
MIT Open Access Articles

A distributed algorithm for 2D shape 
duplication with smart pebble robots

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Gilpin, Kyle, and Daniela Rus. “A Distributed Algorithm for 2D Shape Duplication with 
Smart Pebble Robots.” 2012 IEEE International Conference on Robotics and Automation (May 
2012).

As Published: http://dx.doi.org/10.1109/ICRA.2012.6225227

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/90842

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90842
http://creativecommons.org/licenses/by-nc-sa/4.0/


A Distributed Algorithm for 2D Shape Duplication
with Smart Pebble Robots

Kyle Gilpin and Daniela Rus

Abstract— We present our digital fabrication technique for
manufacturing active objects in 2D from a collection of smart
particles. Given a passive model of the object to be formed, we
envision submerging this original in a vat of smart particles,
executing the new shape duplication algorithm described in
this paper, and then brushing aside any extra modules to
reveal both the original object and an exact copy, side-by-
side. Extensions to the duplication algorithm can be used to
create a magnified version of the original or multiple copies
of the model object. Our novel duplication algorithm uses a
distributed approach to identify the geometric specification of
the object being duplicated and then forms the duplicate from
spare modules in the vicinity of the original.

This paper details the duplication algorithm and the features
that make it robust to (1) an imperfect packing of the modules
around the original object; (2) missing communication links
between neighboring modules; and (3) missing modules in
the vicinity of the duplicate object(s). We show that the
algorithm requires O(1) storage space per module and that
the algorithm exchangesO(n) messages per module. Finally,
we present experimental results from 60 hardware trials and
150 simulations. These experiments demonstrate the algorithm
working correctly and reliably despite broken communication
links and missing modules.

I. I NTRODUCTION

In this paper, we present a new approach to rapidly
manufacturing active objects using a large collection of smart
particles capable of communicating and bonding with their
neighbors. Traditional manufacturing creates devices using
a hierarchical approach that is organized as a sequence that
includes mechanical design, fabrication, electronic design,
PCB production, assembly, and finishing. In contrast, we
package the necessary mechanical, perceptual, and com-
putational capabilities in small, intelligent building blocks
that integrate actuation, sensing, communication, and control.
Manufacturing in our proposed system consists of selecting
the correct aggregation of these modules for a required
shape or design. By using a homogeneous set of smart
modules instead of heterogeneous, task-specific materials, we
(1) allow a device’s components to be easily recycled and
reused in a different application; (2) automate the fabrication
of complex structures; and (3) imbue objects with inherent
sensing and computation capabilities.

Figure 1 illustrates our approach to fabrication by dis-
tributed shape duplication. Given a passive physical modelof
the object to be manufactured, the distributed algorithm that
we present in this paper identifies the geometric specification
of the object and forms one or more, potentially magnified,

K. Gilpin and D. Rus are with the Computer Science
and Artificial Intelligence Lab, MIT, Cambridge, MA 02139
[kwgilpin|rus]@csail.mit.edu

replicas from our programmable matter particles in a single-
step process. The resulting duplicate is endowed not only
with the shape of the original passive model, but also
intelligence, sensing, and communication capabilities.

Fig. 1. The distributed duplication algorithm presented inthis paper uses
an ensemble of smart modules (here our Robot Pebbles) packedaround
a passive object to sense that object’s shape and then make a duplicate
from the spare modules in the vicinity of the original. (While this figure is
only illustrative, the paper demonstrates the algorithm’sapplicability with
a variety of smaller scale hardware experiments.)

This approach to digital fabrication by shape distributionis
generic and independent of the architecture of the individual
particles that compose the programmable matter system. In
this paper we illustrate the algorithms in the context of the
Robot Pebbles [1] which are 1cm cubic computers with
programmable connectors and neighbor-to-neighbor commu-
nication. Current manufacturing technology lower-bounds
the size of the Pebbles, (and therefore the resolution of the
objects that we can duplicate), but as manufacturing tech-
niques evolve, we will be able to further miniaturize these
modules. Eventually, we hope to produce sub-millimeter
Smart Sandparticles that have all the communication and
computation capabilities of the current Robot Pebbles.

Irrespective of the dimension, bonding mechanism, or
communication interface of the programmable matter mod-
ules, the algorithm we present here operates the same way.
A passive object is buried under, or submerged into, a
collection of programmable matter modules. Upon receiving
a start signal, the modules mechanically bond with their
neighbors to encase the original object in a single regular
lattice. (Currently, the system is incapable of handling grain



boundaries within the lattice, but others [2] have begun
addressing this problem, and we hope to incorporate their
results in future iterations of our algorithm.) Once solidified
around the passive object, the modules execute our duplica-
tion algorithm that senses the shape of the object. After the
system has captured the shape of the original, it creates one
or more, potentially magnified, replicas of the object using
the rest of the programmable matter by selectively unlatching
the unnecessary modules. When this self-disassembly is
complete, the user can brush away the newly disconnected
modules to reveal a replica of the original object.

