
MIT Open Access Articles

Photon information efficient communication 
through atmospheric turbulence

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Chandrasekaran, Nivedita, Jeffrey H. Shapiro, and Ligong Wang. “Photon Information 
Efficient Communication through Atmospheric Turbulence.” Edited by Ronald E. Meyers, Yanhua 
Shih, and Keith S. Deacon. Quantum Communications and Quantum Imaging X (October 15, 
2012).

As Published: http://dx.doi.org/10.1117/12.929832

Publisher: SPIE

Persistent URL: http://hdl.handle.net/1721.1/90849

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90849
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ABSTRACT

High photon-efficiency (many bits/photon) optical communication is possible with pulse-position modulation
and direct detection, and high spectral efficiency (many bits/sec-Hz) optical communication is possible with
quadrature-amplitude modulation and coherent detection. These high efficiencies, however, cannot be achieved
simultaneously unless multiple spatial modes are employed. Previous work for the vacuum-propagation channel
has shown that achieving 10 bits/photon and 5 bits/sec-Hz is impossible with coherent detection, and it requires
189 low diffraction-loss spatial modes at the ultimate Holevo limit, and 4500 such modes at the Shannon limit
for on-off keying with direct detection. For terrestrial propagation paths, however, the effects of atmospheric
turbulence must be factored into the photon and spectral efficiency assessments. This paper accomplishes
that goal by presenting upper and lower bounds on the turbulent channel’s ergodic Holevo capacity for M -mode
systems whose transmitters use either focused-beam, Hermite-Gaussian (HG), or Laguerre-Gaussian (LG) modes,
and whose receivers do M -mode detection either with or without adaptive optics. The bounds show that use of
adaptive optics will not be necessary for achieving high photon efficiency and high spectral efficiency through
atmospheric turbulence, although receivers which do not use adaptive optics will need to cope with considerable
crosstalk between the spatial patterns produced in their entrance pupils by the M -mode transmitter. The
bounds also show the exact theoretical equivalence of the HG and LG mode sets for this application, generalizing
a result previously established for the vacuum-propagation channel. Finally, our results show that the FB modes
outperform the HG and LG modes in operation with and without adaptive optics.

Keywords: free-space optical communications, atmospheric turbulence, photon efficiency, spectral efficiency,
Hermite-Gaussian modes, Laguerre-Gaussian modes

1. INTRODUCTION

Photon-starved optical communication links, such as the Lunar Laser Communications Demonstration,1 place
a premium on achieving high photon information efficiency (PIE), i.e., many bits/detected photon. Such per-
formance can be realized with a pulse-position modulation (PPM) transmitter, and a direct-detection receiver.2

On the other hand, future developments in fiber-optic communication are increasingly focused on achieving
high spectral efficiency (SE), that is, many bits/sec-Hz.3 This goal can be realized by employing a high-order
quadrature-amplitude modulation (QAM) transmitter and a coherent-detection receiver.4 Should both high pho-
ton efficiency and high spectral efficiency be desired, however, the preceding approaches fail: PPM achieves its
high photon efficiency via bandwidth expansion, in which case its spectral efficiency is necessarily low; and co-
herent detection is fundamentally incapable of high photon efficiency, with heterodyne and homodyne detection’s
photon efficiencies, as determined from their classical (Shannon-limit) capacities, being bounded above by 1.44
bits/detected-photon and 2.89 bits/detected-photon, respectively.5

Recourse to the ultimate quantum-mechanical (Holevo-limit) capacity of the bosonic (optical communication)
channel does not eliminate the conflicting demands of high photon efficiency and high spectral efficiency. Consider
the vacuum-propagation channel, in which the only noise injected is the minimum (vacuum-state) quantum noise
needed to preserve the Heisenberg uncertainty principle. Here the photon information efficiency and the spectral
efficiency for single spatial-mode operation, found from the Holevo-limit capacity,6 are

PIE1 = [(1 + ηNT ) log2(1 + ηNT ) − ηNT log2(ηNT )]/ηNT , (1)

Further author information: Send correspondence to N.C. at nivedita@mit.edu.

Quantum Communications and Quantum Imaging X, edited by Ronald E. Meyers, 
Yanhua Shih, Keith S. Deacon, Proc. of SPIE Vol. 8518, 851808 · © 2012 SPIE  

CCC code: 0277-786/12/$18 · doi: 10.1117/12.929832

Proc. of SPIE Vol. 8518  851808-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/08/2014 Terms of Use: http://spiedl.org/terms



and
SE1 = (1 + ηNT ) log2(1 + ηNT ) − ηNT log2(ηNT ), (2)

where NT is the average number of transmitted photons and η is the channel transmissivity, namely the fraction
of the transmitted photons that are detected. Figure 1(a) shows the Holevo-limit PIE1 versus SE1 behavior,
together with the corresponding Shannon-limit results for heterodyne and homodyne detection: none of them
realizes both high photon information efficiency and high spectral efficiency.

High PIE and high SE can be realized together if we go to multiple spatial-mode operation, for which we
have the Holevo-limit results5

PIEM = M [(1 + ηNT /M) log2(1 + ηNT /M) − (ηNT /M) log2(ηNT /M)]/ηNT , (3)

and
SEM = M [(1 + ηNT /M) log2(1 + ηNT /M) − (ηNT /M) log2(ηNT /M)], (4)

for M -mode operation over the vacuum-propagation channel when all M modes have the same transmissivity.
Unfortunately, no explicit approach to realizing this capacity is known as yet. Moreover, as seen in Fig. 1(b),
heterodyne and homodyne detection have hard limits—1.44 and 2.89 bits/detected-photon, respectively—on their
PIEM values. On the other hand, Fig. 1(b) also shows that the Shannon capacity of direct detection with on-off
keying (OOK) mimics the 189 spatial-mode Holevo capacity, but to do so it requires 4500 equal-transmissivity
spatial modes.5 Bridging this large gap between the mode-number required by a known implementation for
realizing both high PIE and high SE and the corresponding requirement at the ultimate quantum limit is the
subject of ongoing research.7, 8
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Figure 1: Photon efficiency versus spectral efficiency for single spatial-mode and multiple spatial-mode vacuum-
propagation links. Results for systems that achieve the Holevo capacity, the Shannon capacities of heterodyne
detection and homodyne detection, and the Shannon capacity of direct detection with OOK modulation are
shown.

