
MIT Open Access Articles

Ubik: efficient cache sharing with strict 
qos for latency-critical workloads

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Harshad Kasture and Daniel Sanchez. 2014. Ubik: efficient cache sharing with strict 
qos for latency-critical workloads. In Proceedings of the 19th international conference on 
Architectural support for programming languages and operating systems (ASPLOS '14). ACM, 
New York, NY, USA, 729-742.

As Published: http://dx.doi.org/10.1145/2541940.2541944

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/90846

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90846
http://creativecommons.org/licenses/by-nc-sa/4.0/


Ubik: Efficient Cache Sharing with Strict

QoS for Latency-Critical Workloads

Harshad Kasture Daniel Sanchez

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

{harshad, sanchez}@csail.mit.edu

Abstract

Chip-multiprocessors (CMPs) must often execute workload

mixes with different performance requirements. On one hand,

user-facing, latency-critical applications (e.g., web search)

need low tail (i.e., worst-case) latencies, often in the millisec-

ond range, and have inherently low utilization. On the other

hand, compute-intensive batch applications (e.g., MapReduce)

only need high long-term average performance. In current

CMPs, latency-critical and batch applications cannot run con-

currently due to interference on shared resources. Unfortu-

nately, prior work on quality of service (QoS) in CMPs has

focused on guaranteeing average performance, not tail latency.

In this work, we analyze several latency-critical workloads,

and show that guaranteeing average performance is insuffi-

cient to maintain low tail latency, because microarchitectural

resources with state, such as caches or cores, exert inertia on

instantaneous workload performance. Last-level caches im-

part the highest inertia, as workloads take tens of milliseconds

to warm them up. When left unmanaged, or when managed

with conventional QoS frameworks, shared last-level caches

degrade tail latency significantly. Instead, we propose Ubik, a

dynamic partitioning technique that predicts and exploits the

transient behavior of latency-critical workloads to maintain

their tail latency while maximizing the cache space available

to batch applications. Using extensive simulations, we show

that, while conventional QoS frameworks degrade tail latency

by up to 2.3×, Ubik simultaneously maintains the tail latency

of latency-critical workloads and significantly improves the

performance of batch applications.

Categories and Subject Descriptors B.3.2 [Memory struc-

tures]: Design styles—Cache memories; C.1.4 [Processor

architectures]: Parallel architectures

Keywords multicore, interference, isolation, quality of ser-

vice, tail latency, resource management, cache partitioning
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1. Introduction

General-purpose systems are designed to maximize long-term

average performance. They focus on optimizing the common

case and rely on best-effort techniques. While this is a good

match to batch applications, many applications are latency-

critical, and short-term worst-case response times determine

their performance. This disconnect between how systems are

designed and used causes large inefficiencies.

While latency-critical workloads are common in embedded,

mobile, and datacenter computing, in this work we focus

on datacenters. Datacenter servers often execute user-facing

applications that need low tail latencies. For example, web

search nodes need to provide 99th percentile latencies of a

few milliseconds at worst [11, 43]. Moreover, to avoid being

dominated by queuing delays, latency-critical workloads are

typically executed at low loads. These stringent requirements

limit the utilization of servers dedicated to a single application.

For example, Meisner et al. report average server utilization

of 14% for applications with medium QoS needs, and 7% for

real-time services [35]. Barroso and Hölzle report an average

utilization below 30% on the Google fleet [3], which includes

both real-time services (e.g., search), and batch applications

(e.g., MapReduce). This poor utilization wastes billions of

dollars in equipment and terawatt-hours of energy yearly [3].

Fortunately, datacenters also support a large amount of

batch applications that only require high average performance.

Ideally, systems should be designed to execute mixes of

latency-critical and batch applications, providing strict perfor-

mance guarantees to latency-critical applications and achiev-

ing high utilization at the same time. However, this is not

possible in current chip-multiprocessors (CMPs), because

concurrent applications contend on shared resources, such

as cache capacity, on-chip network bandwidth, and memory

bandwidth, causing unpredictable interference.

To sidestep this issue, prior work has proposed several

techniques to provide quality of service (QoS) in CMPs

and datacenters. On one hand, several software-only solu-

tions [12, 33, 54, 60] rely on empirically detecting interfer-

ence, and throttling, migrating, or avoiding to run applica-

tions that induce too much degradation. These schemes of-

ten avoid interference, but do not prevent it. On the other

hand, prior work has introduced hardware to explicitly par-
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tition shared resources [9, 16, 21, 25, 38, 45], and frame-

works that manage these resources dynamically to provide

QoS [5, 13, 17, 29, 31, 37, 42, 49, 61]. However, all these

techniques only provide guarantees on long-term average per-

formance (e.g., IPC or queries per second over billions of

instructions), instead of on worst-case, short-term behavior.

The fundamental issue with conventional QoS frameworks

is that, despite having hardware that enforces explicit partition-

ing, they reconfigure at coarse-grained intervals and assume

instant transitions between steady states, ignoring transient be-

havior. For example, cache partitioning policies [39, 42, 52]

periodically reallocate space across applications. When an

application gets additional space, it can take tens of millisec-

onds to fill it with its own cache lines and reap the benefits

of a larger allocation. We call this effect performance inertia.

Conventional QoS schemes avoid the effects of inertia by re-

configuring at long enough intervals (making transients rare),

and adapt across intervals (e.g., giving more resources to an

application that is below its target performance [60]). This

long-term adaptation works for batch workloads, but not for

latency-critical workloads, as long low-performance periods

dominate tail latency. Alternatively, we can implement fixed,

conservative resource allocations. For example, if a latency-

critical application needs 2 MB of cache to meet its target tail

latency, we can statically assign it 2 MB of cache. This elimi-

nates transients, but it is too conservative. Instead, we advocate

a more efficient approach: by understanding and leveraging

transient behavior, we can still perform dynamic, aggressive

resource sharing without sacrificing short-term performance.

In this paper, we develop adaptive techniques that provide

strict QoS guarantees on tail latency for latency-critical appli-

cations. We focus on last-level caches as they have the largest

amount of microarchitectural, hardware-managed state and

therefore induce significant inertia. Although we expect our

findings to apply to other resources with inertia, we leave such

evaluation to future work. Specifically, our contributions are:
• We develop a suite of representative latency-critical work-

loads, and define a methodology to accurately measure the

interaction between tail latency and microarchitecture us-

ing simulation. We then show that most workloads exhibit

significant inertia, which impacts tail latency considerably.
• We extend conventional partitioning policies that achieve

a single objective (e.g., maximizing cache utilization) to

achieve the dual objectives of maximizing cache utilization

while providing strict QoS guarantees for latency-critical

workloads (Section 4). We show that, without accounting

for inertia, these solutions either preserve tail latency but

are too inefficient, or degrade tail latency significantly.
• We propose Ubik, a cache partitioning policy that character-

izes and leverages inertia to share space dynamically while

maintaining tail latency (Section 5). Ubik safely takes space

away from latency-critical applications when they are idle,

and, if needed, temporarily boosts their space when they are

active to maintain their target tail latency. In designing Ubik,

we show that transient behavior can be accurately predicted

and bounded. Ubik is mostly implemented in software and

needs simple hardware extensions beyond partitioning.
• We evaluate Ubik against conventional and proposed man-

agement schemes (Section 7). While conventional adap-

tive partitioning policies [42] degrade tail latency by up

to 2.3×, Ubik strictly maintains tail latency and simulta-

neously achieves high cache space utilization, improving

batch application performance significantly. Moreover, by

enabling latency-critical and batch applications to coexist

efficiently, Ubik considerably improves server utilization.