The algorithm has several important properties. First, it is
completely distributed and runs on a set of identical modules.
Second, because a complete description of the goal shape is
never known by any module, the distributed shape formation
algorithm scales favorably as we form increasingly large
shapes. Ignoring theO(logn) scaling associated with storing
large numbers, the duplication algorithm presented here
only requires constant storage per module. Furthermore, the
total number of neighbor-to-neighbor messages exchanged
in the process of duplication scales asO(n2). Third, the
algorithm accounts for both broken communication links and
missing modules making it robust to imperfections in the
regular lattice of modules surrounding the passive shape.
Finally, the algorithm transitions seamlessly from simulation
to hardware. It is implemented inC with code that compiles
and runs in simulation or on hardware without modification.

A. Related Work

Our work builds on a body of research addressing
programmable matter and modular self-reconfiguring sys-
tems [3], [4], [5], [6]. Researchers have characterized modu-
lar robots as either chain or lattice systems [7]. Chain-based
systems [8], [9], [10] are built around tree-like topologies.
In contrast, lattice-based systems [11], [12], [13] have been
the basis of programmable matter as they tend to use homo-
geneous, symmetric modules arranged in a regular 2- or 3-D
grid pattern in which a module can bond and communicate
with neighbors in every direction.

Klavins et al. have developed hardware and algorithms
for a triangular self-assembling system that operates on an
air table [14]. Griffith et al. [15] have shown that self-
assembling systems can self-replicate in a distributed fashion.
Lipson’s group has also been instrumental in developing
stochastically-driven self-assembling programmable matter
systems [16], [17]. Christensen et al. [18] have developed
a language that can direct robotic self-assembly. Despite the
promise of self-assembling systems, they are ill-suited for
the distributed duplication algorithm that we present here.
Instead of a system that constructs objects by adding modules
piece-by-piece, we need a system that starts from an initial
collection of close-packed modules that (1) envelop that
shape to be duplicated and (2) form a block of raw material
out of which the duplicate shape can be fabricated. One such
system is the Catoms [5]. The general concept of a Catom
is a spherical or cylindrical robot whose surface is covered
in actuators that allow the Catom to bond with and move

relative to another Catom. Goldstein et al. present a clever
shape formation algorithm [19] that operates on a densely
packed arrangement of Catoms by creating and absorbing
bubbles, or movable voids, within the interior of the structure.
The advantage is that a description of the shape to be formed
only needs to be shared with the surface modules.

In other work, Pillai et al. present an algorithm [6], for
the Catoms system that enables duplication of a passive
shape. The goal of this algorithm is virtually identical to our
own. Their algorithm can successfully capture and replicate
the shape of a passive object in simulation. Unlike our
algorithm, the Pillai algorithm is centralized and relies on
an external computer with significant processing capability
to manage the duplication process. It also results in a high
communication overhead as all shape data streams out of and
into the particle ensemble from a single point. The algorithm
is also incapable of operating on lattices that contain voids.
In more recent work, Funiak et al. [2] have developed
an interesting algorithm capable of distributed localization
in a completely irregular packing of smart particles. The
distributed duplication algorithm that we present here is
generic and can be implemented on the Catoms, the Digital
Clay modules [20], or the Miche [21] and Robot Pebble [1]
programmable matter systems. While many programmable
matter systems do not yet exhibit enough inter-module torque
and force to withstand utilization as tools, there is hope that
they eventually will [22], [23], [1].

The remainder of this paper is organized as follows.
Section II provides an explanation of the basic message
routing algorithm that is used as the communication back-
bone for the duplication algorithms presented in Section III.
Section IV analyzes the robustness of the duplication algo-
rithm. Section V gives an overview of how to form multiple
duplicates or duplicates that are a magnified version of the
original object. Section VI presents experimental resultsfrom
simulation and hardware which demonstrate the distributed
duplication algorithm working correctly and robustly. Finally,
we present avenues for future work in Section VII.

II. ROUTING ALGORITHM

Distributed shape duplication requires a reliable way of
sending messages from one programmable matter module in
the system to any other. Because the collection of modules
may be non-convex, have missing communication links, and
contain concave voids, a simple gradient descent routing
algorithm is not sufficient. The limited processing power
and storage available to each module constrain our choice
of routing algorithms. For instance, it is not possible, espe-
cially as the number of modules in the system grows, to
maintain routing tables. We choose to use the traditional
bug algorithm [24] to route messages through the system.
Instead of the bug being a robot, the message is the bug and
the modules are the environment through which the message
must navigate from its source to destination.

In particular, we use the Bug2 algorithm. This algorithm
is provably correct [24] and ensures that, if it is possible
for a message to reach its destination, it eventually will;



and if it is not, the system will eventually be notified. The
Bug2 algorithm is a natural choice for our system because it
assumes that the bug has no access to global information.
The bug (message) only needs to determine its position
and whether it is in contact with an obstacle, (in our case
a void not occupied by a module), facts readily available
from the modules themselves. The Bug2 algorithm is also
advantageous because the bug only needs to maintain a
constant amount of state information, and all this information
can easily be stored in the message. The bug algorithm is
not without its drawbacks. Primarily, the basic bug algorithm
does not function in 3D. See Section VII for a discussion of
how we are extending our algorithm to handle 3D originals.
The experiments in this paper only consider 2D shapes, but
the theory is extensible to 3D shapes.

