four elements of the

estimate vector).

q
||q||

If q4(scalar) < 0

q = -q (A.75)

166

A.3.8 TSATsim Implementation of gnc-attitude-kf

This section lists the TSat GNC analysis simulation implementation of gnc-attitude-kf.

1 /* gnc-attitudekf. cc

2 Implementation of an Unscented Kalman filter for estimating the

3 spacecraft attitude quaternion and body rates

4 Implemented for TSat ADCS analysis

5 Mark Van de Loo,

6 */

7

8

9 #include <stdio.h>

November 2013

10 ffinclude <math.h>

11

12 ffinclude "gnc-attitude-kf.h"

13 #include "custom-math h"

14

15 double d(double state [] , int i

16

17 int propagate (double state0 [7]

18

19

20

21

22

23

24

25

26

27

28

29

30

void modifiedchol (double Q[7] [7] ,

fswstate *fsw);

fswstate *fsw , double state4 [7]);

int n, double kdouble alpha, double beta,

double x-til [7][7]);

int gncattitude-kf(fswstate *fsw)

{

//form sigma points

int n = 7;

int num-sig-pts = 2*n+1;

double x-hat [7] = {0.0};

int stind = 0;

167

31 for (stind = 0; stind<n; stind++){

32 x-hat[stind] = 0.0;

33 }
34 x-hat [0] = fsw->att-quat [0];

35 x-hat [1] = fsw->att-quat [1];

36 x-hat [2] = fsw->att-quat [2];

37 x-hat [3] = fsw->att quat [3];

38 x-hat [4] = fsw->body-rates [0];

39 x-hat [5] = fsw->body-rates [1];

40 x-hat [6] = fsw->body-rates [2];

41

42 double xtil [7][7]= {0.0};

43

44 double sig-pts [7][15] = {0.0};

45

46 int i = 0;

47 for(stind = 0;stind<n; stind++){

48 for (i = 0;i<num-sig-pts; i++){

49 sig-pts [stind][i] = 0.0;

50 }

51 }
52

53 int initindi = 0;

54 int initind2 = 0;

55 for(initind=0;initind <7;initind++){

56 for (initind2 =0; initind2 <7; initind2++){

57 x-til [initind] [initind2] 0.0;

58 }

59 }
60

61 modified-chol(fsw->Q-kf ,n, fsw->k-kf , fsw->alpha-kf ,fsw->beta-kf x-til);

62

63 for (stind =0; stind<n; stind++){

64 for(i = 0;i<n;i++){

168

65 sig.pts [stind][i] = x.hat [stind I + x-til [stind][i I;

66 sig-pts [stind][i+n] = x hat [stind] - x-til [stind][i]

67 }
68 sig pts [stind] [14] = x-hat [stind 3;
69 }

70

71 //normalize and properize quaternion parts of each sigma pt

72 double quat-mag = 0.0;

73 int quatind = 0;

74 for (i =0; i <num-sig-pts ; i ++){
75 quat-mag = sqrt (pow(sigpts [0][i] ,2)+pow(sigpts [1] i] ,2)

76 +pow(sig-pts [2 [i],2)+pow(sig pts [3][i],2));

77 for(quatind = 0;quatind<4;quatind++){

78 sig-pts[quatind][i] = sig-pts [quatind][i]/quat-mag;

79 }
80

81 if(sig-pts [3][i]<0.0){

82 for (quatind =0; quatind <4;quatind++){

83 sig-pts [quatind][i] = -1.0*sig-pts [quatind][i];

84 }

85 }

86 }

87

88

89 //propagate each sigma point

90 double x-hat-bef[7] ={ 0.0 };

91 double x-hat-aft [7] = { 0.0 };

92 for (i=0;i<num-sig _pts ; i++){

93 for(stind = 0;stind<n;stind++){

94 x-hatbef [stind]= sig-pts [stind][i];

95 1
96 propagate(x-hat-bef fsw,x-hat-aft);

97 for(stind = 0;stind<n;stind++){

98 sig-pts [stind][i) = x-hat-aft [stind];

169

99 }
100 }

101

102 /normalize and properize quaternion parts of each sigma pt

103 for(i=O;i<num-sigpts ; i++){

104 quat-mag = sqrt (pow(sigpts [0] [i],2)+pow(sig-pts [1][i] ,2)

105 +pow(sigpts [2][i],2)+pow(sig_pts [3][i] ,2));

106 for (quatind =0; quatind <4; quatind++){

107 sig-pts[quatind][i] = sig-pts[quatind][i]/quat-mag;

108 }

109

110 if(sigpts [3][i]<0.0){

111 for (quatind =0; quatind <4; quatind++){

112 sig-pts[quatind][i] = -1.0*sig-pts[quatind][i];

113 }

114 }

115 }

116

117

118 //approximate estimate and covariance pre-measurement

119 double x-hat-pre [7] = {0.0};

120 double x-hat-post [7] = {0.0};

121 double Q-pre[7][7] = {0.0};

122 double Ws[15] = {0.0};

123 double Wc[15] = {0.0};

124 double lamb = 0. 0;

125

126 lamb (fsw->alpha-kf*fsw->alpha-kf*((double)n + fsw->k-kf) - (double) n);

127

128 for (i 0; i<num-sig-pts; i++){

129 Ws[i] = 1.0/(2.0*((double)n+lamb));

130 Wc[i] = 1.0/(2.0*((double)n+lamb));

131 Ws[14] = lamb/((double)n+lamb);

132 Wc[14] = lamb/ ((double)n+lamb) + (1.0-fsw->alpha-kf*fsw->alpha-kf + fsw->beta-kf);

170

133 }

134

135 for(stind = 0;stind<n;stind++){

136 x-hat-pre[stind] = 0.0;

137 for(i = 0; i<num-sig-pts; i++){

138 x-hat-pre [stind] = x-hat-pre[stind] + Ws[i]*sig-pts [stind][i];

139 }

140 }

141 int qrow = 0;

142 int qcol = 0;

143 double xdif [7] = {0.0};

144 for (qrow =0; qrow<n ; qrow++){

145 for(qcol = 0;qcol<n;qcol++){

146 Q-pre[qrow][qcol] = 0.0;

147 for(i = 0; i<num-sig-pts; i++){

148 for(stind = 0;stind<n;stind++){

149 xdif[stind] = sig-pts[stind][i] - x-hat-pre[stind];

150 }

151 Q-pre[qrow][qcol] = Q-pre[qrow][qcol] +Wc[i]*(xdif[qrow]*xdif[qcol]);

152 }
153 Q-pre[qrow][qcol] = (Q-pre[qrow][qcol]) + fsw->W-kf[qrow][qcol];

154 }

155 }

156

157

158 //measurement update

159 if (fsw->validsunvecrmeas){

160 //y = [quat-meas body -ratesineas]

161 double y[7] = {0.0};

162 for(stind 0;stind <4;stind++){

163 y[stind] fsw->att-quat-meas[stind];

164 }
165 for (stind 4; stind <7; stind++){
166 y[stind] fsw->body-rates-meas [stind -4];

171

167 }

168

169

170 //L = Q*(Q+R)^-1

171 double Q-plusR[7][7] = {0.0};

