
MIT Open Access Articles

Leaplist: lessons learned in designing tm-supported range queries

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Hillel Avni, Nir Shavit, and Adi Suissa. 2013. Leaplist: lessons learned in designing
tm-supported range queries. In Proceedings of the 2013 ACM symposium on Principles of
distributed computing (PODC '13). ACM, New York, NY, USA, 299-308.

As Published: http://dx.doi.org/10.1145/2484239.2484254

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/90890

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90890
http://creativecommons.org/licenses/by-nc-sa/4.0/

Leaplist: Lessons Learned in Designing
TM-Supported Range Queries

Hillel Avni
Tel-Aviv University

Tel-Aviv 69978, Israel
hillel.avni@gmail.com

Nir Shavit
MIT and Tel-Aviv University

shanir@csail.mit.edu

Adi Suissa
Department of Computer Science

Ben-Gurion University of the Negev
Be’er Sheva, Israel
adisuis@cs.bgu.ac.il

Abstract
We introduce Leap-List, a concurrent data-structure that is tailored
to provide linearizable range queries. A lookup in Leap-List takes
O(log n) and is comparable to a balanced binary search tree or
to a skip-list. However, in Leap-List, each node holds up-to K
immutable key-value pairs, so collecting a linearizable range is K
times faster than the same operation performed non-linearizably on
a skip-list.

We show how software transactional memory support in a com-
mercial compiler helped us create an efficient lock-based imple-
mentation of Leap-List. We used this STM to implement short
transactions which we call Locking Transactions (LT), to acquire
locks, while verifying that the state of the data-structure is legal,
and combine them with a transactional COP mechanism to enhance
data structure traversals.

We compare Leap-List to prior implementations of skip-lists,
and show that while updates in the Leap-List are slower, lookups
are somewhat faster, and for range-queries the Leap-List outper-
forms the skip-list’s non-linearizable range query operations by an
order of magnitude. We believe that this data structure and its per-
formance would have been impossible to obtain without the STM
support.

Keywords Transactional-Memory, Data-Structures, Range-Queries

1. Introduction and Related Work
We are interested in linearizable concurrent implementations of an
abstract dictionary data structure that stores key-value pairs and
supports, in addition to the usual Update(key, value), Remove(key),
and Find(key), a Range-Query(a, b) operation, where a ≤ b, which
returns all pairs with keys in the closed interval [a, b], where a and
b may not be in the data structure. This type of data structure is
useful for various database applications, in particular in-memory
databases. This paper is interested in the design of high perfor-
mance linearizable concurrent range queries. As such, the typically
logarithmic search for the first item in the range is not the most im-
portant performance element. Rather, it is the coordination and syn-
chronization around the sets of neighboring keys being collected in
the sequence. This is a tricky new synchronization problem and our
goal is to evaluate which transactional support paradigm, if any, can
help in attaining improved performance for range queries.

1.1 Related Work
Perhaps the most straightforward way to implement a linearizable
concurrent version of an abstract dictionary-with-range-queries, is
to directly employ software transactional memory (STM) in im-
plementing its methods. An STM allows a programmer to specify

that certain blocks of code should be executed atomically relative
to one another. Recently, several fast concurrent binary search-tree
algorithms using STM have been introduced by Afek et al. [2] and
Bronson et al. [4]. Although they offer good performance for Up-
dates, Removes and Finds, they achieve this performance, in part,
by carefully limiting the amount of data protected by the transac-
tions. However, as we show empirically in this paper, computing
a range query means protecting all keys in the range from modifi-
cation during a transaction, leading to poor performance using the
direct STM approach.

Another simple approach is to lock the entire data structure,
and compute a range query while it is locked. One can refine this
technique by using a more fine-grained locking scheme, so that
only part of the data structure needs to be locked to perform an
update or compute a range query. For instance, in leaf-oriented
trees, where all key-value pairs in the set are stored in the leaves of
the tree, updates to the tree can be performed by local modifications
close to the leaves. Therefore, it is often sufficient to lock only the
last couple of nodes on the path to a leaf, rather than the entire path
from the root. However, as was the case for STM, a range query can
only be computed if every key in the range is protected, so typically
every node containing a key in the range must be locked.

Brown and Avni [5] introduced range queries in k-ary trees
with immutable key. The k-ary trees allow efficient range-queries
by collecting nodes in a depth-first-search order, followed by a
validation stage. The nodes are scanned, and if any one is outdated,
the process is retried from the start. The k-ary search tree is not
balanced, and its operations cannot be composed.

Ctrie is a non-blocking concurrent hash trie, which offers O(1)
time snapshot, due to Prokopec et al. [10]. Keys are hashed, and
the bits of these hashes are used to navigate the trie. To facilitate
the computation of fast snapshots, a sequence number is associated
with each node in the data structure. Each time a snapshot is taken,
the root is copied and its sequence number is incremented. An
update or search in the trie reads this sequence number seq when it
starts and, while traversing the trie, it duplicates each node whose
sequence number is less than seq. The update then performs a
variant of a double-compare-single-swap operation to atomically
change a pointer while ensuring the roots current sequence number
matches seq. Because keys are ordered by their hashes in the trie,
it is hard to use Ctrie to efficiently implement range queries. To do
so, one must iterate over all keys in the snapshot.