III. D UPLICATION ALGORITHMS

The distributed duplication algorithm is a multiple step
process that is able to sense the shape of a passive object
that is surrounded by programmable matter modules and then
form a duplicate of that object using additional modules
within the same initial block of material. The algorithm
is completely distributed, all modules execute the same
code, and all computation occurs on-board. The algorithm,
illustrated in Figure 2 is composed of five major phases:

1) Encapsulation and Localization
2) Shape Sensing / Leader Election
3) Border Notification
4) Shape Fill
5) Self-Disassembly

In short, after all modules are localized and bond together
to encase the object being duplicated, the algorithm senses
the border of the original object, creates a duplicate border
beside the original, informs all modules inside of this border
that they form the duplicate shape, and then prompts all
modules except those that form the duplicate shape to self-
disassemble. The user can then brush aside the extra modules
much like a sculptor would remove extra stone from a block
of marble to reveal the newly created duplicate object.

A. Encapsulation and Localization

The shape duplication process begins with the user sur-
rounding the passive object to be duplicated with a collection
of programmable matter modules. In a 3D system with sand-
sized particles, we envision literally burying the object to the
duplicated. Using the 2D, centimeter-scale Robot Pebbles,
we can use an inclined vibration table, the 2D analog of a bag
of sand, to surround the passive object with active modules.
Once the object is surrounded, the user sends a start com-
mand to a single module that begins the encapsulation and
localization process. The recipient of this message arbitrarily
assumes that its coordinates are (0,0), and then it informs all
of its neighbors of their coordinates. As each module learns
its coordinates within the system, it mechanically bonds with
its neighbors to rigidly encapsulate the passive object being
duplicated. Once bound to its neighbors, each module enters
the shape sensing and leader election phase.

B. Shape Sensing / Leader Election

The goal of the sensing phase is to two-fold: determine
the perimeter, area, and dimension of the original obstacle’s
bounding box; and elect a leader module on the perimeter of
the obstacle to be duplicated. After a module is localized by
an incomingpositionmessage, it detects which of its neigh-
bors are present by assuming that unresponsive neighbors are
absent. It assumes that these missing neighbors correspondto
the obstacle presented by the original object to be duplicated.
Then, a module attempts to route, (using the bug algorithm),
asensemessage to each of its missing neighbors. Because the
destination coordinates are occupied by the obstacle being
duplicated, thesensemessage will never be delivered to its
destination, but this is the intent. Instead, thesensemessages
will traverse the entire perimeter of the obstacle being sensed.
Eventually, it will return to its sender, who will then know
that the message cannot be delivered.

In the process of traversing the obstacle, thesensemessage
is modified by each module through which it passes so that
by the time the message returns to its sender, it holds the
obstacle’s area, perimeter, and the extents of the obstacle’s
bounding box. Figure 3 shows this process in action. The
perimeter computed by thesensemessage is incremented
whenever the bug algorithm causes the message to virtually
collide with the obstacle being duplicated. The area of the
obstacle is integrated by rows. For each row, the minimum
x-coordinate plus one is subtracted from the maximum x-
coordinate, but these operations never occur simultaneously.
Finally, thesensemessage determines the obstacle’s bound-
ing box by logging the minimum and maximum x- and y-
coordinates through which it travels.

While Figure 3 only shows a single module’ssensemes-
sage, all modules on the border generate messages. To elect
a leader module from those surrounding the obstacle, and
to reduce the total number of messages transferred, modules
discard incomingsensemessages from modules with lower
unique IDs than their own. Because there is a single highest
ID, all sensemessages except one will be discarded before
they return to their sender. The module whosesensemessage
returns is the de facto leader. Figure 3 also omits the fact
that all modules on the external perimeter of the entire
configuration of modules generatesensemessages. These
messages are routed in an identical manner, but when the
message generated by the module with the highest ID returns
to its sender, the sensed area will be negative, so the module
will know that it did not detect an obstacle.

C. Border Notification

The border notification phase duplicates the border of the
original shape in the nearby modules and involves three types
of messages.Duplication messages inform each module on
the border of the original shape of their special status.Border
messages are sent by modules on the border of the original
shape and inform each module that is on the border of what
will become the duplicate shape of their status.Confirmation
messages, in turn, are sent by recipients ofbordermessages



(a) (c) (d)

(e) (f)

(b)

(g) (h)

2

1

3

4

3 4 5 6 7 8 9 10

2

1

3

4

3 4 5 6 7 8 9 10

2

1

3

4

3 4 5 6 7 8 9 10

2

1

3

4

3 4 5 6 7 8 9 10

2

1

3

4

3 4 5 6 7 8 9 10

2

1

3

4

3 4 5 6 7 8 9 10

2

1

3

4

3 4 5 6 7 8 9 10

sense msg. received duplication msg. received border msg. received

fill msg. receivedmodule included in final structure disassembly msg. received

original shape leader module

message (source/destination)