172 for(qrow = O;qrow<n;qrow++){

173 for(qcol = O;qcol<n;qcol++){

174 Q-plusR[qrow][qcol] = Q-pre[qrow][qcol] + fsw->R-kf[qrow][qcol];

175 }

176 }

177

178 double Q-plus-R-inv[7][7] = {0.0};

179 inv_7x7 (Q-plusR , QplusR-inv);

180

181 double L[7][7] = {0.0};

182 mult-7x7 (Q-pre , Q-plus-R-inv , L);

183

184 //x-hat-post x-hat-pre + L*(y - x-hat-pre)

185 double res[7] {0.0};

186 for(stind = 0;stind<n;stind++){

187 res [stind] = y[stind] - xhat-pre[stind];

188 }

189

190 double Lres [7] = {0.0};

191 mult_7x7_7x1 (L, res , Lres);

192

193 for(stind = 0;stind<n;stind++){

194 x-hat-post [stind] = x-hat-pre[stind] + Lres[stind];

195 }

196

197

198 //Q-post = (I-L)*Q-pre*(I-L)' + L*R*L'

199 double IKminus-L[7][7] = {0.0};

200 for(qrow = 0;qrow<n;qrow++){

172

for (qcol = 0;

if(qrow -

ILminusL

}
else{

I-minusL

}
}

qcol<n; qcol++){

qcol){

[qrow][qcol] 1.0-L[qrow] [qcol];

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

}

double IminusLT[7][7] = {0.0};

transp_7x7 (I-minusL , IminusL-T);

double terml-first [7] [7] = {0.0};

mult-7x7(I-minusL , Qpre , terml -first);

double termlall[7][7] = {0.0};

mult_7x7(terml-first , I_minusLT term1_all);

double L-T[7][7] = {0.0};

transp_7x7(L,LT);

double term2_first [7] [7] = {0.0};

mult_7x7(L, fsw->R-kf , term2_first);

double term2_all[7][7] = {0.0};

mult_7x7 (term2-first LT, term2_all);

for (qrow = 0;qrow<n;qrow++){

for(qcol = 0;qcol<n;qcol++){

fsw->Q-kf[qrow][qcol] = terml-all[qrow][qcol] + term2_all[qrow][qcol];

}
}

I

173

[qrow][qcol] = 0.0-L[qrow][qcol];

235 else{ //simply propagate if we can't see the sun

236 for(stind = 0;stind<n; stind++){

237 x-hatpost [stind] = x-hat-pre [stind];

238 }
239 for(qrow = 0;qrow<n;qrow++){

240 for(qcol = 0;qcol<n;qcol++){

241 fsw->Q-kf[qrow] [qcol] = Qpre[qrow] [qcol];

242 }

243 }

244 }

245

246

247 //Transfer x-hat back to fsw variables

248 for (quatind = 0;quatind<4;quatind++){

249 fsw->att-quat [quatind] = x-hat-post [quatind];

250 }
251 //Normalize and properize

252 double att-quat-mag = 0.0;

253 att-quat-mag sqrt (pow(fsw->attquat [0] ,2)+pow(fsw->att-quat [1] ,2)

254 +pow(fsw->att-quat [2] ,2)+pow(fsw->att-quat [3] ,2));

255 for (quatind 0; quatind <4; quatind++){

256 fsw->att-quat [quatind] = fsw->attquat [quatind]/ att-quat-mag;

257 }

258 if(fsw->att_quat [3]<0.0){

259 for (quatind =0; quatind <4; quatind++){

260 fsw->attquat [quatind] = -1*fsw->att-quat [quatind];

261 }

262 }

263

264 int wind = 0;

265 for(wind = 0; wind <3;wind++){

266 fsw->body-rates [wind] = x-hat-post [wind +4];

267 }

268

174

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

statel [7]

state2 [7]

state3 [7]

kI [7] =

k2 [7] =

k3 [7]

k4 [7]

0;

i<N;

i<N;

i<N;

i <N;

(i =0;

(i =0;

(i=0;

(i =0;

{
{
{

{ 0.0

{ 0.0

{ 0.0

0.0 }
0.0 }
0.0 }
0.0 } /* for Runge-Kutta */

0.0;

- 0.5;

= 1.0;

++)

i++)

i++)

i++)

state[i = state0[i]+0.5*(kl[i]=dt*d(state0 ,i

state2i= state0 [i]+0.5*(k2[i]dt*d(statel,

state3[i= state i]+ (k3[i]=dt*d(state2

k4[i] =dt *d (state3 , i , fsw) ;

for (i=0; i<N; i++) state4[i] = stateO[i]+(kl[i]+2*k2[i]+2*k3[i]+k4[i])/6.0;

175

return (0);

}

int propagate(double state0 [7] fswstate *fsw,double state4 [7])

{
double dt = fsw->cyc-period;

int N= 7;

double

double

double

double

double

double

double

int i

double no-step =

double half-step

double full-step

for

for

for

for

,fsw));

i, fsw));

i , fsw));

//normalize and properize quaternion

double mag = 0.0;

mag = sqrt (state4 [0]* state4 [0] + state4 [1]* state4 [1] + state4 [2]* state4 [2] +

state4[3]*state4 [3]);

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

quatind <4; quatind++){

= state4 [quatind]/mag;

if(state4 [3] <0.0){

for (quatind =0; quatind <4; quatind++){

state4 [quatind] = -1*state4 [quatind];

}

}

return (0);

double d(double state []

{

//
if(

(
(
(

int i , fswstate *fsw)

Quiaternion time derivative from Wertz

i 0) return(0.5*((state [1]* state [6]) - (state [2]* state [5]) +

(state [3]* state [4])));

i 1) return(0.5*((- state [0]* state [6])+(state [2]* state [4])+(state [3]* state [5])))

i 2) return(0.5*((state [0]* state [5]) -(state [1]* state [4])+(state [3]* state [6])));

i 3) return(0.5*((- state [0]* state [4]) -(state [1]* state [5]) -(state [2]* state [6])))

if (i==4jIi==5ji==6){

176

int quatind = 0;

for (quatind 0;

state4 [quatind]

}

}

if

if

if

//Angular rates time derivative from physics: w-dot = I^-1*(M-Tot

//body-rates X H)

double body-rates [3] = {0.0};

int wind = 0;

for(wind = 0; wind <3;wind++){

body-rates [wind] = state [wind+4];

}

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

= {0.0};

(fsw->I , body-rates ,H);

double ILinv [3][3] =

inv_3x3(fsw->I , I vin)

{0.0};

double wXH [3] = {0.0};

cross (body-rates H,wDX-H);

double M-minus-w-XH [3] =

vec _minus (fsw->M-tot , wXH

{0.0};

, M-minuswXH);

double w-dot [3] = {0.0};

mult_3x3_3x1 (I-inv , M-minus_w_X_H, w-dot);

(i

(i

(i

4)

5)

6)

return (w-dot

return (w-dot

return (w-dot

[0]

[1]

[2]

177

double H[3]

mult _3x3_3x1

if

if

if

}

return(9999); //ERROR

371 }

372

373

374

375

376

377 void modified-chol(double Q[7][7] , int n, double k,double alpha, double beta,

378 double x-til [7] [7])

379 {
380 int row2 = 0;