Well-known propagation characteristics9 of the vacuum-propagation channel imply that high photon efficiency
with high spectral efficiency can only be obtained in the near-field power transfer regime. For an L-m-long line-
of-sight vacuum-propagation link at wavelength λ between coaxial square transmitter and receiver pupils with
sides of length dT and dR, respectively, near-field power transfer prevails when the Fresnel number product
Df = (dT dR/λL)2 satisfies Df ≫ 1.∗ Under this condition, there are approximately Df orthonormal spatial

∗Although circular pupils are more common, the square-pupil case is more convenient for the numerical evaluations
that will be performed later. The physics of near-field propagation with coaxial circular pupils is the same as stated
here for square pupils, except that the Fresnel number product is given by Df = (πDT DR/4λL)2 in terms of the pupil
diameters, DT and DR.
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modes in the transmitter pupil—for each of two orthogonal polarization states—that transfer almost all of their
power and retain their orthogonality after propagation into the receiver pupil. It follows that achieving the
goal of operating at 10 bits/photon with 5 bits/sec-Hz will only be practical for very modest path lengths. For
example, when dT = dR = d and λ = 1.55 µm, Df = 189 (the Holevo limit) requires that d = 15 cm when
L = 1 km. When L = 10km, the Holevo limit requires that d = 46 cm. Switching to OOK direct detection,
under the same pupil and wavelength assumptions, we find that Df = 4500 requires that d = 32 cm when
L = 1 km and d = 1.0m when L = 10km.

Application scenarios for these short path lengths will almost certainly involve terrestrial, rather than vacuum-
propagation, paths. As such, they will be subject to the usual issues in short-range free-space optical commu-
nications.†10, 11 It has long been known that the presence of clouds or fog along the line of sight prevents high
data-rate (Gbps) free-space optical communication.12 So, if we are interested in high data-rate transmission
with high photon and spectral efficiencies, only clear-weather propagation can be considered. Putting aside the
modest extinction loss associated with atmospheric absorption and scattering at a well-chosen laser wavelength,
it is the parts per million refractive-index fluctuations associated with turbulent mixing of air parcels with ∼1K
temperature differences—which lead to beam spread, angle-of-arrival spread, and time-dependent fading known
as scintillation13—that distinguish clear-weather atmospheric propagation from propagation through vacuum.
Thus the main task of this paper will be to establish bounds on the PIE versus SE behavior that can be realized
using multiple spatial modes in the presence of atmospheric turbulence.

A great deal is known about wave propagation and optical communication through atmospheric turbulence,
but only a limited amount of that work is germane to determining the degree to which this channel permits high
PIE and high SE to be achieved simultaneously. We know that the atmospheric channel has a near-field power
transfer regime—although with stochastic mode functions and modal transmissivities—that is similar to that of
vacuum propagation.14 Relatively little has been done, however, to assess the communication performance ob-
tainable in this regime, with the exception of single spatial-mode studies of binary communication performance,15

and single spatial-mode operation of the Bennett-Brassard 1984 (BB84) protocol for quantum key distribution.16

This lack of results is due, in part, to the difficulty of determining the statistics of the turbulent channel’s near-
field modal transmissivities. Hence our capacity results will be built on the limited transmissivity-statistics that
can be gleaned from existing propagation theory.

The rest of the paper is organized as follows. Section 2 provides a quick summary of the near-field modal
decomposition of the turbulent channel specialized to M spatial-mode optical communication systems that use
or do not use adaptive optics. Section 3 builds on this foundation by establishing upper and lower bounds on
the turbulent channel’s ergodic Holevo capacity that can be evaluated from the statistics provided in Section 2.
Section 4 instantiates the bounds from Section 3 for three specific mode sets: focused-beam modes, Hermite-
Gaussian (HG) modes, and Laguerre-Gaussian (LG) modes. Here it is found that adaptive optics will not

be necessary for achieving high photon efficiency and high spectral efficiency through atmospheric turbulence,
although receivers which do not use adaptive optics will need to cope with considerable crosstalk between the
spatial patterns produced in their entrance pupils by the M -mode transmitter. It will also be seen that there is
an exact theoretical performance equivalence between the HG and LG mode sets. These results make choosing
between the HG and LG mode sets a matter of implementation convenience, which generalizes a result previously
found for the vacuum-propagation channel.17 In addition, we will find that that the FB modes outperform the
HG and LG modes in operation with and without adaptive optics. Section 5 concludes with a summary of our
results and areas for future study.

2. NEAR-FIELD MODAL DECOMPOSITION AND ITS STATISTICS

Consider propagation through atmospheric turbulence of linearly-polarized, quasimonochromatic light with cen-
ter wavelength λ from a dT × dT transmitter pupil AT in the z = 0 plane to a dR × dR receiver pupil AR in
the z = L plane, as shown in Fig. 2. From the extended Huygens-Fresnel principle13 we have that the complex

†Calling a line-of-sight optical link through the atmosphere a “free-space” link is common usage, which we will employ,
although it is a misnomer. We reserve the term vacuum propagation for propagation through what electromagnetic theory
would consider to be free space.
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envelope, EL(ρ′, t), in the receiver’s entrance pupil is related to the complex envelope in the transmitter’s exit
pupil, E0(ρ, t), by the superposition integral‡

EL(ρ′, t) =

∫

AT

dρ E0(ρ, t − L/c)h(ρ′, ρ, t), for ρ′ ∈ AR, (5)

where h(ρ′, ρ, t) is the atmospheric Green’s function at time t, and we have exploited the fact that turbulence-
induced multipath spread is sub-ps and that Gbps communication can be accomplished with ns-duration pulses
in assuming that the temporal behavior is just the line-of-sight propagation delay L/c. Furthermore, because
the coherence time of the turbulence is ∼ms, we can safely limit our attention, in all that follows, to a single
atmospheric state and suppress the Green’s function’s time argument.

dT dR

L

AT

AR

turbulence

ρ

ρ
′

Figure 2: Atmospheric-channel propagation geometry.