Fig. 2. After localization, the distributed duplication algorithm begins in (a) by routing asensemessage around the border of the obstacle. As shown in
(b), the message sent by the module with the highest unique IDwill eventually return to its sender, prompting that moduleto route aduplication message
around the border of the obstacle (c). Upon receiving aduplication message, a module sendsborder message to its conjugate that will become the border
of the duplicate object. After all duplicate border moduleshave sentconfirmationmessages back to the leader (d), the leader broadcasts afill message
(e) informing modules contained by the new border that they are part of the duplicate shape and causing them to sendconfirmationmessages back to the
leader, (f). Upon receiving all confirmation messages, the leader broadcasts adisassemblemessage (g) causing all modules except those in the duplicate
shape to self-disassemble (h). Note: the key for this figure holds for all others in the paper as well.

(a)

3 4 5 6

4

3

2

1

3 4 5 6

4

3

2

1

3 4 5 6

4

3

2

1

area = 0
x-extents: [5,5]
y-extents: [1,1]

x-extents: [5,6]
y-extents: [1,2]

x-extents: [5,6]
y-extents: [1,3]

3 4 5 6

4

3

2

1

3 4 5 6

4

3

2

1

3 4 5 6

4

3

2

1

area = 11
x-extents: [5,6]
y-extents: [1,4]

x-extents: [3,6]
y-extents: [1,4]

perimeter: 6 + 1 → 7
area = 7 - (3+1) → 3
x-extents: [3,6]
y-extents: [1,4]

3 4 5 6

4

3

2

1

area = 3
x-extents: [3,6]
y-extents: [1,4]

(b) (c) (g)(f)(e)(d)

perimeter: 7 + 1 → 8perimeter: 5 + 1 → 7
area = 11 - (3+1) → 7

perimeter: 4 + 1 → 5perimeter: 0 + 1 → 1 perimeter: 1 + 1 → 2
area = 0 + 6 → 6

perimeter: 2 + 2 → 4
area = 6 + 5 → 11

Fig. 3. As the modules attempt to use the bug algorithm to route asensemessages from its source at (5,1) to its non-existent destination at (5,2), they
update the perimeter, area, and bounding box fields carried within the message. The perimeter is incremented as the result of every “collision” with the
obstacle, and area is accumulated row-by-row. When the message returns to its sender, these parameters accurately describe the obstacle.

and allow the leader to determine when the border of the
duplicate is complete.

The border notification phase begins with the leader se-
lected by the shape sensing phase attempting to use the
bug algorithm to route aduplicationmessage to its missing
neighbor whose position is instead occupied by the obstacle
to be duplicated. Like thesensemessage that was previously
sent, theduplication message traces the perimeter of the
obstacle conveying two critical pieces of information to
each module on this border: the leader’s coordinates and a
duplication direction vector, (whose length is determinedby
the bounding box of the original shape).

As the duplication message passes through the modules
on the border of the original shape, each module attempts
to route aborder message to the module identified by the
direction vector added to the sender’s coordinates. After
stimulating each module on the border of the original shape
to send abordermessage, theduplicationmessage eventually
returns to the leader where it is discarded.

When theborder messages reach their destinations, these

modules become the border of the duplicate shape. (While
Figure 2 does not show it, modules on the border of the
original may simultaneously serve as the border of the dupli-
cate.) Because thebordermessages also carry the coordinates
of the leader module, eachborder recipient sends a border
confirmationmessage back to the leader carrying the length
of perimeter of the duplicate shape on which the module
borders. By comparing cumulative length of all received
confirmationmessages to the known perimeter of the original
shape, the leader determines when all modules on the border
of the duplicate have been notified of their role.

D. Shape Fill

The shape fill phase notifies all modules inside the border
of the duplicate shape that they form the duplicate object and
should remain solidified when all other modules disassemble.
The phase begins when the leader has received confirmation
messages from every module on the border of the duplicate
shape. With the border of the duplicate complete, the leader
sends afill message that floods the entire network of mod-



ules. Each instance of the message contains an “included”
bit, (initially cleared), that is toggled every time the message
passes through a module on the border of the duplicate
shape. As a result, only modules surrounded by the duplicate
border receive afill message with the included bit set. These
modules know that they are included in the final structure
and do not break their shared bonds during the disassembly
phase. Each module inside the border of the duplicate shape
sends another (area)confirmation message to the leader.
By comparing the number of received areaconfirmation
messages to the known area of the duplicate object, the leader
can determine when all modules that compose the duplicate
object have received afill message.

E. Self-Disassembly

After the leader can verify that each module in the dupli-
cate shape knows that it should not disassemble, the leader
broadcasts adisassemblymessage to the entire structure. This
message floods the network and the unincluded modules
begin disassembling from their neighbors in an orderly
fashion [25] until only the duplicate object remains.