381 int col2 = 0;

382 for(row2 = 0;row2<n;row2++){

383 for(col2 = 0;col2<n;col2++){

384 x-til [row2][col2] = 0.0;

385 }

386 }

387

388 x-til [0] 0] = sqrt(Q[0] [0]);

389

390 int rowl = 0;

391 for(rowl = 1; rowl<n; rowl++){

392 x-til [rowl][0] = (1/x-til [0][0])*Q[rowl] [0];

393 }
394

395 int col = 0;

396 for(col = 1;col<n;col++){

397 double sumi = 0. 0;

398 sumi 0. 0;

399 int k 0;

400 for(k 0;k<col;k++){

401 sum = sumi + (x-til [col][k]* x-t il [col][k])
402 }
403 x _t il [col][col] sqrt (Q[col][col] - sumi);

404 int row = 0;

178

405

406

407

408

409

410

411

412

413

414

415

416

417 int nind2 = 0;

418 double lamb = 0.0;

419 lamb = alpha*alpha*((double)n + k) - (double)n;

420 for(nindl 0;nindl<n;nindl++){

421 for (nind2 =0; nind2<n; nind2++){

422 xtil [nindl][nind2] = sqrt((double) n + lamb)*x-til [nindl][nind2];

423 }

424 }

425

426 }

A.4 Guidance

A.4.1 Pseudocode for gnc-guidance

The current implementation is extremely simple and is intended for ground testing. More

tasks will be added for the flight version.

1. Execute ground commands. (call fsw-gnd-cmd)

179

for(row = col+1; row<n;row++){

double sum2 = 0 . 0;
sum2 = 0 . 0;

int kI = 0;

for(kl = 0;kl<col;kl++){

sum2 = sum2 + x-til [row][kl]* x-til [col][kl];

}
x.til [row][col] = (1/(x-til [col][col]))*(Q[row][col] - sum2);

}

}

int nindi 0;

A.4.2 TSATsim implementation of gnc-guidance

This section lists the TSat GNC analysis simulation implementation of the algorithm. The

current implementation of this wrapper is for analysis and engineering model testbed testing.

It will have to be adjusted to take on more functionality for flight.

/* guc-guidance.cc

Sets modes, high level behavior for tSat gnc.

Written as part of TSat ADCS analysis

Mark Van de Loo, September 2013

#include

#include

<stdio .h>

<math.h>

#include " gnc -guidance . h"

int gnc-guidance(fswstate *fsw)

{

//execute ground commands

fsw-gnd-cmd (fsw);

return (0);

}

180

A.4.3 Inputs and Outputs of fsw-gnd-cmd

Table A.9: Inputs to fsw-gnd-cmd

GNC Analysis Variable Units Description Value comes from...

maxgnd-cmd int maximum fswparam

number of com-

mands that can

be sent in one

run of TSat

GNC sim

time sec fsw mission time tsat-gnc

ground-cmd-time sec time to execute fswcmd

a given ground

command

ground-cmd-executed bool flag, true if the this algorithm

corresponding

command has

been executed

ground-cmd-num int ID number of fswcmd

a given ground

command

ground-cmd-dubarg any Double ar- fswcmd

gument of a

given ground

command

Continued on next page

181

Table A.9: Algorithm Inputs (continued)

GNC Analysis Variable JjUnits Description Value comes from...

ground-cmd-intarg any Integer ar- fswcmd

gument of a

given ground

command

Table A.10: Outputs of fsw-gnd-cmd

GNC Analysis Variable Units Description Value goes to...

fsw state any flight soft- any flight software algo-

registry ware variable rithm

ground-cmd-executed bool execution flag this algorithm

for each ground

command

A.4.4 Pseudocode for fsw-gndcmd

1. For each of the command times read in from the fswcmd file:

* If the command time is greater than the current mission time and the command

has not been executed already: execute the code associated with the command's

ID number and arguments.

A.4.5 TSATsim Implementation of fsw-gnd-cmd

This section lists the TSat GNC analysis simulation implementation of fsw-gnd-cmd.

182

1 /* fswlgndcmd . c

2 Executes flight software ground commands

3 Written for TSat ADCS analysis

4 Mark Van de Loo, Spring 2013

5 */

6

7

8 #include <stdio.h>

9

10 #include "fsw-gnd-cmd.h"

11

12

13 int fsw-gnd-cmd(fswstate *fsw)

14 {
15 int index;

16 for (index = 0; index<fsw->max-gnd-cmd; index++){

17

18 if (fsw->time+fsw->eps>=fsw->ground-cmd-time [index] &&

19 fsw->ground cmd-executed [index]==0){

20

21 //Conunand #1: THRUST-LEVEL [thrusternumber] [thrus tlevel]

22 i f (fsw->ground-cmd-num [index] = 1){

23 fsw->thr-cmd[fsw->ground-cmdintarg [index]] = fsw->ground-cmd-dubarg1 [index];

24 print f ("%s -%i ..%s..%.0 f%s _%.3 f .. %s .. \n" ," Thruster" , fsw->groundcmdintarg [index]

25 ," Commanded- to" ,100* fsw->ground-cmddubargl [index] ,"%.at" ,fsw->time ,

26 "seconds.");

27 fsw->ground-cmd-executed [index] = 1;

28 }

29

30 //Command #2: ATT-QUAT[q][ql][q2][q3(scalar)]

31 if (fsw->ground-cmd-num [index] = 2){

32 fsw->attquat-cmd [0] = fsw->ground-cmd-dubargl [index];

33 fsw->attquatcmd [1] = fsw->ground-cmd-dubarg2 [index];

34 fsw->att_quatcmd [2] = fsw->ground-cmd-dubarg3 [index];

183

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 }

A.5 Attitude Control Law

A.5.1 Pseudocode for gnc-attitude-cl

This pseudocode represents the current implementation of the attitude control law wrapper.

1. If there is a valid sunvector measurement available from sensor processing this cycle:

call gnctorque-cmd.

Else: Set the torque command to zero.

A.5.2 TSATsim implementation of gnc-attitude-cl

This section lists the TSat GNC analysis simulation implementation of the algorithm.

184

fsw->attquat_cmd[3] = fsw->groundcmd-dubarg4 [index];

printf ("%s-%.6f-%s-%.6 f %s._%.6f %s_%.6f _\n" ," Attitude..quaternion-commanded-to:

," ," ,fsw->at t _quat -cmd [1]

," ," , fsw->attquatcmd [2]

," ," , fsw->attquat_cmd [3]

fsw->ground-cmd-executed [index] = 1;

}

}
}

return (0);

1 /* gnc-attitude-cl. c

2 Attitude Control Law

3 Written as part of TSat ADCS analysis

4 Mark Van de Loo, September 2013

5 */

6

7

8 #include <stdio . h>

9 #include <math.h>

10

11 #include "gnc-attitudecl .h"

12

13

14 int gncattitude-cl(fswstate *fsw)

15 {

16

17 /* if (fsw->valid-sunvec-meas){ */

18 //Rin control law to find torque command

19 gnctorque-cmd (fsw);

20 /* } */

21 /* else{ */

22 /* int i; */

23 /* for(i 0; i<3; i++){ */

24 /* fsw->torquecmd[i] = 0.0; */

25 /* } */

26 /* } */
27

28 return(0);

29 }

A.5.3 Inputs and Outputs of gncitorque-cmd

185

Table A. 11: Inputs to gnc-torque-cmd

GNC Analysis Variable Units Description Value comes from...

att-quat quat Estimated ECI gnc-attitudekf

to SBF rotation

quaternion

body-rates rad/sec Estimated gnc-attitude-kf

spacecraft body

rates about SBF

axes

att-quat-cmd quat Commanded gnc-guidance (TBR)

ECI to SBF

rotation quater-

nion

body-rates-cmd rad/sec Commanded gnc-guidance (TBR)

spacecraft body

rates about SBF

axes

cyc-period sec Length of tSat fswparam

GNC flight soft-

ware cycle

I kg-M2 Spacecraft iner- initializeifsw

tia matrix

K-p n/a Proportional fswparam

control gain for

torque controller

Continued on next page

186

Table A.11: Algorithm Inputs (continued)

GNC Analysis Variable Units Description Value comes from...