The normal-mode decomposition associated with Eq. (5) provides power-transfer eigenvalues (modal trans-
missivities) that determine the achievable photon information efficiency and spectral efficiency of this channel
state when both the transmitter and the receiver have and use knowledge of that state’s Green’s function h(ρ′, ρ).
We will be concerned, however, with the more restrictive—and more practical—case of multi-spatial-mode trans-
mitters that employ fixed sets of M spatial modes, and receivers that extract M spatial modes either with or
without the use of adaptive optics. The statistics of the power-transfer eigenvalues for these M -mode config-
urations then determine the ergodic Holevo capacities for operation with or without adaptive optics, and so
establish the degree to which the performance shown in Fig. 1(b) is affected by the presence of turbulence.
Because the statistics of these near-field power-transfer eigenvalues are not available analytically, we shall use
the well-known mutual coherence function for h(ρ′, ρ) to obtain eigenspectra that are majorized by the average
power-transfer eigenvalues. Section 3 will then demonstrate how these eigenspectra lead to lower bounds on
the ergodic capacities of systems that do or do not use adaptive optics. So, in preparation for developing those
bounds, the subsections that follow will: review the normal-mode decomposition associated with Eq. (5); develop
corresponding mode decompositions for M spatial-mode systems with or without adaptive optics; and use the
Green’s function’s mutual coherence function to obtain modal power-transfer statistics that will permit us to
lower bound the ergodic capacities of interest.

2.1. Normal-Mode Decomposition of the Turbulent Channel

The normal-mode decomposition for a single atmospheric state—Eq. (5) with the Green’s function’s time de-
pendence suppressed—consists of: (1) a complete, orthonormal (CON) set of input transverse modes {Φm(ρ) :
1 ≤ m < ∞, ρ ∈ AT }, (2) a CON set of transverse output modes {φm(ρ′) : 1 ≤ m < ∞, ρ′ ∈ AR }, and (3) a
set of power-transfer eigenvalues { ηm : 1 ≤ m < ∞} such that

∫

AT

dρ h(ρ′, ρ)Φm(ρ) =
√

ηm φm(ρ′), for ρ′ ∈ AR and 1 ≤ m < ∞. (6)

Physically, Eq. (6) states that transmission of Φm(ρ) from AT results in reception of
√

ηm φm(ρ′) in AR. Because
the input and output modes are normalized, it follows that ηm is the fractional power-transfer from AT to AR

that is achieved when Φm(ρ) is transmitted. Without loss of generality we will assume that the modes are

‡No loss of generality is incurred by employing a scalar-wave theory, because turbulence does not cause depolarization.18
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ordered so that the modal transmissivities are nonincreasing, i.e., 1 ≥ η1 ≥ η2 ≥ · · · ηm ≥ · · · ≥ 0, where the
upper limit follows from the passive nature of propagation through turbulence.

When h(ρ′, ρ) is known, the input modes, output modes, and eigenvalues can be found as follows. First solve
the Fredholm equation19, 20

∫

AT

dρ2 K(ρ1, ρ2)Φm(ρ2) = ηmΦm(ρ1), for ρ1 ∈ AT , (7)

where

K(ρ1, ρ2) =

∫

AR

dρ′ h∗(ρ′, ρ1)h(ρ′, ρ2), (8)

to obtain the input modes and the eigenvalues, and then use Eq. (6) to get the output modes.

For vacuum propagation, when h(ρ′, ρ) reduces to the Fresnel-diffraction Green’s function,

hL(ρ′ − ρ) =
exp[ik(L + |ρ′ − ρ|2/2L)]

iλL
, (9)

with k = 2π/λ, normal-mode decompositions are available for both square-pupil and circular-pupil geome-
tries.9, 21 These have the near-field power-transfer characteristics described in Section 1, when their respective
Fresnel number products satisfy Df ≫ 1. For propagation through turbulence, however, the input modes, output
modes, and eigenvalues are, in general, random. Nevertheless, the eigenvalues satisfy

∞
∑

m=1

ηm =

∫

AR

dρ′

∫

AT

dρ |h(ρ′, ρ)|2, (10)

from which is has been shown14 that the ensemble average of this sum equals the vacuum-propagation Fresnel
number product, and that similar near-field power transfer behavior prevails for the turbulent atmosphere as
previously described for vacuum propagation, viz., when Df ≫ 1 there are ∼Df input modes whose associated
power-transfer eigenvalues are near unity.

2.2. M Spatial-Mode Links with and without Adaptive Optics

The best high-PIE, high-SE communication performance through atmospheric turbulence would result from near-
field operation with a transmitter that tracked and employed the M input spatial modes for each atmospheric
state whose power-transfer eigenvalues were the highest. Implementing such a system, however, would be quite
demanding. So we will consider a simpler transmitter that uses a fixed set of M orthonormal input modes

Φ(0)(ρ) =
[

Φ
(0)
1 (ρ) Φ

(0)
2 (ρ) · · · Φ

(0)
M (ρ)

]T

, for ρ ∈ AT , (11)

where T denotes transpose, and the superscripts are meant to distinguish this fixed mode set from the atmo-
sphere’s instantaneous input modes, {Φm(ρ)}, introduced in the previous subsection. We will choose specific
Φ(0)(ρ) in Section 4. For now, it suffices to say that these will be mode sets that approximate the vacuum-
propagation input modes—for the same propagation geometry—with the highest associated power transfers and
arranged in nonincreasing power-transfer order.

The transmitter encodes and sends information to the receiver via the z = 0 plane complex envelope

E0(ρ, t) =

M
∑

m=1

Einm
(t)Φ(0)

m (ρ) = Φ(0)T (ρ)Ein(t) (12)

where
Ein(t) =

[

Ein1
(t) Ein2

(t) · · · EinM
(t)

]T
, (13)
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is the set of temporal waveforms applied to the M spatial modes. Transmission of the spatial mode Φ
(0)
m (ρ) from

the transmitter pupil AT gives rise to reception of the spatial pattern

ζm(ρ′) =

∫

AT

dρ h(ρ′, ρ)Φ(0)
m (ρ), (14)

for ρ′ in the receiver pupil AR. The collection of these M spatial patterns is, in general, random, owing to the
random nature of the turbulent channel’s Green’s function. We will consider two possible receivers for extracting
the information embedded in the received field,

EL(ρ′, t) =
M
∑

m=1

Einm
(t − L/c)ζm(ρ′). (15)

The first uses ideal (full-wave) adaptive optics to extract M orthonormal modes from the vector space of spatial
patterns spanned by { ζm(ρ′) : 1 ≤ m ≤ M, ρ′ ∈ AR, }. The second extracts a fixed set of orthonormal modes

φ(0)(ρ′) =
[

φ
(0)
1 (ρ′) φ

(0)
2 (ρ′) · · · φ

(0)
M (ρ′)

]T

, for ρ′ ∈ AR, (16)

where the superscripts are meant to distinguish this fixed mode set from the atmosphere’s instantaneous output
modes, {φm(ρ′)}.