2. Background and Related Work

Lack of quality of service fundamentally limits datacenter

utilization, due to the combination of three factors. First,

low-latency datacenter-wide networks [22] and faster stor-

age (e.g., Flash) have turned many I/O-bound workloads into

compute-bound, often making compute the major source of

latency [40, 43]. Second, single-node latencies must be small

and tightly distributed, since servicing each user request in-

volves hundreds to thousands of nodes, and the slowest nodes

often determine end-to-end latency. As a result, responsive

online services (100-1000 ms) often require single-node tail

latencies in the millisecond range [11]. Third, frequency scal-

ing, which drove compute latency down for free, has stopped.

Instead, we now rely on CMPs with more cores and shared

resources, which suffer from interference and degrade perfor-

mance. Therefore, in this work we focus on QoS on CMPs.

2.1. Quality of Service in CMPs

Prior work has proposed two main approaches to provide

QoS in CMPs: software-only schemes that detect and disallow

colocations that cause excessive interference, and software-

hardware schemes where software explicitly manages shared

hardware resources. Both approaches only guarantee aver-

age long-term performance, instead of worst-case, short-term

performance, and ignore transients and performance inertia.

Software-only QoS management: Prior work has proposed

profiling, coscheduling, and admission control techniques to

perform QoS-aware scheduling in datacenters [12, 33, 60]

(e.g., coscheduling latency-sensitive applications only with

workloads that are not memory-intensive). When used across

the datacenter, these techniques are complementary with hard-

ware QoS schemes, since they can select workloads that use

resources in a complementary way, improving system utiliza-

tion. However, while usable in current best-effort hardware,

these schemes do not disallow short-term interference, and

must be conservative, only colocating workloads that have low

memory utilization, which leaves shared memory resources

underutilized. With QoS-enforcing hardware, these techniques

could coschedule workloads much more aggressively, relying

on hardware to prevent interference.

Hardware-based QoS enforcement: Prior work has pro-

posed hardware schemes to partition shared resources [9, 16,

21, 25, 38, 45], as well as software QoS frameworks that
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leverage these mechanisms to implement fairness, maximize

throughput, or provide differentiated service [5, 13, 17, 20, 29,

31, 37, 42, 49, 61]. However, these techniques have been de-

veloped with the goal of meeting long-term performance goals

(e.g., IPC or queries per second over billions of instructions),

instead of providing strict guarantees on worst-case, short-

term behavior (e.g., bounding the performance degradation of

a 1 ms request). These systems reconfigure at coarse-grained

intervals and assume instant transitions between steady states.

However, for many resources, reconfigurations cause rela-

tively long transients, inducing performance inertia. While

inertia can be safely ignored for batch workloads by recon-

figuring at long enough intervals, it cannot be ignored for

latency-critical workloads.

Different microarchitectural resources induce different de-

grees of performance inertia. On one hand, bandwidth has

minimal inertia: reallocating it can be done in tens of cy-

cles [21], and applications instantly start benefiting from it.

On the other hand, components with significant state (such

as cores or caches) take time to warm up, causing significant

transients. While core state is relatively small, the memory

wall keeps driving the amount of cache per core up [7, 58],

making cache-induced inertia a growing concern. Therefore,

we focus on shared cache management.

2.2. Cache Partitioning in CMPs

We first discuss hardware schemes to enforce partition sizes,

then review relevant policies to manage them.

Partitioning schemes: A partitioning scheme should support

a large number of partitions with fine-grained sizes, disallow

interference among partitions, avoid hurting cache associa-

tivity or replacement policy performance, support changing

partition sizes efficiently, and require small overheads. For

our purposes (Section 4), fine-grained partition sizes, strict

isolation, and fast resizing are especially important. Achieving

all these properties simultaneously is not trivial. For example,

way-partitioning [9], the most common technique, restricts

insertions from each partition to its assigned subset of ways.

It is simple, but it supports a small number of coarsely-sized

partitions (in multiples of way size); partition associativity is

proportional to its way count, so partitioning degrades perfor-

mance; and more importantly, reconfigurations are slow and

unpredictable (Section 7). Alternatively, Vantage [45] lever-

ages the statistical properties of skew-associative caches [48]

and zcaches [44] to implement partitioning efficiently. Van-

tage supports fine-grained partitions (defined in cache lines),

provides strict guarantees on partition sizes and isolation, can

resize partitions without moves or invalidations, reconfigura-

tion transients are much faster than in way-partitioning [45],

and it is cheap to implement (requiring ≈1% extra state and

negligible logic). For these reasons, we use Vantage to en-

force partition sizes, although the policies we develop are not

strictly tied to Vantage.

Partitioning policies: Partitioning policies consist of a moni-

toring mechanism, typically in hardware, that profiles parti-

tions, and a controller, in software or hardware, that uses this

information to set partition sizes.

Utility-based cache partitioning (UCP) is a frequently used

policy [42]. UCP introduces a utility monitor (UMON) per

core, which samples the address stream and measures the

partition’s miss curve, i.e., the number of misses that the

partition would have incurred with each possible number

of allocated ways. System software periodically reads these

miss curves and repartitions the cache to maximize cache util-

ity (i.e., the expected number of cache hits). Although UCP

was designed to work with way-partitioning, it can be used

with other schemes [45, 59]. Ubik uses UMONs to capture

miss curves, and extends them to enable quick adaptation for

latency-critical workloads.

Partitioning policies can have goals other than maximizing

utility. In particular, CoQoS [29] and METE [49] combine

cache and bandwidth partitioning mechanisms to provide end-

to-end performance guarantees. As discussed before, these

guarantees are only on long-term performance. For example,

METE uses robust control theory to efficiently meet target

IPCs for each application, but adding new applications and

dynamic application behavior cause variability on short-term

IPCs [49, Figure 10]. Prior work has proposed policies that

optimize for responsiveness. PACORA [5] uses convex opti-

mization to find resource partitionings that minimize penalty

functions. These functions can encode both average perfor-

mance and latency requirements. Cook et al. [10] propose a

software-only gradient descent algorithm that limits the av-

erage degradation that one or more background applications

exert on a foreground application. While both techniques can

be used to reduce latency and responsiveness, they still use

periodic reconfiguration and ignore transients, so they only

work when the desired latency is much larger than the tran-

sient length, which makes them inapplicable to latency-critical

applications (Section 3).

2.3. Cache Management in Real-Time Systems

Latency-critical datacenter workloads are one instance of an

application with soft real-time requirements running on com-

modity systems. Prior work on soft real-time systems has

used static cache partitioning to provide strict QoS [8, 28].

In contrast, Ubik manages partition sizes dynamically and at

fine granularity to provide QoS to latency-critical workloads,

and, at the same time, maximize the space available to batch

applications. Ubik should be directly applicable to other do-

mains with mixes of soft real-time and batch applications (e.g.,

mobile and embedded computing).

Caches are problematic for hard-real time applications,

which must not violate deadlines [47]. As a result, hard real-

time systems often favor scratchpads or locked caches [41, 57].

We do not target hard-real time workloads in this work.