KJ n/a Integral control fswparam

gain for torque

controller

K-d n/a Derivative con- fswparam

trol gain for

torque controller

Table A.12: Outputs of gnctorque-cmd

GNC Analysis Variable Units Description Value goes to...

torque-cmd N-m Total com- gnc-cmd-prep

manded actua-

tor torque

A.5.4 Pseudocode for gnc-torque-cmd

1. Calculate the angular body rate error.

Werr = West - Wcmd (A.76)

w' 8 t is the estimated body rate vector from gnc-attitudekf, and W ';d is the commanded

body rate vector from gnc-guidance (TBR).

187

2. Calculate the attitude quaternion error.

qerr = q* 0 qcmd (A.77)

Here, q* is the quaternion conjugate of the estimated attitude quaternion, and qcmd is

the commanded attitude quaternion from gnc-guidance (TBR). The symbol 0 denotes

quaternion multiplication, and thus qerr represents the rotation from the estimated

attitude to the commanded attitude.

3. Normalize and properize the error quaternion.

| err
qerr -qerr

If qerr,4(scalar) < 0

qerr = -qerr

4. Calculate the torque command with the PID controller.

Tcmd (x 1w - 2Kqerr,vec - 2Kiqerr,vec(At) -KdWr (A.78)

Here W' is a vector of the spacecraft body rates, I is the spacecraft inertia, and x

denotes a cross product. Kp, Ki and Kd are the controller gains, W'$rr is the rate error

calculated in step 1, and qerr,vec is the vector part of the error quaternion that was

calculated in step 2. (At) is the TSat control cycle period.

A.5.5 TSATsim Implementation of gncitorque-cmd

This section lists the TSat GNC analysis simulation implementation of the algorithm.

/* gictorquecind . cc

188

PID controller that calculates a commanded torque to be sent to

thrusters or torque coils.

Implemented for TSat ADCS analysis

Mark Van de Loo, September 2013

#include <stdio .h>

#include <math.h>

#include "gnctorque-cmd.h"

#include "custom-math. h"

int gnctorque-cmd (fswstate *fsw)

{

//

//Calculate angular rate error

double w-err [3];

int ind;

for(ind = 0; ind<3; ind++){

w-err [ind] fsw->body-rates [id] - fsw->bodyrates-cmd [ind];

}

//Calculate quaternion error

double q-err [4];

double att-quatcmd-conj [4];

//att-quat-conj = fsw->att-quat*

quat-conj (fsw->att-quat cmd , attquatcmd-conj);

189

28

29

30

31

32

33

34

35

//q-err = att-quatcmd..conj (*) fsw->att _quat

mult-quat (attquatcmd-conj , fsw->at tquat , q-err);

//Normalize and properize q-err

double q-err-mag;

q-errmag = sqrt (pow(q-err [0] ,2)+pow(q-err [1] ,2)

+pow(q-err [2],2)+pow(q-err [3] ,2));

int quatind;

for (quatind =0; quatind <4; quatind++){

q-err [quatind] q.err [quatind]/ qerr-mag;

}

if (q-err [3] <0.0){

for (quatind =0; quatind <4; quatind++){

q-err [quatind] = -1*q-err [quatind];

}
}

//Calculate gyroscopic coupling term

double gycouple [3];

double H[3]; //spacecraft angular momentum

//H = J*w

mult-3x3-3xl (fsw->I , fsw-> body-rates ,H);

//gycouple = cross(w,H)

cross (fsw->bodyrates ,H, gycouple);

//calculate integrand

int intind;

190

70 for (intind =0; intind <3;intind++){

71 fsw->integ-term[intind] = fsw->integ-term[intind] + 2*q-err [intind]*fsw->cyc-period;

72 if(fsw->integ-term[intind] > 100){

73 fsw->integ-term [intind] = 100;

74 }

75 }
76

77 //Assermble control law , calculate torque command

78 fsw->torque-cmd [0] = gycouple [0] - (fsw->K-p*2* q-err [0]) -

79 (fsw->K-i*fsw->integ-term [0]) - (fsw->K-d*w-err [0]);

80 fsw->torque-cmd [1] = gycouple [1] - (fsw->K-p*2* q-err [1]) -

81 (fsw->K-i*fsw->integ-term [1]) - (fsw->K-d*w-err [1]);

82 fsw->torque-cmd [2] = gycouple [2] - (fsw->K-p*2* q-err [2]) -

83 (fsw->K-i*fsw->integ-term [2]) - (fsw->K-d*w-err [2]);

84

85 return(0);

86 }

A.6 Command Preparation

A.6.1 Pseudocode for gnc-cmd-prep

The current implementation of this wrapper is for analysis and engineering model testbed

testing. It will have to be adjusted for flight. In particular, the current implementation does

not consider the presence of magnetorquers.

1. Run the thruster allocation algorithm. (call gnc-thrust-alloc)

2. Add up the total moment produced by the spacecraft actuators. For the testbed

configuration, the total moment is equal to the moment produced by the thrusters.

A0t = Tthr (A.79)

191

A.6.2 TSATsim implementation of gnc-cmd-prep

This section lists the TSat GNC analysis simulation implementation of the algorithm. The

current implementation of this wrapper is for analysis and engineering model testbed testing.

It will be adjusted for flight.

1 /* gnc-cmd-prep. c

2 Command preparation , includes control allocation , etc.

3 Written as part of TSat ADCS analysis

4 Mark Van de Loo, September 2013

5 */

6

7

8 #include <stdio.h>

9 #include <math.h>

10

11 #include "gnc-cmd-prep. h"

12

13

14 int gnc-cmd-prep (fswst ate *fsw)

15 {
16

17 //Run thrust allocation

18 gnc-thrust-alloc (fsw);

19

20 int j;

21 for (j 0;j <3;j++){

22 fsw->M.tot [j = fsw->torque-thr [j);

23 //'IODO: Update to include all torques , and update calculation of

24 //torque-actual to be more accurate.