For both of the preceding receivers we shall assume that the receiver and the transmitter know the resulting
power-transfer behavior, and they use this information to achieve the ergodic Holevo capacities with and without
adaptive optics. Those ergodic capacities depend on the power-transfer eigenvalues—for the chosen transmitter
modes and receiver mode-extraction approach—that are obtained as follows. For the adaptive optics receiver,
we define a channel function

Had(ρ
′) =

[

ζ1(ρ
′) ζ2(ρ

′) · · · ζM (ρ′)
]T

, (17)

so that the received field is given by

EL(ρ′, t) = Had(ρ′)Ein(t − L/c). (18)

The power-transfer eigenvalues, {µad
m : 1 ≤ m ≤ M }, that determine the ergodic Holevo capacity for the adaptive

optics system are therefore those of the M × M Hermitian matrix

Kad =

∫

AR

dρ′ H
†
ad(ρ

′)Had(ρ′), (19)

where † denotes conjugate transpose.

Turning now to the receiver that extracts the fixed mode set φ(0)(ρ′), we have that this receiver obtains

Eout(t) = HnonEin(t − L/c), (20)

after mode extraction, where the channel matrix Hnon has its nmth element, hnm, given by

hnm =

∫

AR

dρ′ φ(0)∗
n (ρ′)ζm(ρ′), for 1 ≤ n, m ≤ M . (21)

The power-transfer eigenvalues, {µnon
m : 1 ≤ m ≤ M }, that determine the ergodic Holevo capacity for the system

without adaptive optics are therefore those of the M × M Hermitian matrix

Knon = H†
nonHnon. (22)

In general, the eigenvalues for the adaptive and non-adaptive mode extraction cases will be random, just as
is the case for the { ηm : 1 ≤ m < ∞} discussed in Section 2.1. Before attempting to characterize the statistics
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of the {µad
m } and the {µnon

m }, which we will undertake in the next subsection, it is worth noting the following
majorization results,

K
∑

m=1

ηm ≥
K
∑

m=1

µad
m ≥

K
∑

m=1

µnon
m , for 1 ≤ K ≤ M , (23)

where each set of eigenvalues has been arranged in nonincreasing order. These results are immediate consequences
of the increasing constraints on the input and output mode sets as one goes from the {ηm} to the {µad

m } to the
{µnon

m }.

2.3. Eigenvalue Statistics from the Extended Huygens-Fresnel Principle

To evaluate the prospects for optical communication with high photon efficiency and high spectral efficiency over
an L-m-long line-of-sight path through the turbulent atmosphere—using either of the M spatial-mode systems
described in the preceding subsection—we need to find the statistics of their respective power-transfer eigenvalues
in the near-field regime, wherein the Fresnel number product is much greater than unity. The usual formulation
of the extended Huygens-Fresnel principle, when atmospheric extinction is omitted, takes the Green’s function
for a single atmospheric state to be

h(ρ′, ρ) = hL(ρ′ − ρ) exp[χ(ρ′, ρ) + iφ(ρ′, ρ)], (24)

where hL(ρ′ − ρ) is the Fresnel diffraction (vacuum propagation) Green’s function from Eq. (9), and χ(ρ′, ρ)
and φ(ρ′, ρ) are real-valued random processes that represent the random logamplitude and phase fluctuations
imposed on the field received at ρ′ in the z = L plane from a point source located at ρ in the z = 0 plane.
Physically, χ(ρ′, ρ) gives rise to scintillation, while φ(ρ′, ρ) is responsible for the beam spread and angle-of-arrival
spread produced by the turbulence.

A great deal is known about the statistics of propagation through turbulence,13, 22–24 but as yet very little is
known about the near-field statistics of the {ηm} from Section 2.1, and, to our knowledge, no one has considered
the near-field behavior of our {µad

m } and {µnon
m }. In Section 3, we shall derive lower bounds on the ergodic Holevo

capacities for adaptive and non-adaptive operation that only require knowledge of the ensemble averages, {〈µad
m 〉}

and {〈µnon
m 〉}, for their evaluation. Unfortunately, obtaining even these simple statistics would require Monte

Carlo simulation when propagation is in the near-field power transfer regime. Thus we will content ourselves, in
the present subsection, with showing how to obtain simpler, but nonetheless useful, power-transfer statistics by
focusing our attention on the ensemble-average matrices 〈Kad〉 and 〈Knon〉.

The nmth elements of 〈Kad〉 and 〈Knon〉 are given by

〈Kad〉nm =

∫

AR

dρ′

∫

AT

dρ1

∫

AT

dρ2 Φ(0)∗
n (ρ1)〈h∗(ρ′, ρ1)h(ρ′, ρ2)〉Φ(0)

m (ρ2), (25)

and

〈Knon〉nm =
M
∑

k=1

∫

AR

dρ′
1

∫

AR

dρ′
2

∫

AT

dρ1

∫

AT

dρ2 φ
(0)
k (ρ′

1)φ
(0)∗
k (ρ′

2)〈h∗(ρ′
1, ρ1)h(ρ′

2, ρ2)〉Φ(0)∗
n (ρ1)Φ

(0)
m (ρ2),

(26)
from which we see that the only turbulence statistic needed to evaluate these ensemble-averaged matrices is the
Green’s function’s mutual coherence function. This mutual coherence function satisfies13, 22

〈h∗(ρ′
1, ρ1)h(ρ′

2, ρ2)〉 = h∗
L(ρ′

1, ρ1)hL(ρ′
2, ρ2) exp[−D(ρ′

2 − ρ′
1, ρ2 − ρ1)/2], (27)

where

D(∆ρ′, ∆ρ) = 2.91k2

∫ L

0

dz C2
n(z)|∆ρ′z/L + ∆ρ(1 − z/L)|5/3, (28)

is the two-source, spherical-wave, wave structure function, and C2
n(z) is the turbulence strength profile along

the path from the transmitter (z = 0) to the receiver (z = L). The initial derivation of this mutual coherence
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function employed the Rytov approximation, and hence its validity was limited to the weak-perturbation regime
before the onset of saturated scintillation. Subsequent work—employing the small-angle approximation to the
transport equation or the local method of smooth perturbations applied to the parabolic equation—has shown
that Eqs. (27) and (28) are valid in the saturation regime as well.