F. Storage and Communication

The distributed shape duplication algorithm requires only
a constant amount of storage per module that is independent
of the number of obstacles in the system or size of the
object being duplicated. During localization, a module only
stores its position. In the sensing phase, a module updates
sensemessages as they pass through the module, but no
information is stored. During border notification, the new
border modules that surround what will become the duplicate
shape must store a list of their faces that border on the
duplicate obstacle, but this is constant in size and can never
exceed the dimensionality of the system. During the fill
process, a module only needs to record a constant amount of
information: whether it is in the structure and whether it has
already sent afill message to each neighbor (to minimize
the number offill messages transmitted). Finally, during
disassembly, modules do not need to store any information.
Throughout the entire process, the leader module only stores
a constant amount of information: the perimeter and area of
the shape being duplicated. It never holds a complete de-
scription of the shape being duplicated. Additionally, it only
tracks the cumulative confirmed perimeter and area conveyed
by the confirmationmessages instead of keeping a list of
which modules have transmittedconfirmationmessages. The
total storage per module is thereforeO(1).

The number of messages exchanged also scales favorably.
The worst case scenario occurs when the area of the original
object approaches the area of the initial block of material
and when the shape of that object approaches a 1-by-n
rectangle. During localization, each module may exchange
a constant number of messages with each of its neighbors
resulting inO(n) messages exchanged. In the sensing phase,
there are at mostO(n) modules that each transmitsense
messages. Eachsensemessage may travelO(n) hops before
being discarded by a module with a larger ID. Therefore,

the total number of messages isO(n2). During duplication,
the total number of messages exchanged is alsoO(n2) as
the number of modules in the perimeter of the duplicate
may approachn, and eachbordermessage may have have to
travel a distance ofO(n) to arrive at its destination. Normally,
the fill process requiresO(n) messages, as each module just
forwardsfill messages to its immediate neighbors. If there
are many missing modules, the number of messages may
approachO(n2). Finally, disassembly, because it is a flood
fill process like localization, only requiresO(n) messages.
So, the total number of messages scales asO(n2) implying
that the per module number of messages exchanged scales
asO(n). While a constant scaling would be preferable, it is
unrealistic to expect to duplicate an arbitrarily large shape in
a distributed manner using only a fixed number of messages.

IV. ROBUSTNESS

The system is robust to both missing communication links
and missing modules. In what follows, we assume that the
physical state of the system is static: once the duplication
process has begun, neither communication links nor modules
are removed from the system. This assumption is reasonable
given the strength of the physical bonds [1]. While we do not
have space to consider it here, it is straight-forward to prove
that the robustness modifications operate correctly, always
terminate, and do not modify the theoretical bounds on the
storage and communication.

2

0

1

0

1 2 3 4
functional
comm. link

comm. link
missing

Fig. 4. The missing link between modules (3,0), and (3,1) will cause
the module located at (3,0) to send asensemessage to (3,1). Instead of
discarding this message, and aborting the entire border sensing process, the
module at (3,1), (even though it is the intended recipient),must continue
routing the message around the perimeter of the obstacle so that it eventually
returns to the leader.

First, consider the case of missing communication links. In
general, missing links are not an issue so long as each module
can communicate with at least one neighbor. When routing
messages, the Bug2 algorithm will treat missing links just
like another obstacles that must be avoided. The one scenario
in which a missing communication link can affect the system
is shown in Figure 4. In general, missing communication
links are problematic when they border on the object to
be duplicated because thesensemessages sent by the two
modules that share the missing link will actually reach their
destinations, (unlike mostsensemessages which are destined
for a location occupied by the obstacle being duplicated).
Referring to Figure 4, thesensemessage transmitted by
the module at (3,0), that also happens to have the highest
ID, would be discarded by the module at (3,1) instead of
circumnavigating the obstacle. Furthermore, the module at



(3,0) will discard all othersensemessage because they come
from modules with lower IDs. To alleviate this problem,
and make the system robust to missing communication links
anywhere, we have modified the routing algorithm so that
it never acknowledges when asenseor duplicationmessage
reaches its destination. Instead, it will keep traveling.

The duplication algorithm can also robustly handle miss-
ing modules. There are exactly four distinct locations from
which a module can be missing, and each is shown in
Figure 5. First, when a module is missing from a location
adjacent to the original object being duplicated, (such as at
location(5,4) in the Figure), the missing module appears to
be a part of the original object, and the duplicate will reflect
this, (as shown by the module at(12,4) being included in
the duplicate).

0

1

2

3

4

0 2 3 4 5 6 7 8 9 111 10

5

1312

(a)

(b) (c)

(d)

Fig. 5. The duplication algorithm is robust enough to handlemodules
missing from any potential location: (a) adjacent to the object being
duplicated; (b) in the interior of the duplicate shape; (c) on the border
of the duplicate shape; or (d) in any other position.

Second, when a module is missing from another location
that is also not the border or interior of the duplicate shape,
(such as (6,0) in Figure 5), we need to ensure that the
algorithm does not duplicate this apparent obstacle. We
guarantee that the algorithm only duplicates the intended
obstacle by placing a threshold on the area of objects that
will be duplicated. This approach to ignoring small holes in
the initial packing of modules is reasonable given, that to
achieve acceptable resolution, most objects will be ordersof
magnitude larger than the modules themselves.