25 }

26

27 return(0);

192

28 }

A.6.3 Inputs and Outputs of gncithrustalloc

Table A.13: Inputs to gncfthrust-alloc

GNC Analysis Variable Units Description Value comes from...

num-thr n/a Number of fswparam

thrusters on the

spacecraft

torque-cmd N-m Torque com- gnctorque-cmd

manded by

the attitude

controller in

CMF

thralloc-tol N-m Tolerance on fswparam

thrust allocation

error

thr-alloc-maxiter n/a Maximum num- fswparam

ber of iterations

allowed during

thrust allocation

search

Continued on next page

193

Table A.13: Algorithm Inputs (continued)

GNC Analysis Variable Units Description Value comes from...

thritorque-uvecs matrix Matrix with fswparam

each row con-

taining a unit

vector in the

direction of the

torque (CMF)

applied by the

thruster corre-

sponding to the

row number

thr-torque-mag N-m Vector contain- fswparam

ing the magni-

tudes of torques

applied by each

thruster running

at full throttle

194

Table A. 14: Outputs of gnc-thrust alloc

GNC Analysis Variable Units Description Value goes to...

thr-cmd % Commanded thruster driver

thrust level for

each thruster as

a fraction of full

throttle

torque-actual N-m Predicted actual gnc-attitudekf

torque vector

(CMF) applied

by the thrusters

A.6.4 Pseudocode for gncithrust-alloc

1. Initialize the variable that holds the actual commanded thruster torque magnitudes

for each thruster (thr).

Tthr = 0.0 (A.80)

2. Initialize the variable that holds the actual commanded torque vector.

Tactual = 0.0

3. Set error vector equal to the torque command.

e = Tcmd

195

(A.81)

(A.82)

4. Check whether the norm of the error vector is greater than the tolerance threshold and

the current iteration is less than the maximum number of iterations. If yes, continue

with step 5. If no, go to step 10.

5. Project the error vector along each of the available thruster torque vectors. Select the

thruster with the largest projected magnitude and note that thruster's id along with

the projected magnitude.

" Initialize the largest projected magnitude, pax = 0.0 and the selected thruster

to, taee = 99.

* Loop over all of the thrusters, and do the following for each thruster (thr).

p = e- Uthr (A.83)

If: P > Pmax

Pmax p (A.84)

tsel= thr (A.85)

Here, 'th, is the unit vector in the direction of the torque that can be applied by

the thruster (thr).

6. If there is no available control torque within 90 degrees of the error vector, t,,, will still

be equal to the initialized value tel = 99. If this is the case, log a fault (TBR). This

should never happen if thrusters can produce a torque in any direction.

7. Increment the thruster torque command of thruster (thr) by the projected magnitude

Pmax -

Tthr Tthr - Pmax (A.86)

196

8. Update the actual commanded torque, and compute a new error vector.

Tactual Tactual + PmaxUithr (A.87)

(A.88)e= Tcmd - Tactual

9. Update the iteration counter.

10. If the norm of the final error vector e is less than the tolerance threshold, continue to

the next step. Otherwise, throw a thrust allocation fault (TBR) and skip the remaining

steps.

11. Convert the commanded thruster torques to percentage values by scaling by the max-

imum torque magnitude. Do this for each thruster (thr).

(A.89)Tthr - Tthr
Tmax,thr

Here, T th.- is the thruster torque command for thruster (thr) and Tmax is the magnitude

of the torque that the thruster (thr) produces when running at full throttle.

12. If any of the fractional thruster torque commands Tthr are greater than 1, normalize all

of the torque commands by the largest command. This ensures that the actual torque

produced will be in the direction of the commanded torque, even if the magnitude is

less than desired.

If: any Tth, > 1

Thr - Tthr
max(Tth,)

for all thrusters (thr)

Where "max" denotes the maximum value over all the thrusters.

13. Send the thruster commands Tth, to the thruster driver. (TBR)

197

(A.90)

A.6.5 TSATsim Implementation of gncithrust-alloc

This section lists the TSat GNC analysis simulation implementation of the algorithm.

1 /* gnc-thrust-alloc . cc

2 Control allocation algorithm. Determines thruster levels that will

3 produce the desired torque.

4 Implemented for TSat ADCS analysis

5 Mark Van de Loo, October 2013

6 */

7

8

9 #include <stdio.h>

10 #include <math.h>

11

12 #include "gncthrust-alloc .h"

13 #include "custom-math.h"

14

15 void project(double err-vec[3], fswstate *fsw,int *thruster ,double *amount);

16

17 int gncthrustalloc (fswstate *fsw)

18 {

19 double err [3];

20 double torque-actual [3];

21 double thr-trq-cmd [fsw->num-thr];

22

23 int thrind;

24 for(thrind = 0; thrind<fsw->num-thr; thrind++){

25 thr-trq-cmd [thrind] = 0.0;

26 }

27

28 //make initial error equal to entire torque conunand

29 int j ;

30 for(j=0;j <3;j++){

198

31 err [j] fsw->torque-cmd [j];

32 }

33

34 // printf("%s %f \n" ," err: ",err [0]

35

36 //calculate magnitude of error

37 double norm-err;

38 norm-err = sqrt (pow(err [0],2)+pow(err [1],2)+pow(err [2] ,2));

39

40 // printf("%s %f \n","NOIR ERR: ",normn.err);

41

42 int 1;

43 for (I=0;1 <3; 1++){

44 torque-actual[l] = 0.0;

45 }

46

47

48 int iter = 0;

49 int thruster;

50 double amount;

51 //loop until error is within tolerance or until max iter is reached

52 while((norm-err > fsw->thr-alloc-tol) && (iter < fsw->thr-alloc-maxiter)).{

53 //project error along each of the available torque vectors , choose

54 //thruster that produces the torque closest to the direction of

55 //the error , scale according to projection

56 project(err ,fsw,&thruster , &amount);

57

58 //Thr 99 event - no available control torque within 90 degrees of desired

59 if(thruster > fsw->num-thr){

60 printf("%s-\n" ,"THRUSTER- 99JEVENT");

61 break;

62 }

63

64 //add prescribed thrust to the total thrust command vector

199

65 thr-trq-cmd [thruster] thr-trq-cmd [thruster] + amount;

66

67 //update actual commanded torque and error

68 int k;

69 for (k=0;k<3;k++){

70 torque-actual[k] = torque-actual[k] +

71 amount*fsw->thr -torque uvecs [thruster] [k];

72 err [k] = fsw->torque-cmd[k] - torque-actual[k];

73 }
74

75 //calculate magnitude of error

76 norm-err = sqrt (pow(err [0] ,2) +pow(err [1] ,2)+pow(err [2] ,2));

77

78 //update iteration counter

79 iter = iter+1;

80

81 }

82

83 // print f("%s %i \n" ,"THUSTER ALLOCATRON ITER: ",iter);

84

85 if(iter - fsw->thr-alloc-maxiter){

86 printf ("%s.\n" ,"THRUSTER.ALLOCATIONJvIAX.ITER");

87 }

88

89 if(norm-err < fsw->thr-alloc tol){

90 //scale thruster torque commands by maximum torque magnitude to produce a

91 //percentage value for fsw->thrcmd.