We can numerically evaluate the elements of 〈Kad〉 and 〈Knon〉, and then (again numerically) diagonalize
them to obtain their respective eigenvalues, { γad

m : 1 ≤ m ≤ M } and { γnon
m : 1 ≤ m ≤ M }, which we shall take

to be in nonincreasing order. Because the ensemble-averaged eigenvalues of a random M ×M Hermitian matrix
majorize the deterministic eigenvalues of the ensemble average of that matrix, we have that

K
∑

m=1

〈µad
m 〉 ≥

K
∑

m=1

γad
m , for 1 ≤ K ≤ M , (29)

and
K
∑

m=1

〈µnon
m 〉 ≥

K
∑

m=1

γnon
m , for 1 ≤ K ≤ M . (30)

In the next section we show that these majorization relations allow us to lower bound the ergodic Holevo
capacities of adaptive and non-adaptive operation using eigenvalue statistics that only depend on knowing the
atmospheric Green’s function’s mutual coherence function. It turns out, however, that full numerical evaluation
of 〈Knon〉 for the mode sets we will consider in Section 4 is quite time consuming, whereas obtaining 〈Kad〉 is
relatively straightforward. Thus Section 4 will report {γad

m } results, but only the diagonal elements of 〈Knon〉,
which, when they arranged in nonincreasing order, we will denote { κnon

m : 1 ≤ m ≤ M }. Because the eigenvalues
of an Hermitian matrix majorize its diagonal elements, we know that

K
∑

m=1

γnon
m ≥

K
∑

m=1

κnon
m , for 1 ≤ K ≤ M . (31)

Using the {κnon
m } to lower bound the non-adaptive system’s ergodic Holevo capacity provides a weaker result

than what we would obtain were we to find the {γnon
m }. In Section 3 we will explain how the maximum difference

between the {γnon
m }-based and {κnon

m }-based capacity bounds can be quantified, if desired.

3. ERGODIC HOLEVO CAPACITIES OF THE TURBULENT CHANNEL

The Holevo capacity, in bits per channel use, of a deterministic, pure-loss (vacuum-noise injection) M spatial-
mode optical channel whose transmitter is constrained to use at most NT photons on average is known to
be6

C = max
N:

P

M
m=1

Nm=NT

M
∑

m=1

g (ηmNm) , (32)

where N =
[

N1 N2 · · · NM

]

is the vector of average photon numbers used for the M modes, the {ηm}
are the modal transmissivities, and g(x) is the von Neumann entropy of a thermal state with average photon
number x, i.e.,

g(x) = (x + 1) log2(x + 1) − x log2(x). (33)

We are interested in the ultimate performance limit of M spatial-mode communication through the turbulent
channel when the transmitter and receiver have and use knowledge of the power-transfer behavior. Here the
relevant quantity is the ergodic Holevo capacity,

Cerg =

〈

max
N:

P

M
m=1

Nm=NT

M
∑

m=1

g (µmNm)

〉

(34)

where throughout this section µm = µad
m or µnon

m , depending on whether we are interested in the system that
does or does not employ adaptive optics.
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Our objective is to bound the behavior of the ergodic Holevo capacities for adaptive and non-adaptive
operation, because full statistics of their respective power-transfer eigenvalues are not available. Upper bounds
are easily obtained. Because the power-transfer eigenvalues are bounded above by unity, and because the ergodic
Holevo capacity is monotonically increasing with increases in any or all of the eigenvalues, we have that

Cerg ≤ Mg(NT /M), (35)

for both adaptive and non-adaptive operation. Equation (35) leads to PIEM and SEM expressions identical to
the η = 1 versions of Eqs. (3) and (4), respectively. We do not, however, expect that these ergodic capacity upper
bounds will be tight, particularly for the receiver that does not use adaptive optics, so we turn our attention
now to the more difficult—and more interesting—task of deriving lower bounds on the ergodic Holevo capacities
for adaptive and non-adaptive operation.

Because the average of a maximum cannot be exceeded by the maximum of an average, we have that

Cerg ≥ max
N:

P

M
m=1

Nm=NT

M
∑

m=1

〈g (µmNm)〉 . (36)

Because g(µmNm), for fixed Nm, is a concave function of µm ∈ [0, 1] with g(0) = 0, it follows that 〈g(µmNm)〉 ≥
〈µm〉g(Nm) when 〈µm〉 is given. As a result, we get

Cerg ≥ max
N:

P

M
m=1

Nm=NT

M
∑

m=1

〈µm〉g(Nm). (37)

At this point we employ the fact, established in Section 2, that the {〈µm〉} majorize the {γm}, where the latter
can be found (numerically) from the atmospheric Green’s function’s mutual coherence function.

Consider the tentative lower bound

Cerg ≥ max
N:

P

M
m=1

Nm=NT

M
∑

m=1

γmg(Nm). (38)

To prove the correctness of this assertion it suffices to demonstrate that, for N achieving the maximum in (38),

M
∑

m=1

(〈µm〉 − γm) g (Nm) ≥ 0, (39)

which is easily accomplished from majorization. Rearranging terms in (39) we can write

M
∑

m=1

(〈µm〉 − γm)g (Nm) =

[

M
∑

m=1

(〈µm〉 − γm)

]

g(NM )

+

[

M−1
∑

m=1

(〈µm〉 − γm)

]

[g(NM−1) − g(NM )]

+ · · ·

+

[

M−k
∑

m=1

(〈µm〉 − γm)

]

[g(NM−k) − g(NM−k+1)]

+ · · ·
+ (〈µ1〉 − γ1)[g(N1) − g(N2)]. (40)

With this rearrangement, proving (39) is quite simple. We know that g(x) is a monotonically increasing, non-
negative function of its argument. Moreover, because both the {〈µm〉} and the {γm} are nonincreasing with
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increasing m, Lagrange-multiplier optimization—see below—will demonstrate that the maximizing N choice in
(38) will have nonincreasing {Nm} with increasing m. Therefore, in (40), we have g(NM ) ≥ 0 and g(NM−k) −
g(NM−k+1) ≥ 0 for 1 ≤ k ≤ M − 1. The inequality in (39) then follows immediately from the {γm} being
majorized by the {〈µm〉}, and so we obtain the lower bounds on the ergodic Holevo capacities for adaptive and
non-adaptive operation that can be computed from available knowledge of the atmospheric Green’s function’s
mutual coherence function. We, however, will further weaken our lower bound for the non-adaptive case—because
of the tedious nature of computing all the elements of 〈Knon〉—and content ourselves with the bound

Cnon
erg ≥ max

N:
P

M
m=1

Nm=NT

M
∑

m=1

κnon
m g(Nm), (41)

which can be proven by reprising the development of (41) with γnon
m used in lieu of 〈µm〉, and κnon

m employed in
place of γm.