Third, the duplication algorithm can gracefully handle
modules missing from the interior area that will become
the duplicate shape, such as the 9 modules centered at
(9,2) in Figure 5. In general, the algorithm will make its
best effort to duplicate the original, but a large chunk of
the duplicate will be missing when the process completes.
During the Shape Fill phase, the modules surrounding this
gap in the structure will attempt to routefill message to the 9
missing modules. As the system discovers that each of these
messages is undeliverable, it will attempt to routedisconfirm
messages to the missing modules’ conjugate locations in the
original obstacle. For example, if the module at(7,2) in
the Figure determines that afill message destined for(8,2)
is undeliverable,(7,2) will attempt to route adisconfirm
message to(1,2). Because location (1,2) is occupied by the
passive obstacle being duplicated, thisdisconfirmmessage
will never be delivered. As the system discovers that each
disconfirmmessage is undeliverable, it sends an areaconfir-

mationmessage to the leader so that the leader can account
for the entire area of the duplicate in order to trigger the Self-
Disassembly phase. Continuing our example, if the module
at (5,2) determines that thedisconfirm message destined
for (1,2) cannot be delivered, the module acts as a proxy
for the module at(8,2) and sends an areaconfirmation
message to the leader at(3,0). Additionally, (5,2) sends
fill messages to each of(8,2)’s neighbor’s, including in
particular,(9,2). This last step is critical because there are
no modules adjacent to(9,2) that could otherwise generate
the necessary (though undeliverable)fill message. Without
this last step, the leader would never receive aconfirmation
message from a module proxying for the missing module at
(9,2). While the details are beyond the scope of this paper,
we use a combination of highest ID and distance to discard
manyfill messages so that we do not generate an excess of
areaconfirmationmessages that would confuse the leader.

Fourth, and finally, it is now easy to handle modules
missing from the border of the duplicate shape such as
the module missing from(12,2) in Figure 5. During the
Border Duplication phase, theborder message sent from
(5,2) to (9,2) will be determined to be undeliverable by
some module. This module will in turn act as a proxy for
the missing module and send a borderconfirmationmessage
to the leader on behalf of the module at(12,2). The leader
can then account for all border modules before initiating the
Shape Fill phase.

During the Shape Fill phase, the algorithm handles missing
border modules as it does missing interior modules. An
undeliverablefill message destined for(12,2) generates a
disconfirm message that is sent to the missing module’s
conjugate,(5,2), in Figure 5. In contrast to the interior case,
thisdisconfirmmessage is actually delivered because location
(5,2) is the border, not inside, of the original shape. Because
this message is delivered, we know that the module at(12,2)
is itself a border module. As a result, there is no need to send
an areaconfirmationmessage to the sender.

V. M ULTIPLE DUPLICATES AND MAGNIFICATION

We can extend the duplication algorithm to form multiple
copies of the original shape or a magnified duplicate that is
an integer factor,M, larger than the original. The process of
forming multiple duplicates is accomplished by adding row
and column count fields to eachbordermessage sent by the
modules on the perimeter of the original shape. These row
and column counts specify the dimensions of the array of
duplicates that will be formed next to the original object.
When the border messages reach their destinations, they
both inform the destination modules of their status as border
modules and forward themselves along to notify the next set
of border modules. For a concrete example, see Figure 6.

The process of magnifying the duplicate shape is illus-
trated by Figure 7. We append the magnification factor field,
M, to eachborder message. In addition, the modules on the
perimeter of the original shape modify the destination of
the border message they each send so that the destination
includes an additive factor that depends on the product of



(1,1)(2,1)

(3,1)

(3,2)

(2,1) (1,1)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 6. When creating multiple copies of an original shape, we arrange
the copies in an array whose dimensions (here 3-by-2) are appended to
each originalborder message. As theborder messages move through the
structure, the remaining row and column counts are decremented as shown.

M with the module’s relative location within the bounding
box of the original shape. Each module that receives one of
these primarybordermessages becomes a local leader of an
M-by-M group of modules. As shown in Figure 7, each local
leader (in red), may or may not actually border on what will
become the duplicate shape. As a result, each local leader
computes which of the modules within its domain, (outlined
by a black border), should actually border on the delicate
shape. The local leader then sends each of these true border
modules a secondaryborder message.

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 7. When creating a magnified version of the original shape, a set of
primary border messages are sent by the modules on the perimeter of the
original shape to local leaders (in red) which may not lie on the border of
the duplicate. These local leaders then send secondaryborder messages to
the modules within their domain (outlined in black) that do form the border
of the duplicate shape. Note: for clarity, not all messages are shown.

VI. EXPERIMENTAL RESULTS

We performed a variety of simulated and hardware-based
experiments, the results of which are shown in Table I.
We had 20 Robot Pebble modules available to use for
duplicating small shapes. (While we assembled these around
the passive object by hand, we have previously shown that
automated assembly is possible [26]). We used a custom-
designed simulator to perform large experiments that would
otherwise require more hardware modules than we currently
have available. The simulator can be told to randomly break
a set percentage of inter-module communication links or
randomly remove a set percentage of modules, as indicated
by theBroken LinksandMissing Modulescolumns in Table I.