92 int thr;

93 double maxcmd;

94 maxcmd 1. 0;

95 for(thr 0; thr<fsw->num-thr; thr++){

96 fsw->thr-cmd [thr] = thr-trq-cmd [thr]fsw->thr-torque-mag [thr);

97 if(fsw->thr-cmd[thr] > maxcmd){

98 maxcmd = fsw->thr-cmd[thr];

200

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

//update estimated thruster torque for

int q;

int ind;

for(ind = 0; ind<3; ind++){

fsw->torque-thr[ind] = 0.0;

use in attitude determination

}
for(q = 0;q<fsw->num-thr;q++){

for(ind = 0; ind<3; ind++){

fsw->torque-thr [ind] = fsw->torque-thr [ind] + fsw->thr-cmd[q]*fsw->thr-torque-mag[

}

return (0);

}

201

}
}

if(maxcmd > (1.0 + fsw->eps)){

int r;

for (r=0;r<fsw->num-thr; r++){

fsw->thrcnd [r] = fsw->thr-cmd [r]/maxcmd;

}
}

}
else{

int r;

for (r=0;r<fsw->numthr; r++){

fsw->thr-cmd[r] = 0.0;

}
p r in t f ("%s _%f -\n" , "THRUST.ALLOCATION-FAULT, -norm err-=-" , norm -err);

}

133

134 void project (double err-vec [3] , fswstate

135 {

136 double proj;

137 double proj-temp;

138

*fsw ,int *thruster ,double *amount)

int thr ;

139

140 proj 0.0;

141 thr 99;

142

143 int i;

144 for (i =0; i<fsw->num-thr; i++){

145 dot (err.vec , fsw->thrtorqueuvecs [i],&proj-temp);

146 if(proj-temp > proj){

147

148

149

proj proj-temp;

thr i;

}

150 }

151

152 *amount = proj;

153 *thruster = thr;

154

155 }

A.7 ADCS Flight Software Initialization

A.7.1 Listing of read-fswcmd (from TSATsim)

1 /* read-fswcmd . cc

2 Reads fswcmd file containing fsw ground commands

202

3 Written for TSat ADCS analysis

4 Mark Van de Loo, Spring 2013

5 */

6

7

8 #include <stdio.h>

9 #include <string.h>

10

11 #include "read-fswcmd. h"

12 #include " initialize-fsw .h"

13

14

15

16 int read-fswcmd(fswstate *fsw)

17 {
18

19 char path[200] , file [50];

20 strcpy(path, fsw->inputpath);

21 strcpy(file , "/fswcmd");

22 strcat(path, file);

23 FILE *fp;

24 fp=fopen(path, "r");

25

26

27 char temp-var [100];

28 int temp-vali , temp.vali2;

29 double temp-valf, temp-valf2 , temp-valf3 , temp-valf4 , temp-valf5;

30

31 temp-vali 0;

32 temp-valf 0;

33 temp-vali2 0;

34 temp-valf2 0;

35 temp-valf3 0;

36 temp-valf4 0;

203

37 temp-valf5 = 0;

38

39 int ind 0;

40

41 int done 0;

42

43 while (done==0){

44 if(fscanf(fp,%%, tempvar , &temp-valf, &temp-vali

45 &temp-vali2, &temp-valf2, &temp.valf3, &temp-valf4, &temp-valf5)==EOF){

46 done = 1;

47 return(0);

48 }

49

50 (*fsw).groundcmd-time[ind] = temp-valf;

51 (*fsw).ground-cmd-num[ind] = temp-vali;

52 (*fsw).ground-cmd.intarg [ind] temp-vali2;

53 (* fsw) .ground-cmd-dubarg1 [ind] temp-valf2;

54 (*fsw).ground-cmd-dubarg2[ind] temp-valf3;

55 (* fsw). ground-cmd-dubarg3 [ind] temp-valf4;

56 (*fsw).ground-cmd-dubarg4[ind] temp-valf5;

57

58 ind ++;

59

60 temp-vali = 0;

61 temp-valf = 0;

62 tempvali2 = 0;

63 temp-valf2 = 0;

64 temp-valf3 = 0;

65 temp-valf4 = 0;

66 temp-valf5 = 0;

67

68

69 }

70

204

fclose(fp);

return (0);

}

A.7.2 Sample fswcmd file

1 thr-0_on

2 thr_1-on

3 thr_2_on

4 thr_3_on

5

6 att-quat

90000

90000

90000

90000

300

1

1

1

1

2

0

1

2

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0.254290931636596

0

0

0

0

0.254290931636596

-0.888675218932228 0.284479523745629

8 att-quat 300000 2 0 0.046940049092611 -0.35654507094671

0.766683976609875 0.531853291974819

A.8 FSW State Variable Data Structure

This section contains a listing of initializeqfsw.h, which defines the fsw state variable data

structure. Variable descriptions and units are given in the comments.

#ifdef __cplusplus

extern "C" {

#endif

#ifndef INITIALIZEFSWH

#define INITIALIZE-FSW-H

205

71

72

73

74

7

1

2

3

4

5

6

7

8 #include <stdio .h>

9

10

11 typedef struct {

12 const char * inputpath; //path to input file directory

13

14 double eps;//fsw epsilon (for double comparisons etc.)

15

16 int time-cntr ; //fsw integer time counter - incremented once for each

17 //fsw cycle

18 double time;//fsw time (sec)

19 double thr-cmd[8];//Cominanded thrust level for each thruster as a

20 //fraction - 0.0=off to 1.0=full throttle

21

22 int numthr; //number of thrusters onboard spacecraft

23 double cyc-period;// length of acs fsw cycle (sec)

24

25 int max-gnd-cmd; //maximum number of ground

26 //commands. Need to update size

27 //of all ground-cmd variables if

28 //you update this!!

29 double ground-cmd-time [1000]; //time to execute ground command (sec)

30 int ground-cmd-num[1000]; //command number of ground command

31 int ground-cmd-intarg [1000]; //integer argument of ground command

32 double ground-cmd-dubargl[1000];//double argument of ground command

33 double ground-cmd-dubarg2 [1000]; //double argument of ground command

34 double ground-cmd-dubarg3[1000]; //double argument of ground command

35 double ground-cmd-dubarg4 [1000]; //double argument of ground command

36 int ground-cmdexecuted [1000]; //flag 1=command already

37 //executed , 0=command not

38 /executed yet.

39

40 double B-magnetometer [3]; //Earth 's magnetic field as measured by the

206

41 //magnetometer (Gauss)

42 double B-actual[3]; //Unit vector containing the direction of Earth's magnetic field a

43 //IGRF slipherical harmonic model

44 double sunsensor-raw [6]; //[solarpanel] output value of sunsensor to

45 //nanomind (microAmps)

46 double gy-gyro-out [6];// gyro "gyro-out" register

47 double pos-eci [3];//ECI position (m)

48 double body-rates [3];//body rates as estimated (rad/sec)

49 double body-rates-cmd [3];//coinmanded (desired) body rates (rad/sec)

50 double att.quat [4]; //Transformation Quaternion from ECI to SBF

51 double att-quat-cmd [4];//Comnnanded (desired) Quaternion from ECI to SBF

52 int num-panels; //number of solar panels

53 double ss-thresh; //threshold value of the cosine reading above

54 //which a sun sensor is considered to see the sun.

55 double sunvec-meas [3]; //Unit vector containing the direction of

56 //the sun in SBF as computed by sun sensor

57 //data processing .