Note that

Dnon
f ≡

M
∑

m=1

κnon
m =

M
∑

m=1

γnon
m , (42)

because the trace of a matrix equals the sum of its eigenvalues. Furthermore, the {γnon
m } are majorized by the

{αm}, given by

αm =

{

1, for 1 ≤ m ≤ ⌈Dnon
f ⌉

0, for ⌈Dnon
f ⌉ + 1 ≤ m ≤ M ,

(43)

where ⌈Dnon
f ⌉, the smallest integer that is larger than Dnon

f , has been assumed to be less than M . It follows that

⌈Dnon
f ⌉g(NT /⌈Dnon

f ⌉) ≥ max
N:

P

M
m=1

Nm=NT

M
∑

m=1

γnon
m g(Nm), (44)

which permits us to bound—if desired—how much weaker our ergodic Holevo capacity bound has become for
non-adaptive operation by relying on the {κnon

m } instead of the {γnon
m }.

In Section 4 we shall evaluate our lower bounds for three sets of input modes: focused-beam modes, Hermite-
Gaussian modes, and Laguerre-Gaussian modes. The optimizing photon-number distribution across the M
modes, found from Lagrange-multiplier procedures, is

Nm =
1

exp(βad/γad
m ) − 1

, (45)

when adaptive optics are employed, and

Nm =
1

exp(βnon/κnon
m ) − 1

, (46)

when they are not. In these equations, βad and βnon are chosen so that
∑M

m=1 Nm = NT .

4. POWER-TRANSFER EIGENSTRUCTURE AND ERGODIC CAPACITY BOUNDS

Sections 2 and 3 have prepared us to bound the ergodic Holevo capacities that are realized with a transmitter
which uses a fixed set of M spatial modes and receivers that do or do not use adaptive optics. We will use
those results in the present section to examine the degree to which the photon information efficiency versus
spectral efficiency behavior that we exhibited—for vacuum propagation with equal modal transmissivities—in
Fig. 1(b) is degraded by propagation through atmospheric turbulence. Three specific transmitter mode sets will
be considered: focused-beam (FB) modes, Hermite-Gaussian (HG) modes, and Laguerre-Gaussian (LG) modes.
FB-mode transmitters are relatively simple to implement, whereas more complicated equipment is required for
HG and LG operation. We have previously shown that HG and LG modes give identical Holevo capacities
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in vacuum-propagation conditions.17 Recent work, however, has addressed the use of LG modes for optical
communication through turbulence,25–27 motivated by the hope that the orbital angular momentum (OAM)
these modes carry will make them more resistant to turbulence-induced crosstalk than HG modes, which do not
carry OAM. Thus it is of interest for us to revisit the LG versus HG question in that context.

For the three mode sets to be considered, we shall employ the square-pupil setup shown in Fig. 2, with
dT = dR = 17.6 cm, L = 1km, and λ = 1.55 µm, so that the vacuum-propagation Fresnel number product is
Df = 400. We shall assume a uniform turbulence-strength profile along the path from z = 0 to z = L, with
constant C2

n values of either 5 × 10−15 m−2/3 (mild turbulence) or 5 × 10−14 m−2/3 (moderate turbulence). To
simplify the numerical calculations, we shall employ the square-law approximation to the spherical-wave, wave
structure function from Eq. (28), viz.,

D(∆ρ′, ∆ρ) =
|∆ρ′|2 + ∆ρ′ · ∆ρ + |∆ρ|2

ρ2
0

, (47)

where
ρ0 = (1.09k2C2

nL)−3/5 (48)

is the spherical-wave coherence length. Also of interest is the weak-perturbation (Rytov theory) spherical-wave
logamplitude variance,

σ2
χ = 0.124k7/6C2

nL11/6. (49)

Values of ρ0 and σ2
χ for the parameter values we have assumed and given in Table 1. Because the transmit and

receive pupils are appreciably larger than the turbulence coherence length for the case of moderate turbulence,
we can expect that significant beam spread and angle-of-arrival spread will occur. Likewise, the spherical-wave
logamplitude variance for that turbulence strength implies that there will be considerable scintillation in the
moderate-turbulence case. Thus, to ward off some of the ill effects of these turbulence-induced degradations, we
shall only employ M ∼ 200 FB, HG, and LG transmitter modes in our calculations, choosing those that achieve
the best power transfers under vacuum-propagation conditions.

C2
n (m−2/3) ρ0 (cm) σ2

χ

5 × 10−15 6.8 0.01
5 × 10−14 1.7 0.1

Table 1: Spherical-wave coherence length (ρ0 and weak-perturbation spherical-wave logamplitude variance (σ2
χ)

versus turbulence strength (C2
n) for a 1-km-long path at 1.55 µm wavelength.

4.1. Focused-Beam Modes

The focused-beam mode set we will consider consists of the following M = 225 spatial patterns:

Φ(0)
nx,ny

(ρ) =
exp[−ik(x2 + y2)/2L + i2π(nxx + nyy)/d]

d
, for −7 ≤ nx, ny ≤ 7, (50)

for ρ ∈ AT , where ρ = (x, y) in Cartesian coordinates. These modes are orthonormal on AT in the z = 0 plane,
focused on the z = L plane, and have phase tilts—indexed by nx and ny—such that their orthogonality is very
nearly preserved, for vacuum propagation, because Df = 400. It is these vacuum-propagation z = L patterns
that our non-adaptive receiver will extract,

φ(0)
nxny

(ρ′) =

√

Df

d
eik(x′2+y′2)/2L sin[π(

√

Dfx′/d − nx)]

π(
√

Dfx′/d − nx)

sin[π(
√

Dfy′/d − ny)]