The locations of the missing links and modules change with
each trial. TheDisassembly Beguncolumn in the Table
indicates in what percentage of trails the Self-Disassembly
phase was started by the leader module, indicating that
the leader module at least received all border and area
confirmationmessages. In cases where Self-Disassembly did
start, theCorrect Bondscolumn indicates what percentage of
all inter-module bonds were in the correct state after the Self-
Disassembly finished. It excludes trials in which the leader
failed to initiate the Self-Disassembly.

(a) (b)

(c) (d) (e)

Fig. 8. We verified the duplication algorithm using a varietyof shapes in
both hardware, subfigures (a-d), and simulation, subfigure (e).

In hardware trails, there were four instances where the
leader module did not initiate the Self-Disassembly phase.
Additionally, in hardware, the Self-Disassembly phase only
resulted in 90.0% of bonds being successfully broken. While
these problems deserve further investigation, we do not
believe they reflect on the core of the duplication algorithm’s
reliability. In simulation, despite 10% of the communication
links broken and 5.0% of the modules removed, the algo-
rithm performed flawlessly when creating a 1-to-1 duplicate,
a magnified duplicate, or multiple duplicates.

In the hardware experiments, we believe most of the
failures were due to unreliable inter-module communication
links. Once a module communicates with a given neighbor,
it assumes that link is valid until its neighbor explicitly dis-
connects from the system. If the link is accidentally broken,
both modules will attempt to continue to use it, resending the
same message indefinitely. As a result, the hardware system
is fragile. With some messages forever lost to these broken
links, it is not surprising that we see duplication failures
in hardware. This problem is compounded by the fact that
small variations in module size create internal stresses in
the solidified structure. Forming or breaking one mechanical
bond may generate or release stress in other bonds and cause
the associated communication links to fail. In an attempt to
minimize these internal stresses, we assembled the modules
by hand, but ultimately we need to develop more robust
algorithms that can handle dynamic link failures.

VII. D ISCUSSION

We have shown a distributed, robust algorithm for shape
sensing and duplication in a lattice of interconnected smart
particles. The algorithm is able to characterize the shape
of a passive object submerged in a collection of particles
and then use spare particles to form multiple replicas or
a magnified replica. In the near term, we have several



TABLE I

WE PERFORMED61 HARDWARE TRIALS WITH SIMPLE SHAPES AND150SIMULATIONS WITH COMPLEX SHAPES IN IMPERFECT LATTICES.

Shape
Sim/ Broken Missing Mag. Array No. Avg. Disassembly Correct
HW Links [%] Modules[%] Factor Size Trials Time [s] Begun[%] Bonds[%]

Fig. 8(a)

HW Unknown 0.0 1x 1x1

15 29.3 80.0 89.8
Fig. 8(b) 16 38.0 100.0 94.0
Fig. 8(c) 15 47.1 100.0 87.5
Fig. 8(d) 15 50.6 93.3 90.7

Fig. 5 Sim 5.0 0.0 1x 1x1 25 n/a 100.0 100.0
Fig. 6 Sim 10.0 5.0 1x 3x2 25 n/a 100.0 100.0
Fig. 7 Sim 10.0 5.0 3x 1x1 25 n/a 100.0 100.0

Fig. 8(e) Sim
10.0 5.0 1x 1x1 25 n/a 100.0 100.0
5.0 2.5 1x 2x2 25 n/a 100.0 100.0
5.0 2.5 2x 1x1 25 n/a 100.0 100.0

extensions to pursue. We plan to supplement the system’s
functionality with the ability to mirror an object about a
reference line and to invert an object. We also intend to
develop a method for joining multiple objects together after
the disassembly process. Additionally, we want the system
optimally fit the duplicate object into the available collection
of programmable matter modules.

Before programmable matter systems are practical, there
are several larger problems that need to be addressed. The
modules need to be miniaturized so that the resulting objects
have acceptable resolution. Second, we need to implement
distributed duplication in 3D. A 3D version of the algorithm
will not be a simple extension of the 2D case because
perimeter tracing is not efficient in 3D. We are currently
investigating the decomposition of the 3D case into 2D sub-
problems. Additionally, we need to continue to drive down
the number of messages the modules exchange.O(n2) total
messages is a formidable communication burden in a system
with a million modules. Finally, we need to adapt our algo-
rithm to handle irregular lattices. With these improvements
in place, we will be one big step closer to realizing robust
programmable matter systems that can rapidly fabricate com-
plex real-world objects that are naturally imbued with useful
actuation, sensing, communication, and control capabilities.

ACKNOWLEDGMENTS

This work is supported by the US Army Research Office
under grant number W911NF-08-1-0228, the NSF through
EFRI Grant 0735953, and the NDSEG fellowship program.