58 double sunvec-actual [3]; //Unit vector containing the calculated

59 //direction of the sun in ECI

60

61 double igrfg [14][14]; //igrf g coefficient from

62 //http://www.ingde.noaa.gov/IAGA/vod/igrf.html

63 double igrf-gdot [14][14]; //igrf gdot coefficient

64 double igrfh [14][14]; //igrf h coefficient

65 double igrf-hdot [14][14]; //igrf hdot coefficient

66 double jd-igrfdata; //julian date referring to the time IGRF data

67 //in the igrf input file was published

68 double jd; //Current Julian Date (days)

69 double jdO; //Initial Julian Date (days)

70 double PI; //3.14159265359

71 int valid sunvecmeas; //binary flag =1 if there is a valid

72 //sunsensor measurement , =0 otherwise.

73 double I [3] [3]; //spacecraft inertia matrix (kg*m^2)

74 double K-p; //proportional control gain for torque control law

207

double KAi; //integral control gain for torque control law

double K-d; //derivative control gain for torque control law

double integ-term [3]; //integral term in control law

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

//torque commanded by attitude controller in

//CMF (N*m)

double thr-alloc-tol ; //tolerance on thrust allocation error (N*m)

int thr-alloc-maxiter ; //maximum iterations allowed during thrust allocation

double thr-torque-uvecs [8] [3]; //matrix with each row containg a unit vector

//in the direction of the torque

//applied by the corresponding thruster (CMF).

double thr-torque-mag [8]; // magnitudes of torques applied by each

//thruster running at full throttle

// (N*m) CMF

90 double torque-thr [3]; //predicted actual torque applied by

91 //thrusters in CMF (N*m)

92 double max-thrust; //thrust produced by a single thruster running at

93 //full throttle. (Newtons)

94 double M-tot [3]; //Total moment applied to spacecraft by actuators

95 //and disturbances. (N*m)

96 double Q-kf[7][7]; //Kalman filter estimate covariance

97 double Wkf [7] [7] ; //Kalman filter process noise covariance

98 double R-kf [7] [7] ; //Kalman filter sensor noise covariance

99 double body-rates-meas [3];//body rates measured by the gyros (rad/sec)

100 double att-quat-meas [4];//ECI to SBF attitude quaternion measured by the

//gncTRIAD algorithm

int use-attitude-kf;//1 = use KF, 0 = just treat measurements

//as truth.

double kkf;//k value for UKF

double alpha-kf;//k value for UKEF

double betakf;//k value for UKF

int kf-version ;// 1 = normal, 2 = complicated

double sig-pts [7][14];

208

double torque-cmd [3];

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

#ifdef

}

#endif

__cplusplus

} fswstate;

void initialize-fsw (fswstate*)

#endif

209

Appendix B

Simulation Truth State Data

Structure

The truth state data structure from the truth side of the TSATsim high fidelity simulation is

defined in initialize-rw.h, listed here. The comments in the file contain variable descriptions

and units.

1 #ifndef INITIALIZERW-H

2 #define INITIALIZERW-H

3

4 #include <stdio .h>

5

6 typedef struct{

7 static const double eps = le-12;

8

9 int time-cntr ;//integer time counter

10 double time; //realworld time (sec)

11 double dt ; //time increment since

incremented with each sim step

last time through main loop (sec)

12 double time Aast;// realworld time of last run through main loop

13 double pos-eci

14 double vel-eci

[3]; //ECI position (in)

[3]; //ECI velocity (im)

210

(sec)

body-rates [3];//body rates (rad/sec)

att-quat [4]; //Transformation Quaternion from ECI to SBF

m;//total spacecraft mass (kg)

I [3][3]; //spacecraft inertia matrix (kg*m^2)

cm-loc [3]; //location of spacecraft center of mass in SBF (m)

side-length;//length of a side of the cube, used for aero

//calcs (m)

H [3];//angular momentum of spacecraft (kg*m^2/s)

M-tot [3]; //suim of all moments acting on spacecraft (N*m)

double

double

double

double

double

double

double

double

double

double gy-alar

double gy-gyr

double M-thr

double F-thr

double thr-ma

double M-coil

F-pin

M-pin

M-dist

F-dist

F-grav

M-grav

F-aero

M-aero

[6];//gyro "new-data" register

m [6];// gyro "alarm" register

0-out [6];// gyro "gyro-out" register

[8][3];// [thruster][x/y/z] Moment produced by each

// thruster (N*m)

[8][3];//[thruster][x/y/z] Force produced by each

// thruster (N)

g [8];//Magnitude of the force produced by each

//thruster (N)

[4] [3]; // [coil] [x/y/z] moment produced by each torque

//coil (N*m)

[3]; // Force applied to spacecraft by testbed pin (N)

[3]; // Moment applied to spacecraft by testbed pin (N*m)

[3]; // Moment applied to spacecraft by disturbances

// (N*M) ECI

[3]; // Force applied to spacecraft by disturbances (N)

[3]; // Force applied to spacecraft by gravity (N) ECI

[3]; / Moment applied to spacecraft by gravity (N) ECI

[3];// Force applied to spacecraft by aero drag (N) ECI

[3];// Moment applied to spacecraft by aero drag (N) E(

E

I

CI

gy-internal-sample-period; //Internal sample period of gyros (sec)

gy-noiserms ; //RMS value of gyro noise (rad/sec)

int gy-time-cntr-last [6]; //Time counter value of last gyro update

double gy-rate -register [6];//TBD

211

gynew-data

double

double

double

double

double

double

double

double

double

double

47

48

int num-gyros;//number of gyros

int num-thr;//number of thrusters

int num-panels; //number of solar panels

52 double thr-loc [8][3]; //[thruster][x/y/z] location of each thruster

//in SBF (in)

double max-thrust ; //magnitude of maximum thrust in (N)

double numcoil; //number of torque coils

double dry-mass;//dry mass of spacecraft (kg)

double mass-fuel;//mnass of fuel (kg)

double sbf_2-gyro [6] [3] [3]; //[gyro] [rows] [columns] transformation

//matrix from SBF to gyro frame

double sbf_2-panel [6] [3] [3]; //[solarpanel] [rows] [columns] transformation

//matrix from SBF to solar panel frame

double sbf_2.thr [8] [3] [3]; //[thruster] [rows] [columns]

//transformation matrix from SBF to

//thruster frame

double sbf_2-magnetometer [3] [3]; // [rows] [columns]

//transformation matrix from SBF to

//magnetometer frame

double mu;//gravitational parameter (m^3/sec ^2)

double J2;//J2 gravity coeff

G; //gravitational constant (ni-k-s units)

Me;//mass of the earth (kg)

Re;//radius of the earth (in)

pin-loc [3]; //location of the testbed pi

Cd;//drag coefficient

rho-atm; // density of the atmosphere (kg

wearth; //angular velocity of the earth

ii in sbf (m)

/n^3)