π(
√

Dfy′/d − ny)
, for −7 ≤ nx, ny ≤ 7, (51)

for ρ′ ∈ AR, where ρ′ = (x′, y′) in Cartesian coordinates.
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In Fig. 3(a) we have plotted the {γad
m } and the {κnon

m } versus m for our mild and moderate turbulence cases.§

Also included is a plot of {γad
m } for vacuum propagation (no turbulence), which lies almost directly under the

{γad
m } plot for mild turbulence. It is instructive to compare the values of

∑225
m=1 γad

m and
∑225

m=1 κnon
m with their

ultimate—unity modal-transmissivity limit—of 225. This comparison is shown in Table 2, where we see that
relatively little degradation has occurred, even in moderate turbulence, when ideal adaptive optics are employed.
Consequently, as shown in Fig. 3(b), the ergodic Holevo capacities of the adaptive-optics system in both mild
and moderate turbulence have lower bounds that are nearly coincident with the corresponding result for vacuum
propagation, and, in fact, quite close to the upper bound. Moreover, the lower bounds for operation without
adaptive optics—while implying that appreciable performance loss may occur, in these systems, when they are
compared to the adaptive optics case—still indicate that high photon information efficiency and high spectral
efficiency can be obtained. It should be noted, however, that there will be appreciable crosstalk between the
spatial patterns generated in the receiver pupil AR from transmission of the M FB modes we are considering.28

The receiver that extracts the fixed mode patterns {φ(0)
nxny(ρ′)} will need to deal with this crosstalk to achieve

the ergodic Holevo capacities whose lower bounds we have plotted in Fig. 3(b).

λ = 1.55µm, L = 1km

Df = 400, d = 17.6 cm

solid curves: γ
ad
m

no turbulence

turbulence, C2

n = 5× 10−15 m−2/3

turbulence, C2

n = 5× 10−14 m−2/3

dashed curves: κ
non

m

(a) FB-mode transmissivities

solid curves: adaptive
dashed curves: non-adaptive

λ = 1.55µm, L = 1km

Df = 400, d = 17.6 cm

no turbulence

upper bound

lower bd, C2

n = 5× 10−15 m−2/3

lower bd, C2

n = 5× 10−14 m−2/3

(b) FB-mode PIE vs/ SE bounds

Figure 3: Performance characteristics for an M = 225 FB-mode systems that do or do not use adaptive optics.

C2
n (m−2/3)

∑225
m=1 γad

m

∑225
m=1 κnon

m

0 219.15 214.33
5 × 10−15 219.11 198.43
5 × 10−14 215.86 156.96

Table 2: Comparison between FB-mode
∑225

m=1 γad
m and

∑225
m=1 κnon

m ; the maximum value for both of these
quantities is 225.

§We are plotting versus a single mode-index m by arranging the {nx, ny}-indexed transmissivities in nonincreasing
order. Similar single-argument indexing will be done in the next subsection for the transmissivities of the HG and LG
modes.
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4.2. Hermite-Gaussian and Laguerre-Gaussian Modes

The Hermite-Gaussian mode set we will consider consists of the following M = 231 spatial patterns:

Φ(0)
nx,ny

(ρ) =

√
2π(Df )1/4

d
√

π nx! ny! 2nx+ny

Hnx

(√
2π(Df )1/4

d
x

)

Hny

(√
2π(Df )1/4

d
y

)

exp

[

−
(

π
√

Df

d2
+ i

k

2L

)

(x2 + y2)

]

, (52)

for ρ ∈ AT and 1 ≤ nx + ny ≤ 21, where Hn(·) is the nth Hermite polynomial. Strictly speaking, these
modes are orthonormal on the infinite plane. For Df = 400, however, they are very nearly orthonormal on AT .
Furthermore, in vacuum propagation from AT in the z = 0 plane to AR in the z = L plane, orthonormality is
very nearly preserved, so that our non-adaptive receiver can use the vacuum-propagation output modes

φ(0)
nx,ny

(ρ′) =

√
2π(Df )1/4

d
√

π nx! ny! 2nx+ny

Hnx

(√
2π(Df )1/4

d
x′

)

Hny

(√
2π(Df )1/4

d
y′

)

exp

[

−
(

π
√

Df

d2
− i

k

2L

)

(x′2 + y′2)

]

, (53)

for ρ′ ∈ AR and 1 ≤ 2p + |ℓ| + 1 ≤ 21.

The Laguerre-Gaussian mode set we will consider consists of the following M = 231 spatial patterns:

Φ
(0)
p,ℓ(ρ) =

√

p!

π(|ℓ| + p)!

√
2π(Df )1/4

d

[√
2π(Df )1/4

d
r

]|ℓ|

L|ℓ|
p

(

2π
√

Df

d2
r2

)

exp

[

−
(

π
√

Df

d2
+ i

k

2L

)

r2 + iℓθ

]

, (54)

for ρ ∈ AT and 1 ≤ nx + ny ≤ 21, where Lpℓ(·) is the generalized Laguerre polynomial, and ρ = (r, θ) in polar
coordinates. As was the case for our HG modes, these LG modes are orthonormal on the infinite plane. For
Df = 400, however, they are very nearly orthonormal on AT , and for vacuum propagation from AT in the z = 0
plane to AR in the z = L plane this orthonormality is very nearly preserved. Hence our non-adaptive receiver
for the LG modes can use the vacuum-propagation output modes

φ
(0)
p,ℓ(ρ) =

√

p!

π(|ℓ| + p)!

√
2π(Df )1/4

d

[√
2π(Df )1/4

d
r′

]|ℓ|

L|ℓ|
p

(

2π
√

Df

d2
r′

2

)

exp

[

−
(

π
√

Df

d2
− i

k

2L

)

r′
2

+ iℓθ′

]

, (55)

for ρ′ ∈ AR and 1 ≤ 2p + |ℓ| + 1 ≤ 21, where ρ′ = (r′, θ′) in polar coordinates.