3. Understanding Latency-Critical Applications

Latency-critical applications are significantly different from

the batch workloads typically used in architectural studies. In
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Workload Configuration Requests

xapian English Wikipedia, zipfian query popularity 6000

masstree mycsb-a (50% GETs, 50% PUTs), 1.1GB table 9000

moses opensubtitles.org corpora, phrase-based mode 900

shore TPC-C, 10 warehouses 7500

specjbb 1 warehouse 37500

Table 1: Parameters of the latency-critical workloads studied.

this section, we analyze several representative latency-critical

workloads, with a focus on understanding these differences.

3.1. Applications

We have selected five latency-critical workloads, intended to

capture a broad variety of domains and behaviors:
• xapian, a web search engine, typically a latency-critical,

compute-intensive workload [11, 43], configured to repre-

sent a leaf node, executing search queries over Wikipedia.
• masstree, a high-performance in-memory key-value store

that achieves speeds similar to memcached [32].
• moses, a statistical machine translation system [26], repre-

sents a real-time translation service (e.g., Google Translate).
• shore-mt, a modern DBMS, running TPC-C, an OLTP

workload [23].
• specjbb, representative of the middle-tier portion of 3-tier

business logic systems. We run it using the HotSpot JVM

v1.5, and configure the warmup period and garbage collector

to ensure that the measured portion is not dominated by JIT

overheads and is free of garbage collection periods. This

avoids having the JVM dominate tail latencies; commercial

real-time JVMs [55] achieve a similar effect.

Table 1 details their input sets and simulated requests.

3.2. Methodology

Prior architectural studies consider similar workloads [6, 15,

18], but they execute them at full load and measure their aver-

age throughput. Instead, we are interested in their tail latency

characteristics, which requires a different methodology.

Simulation: We simulate these workloads using zsim [46],

and model a CMP with six OOO cores validated against a real

Westmere system (Section 6 details the simulated system). We

focus on application-level characteristics, not including OS

and I/O overheads. We have verified that this is reasonable by

profiling OS time, I/O time, and request distributions in a real

system. For shore-mt, this is only accurate if the database

and log are stored in a ramdisk (0.8 ms 95th pct service time

in real system vs 0.9 ms simulated), or on an SSD (1.4 ms 95th

pct service time in real). shore-mt becomes I/O-bound on a

conventional HDD (86 ms 95th pct service time in real). For

the other workloads, these simplifications are accurate.

Client-server setup: We integrate client and server under a

single process, and measure the server running the realistic

stream of requests generated by the client. A common har-

ness throttles these requests to achieve exponential interarrival

times at a configurable rate (i.e., a Markov input process,

common in datacenter workloads [34]). This harness adds

negligible server work (155 ns/request). Finally, this approach

does not include network stack overheads. These can be rel-

atively high and unpredictable in conventional architectures,

but recent work has shown that user-level networking can

reduce them to microseconds even in network-intensive work-

loads [24]. However, the networking stack introduces delays

due to interrupt coalescing. Therefore, we model interrupt

coalescing with a 50 μs timeout [36].

For the characterization experiments, we pin the applica-

tion to one core, and simulate a 2 MB LLC except when noted

(in line with the per-core LLC capacity of current CMPs [27]).

All applications run a single server worker thread, although

some applications have additional threads (e.g., shore-mt

uses log writer threads to reduce I/O stalls). Section 3.3 quali-

tatively discusses multithreaded latency-critical workloads.

Metrics: While percentiles are often used to quantify tail la-

tency [11] (e.g., 95th percentile latency), we report tail latency

as the mean latency of all requests beyond a certain percentile.

Our goal is to design adaptive systems, so it would be easy

to design schemes that game percentile metrics by degrading

requests beyond the percentile being measured. Instead, tail

means include the whole tail, avoiding this problem. Addition-

ally, while 99th percentile latencies are commonly used [11],

we use 95th tail metrics, as gathering statistically significant

99th tail metrics would require much longer runs. Our analysis

is equally applicable to higher-percentile metrics.

Statistical significance: Despite using 95th instead of 99th

tail metrics, measuring tail latency accurately is much more

expensive than measuring average performance. Intuitively,

only 5% of the work influences tail latency, requiring many

repeated simulations to reduce measurement error. Indeed,

together, the results we present in this paper required simulat-

ing over one quadrillion (1015) instructions, several orders of

magnitude higher than typical architectural studies.

Each sample run executes the same requests (fixed work),

but interarrival times are randomized, introducing variabil-

ity and ensuring that we model a representative distribution

instead of just one instance. We run enough simulations to

obtain tight confidence intervals for the results we present

(e.g., mean and tail latencies). However, some tail latencies

are so variable that making their confidence intervals negli-

gible would require an unreasonable number of simulations.

Therefore, we omit the 95% confidence intervals when they

are within ±1%, and plot them (as error bars) otherwise.

3.3. Load-Latency Analysis

Figure 1a shows the load-latency plots for each application.

Each graph shows the mean latency (blue) and tail latency

(red) as a function of offered load (ρ = λ/µ, which matches

processor utilization). We make three observations that have

significant implications for adaptive systems:

Observation 1: Tail 6= mean. Tail latencies are significantly

higher than mean latencies, and the difference between both

is highly dependent on the application and load. In general,

tail latencies are caused by the complex interplay of arrival
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(a) Load-latency diagrams for mean (dashed blue) and 95th percentile tail (solid red) latencies.
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Figure 1: Load-latency and service time distributions of the latency-critical applications studied.

and service times for each request. Figure 1b shows the cumu-

lative distribution functions (CDFs) of request service times

for each workload. Some workloads (e.g., masstree, moses)

have near-constant service times, but others (e.g., xapian,

shore-mt, specjbb) are multi-modal or long-tailed. While

applications with more variable service times have a larger

difference between tail and mean latencies, there is no general

way to determine the relationship between both. Therefore,

QoS guarantees on mean performance are insufficient to guar-

antee tail latency efficiently. Instead, adaptive systems should

be designed to guarantee tail latency directly.

Observation 2: Latency-critical workloads have limited

utilization. Figure 1a shows that tail latency quickly increases

with load, even in applications with regular service times.

Most applications must run at 10-20% utilization if reducing

latency is crucial, and cannot run beyond 60-70% load. Even if

tail latency is secondary, traffic spikes and interference impose

large guardbands that reduce utilization [11]. Due to this in-

herently low utilization, dedicating systems to latency-critical

applications is fundamentally inefficient. This motivates build-

ing systems that achieve high utilization by colocating mixes

of latency-critical and batch workloads.

Observation 3: Tail latency degrades superlinearly. When

processor performance degrades, tail latency suffers from two

compounding effects. First, requests take longer (in Figure 1a,

all the curves scale up). Second, load increases (in Figure 1a,

the operating point moves right). For example, masstree has

a 1.2 ms tail latency at 60% load. If processor performance

drops 25%, at the same absolute request rate (queries per

second), load increases to 1.25 · 60 =75%, and tail latency

grows to 1.25 · TailLat(75%) = 2.9ms, 2.3× higher. In

adaptive systems, this places very stringent requirements on

performance variability.

Note that, as configured, these applications service one
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Figure 2: Breakdown of LLC accesses for the applications

studied, with 2 and 8 MB LLCs. To quantify inertia, hits are

classified by how many requests ago they were last accessed.

request at a time in FIFO order. Servers with multiple worker

threads have more nuanced tradeoffs. On one hand, being able

to service multiple requests simultaneously reduces queuing

delay, especially at high load. On the other hand, we have

observed that server threads often interfere among themselves,

block on critical sections, and in some workloads (e.g., OLTP)

concurrent requests cause occasional aborts, degrading tail

latency. Since providing QoS for multithreaded workloads is

far more complex, and single-threaded latency-critical work-

loads are common in datacenters [11, 34], we defer studying

multi-threaded latency-critical workloads to future work.