REFERENCES

[1] K. Gilpin, A. Knaian, and D. Rus, “Robot pebbles: One centimeter
robotic modules for programmable matter through self-disassembly,”
in IEEE ICRA, May 2010, pp. 2485–2492.

[2] S. Funiak, P. Pillai, M. P. Ashley-Rollman, J. D. Campbell, and
S. C. Goldstein, “Distributed localization of modular robot ensembles,”
IJRR, vol. 28, no. 8, pp. 946–961, 2009.

[3] B. J. MacLennan, “Universally programmable intelligent matter sum-
mary,” in IEEE NANO, 2002, pp. 405–408.

[4] R. Nagpal, “Programmable self-assembly using biologically-inspired
multiagent control,” in ACM Autonomous Agents and Multiagent
Systems, 2002, pp. 418–425.

[5] G. S. Copen and T. C. Mowry, “Claytronics: An instance of pro-
grammable matter,” inWild and Crazy Ideas Session of ASPLOS,
Boston, MA, October 2004.

[6] P. Pillai, J. Campbell, G. Kedia, S. Moudgal, and K. Sheth, “A 3d fax
machine based on claytronics,” inIEEE IROS, 2006, pp. 4728–4735.

[7] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian, “Modular self-reconfigurable robot systems:
Challenges and opportunities for the future,”IEEE RAM, vol. 14, no. 1,
pp. 43–52, 2007.

[8] A. Castano and P. Will, “Mechanical design of a module forrecon-
figurable robots,” inIEEE IROS, 2000, pp. 2203–2209.

[9] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita,
and S. Kokaji, “M-tran: Self-reconfigurable modular robotic system,”
Trans. on Mechatronics, vol. 7, no. 4, pp. 431–441, December 2002.

[10] B. Salemi, M. Moll, and W.-M. Shen, “Superbot: A deployable, multi-
functional, and modular self-reconfigurable robotic system,” in IEEE
IROS, October 2006, pp. 3636–3641.

[11] G. S. Chirikjian, “Kinematics of a metamorphic roboticsystem,” in
IEEE ICRA, May 1994, pp. 449–455.

[12] C. Chiang and G. S. Chirikjian, “Modular robot motion planning using
similarity metrics,”Autonomous Robots, vol. 10, pp. 91–106, 2001.

[13] M. Koseki, K. Minami, and N. Inou, “Cellular robots forming a
mechanical structure (evaluation of structural formationand hardware
design of “chobie ii”),” in Distributed Autonomous Robotic Systems,
June 2004, pp. 131–140.

[14] N. Napp, S. Burden, and E. Klavins, “The statistical dynamics of
programmed self-assembly,” inIEEE ICRA, 2006, pp. 1469–1476.

[15] S. Griffith, D. Goldwater, and J. M. Jacobson, “Robotics: Self-
replication from random parts,”Nature, vol. 437, p. 636, Sept 28 2005.

[16] P. White, V. Zykov, J. Bongard, and H. Lipson, “Three dimensional
stochastic reconfiguration of modular robots,” inRobotics: Science
and Systems, June 2005.

[17] M. T. Tolley, M. Kalontarov, J. Neubert, D. Erickson, and H. Lipson,
“Stochastic modular robotic systems: A study of fluidic assembly
strategies,”Trans. of Robotics, vol. 26, no. 3, pp. 518–530, June 2010.

[18] A. Christensen, R. OGrady, and M. Dorigo, “Swarmorph-script: A lan-
guage for arbitrary morphology generation in self-assembling robots,”
Swarm Intelligence, vol. 2, pp. 143–165, 2008.

[19] S. C. Goldstein, J. Campbell, and T. Mowry, “Programmable matter,”
IEEE Computer, vol. 38, no. 6, pp. 99–101, 2005.

[20] M. Yim and S. Homans, “Digital clay,” WebSite. [Online]. Available:
www2.parc.com/spl/projects/modrobots/lattice/digitalclay/index.html

[21] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu, “Miche: Modular shape
formation by self-disassembly,”IJRR, vol. 27, pp. 345–372, 2008.

[22] P. J. White, M. L. Posner, and M. Yim, “Strength analysisof miniature
folded right angle tetrahedron chain programmable matter,” in ICRA,
2010, pp. 2785–2790.

[23] M. E. Karagozler, S. C. Goldstein, and J. R. Reid, “Stress-driven mems
assembly + electrostatic forces = 1mm diameter robot,” inIEEE IROS,
2009, pp. 2763–2769.

[24] V. J. Lumelski and A. A. Stepanov, “Dynamic path planning for
a mobile automaton with limited information on the environment,”
Trans. on Automatic Control, vol. 31, no. 11, pp. 1058–1063, 1986.

[25] K. Gilpin, K. Koyanagi, and D. Rus, “Making self-disassemblign
objects with multiple components in the robot pebbles system,” in
IEEE ICRA, May 2011, pp. 3614–3621.

[26] K. Gilpin and D. Rus, “Modular robot systems: From self-assembly to
self-disassembly,”IEEE Robotics and Automation Magazine, vol. 17,
no. 3, pp. 38–53, September 2010.