We are combining our discussions of the HG and LG modes for the following reason. For vacuum propagation
between the infinite z = 0 and z = L planes, for which the HG and LG modes are exact eigenfunctions, these
mode sets are related by a unitary transformation. In particular the HG modes with nx +ny +1 = q are unitarily
related to the LG modes with 2p+ |ℓ|+1 = q. Let HGinq(ρ) denote the column vector of HG input modes with
nx + ny + 1 = q and LGin

q (ρ) denote the column vector LG input modes with 2p + |ℓ| + 1 = q. There is then a
unitary matrix Uq such that

LGin
q (ρ) = Uq HGin

q (ρ) and HGin
q (ρ) = U†

q LGin
q (ρ), (56)

and the same Uq relates the column vector HGout
q (ρ′) of HG output modes with nx + ny + 1 = q to the

column vector LGout
q (ρ′) of LG output modes with 2p + |ℓ| + 1 = q. From these unitary transformations it is

readily shown that the instantaneous power-transfer eigenvalues, {µad
m } and {µnon

m }, for HG-mode operation with
1 ≤ nx + ny + 1 ≤ Q and LG-mode operation with 1 ≤ 2p + |ℓ| + 1 ≤ Q are identical . This means that the
ergodic Holevo capacities achieved with these mode sets coincide in propagation through atmospheric turbulence,
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just as was found earlier for their vacuum-propagation Holevo capacities. Ensemble averaging does not break
the unitary relationship. Hence the {〈µad

m 〉} and the {〈µnon
m 〉} are the same for the HG and LG mode sets with

1 ≤ nx + ny + 1 ≤ Q and 1 ≤ 2p + |ℓ| + 1 ≤ Q, respectively, and the same is true for their {γad
m } and {κnon

m }.
Thus, because the HG and LG mode sets we are considering here correspond to the Q = 21 case of this unitary
equivalence, we have only calculated the HG-mode transmissivities and ergodic Holevo capacity bounds, because
those calculations also apply to LG-mode operation.

In Fig. 4(a) we have plotted the {γad
m } and the {κnon

m } versus m for our mild and moderate turbulence cases.
Also included is a plot of {γad

m } for vacuum propagation (no turbulence), which lies almost directly under the
{γad

m } plot for mild turbulence. Once again it is instructive to compare the eigenvalue sums with their ultimate,
unity modal-transmissivity, limit. This comparison is shown in Table 3, where we see that relatively little
degradation has occurred, even in moderate turbulence, when ideal adaptive optics are employed. Consequently,
as found for the FB modes, the ergodic Holevo capacities of the adaptive-optics system in both mild and moderate
turbulence have lower bounds that are nearly coincident with the corresponding result for vacuum propagation,
and, in fact, quite close to the upper bound; see Fig. 4(b). Also, the lower bounds for operation without adaptive
optics—which show that appreciable performance loss may occur, in these systems, when they are compared to
the adaptive optics case—still indicate that high photon information efficiency and high spectral efficiency can be
obtained. This too was something seen earlier for the FB modes, as is the recognition that HG-mode or LG-mode
receivers that extract fixed mode patterns will need to deal with substantial amounts of crosstalk28 to achieve
the ergodic Holevo capacities whose lower bounds we have plotted in Fig. 4(b). Interestingly, when we compare
Figs. 3 and 4 we see that the focused-beam modes outperform the Hermite-Gaussian and Laguerre-Gaussian
modes both when adaptive optics are employed and when they are not.

λ = 1.55µm, L = 1km

Df = 400, d = 17.6 cm

solid curves: γ
ad
m

dashed curves: κ
non

m

no turbulence

C
2

n = 5× 10
−15

m
−2/3

C
2

n = 5× 10
−14

m
−2/3

(a) HG-mode and LG-mode transmissivities

solid curves: adaptive
dashed curves: non-adaptive

λ = 1.55µm, L = 1km

Df = 400, d = 17.6 cm

no turbulence

upper bound

lower bd, C2

n = 5× 10−15 m−2/3

lower bd, C2

n = 5× 10−14 m−2/3

= 1km

6 cm

ad

non

no turbulence

/3

/3

(b) HG-mode and LG-mode PIE vs. SE bounds

Figure 4: Performance characteristics for an M = 231 HG-mode and LG-mode systems that do or do not use
adaptive optics.

C2
n (m−2/3)

∑231
m=1 γad

m

∑231
m=1 κnon

m

0 216.96 195.76
5 × 10−15 216.26 63.98
5 × 10−14 207.49 22.93

Table 3: Comparison between
∑231

m=1 γad
m and

∑231
m=1 κnon

m ; the maximum value for both of these quantities is
231. The results shown apply to both the HG and the LG modes.
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5. CONCLUSIONS

Driven by the desire to simultaneously realize high photon efficiency (many bits/detected photon) and high
spectral efficiency (many bits/sec-Hz) in optical communication over a line-of-sight path through the turbulent
atmosphere, we have developed results for the power-transfer transmissivities and the ergodic Holevo capacity
when the transmitter uses a fixed set of M spatial modes and the receiver either does or does not employ adaptive
optics. We were able to derive near-field transmissivity statistics that only require knowledge of the atmospheric
Green’s function’s mutual coherence function and showed that they were sufficient to determine lower bounds
for ergodic Holevo capacities of adaptive and non-adaptive operation. Sample calculations done for ∼200-mode
communication over a 1 km path length at 1.55µm wavelength with a square-pupil geometry whose vacuum-
propagation Fresnel number product was 400 demonstrate that with perfect (full-wave) adaptive optics there
is virtually no degradation from vacuum performance in photon information efficiency versus spectral efficiency
behavior when the turbulence strength is mild. Furthermore, high photon efficiency plus high spectral efficiency
is still possible when the turbulence strength is moderate, although here there is an appreciable performance
reduction from what can be realized in vacuum. The preceding performance results were obtained for three
transmitter mode sets: focused-beam modes, Hermite-Gaussian modes, and Laguerre-Gaussian modes. The
latter two were shown, by virtue of their being related by a unitary transformation, to have identical modal-
transmissivity spectra and ergodic Holevo capacities in the presence of turbulence, thus generalizing a result
previously obtained for vacuum propagation. It turned out, however, that the FB modes outperformed the HG
and LG modes for operation with and without adaptive optics, so, other things being equal, they might be the
preferred choice.

There are several important avenues to pursue as follow-ons to the current work. First, a photon budget
should be established for the adaptive-optics system’s mode tracker: the PIE versus SE results we have presented
presumed that perfect full-wave tracking was performed and that no accounting was made for the photons needed
to accomplish that tracking. In addition, practical systems will very likely do only phase compensation, so this
too should be considered in the future. Our results have been limited to ergodic Holevo capacities, for which
capacity-achieving receiver implementations need to be found. While awaiting developments on that front,
similar ergodic capacity bounds could be developed for the practical case of direct detection with OOK or PPM
modulation.
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