3.4. Performance Inertia

In latency-critical applications, the performance of each re-

quest largely depends on the microarchitectural state at the

start of the request (e.g., caches, TLBs, branch predictors, etc).

On long requests, ignoring this dependence may be a good
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approximation, but this is not the case for short requests. We

call this dependence performance inertia. We focus on the last-

level cache, the microarchitectural component with the most

state. Figure 2a classifies LLC accesses into hits and misses

for each application, using a 2 MB LLC. Furthermore, hits are

classified according to how many requests ago they were last

accessed, and shown in different shades of red (with the low-

est one being during the current request, and the highest one

being 8 or more requests ago). Classifying hits this way is sen-

sible because, in these workloads, most gains can be achieved

by taking space away between servicing requests, when the

application is idle. To quantify intensity, each bar also shows

the LLC accesses per thousand instructions (APKI).

As we can see, all applications, and especially those with

shorter response times, have significant reuse across requests.

In all cases, more than half of the hits come from lines that

were brought in or last touched by previous requests. More-

over, this inertia largely depends on cache size. Figure 2b

shows LLC access distributions for an 8 MB LLC. Compared

to the 2 MB LLC, all workloads exhibit (a) significantly lower

miss rates, and (b) higher cross-request reuse, often going back

many requests. Thus, larger eDRAM and 3D-stacked caches

are making performance inertia a growing issue for latency-

critical workloads (e.g., POWER7+ has 10MB of LLC per

core [58], and Haswell has up to 32 MB of L4 per core [7]).

4. Simple Cache Partitioning Policies for Mixes

of Latency-Critical and Batch Workloads

Although latency-critical workloads have limited utilization,

we can achieve high utilization by coscheduling mixes of

latency-critical and batch applications in the same machine.

Figure 3 illustrates this scenario, showing a six-core CMP

with a three-level cache hierarchy (private L2s and a shared,

banked L3), where three cores are executing latency-critical

applications, while the other three execute batch applications.

Achieving safe operation and efficient utilization with

latency-critical and batch mixes requires a dual-goal parti-

tioning policy. First, it must not degrade the tail latency of

latency-critical applications beyond a given bound. Second, it

should maximize the average performance of batch workloads.

With this approach, each latency-critical application must be

given a target tail latency. In this work, we set this target to the

tail latency achieved when running the workload alone with a

smaller, fixed-size LLC, as in Figure 1a. This ensures that the

target tail latency is achievable, and is a reasonable strategy

for multi-machine deployments: operators can easily find the

achievable tail latency bound, and the system will guarantee

that it is not violated. In contrast, to allow high utilization, we

do not set performance targets for batch workloads: since they

are not latency-sensitive, they can be migrated to another ma-

chine if they are not meeting their performance target [12, 60].

Previously proposed policies focus on improving or guar-

anteeing long-term performance only, so they are not directly

applicable to our purposes. In this section, we develop simple

extensions to these policies, and show that they have serious

shortcomings because they ignore transient behavior and per-

formance inertia. Figure 4 illustrates these schemes through a

simple example, and summarizes their characteristics.

UCP baseline: Figure 3 shows our baseline system and the

hardware structures added to support cache partitioning. Cores

can be in-order or out-of-order. As discussed in Section 2, we

use Vantage [45] to perform fine-grained partitioning. We also

add some monitoring structures to the core: UMONs [42] to

gather miss curves efficiently (Section 2), and the simple long-

miss memory-level parallelism (MLP) profiling scheme from

Eyerman et al. [14].

We choose utility-based cache partitioning (UCP) en-

hanced with MLP information to illustrate the behavior of

conventional partitioning policies. UCP maximizes overall

throughput, and improves fairness as well [42]. UCP reparti-

tions periodically (e.g., every 50 ms) by reading the per-core

UMONs and MLP profilers; using the UMON data to construct

miss curves, combining them with the MLP information to

construct miss-per-cycle curves (i.e., misses per cycle the core

would incur for each possible partition size) and using the

Lookahead algorithm (Section 2) to find the partition sizes

that minimize the expected misses per cycle in the next in-

terval1. Figure 4 shows the behavior of UCP in a mix of two

latency-critical and two batch workloads. UCP suffers from

two problems. First, UCP maximizes cache utilization with

no concern for performance bounds, and will happily degrade

tail latency if doing so improves overall throughput. Second,

1 Using MLP instead of miss curves as in UCP has been shown to provide

modest performance improvements [30, 37], because UCP already accounts

for miss intensity indirectly. We include this mechanism in fairness to Ubik,

which uses MLP profiling to derive transient behavior.
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UCP interprets the low average utilization of latency-critical

workloads as low utility, and assigns them smaller partitions.

Other partitioning techniques, even those that strive to main-

tain average IPCs, also suffer from this issue [37, 42, 49, 61].

StaticLC — Safe but inefficient: An easy solution to these

problems is to give a fixed-size partition to each latency-criti-

cal application, and perform UCP on the batch applications’

partitions only. We call this policy StaticLC. Figure 4 shows

its behavior when both latency-critical applications have target

sizes of 2 MB (25% of the cache) each. Unlike prior policies

(Section 2), StaticLC safely maintains tail latencies and im-

proves batch application performance somewhat, but it wastes

a lot of space, as latency-critical applications hold half of the

cache even when they are not active (i.e., most of the time).

OnOff — Efficient but unsafe: To improve space utiliza-

tion, we develop the OnOff policy, which operates as follows:

whenever a latency-critical application is active (i.e., on), it

gets its full target allocation; when it goes idle (i.e., off ), its

space is reassigned to the batch partitions, which share the

space using UCP. Using UCP’s reconfiguration algorithm ev-

ery time a latency-critical application shifts between idle and

active would be expensive, so at periodic intervals (as in the

UCP baseline), we precompute the batch partition sizes for

all possible allocations (N + 1 cases with N latency-critical

workloads). Figure 4 shows OnOff’s behavior. Note how the

latency-critical applications only get allocated space when

active, as shown on the left. OnOff gives space to batch apps

aggressively, solving StaticLC’s shortcoming. Unfortunately,

Section 3 showed that latency-critical apps have significant

cross-request reuse, so taking away their allocations when

they are idle degrades their tail latency.

In summary, both StaticLC and OnOff have significant

drawbacks, which Section 7 quantifies. As we will see now, we

can do much better by understanding and leveraging transients

instead of avoiding or ignoring them.

5. Ubik: Inertia-Based Cache Management

Ubik leverages the insight that the transient behavior caused

by resizing a partition can be derived analytically, and uses

it to manage the partition sizes of latency-critical apps more

aggressively than StaticLC. When a latency-critical app goes

idle, Ubik downsizes its partition below its target size while

providing a high-level guarantee: when the app goes from

idle to active, after a configurable time, which we call the

deadline, both its overall progress and performance will be the

same as if the partition size had been kept at the target instead

of downsized. By setting the deadline to the 95th percentile

latency at the target size, Ubik does not degrade tail behavior

(it can, however, make short requests slower, which reduces

variability). Ubik achieves this by determining how much to

downsize safely, and by temporarily boosting the partition

beyond its target size when the app is active to make up for

the lost performance. Idle periods are common, so Ubik frees

a significant fraction of cache space, and uses it to improve

batch app throughput. We have developed two variants of

Ubik: strict Ubik, which makes conservative assumptions to

provide strict guarantees, and Ubik with slack, which relaxes

these assumptions to manage space more aggressively with a

graceful, controllable degradation in tail latency.