(rad/sec)

double F-actuators [3]; //total force applied by spacecraft actuators

//(N) in SBF

double M-actuators [3]; // total moment applied by spacecraft

// actuators (N*mu) in SBF

double F-environment [3]; //total force applied on spacecraft by

212

49

50

51

double

double

double

double

double

double

double

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

double B[3]; //Earth's magnetic field observed by the

//ECI (nanoTesla)

double B-magnetometer [3]; //Earth 's magnetic field as

//magnetometer (Gauss)

double sunvec [3]; //Position vector of the Sun in ECI

double sunvec-sbf [4]; //Unit vector pointing from SBF

//sun in SBF coordinates

spacecraft in

measured by the

(meters)
origin to the

double ss-noisestd; //standard deviation of sun sensor noise (radians)

double ss-noise-max; //max value of sun sensor noise (radians)

double sunsensor-angle [6]; //[solarpanel] angle to sun measured by

//sun sensor on each panel (radians)

double sunsensor-raw [6]; //[solarpanel] output value of sunsensor to

//nanomind (microAmps)

int eclipse ; //eclipse flag: 1=full or partial eclipse , 0 = direct

//line of sight to the sun

double mag-internal-sample-period; //Internal sample period of magnetometer (sec)

double mag-noise-std ;//standard deviation of magnetometer noise (rad/sec)

int mag-time cntr-last; //Time counter value of last magnetometer update

213

/environment (N) in ECI

double M-environment [3]; //total moment applied on spacecraft by

//environment (N) in ECI

double igrf-g [14][14]; //igrf g coefficient from

//http ://www. ngde. noaa. gov/IAGA/vmod/ igrf .html

double igrf-gdot [14][14]; //igrf gdot coefficient

double igrf-h [14][14]; //igrf h coefficient

double igrf-hdot [14] [14]; //igrf hdot coefficient

double jd-igrfdata; //julian date referring to the time IGRF data

//in the igrf input file was published

double jd; //Current Julian Date (days)

double jd0;// Julian Date at sim initialization (days)

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

} realworld ;

void initializerw(realworld&);

#endif

117

118

119

120

121

122

123

124

214

References

[1] Harold D. Black. A passive system for determining the attitude of a satellite. AIAA
Journal, 1964.

[2] William Blackwell, G Allen, C Galbraith, R Leslie, I Osaretin, M Scarito, Mike Shields,
E Thompson, D Toher, D Townzen, et al. Micromas: A first step towards a nanosatellite
constellation for global storm observation. Proceedings of the AIAA/USU Conference
on Small Satellites, 2013.

[3] J. Bouwmeester and J. Guo. Survey of worldwide pico- and nanosatellite missions,
distributions and subsystem technology. Acta Astronautica, 67(78):854 - 862, 2010.

[4] Daniel George Courney. Ionic Liquid Ion Source Emitter Arrays Fabricated on Bulk
Porous Substrates for Spacecraft Propulsion. PhD thesis, Massachusetts Institute of
Technology, 2011.

[5] GomSpace. Gomspace nanopower solar panels. http: //gomspace. com/index. php?p=
products-pt10.

[6] Henri Kjellberg and E Glenn Lightsey. A constrained attitude control module for small
satellites. Proceedings of the AIAA/USU Conference on Small Satellites, 2012.

[7] Mary Knapp, Mark Van de Loo, Alessandra Babuscia, Anna Walsh, and Sara Seager.
Tsat preliminary design review and status update. June 2013.

[8] Ern J Lefferts, F Landis Markley, and Malcolm D Shuster. Kalman filtering for space-
craft attitude estimation. Journal of Guidance, Control, and Dynamics, 5(5):417-429,
1982.

[9] Surrey Satellite Technology Ltd. Sgr-05u gps receiver user interface manual. Feb 2011.

[10] A. Marinan, A. Nicholas, and K. Cahoy. Ad hoc cubesat constellations: Secondary
launch coverage and distribution. In Aerospace Conference, 2013 IEEE, pages 1-15,
2013.

[11] Francois Martel, Louis Perna, and Paulo Lozano. Miniature ion electrospray thruster
and performance test on cubesats. Proceedings of the AIAA/USU Conference on Small
Satellites, 2012.

215

[12] Inc. Maryland Aerospace. Mai-400 product description. http: //www. miniadacs. com/
miniadacs_012.htm.

[13] Juergen Mueller, Richard Hofer, and John Ziemer. Survey of propulsion technologies
applicable to cubesats. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics
and Space Administration, 2010.

[14] International Association of Geomagnetism and Aeronomy. 11th generation interna-
tional geomagnetic reference field schmidt semi-normalised spherical harmonic coeffi-
cients. http://www.ngdc.noaa.gov/IAGA/vmod/igrf11coeffs.txt, 2011.

[15] Computer Sciences Corporation. Attitude Systems Operation and J.R. Wertz. Spacecraft
Attitude Determination and Control. Astrophysics and Space Science Library : a series
of books on the recent developments of space science and of general geophysics and
astrophysics. Reidel, 1978.

[16] Louis Perna, Fernando Mier Hicks, Chase S. Coffman, Hanqing Li, and Paulo C. Lozano.
Progress toward demonstration of remote autonomous attitude control of a cubesat us-
ing ion electrospray propulsion systems. AIAA/ADSME/SAE/ASEE Joint Propulsion
Conference & Exhibit, 2012.

[17] Christopher Pong, Matthew W Knutson, David W Miller, Sara Seager, Sungyung Lim,
Timothy C Henderson, and Shawn D Murphy. High-precision pointing and attitude de-
termination and control on exoplanetsat. In AIA A. Minneapolis, MN: AIAA Guidance,
Navigation, and Control Conference, Aug, 2012.

[18] The CubeSat Project. Cubesat mission statement. http: //www. cubesat. org/index.
php/about-us/mission-statement, 2013.

[19] Stergios I Roumeliotis, Gaurav S Sukhatme, and George A Bekey. Circumventing dy-
namic modeling: Evaluation of the error-state kalman filter applied to mobile robot
localization. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International
Conference on, volume 2, pages 1656-1663. IEEE, 1999.

[20] Rainer Sandau, Rei Kawashima, Shinichi Nakasuka, and Jerry Jon Sellers. Innovative
Ideas for Micro/Nano-Satellite Missions. International Academy of Astronautics Book
Series. International Academy of Astronautics, 2013.

[21] Daniel Selva and David Krejci. A survey and assessment of the capabilities of cubesats
for earth observation. Acta Astronautica, 74(0):50 - 68, 2012.

[22] Malcolm D. Shuster. The triad algorithm as maximum likelihood estimation. The
Journal of the Astronautical Sciences, 2006.

[23] M.J. Sidi. Spacecraft Dynamics and Control: A Practical Engineering Approach. Cam-
bridge Aerospace Series, 7. Cambridge University Press, 1997.

216

[24] Silonex. Slcd-61n8 solderable planar photodiode data sheet.

[25] Garrett Lee Skrobot and Roland Coelho. ELaNa - Educational Launch of Nanosatellite.
In Small Satellite Conference, 2012.

[26] California Polytechnic State University. Cubesat design specification, revision 12. http:
//www. cubesat .org/index.php/documents/developers, 2009.

[27] David A Vallado. Fundamentals of astrodynamics and applications, volume 12. Springer,
2001.

[28] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear
estimation. In Adaptive Systems for Signal Processing, Communications, and Control
Symposium 2000. AS-SPCC. The IEEE 2000, pages 153-158. IEEE, 2000.

[29] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter. Kalman filtering
and neural networks, pages 221-280, 2001.

217