5.1. Strict Ubik

Transient behavior: When we increase a partition’s target

size, its application takes some time to fill the extra space.

During this time, the partition’s hit rate is lower than when it

reaches its target size. Ubik relies on this transient behavior

being analyzable. In general, this is not true for all partitioning

schemes. For example, in way-partitioning, when an applica-

tion is given an extra way, it has to have misses in all the sets

to claim the way. This heavily depends on the application’s

access pattern, and although prior work in analytical modeling

of set-associativity has approximated them [1, 53], transients

cannot be accurately derived online.

To avoid these issues, Ubik uses Vantage [45]. In Vantage,

transients happen as fast as possible and are independent of

the application’s access pattern: when a partition is upsized,

nothing is evicted from that partition until it reaches its tar-

get size. Every miss in that partition grows its size by one

line, evicting lines from partitions that are being downsized

(through Vantage’s two-stage demotion-eviction process [45]).

Vantage leverages the statistical properties of zcaches [44] to

guarantee that a growing partition has a negligible probability

of suffering an eviction (about once in a million accesses)

independently of the access pattern, so we can safely assume

that no line is evicted until the partition reaches its target2.

Under these conditions, transients are easy to predict.

Specifically, assume that we upsize a partition from s1 to

s2 cache lines (s2 > s1). Figure 5 illustrates this process. We

are interested in two quantities: how long does the transient

last (Ttransient), and how many cycles do we lose compared

to not having the transient, i.e., if we started at s2 lines (L).

First, consider what happens at a specific size s. If the prob-

ability of experiencing a miss is ps, the average time between

accesses is Taccess = c+ps ·M , where M is the average num-

ber of cycles that the processor stalls due to a cache miss, and

c would be the cycles between cache accesses if all accesses

were hits. We can find all these quantities from basic perfor-

mance counters and the MLP profiler. For example, suppose

the core has IPC = 1.5, issues 5 L3 accesses per thousand

instructions, and 10% of them miss. The MLP profiler com-

putes M directly [14] (e.g., M = 100 cycles); ps = 0.1, and

Taccess = c + 0.1 · 100 = 1000/(5 · 1.5) = 133 cycles, so

c = 123 cycles. Moreover, the UMON produces a miss curve,

which we can express as a miss probability curve, getting ps
for all sizes. Using these, we can find the transient’s length.

Since only a fraction ps of accesses miss, the average time
between two consecutive misses is Tmiss,s = Taccess,s/ps =
c/ps +M . To find the duration of a transient, we simply need

2 In general, Ubik can be used with any analyzable partitioning scheme;

Section 7 evaluates Ubik under different partitioning schemes and arrays.
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to add these intervals up:

Ttransient =

s2−1
∑

s=s1

Tmiss,s =

s2−1
∑

s=s1

c

ps
+M

Note that ps is a variable: it decreases as the partition grows,
as shown in Figure 5. Though this summation is complex, we
can easily compute a conservative upper bound:

Ttransient ≤

s2−1
∑

s=s1

c

ps2
+M = (s2 − s1)

(

c

ps2
+M

)

For the example above, if a transient starts at s1 = 1MB and

ends at s2 = 2MB (s2 − s1 = 16384 64-byte cache lines),

ps1 = 0.2, and ps2 = 0.1, then the transient will take at most

16384 · (123/0.1 + 100) = 21.8 million cycles.

During this transient, we incur
∑s2−1

s=s1
(1− ps2/ps) more

misses than if we started at size s2, and each miss costs M
cycles on average. Therefore, we can compute the number of
lost cycles, L, as well as a conservative upper bound:

L = M

s2−1
∑

s=s1

1−
ps2
ps

≤ M (s2 − s1)

(

1−
ps2
ps1

)

This upper bound assumes that the application does not enjoy

the extra reuse from a larger partition until it finishes the

transient. For the example above, we lose at most 100 ·16384 ·
(1− 0.5) = 819 thousand cycles.

As we can see, the transient duration mainly depends on

the miss rate, while the cycles lost depend on the difference be-

tween miss rates. Thus, Ubik works best with cache-intensive

workloads that are mildly sensitive to partition size.

5.1.1. Managing latency-critical applications

Boosting: Ubik’s goal is to give the same performance as

having a constant partition size, which we call the active

size, sactive. In strict Ubik, sactive is the desired target size.

When the app goes idle, Ubik downsizes its partition to its

idle size, sidle. When the app becomes active, to make up for

the lost performance, Ubik upsizes its partition to the boost

size, sboost > sactive. Once the application has recovered the

cycles it lost in the transient, Ubik downsizes it to sactive until

the app goes idle again. Figure 6 shows this behavior.

Ubik periodically computes the best sidle and sboost for

each partition. Figure 7 illustrates this process. Ubik eval-

uates N options for the idle size: sidle = sactive, sidle =
sactive(N − 1)/N , ..., sidle = 0 (we set N = 16 in our ex-

periments; Figure 7 shows N = 4). For each option, Ubik

computes the sboost needed so that, by the deadline, the num-

ber of cycles gained by being at sboost instead of at sactive
equals the upper bound on lost cycles at the transient. We limit

sboost to sboost,max = total lines/latency-critical apps. This

way, latency-critical apps never interfere with each other (even

when all are boosted). The lower sidle is, the higher sboost.
Ubik stops evaluating options when either the transient is too

long, or the needed sboost is too high. For example, in Figure 7

Ubik stops at option 4, which is too aggressive. Then, among

the feasible options, Ubik performs a simple cost-benefit anal-

ysis to determine the best one. The benefit is the extra hits

that batch apps would gain by having sactive − sidle more

lines available when the app is idle, and the cost is the extra

misses they incur by having sboost − sactive fewer lines for

deadline cycles. These are computed using the batch apps’

miss curves. For example, in Figure 7 Ubik chooses option 3

(sidle = sactive/2), which yields the maximum gain.

Accurate de-boosting: By using upper bounds on both the

transient length and the lost cycles, Ubik downsizes conserva-

tively. Therefore, most requests have faster transients, and re-

gain the performance lost by downsizing much earlier than the

deadline. Waiting until the deadline to downsize from sboost
to sactive would improve the latency-critical application’s per-

formance unnecessarily while hurting batch throughput.

Fortunately, we can leverage the UMON to accurately deter-

mine when an application has made up for its lost performance.

UMON tags are not flushed when the app goes idle, so UMONs

can already track (through hit counters [42]) how many misses

the current request would have incurred if we had not down-

sized its partition. Therefore, we simply add a counter that

uses UMON events to track this; when the count exceeds the

current number of misses (plus a guard to account for the small

UMON sampling error [42]), the application has made up for

its losses. This triggers an interrupt, and the Ubik runtime de-

boosts the app and gives the space back to batch apps.

5.1.2. Managing batch applications

Ubik manages batch app partitions at two granularities.

First, as in UCP, Ubik repartitions the cache space available to

batch apps (but not latency-critical apps) at periodic, coarse-

grained intervals (e.g., 50 ms) using the Lookahead algorithm.

Second, whenever a latency-critical app partition is resized

(e.g., on an idle→active transition), Ubik takes space from or

gives it to batch apps. Using the Lookahead algorithm on these

frequent resizings would be too expensive. Additionally, it is

infeasible to precompute batch partition sizes for all cases, as

it is done in OnOff, because there are many more possibilities.

Instead, on each coarse-grained reconfiguration interval,
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the Ubik runtime computes the average cache space that was

available to batch apps in the previous interval, and performs

Lookahead on this average size to determine the baseline

batch allocations. Then, it builds a repartitioning table that

stores what partitions to give space to or take space from

when the space available to batch apps changes. We quantize

partition sizes to “buckets”, 1/Bths of cache size (B = 256
in our evaluation), so the table has B entries. The table is built

greedily: for each possible batch budget, growing a latency-

critical partition takes space away from the batch app that gets

the lowest marginal utility from its allocation. Figure 8 shows

how this table is built and used. When the runtime needs to

resize a latency-critical partition, it walks this table from the

current to the target buckets to find what batch partitions to

take space from or give it to. This makes repartitions fast,

and, despite the shortcomings of greedy partitioning with non-

convex miss curves [4, 42], it works well in practice because

the space available to batch apps is often close to the average.

5.1.3. Putting it all together

Ubik is mostly implemented as a software runtime, re-

quiring minimal hardware extensions over conventional parti-

tioning schemes, namely the MLP profilers and the accurate

de-boosting mechanism. Periodically, the runtime reads the

UMONs and performance counters, computes the best idle and

boost sizes for latency-critical apps (Section 5.1.1), finds the

batch app sizes using Lookahead, and builds the repartitioning

table (Section 5.1.2). Overall, this process takes a few tens of

thousands of cycles. Since this happens at a coarse granularity

(every 50 ms), it incurs minimal overheads. Latency-critical

apps call into the Ubik runtime when they become idle and

active (this does not happen after every request; an app only

idles when it runs out of requests to process). On each such

event, Ubik resizes the latency-critical partition (to sidle or

sboost) and uses the repartitioning table to find the batch apps

to give or take space from. On an idle-active transition, the run-

time also arms the accurate de-boosting circuit, which triggers

an interrupt when the cost of the transient has been recovered.

Ubik then downsizes the app to sactive, and gives the space to

batch apps using the repartitioning table. These resizings are

fast (hundreds of cycles), imposing negligible overheads.

Overall, hardware costs from partitioning are small. For the

six-core CMP in Figure 3, Vantage adds a 3-bit partition ID

to each LLC tag (0.52% state overhead), 256 bits of state per

partition and bank (0.009% state overhead for 2 MB banks),

and minimal, off-the-critical-path logic for the replacement

process [45]. Each UMON adds 2 KB (256 tags) of state, and

is rarely accessed (only one in 768 accesses is inserted into

the UMON). Ubik’s accurate de-boosting mechanism requires

minimal changes to UMONs: a comparator, an MSR to control

it, and an input to the interrupt controller.

5.2. Ubik with Slack

Ubik as described so far takes conservative decisions to avoid

degrading tail latency. Some applications have little to gain

from sizes larger than the target size, and in this case, strict

Ubik is conservative, often not downsizing at all. However,

often these applications also have little to lose from having

less space. For example, Figure 2a shows that, at 2 MB, moses

barely gets any LLC hits, despite being memory-intensive. For

these cases, by slightly relaxing the tail latency requirement,

we can free a large amount of space. This enables Ubik to

smoothly trade off tail latency degradation for higher batch

app throughput.

We relax the tail latency requirements by allowing a con-

figurable amount of tail latency degradation, expressed as a

fraction of the strict deadline, which we call the slack. Ubik

uses this slack on tail latency to determine a miss slack, i.e.,

a bound on the additional misses that can be sustained in the

course of a request while maintaining the tail latency within

the desired slack. The miss slack is computed adaptively us-

ing a simple proportional feedback controller that accepts

individual request latencies as input.

Given a miss slack, Ubik uses the miss curve to set sactive
to a value lower than the given target size such that the addi-

tional misses incurred at this size are within the miss slack.

sboost and sidle are then determined relative to this new sactive
as in Section 5.1.1. Since the sizing of sactive relative to the

target size is contrained only by the relative difference in miss

rates but not by any transient lengths, sactive can be much

lower than the target for apps that are not cache-sensitive, even

if they are not very cache-intensive.

Unfortunately, with slack, rare requests that might not

impact the miss curve much can suffer significantly, espe-

cially since sactive may be much smaller than in the no-slack

case. To detect these requests, we add a low watermark to

the de-boosting circuit: if, after reaching sboost, the current

misses outgrow the UMON-measured misses by a factor of

(1 +miss slack), we trigger an interrupt and conservatively

use the no-slack sboost and sactive. This avoids catastrophic

degradation for these cases. Further, the adaptive miss slack

mechanism mentioned earlier allows Ubik to quickly adapt

sactive in response to changing application behavior.

6. Methodology

Modeled system: As in Section 3, we use zsim [46] to model

CMPs with 6 cores and a 3-level cache hierarchy, shown in

Figure 3, with parameters given in Table 2. This configuration

closely models a Westmere-EP processor. We use out-of-order
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Cores 6 x86-64 cores, Westmere-like OOO [46], 3.2 GHz

L1 caches 32 KB, 4-way set-associative, split D/I, 1-cycle latency

L2 caches
256 KB private per-core, 16-way set-associative,

inclusive, 7-cycle latency

L3 cache
6 banks, 2 MB/bank (12 MBs total), 4-way 52-candidate

zcache, 20 cycles, inclusive

Coherence

protocol

MESI protocol, 64B lines, in-cache directory, no silent

drops; TSO

Memory 200-cycle latency

Table 2: Configuration of the simulated 6-core CMP.

core models by default (validated against a real Westmere

system [46]), and also include results with simple core models.

Since we focus on cache capacity partitioning and deal-

ing with the effects of performance inertia, we model a fixed-

latency LLC and main memory, which do not include band-

width contention. Bandwidth has no inertia, so Ubik should be

easy to combine with bandwidth partitioning techniques for

real-time systems [21]. We leave such an evaluation to future

work. The memory latency matches a Xeon W3670 running

at 3.2 GHz with 3 DDR3-1066 channels at minimal load.

LLC configurations: We use private per-core 2 MB LLCs

(which provide perfect isolation) as a baseline, and evaluate

a shared 12 MB LLC with different schemes: LRU (without

partitioning), UCP, StaticLC, OnOff (Section 4), and Ubik.

All partitioning policies use Vantage configured as in [45],

reconfigure every 50 ms, use 32-way, 256-line UMONs (2 KB

each), and linearly interpolate the 32-point UMON miss curves

to 256 points for finer granularity.

Workload mixes: We simulate mixes of latency-critical and

batch apps. Each six-core mix has three latency-critical and

three batch apps. Apps are pinned to cores. We use the five

latency-critical apps described in Section 3. First, we run each

app alone with a 2 MB LLC, and find the request rates that

produce 20% and 60% loads. We then use each app in two

configurations: with the 20% request rate to simulate a low-

load case, and the 60% rate to simulate a high-load case. We

test each case with a wide and representative set of batch

apps. Each mix has three instances of the same latency-critical

workload, with each instance serving a different set of requests.

Both requests and arrival times are different for each instance.

To produce a wide variety of batch app mixes, we use a

methodology similar to prior partitioning work [42, 45]. We

classify all 29 SPEC CPU2006 workloads into four types ac-

cording to their cache behavior: insensitive (n), cache-friendly

(f), cache-fitting (t), and streaming (s) as in [45, Table 2],

and build random mixes of all the 20 possible combinations

of three workload types (e.g., nnn, nnf, nft, and so on). We

generate two mixes per possible combination, for a total of

40 mixes. We then simulate all combinations of the 10 three-

application latency-critical mixes and the 40 three-application

batch mixes to produce 10×40=400 six-application mixes.

To run each mix, we fast-forward each application to the

beginning of its region of interest (ROI). For each latency-

critical app, the ROI starts after processing a fixed number

of warmup requests, and covers the number of requests in

Table 1. This number has been chosen so that, at 20% load,

the ROI takes around 5 billion cycles. For batch apps, we first

run each app in isolation with a 2 MB LLC, and measure the

number of instructions Ii executed in 5 billion cycles. The

ROI starts after fast-forwarding 10 billion instructions, and

covers Ii instructions. In each experiment we simulate the full

mix until all apps have executed their ROIs, and keep all apps

running. We only consider each app’s ROI when reporting

aggregate metrics. Though involved, this multiprogrammed

methodology is fixed-work and minimizes sample imbalance,

allowing unbiased comparisons across schemes [19].

Metrics: For each mix, we report two metrics. For latency-

critical apps, we report tail latency degradation, defined as the

95th percentile tail latency (Section 3.2) across all three app

instances, normalized to the latency of the same instances run-

ning in isolation. For batch apps, we report weighted speedup,

(
∑

i IPCi/IPCi,alone on 2MBLLC)/Napps [42, 51], which

represents the multiprogrammed speedup that batch appli-

cations achieve vs having private LLCs. To achieve statisti-

cally significant results, we introduce small amounts of non-

determinism [2], randomize request arrival times, and perform

enough runs to achieve 95% confidence intervals ≤3% on all

individual runs. Most individual runs and all aggregate metrics

have confidence intervals within 1%.

As discussed in Section 3, measuring tail latencies accu-

rately requires many runs, making our evaluation compute-

intensive. For example, Figure 9 summarizes 145 trillion sim-

ulated instructions. For this reason, we evaluate Ubik on small

CMPs. Ubik should apply to large-scale CMPs with tens to

hundreds of cores, but we leave that evaluation to future work.

7. Evaluation
7.1. Comparison of LLC Management Schemes

Figure 9 shows the distributions of both tail latency degrada-

tion for the latency-critical apps (lower is better) and weighted

speedup for the batch apps (higher is better) in each mix. Fig-

ure 9a contains the mixes with low-load latency-critical apps,

and Figure 9b contains the high-load mixes. On each graph,

each line represents a single scheme. For each scheme, mixes

are sorted from worst to best (ascending weighted speedups,

descending tail latency degradations). Mixes are sorted inde-

pendently for each line, so these graphs concisely summarize

each scheme, but should not be used for mix-by-mix compar-

isons. In this section, Ubik runs with a slack of 5% (Section 7.2

explores other slack values).

Figure 9a shows that LRU, UCP, and OnOff severely de-

grade tail latency on a large fraction of the mixes: LRU and

OnOff suffer significant degradation for about 20% of the

mixes, with many of these being in excess of 2×. While

UCP maintains tail latencies within acceptable bounds for

a larger fraction of mixes, the worst case degradations for

it are just as bad as in LRU and OnOff, about 2.2×. These

severe deadline violations make these policies unsuitable for
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Figure 9: Distribution of tail latency degradation (latency-critical apps, lower is better) and weighted speedup (batch apps, higher

is better) for all schemes vs a private LLC baseline, for the 400 mixes simulated, split into low and high loads (200 mixes each).

LRU UCP OnOff StaticLC Ubik

Low load 13.1% 18.3% 18.3% 8.9% 17.1%

High load 9.8% 14.7% 14.5% 8.3% 14.8%

Table 3: Average weighted speedups (%) for all schemes.

latency-critical workloads. In contrast, our proposed StaticLC

and Ubik schemes have negligible latency degradation. Most

mixes match the tail latency of private LLCs, and some are

slightly worse 3. Moreover, as expected, Ubik’s tail latencies

are within 3% of StaticLC’s (consistent with Ubik’s 5% slack).

Tail latencies for the high-load mixes look similar, with

Ubik and StaticLC maintaining a tight upper bound on tail

latency degradation, while LRU, UCP, and OnOff experience

significant degradation: up to 60% for UCP, and 40% for both

LRU and OnOff. Though still unacceptably high, these degra-

dations are better than in the low-load mixes. Two competing

effects are at play here: on one hand, tail latency is more sen-

sitive to performance at high load (Section 3); on the other

hand, at higher utilization, latency-critical apps “defend” their

cache working sets better in LRU and OnOff, and UCP sees

higher average utility, giving them larger partitions. Overall,

the second effect dominates, and running latency-critical apps

at higher loads gives more stable (albeit higher) tail latencies

with these best-effort schemes. As we will see later, which

effect dominates depends on the specific latency-critical app.

Figure 9 also shows the distributions of weighted speedups

for batch apps, and Table 3 reports their averages. OnOff

and UCP perform best for batch apps. LRU enjoys the extra

capacity stolen from latency-critical apps, but cannot use it as

effectively due to the lack of partitioning among batch apps,

performing sensibly worse than OnOff and UCP. StaticLC

achieves the smallest weighted speedups, as it always limits

batch apps to half of the cache (though, by using UCP on

batch apps, StaticLC improves throughput over private LLCs).

Finally, Ubik has weighted speedups competitive with OnOff

and UCP, and outperforms LRU, while still meeting deadlines.

Overall, weighted speedups are modest because many batch

3 These differences are an artifact of our baseline being private caches instead

of a statically sized partition. Because a Vantage partition has very high

associativity [45], these differences are overall positive.

apps in our mixes are not memory-intensive. As Figure 9

shows, about 23% of the mixes enjoy weighted speedups of

over 30%, with improvements of up to 74%.

Per-application results: To gain more insights into these re-

sults, Figure 10 shows the tail latency degradation and average

weighted speedup separately for each latency-critical work-

load in their low and high load scenarios. In the tail latency

graph, each bar shows the tail latency degradation across all

40 batch mixes for a specific latency-critical app and load, and

the whisker shows the mix with the worst tail degradation. In-

tuitively, these graphs can be interpreted as follows. Suppose

we have a 40-machine cluster. We run three instances of the

same latency-critical app in every machine, and spread the 40

batch app mixes across machines. We then issue requests to

all the latency-critical apps uniformly, and measure the tail

latency of all response times from all the machines considered

together. Each bar shows how much worse the global tail la-

tency is vs having private LLCs, and the whisker shows the

tail latency of the worst-performing machine. The weighted

speedup plots show the additional batch throughput vs having

private LLCs, over the whole cluster.

Figure 10 shows large differences across latency-critical

apps. First, xapian has very low LLC intensity (Section 3),

so in the low-load case, all techniques achieve similar tail

latency. UCP and Ubik achieve the highest weighted speedups

by aggressively downsizing xapian partitions. StaticLC is

excessively conservative, but even OnOff is wasteful, as it

gives xapian its full allocation when it’s on. However, at

high loads xapian becomes very sensitive to performance

changes (Figure 1a shows its tail latency has a steep slope

beyond 60%), and UCP degrades xapian’s tail latency by up

to 20% in some cases. masstree is mildly memory-intensive

and has cross-request reuse, but has high MLP as well, which

somewhat mitigates its tail latency degradation under LRU,

UCP, and OnOff. The three best-effort schemes suffer deadline

violations of up to 20% in the low-load case and up to 35% in

the high-load case. moses is very memory-intensive and has

no reuse at 2 MB, but starts to have significant reuse at around

4 MB. Interestingly, UCP detects this and gives moses a large

fraction of the cache, and with LRU, moses naturally grabs

the space from batch apps. Both schemes achieve tail laten-
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Figure 10: Tail latency degradation (lower is better) and weighted speedup (higher is better) of all schemes vs a private LLC

baseline, for the 400 mixes simulated, split by latency-critical app and load, using OOO cores. The left graph shows both overall

(bar) and worst-mix (whisker) tail latencies; the right graph shows average weighted speedups.
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Figure 11: Results with simple in-order (IPC=1) cores: tail latency degradation (lower is better) and weighted speedup (higher is

better) of all schemes vs a private LLC baseline, for the 400 mixes simulated, split by latency-critical app and load.

cies well below our target, which is unnecessary and degrades

batch throughput. Additionally, UCP also suffers occasional

deadline violations of up to 20%. Ubik, on the other hand,

maintains moses’s target tail latency, and achieves the high-

est batch throughput of all schemes. Finally, shore-mt and

specjbb have significant cross-request reuse (Figure 2) and

are memory-intensive. LRU, OnOff, and UCP experience se-

vere deadline violations for these two apps. On the other hand,

StaticLC and Ubik maintain their tail latencies by protecting

their working sets when they go idle. Both UCP and OnOff

achieve high weighted speedups, but these come at the cost

of significant tail latency degradation. Even in these sensitive

cases, Ubik achieves significant throughput improvements

over StaticLC by exploiting transients and boosting.

In summary, Ubik achieves the best balance between main-

taining tail latency and improving batch throughput of all

the schemes. Ubik achieves the highest batch throughput of

all schemes on xapian and moses, and achieves a some-

what smaller throughput than UCP and OnOff on masstree,

shore-mt, and specjbb, but unlike UCP, OnOff, and LRU,

it maintains their tail latency.

Utilization: Our end goal is to improve datacenter utilization.

With a few conservative assumptions, we can approximate the

utilization gains of StaticLC and Ubik. First, since low tail la-

tencies are often critical [11], assume the datacenter executes

latency-critical apps at 20% (low) load. Current CMPs imple-

ment LRU, so to avoid high tails, the conventional approach

is to not coschedule any batch applications. Assume we can

use half of the cores without degrading the tail much (which

is somewhat optimistic, since in many cases even two latency-

critical applications will interfere with each other). In this case,

we achieve 10% utilization, which matches reported numbers

from industry [35]. In contrast, StaticLC and Ubik can safely

schedule mixes across all the machines, achieving 60% utiliza-

tion, 6× higher than LRU. Beyond utilization, both schemes

significantly improve throughput for batch applications.

In-order cores: Many datacenter workloads have vast request-

level parallelism, so using simpler cores can be a sensible way

to improve datacenter efficiency [43, 50, 56]. To see if our pro-

posed techniques apply to simpler cores, Figure 11 shows tail

latencies and weighted speedups when using simple in-order

core models (IPC=1 except on L1 misses) instead of OOO

cores. In-order cores are more sensitive to memory access

latency, as they cannot hide stalls. Therefore, LRU, UCP, and

OnOff degrade tail latency more severely, being up to 2.7×
worse. In contrast, StaticLC and Ubik both avoid significant

tail latency degradation despite the higher sensitivity. The

added sensitivity to cache misses also translates into higher

weighted speedups across all schemes: StaticLC achieves an

average weighted speedup of 20%, while Ubik significantly

outperforms it with a weighted speedup of 28%. LRU, UCP,

and OnOff achieve weighted speedups of 27%, 30%, and

30%, respectively. All schemes also achieve higher maximum

weighted speedups (2.44×).

7.2. Sensitivity to Slack

As discussed in Section 5, by introducing slack, Ubik can

smoothly trade off tail latency for batch throughput. Figure 12

shows tail latencies and weighted speedups when Ubik uses

slacks of 0%, 1%, 5%, and 10% (so far, we have discussed re-

sults using a 5% slack). Note that the scale on the y-axis for the

tail latency degradation chart in Figure 12 is much smaller than

in Figure 11 and Figure 10. With no slack, Ubik strictly main-

tains tail latency and achieves an average weighted speedup

of 9.9%. Larger slacks improve batch throughput while main-

taining tail latencies within the specified bounds. With slack
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Figure 12: Results for Ubik with 0%, 1%, 5% and 10% slack: tail latency degradation (lower is better) and weighted speedup

(higher is better) vs a private LLC baseline, for the 400 mixes simulated, split by latency-critical app and load, using OOO cores.
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Figure 13: Distribution of tail latency degradation (latency-critical apps, lower is better) and weighted speedup (batch apps,

higher is better) vs a private LLC baseline for Ubik (5% slack) with different partitioning schemes and arrays: way-partitioning

and Vantage on set-associative caches of 16 (SA16) and 64 (SA64) ways, and Vantage on the default 4-way 52-candidate zcache.

values of 1%, 5% and 10%, weighted speedup improves to

13.1%, 16.0% and 17.0%, respectively. Therefore, with an

adjustable slack, Ubik dominates all the other schemes evalu-

ated. We find that, in practice, a small value of slack (e.g., 5%)

achieves a good trade-off between maintaining tail latencies

and improving batch performance.

7.3. Sensitivity to Partitioning Scheme

Ubik relies on fine-grained partitioning with fast, analyzable

transients. So far, we have presented results using Vantage on

a 4-way, 52-candidate zcache, which satisfies both properties.

Figure 13 characterizes Ubik using way-partitioning and Van-

tage on 16 and 64-way set-associative caches (SA16/SA64).

Way-partitioning suffers from three problems: lower asso-

ciativity, coarse-grained partitions, and longer transients. With

the way-partitioned 16-way cache, Ubik has limited choice in

partition sizes and observes much longer transients, so tail la-

tencies and weighted speedup are significantly degraded. The

64-way cache ameliorates the associativity and granularity

problems, resulting in comparable throughput to Vantage on

zcaches. However, transients are still longer and unpredictable,

so tail latencies are still worse by up to 60%.

Ubik works better with Vantage on set-associative caches.

Vantage works well in set-associative arrays, but it loses

its analytical guarantees [45] and becomes a soft partition-

ing scheme. On the 16-way cache, frequent forced evictions

hurt both tail latency (by up to 45%) and batch throughput.

However, with 64 ways, Vantage has enough associativity to

achieve almost the same throughputs and tail latencies as with

a zcache. Though rare, the 64-way cache still suffers from

occasional tail latency degradation of up to 20%.

In conclusion, while Ubik misses deadlines with way-parti-

tioning due to its lack of predictability, Ubik is usable with set-

associative caches partitioned with Vantage, although at the

cost of high associativity and occasional deadline violations.

8. Conclusions

We have identified the problem of performance inertia, and

characterized its impact in latency-critical applications. We

have shown that, in systems that execute mixes of batch and

latency-critical applications, prior cache partitioning tech-

niques can be adapted to provide capacity isolation and im-

prove cache utilization, but ignoring inertia sacrifices sig-

nificant batch performance to guarantee isolation of latency-

critical workloads. We have used these insights to design Ubik,

a partitioning technique that leverages transient behavior to

dynamically manage the allocations of latency-critical work-

loads without degrading their tail latencies, providing both

high cache utilization and strict QoS guarantees on mixes of

latency-critical and batch workloads.
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