The B-Tree data structure can be used for range queries, how-
ever, when looking at the concurrent versions of B-Trees such as
the lock-free one of Braginsky and Petrank [3], and the blocking,
industry standard from [12], both do not support the range-query
functionality. Both algorithms do not have leaf-chaining, forcing
one to perform a sequence of lookups to collect the desired range.

1 2013/3/1

In [12] this would imply holding a lock on the root for a long time,
and in [3] it seems difficult to get a linearizable result. In addition,
the keys in both are mutable so one would have to copy each entry
individually.

1.2 The Leap-List in a Nutshell
Leap-Lists are Skip-Lists [11] with “fat” nodes and an added short-
cut access mechanism in the style of the String B-tree of Ferragina
and Grossi [6]. They have the same probabilistic guarantee for bal-
ancing, and the same layered forward pointers as Skip-Lists. Each
Leap-List node holds up to K immutable keys from a specific range,
and an immutable bitwise trie is embedded in each node to facilitate
fast lookups when K is large.

When considering large range queries, the logarithmic-time
lookup for the start of the range accounts for only a small part
of the operation’s complexity. Especially when the whole structure
resides in memory. The design complexity of a full k-ary structure
(in which nodes at all levels have K elements), with logk(n) lookup
time is thus not justified. In our Leap-List, unlike full k-ary struc-
tures, an update implies at most one split or merge of a node, and
only at the leaf level. This allows updates to lock only the specific
leaf being changed and only for the duration of changing pointers
from the old node to the new one.

For Leap-List synchronization, we checked the following op-
tions, sorted in an increasing order of required effort:

• Pure STM: We tried to put each Leap-List operation in a soft-
ware transactional memory (STM) transaction. This option was
especially attractive with the rising support for STM in main-
stream compilers. Unfortunately, as we report, we discovered
that this aproach introduced unacceptable overheads.

• Read-write locks: We explored read-write locks per Leap-
List. While the read-locks were very scalable, the write locks
serialized many workloads, hence making updates relatively
slow.

• COP: We employed consistency oblivious programming (COP)
[2] to reduce the overhead of STM. In COP, the read-only pre-
fix of the operation is executed without any synchronization,
followed by an STM transaction that checks the correctness of
the prefix execution and performs any necessary updates. The
COP requires that an un-instrumented traversal of the structure
will not crash, which implies strong isolation of transactions
in the underlying STM. Otherwise the traversal encounters un-
committed data, and hitting uncommitted data inevitably leads
to uninitialized pointers, unallocated buffers, and segmentation
faults. The current GCC-TM compiler uses weakly isolated
transactions. Thus, we had to add transactions also in read-only
regions of the code which hurt performance.

• Locking Transactions (LT): With LT, transactions are used
only to acquire locks, and not to write tentative data. Thus, a
read which sees unlocked data knows it is committed. Another
aspect of LT, is that using a short transaction anyone can lock
any data and use it.
We use LT to improve the performance of the previous COP
algorithm. In the COP, an updating operation performs its read-
only prefix without synchronization, and then executes the ver-
ification and updates inside a transaction. In LT, the read-only
part is checking for locks, and retries. These checks have negli-
gible overhead compared to a transaction. Then the transaction
atomically verifies validity and locks the written addresses. Af-
ter the transaction commits, a postfix of the operation writes the
data to the locked locations and releases them.

• Fine grained locks: To generate the fine-grain version of LT
Leap-List we had to recreate mechanisms that exist in STM, and
still, did not manage to create a fully stable implementation.
In case of a merge, where a remove replaces two old nodes by
one new node, we need to lock all pointers to and from both
nodes. Here, unlike the skip-list case [9], locking can fail at
any point and force us to release all locks and retry to avoid
deadlocks. This unrolling is “free” using an STM.
Once a set of nodes is locked, a thread needs to perform vali-
dations on the state of the data structure, such as checking live
marks etc. With LT, using STM, these validations happen be-
fore acquiring the locks, and then when committing, an abort
will happen if any check should fail. Thus the locks are taken
for a shorter duration. To improve our performance we would
need to execute a form of STM revalidation.
After executing the above sequence, we found that our fine
grained implementation still suffered from live-locks; we did
not manage to avoid them. These live-locks were eliminated
with the STM based LT approach.
Our conclusion was that we were effectively reproducing the
very mechanisms that are already given by an STM, and still
did not get the stability of an STM. The LT Leap-List imple-
mentation has minimal overhead because lookups do not exe-
cute transactions and range-queries execute one instrumented
access per K values in the range. The LT Leap-List is thus the
most effective solution.

This paper is organized as follows. Section 2 gives a detailed de-
scription of the Leap-List design and operations’ implementation.
In Section 3 we show the LT technique is the best performer for
Leap-List synchronization, and is scalable even when transactions
encompass operations on multiple Leap-Lists. Finally, in Section 4
we summarize our work, and give some directions for future work.

2. Leap-List Design
We now describe the detailed design of our L-Leap-Lists data
structure. Note that the updating functions compose operations on
multiple Leap-Lists. Our implementation supports the following
operations:

• Update(ll, k, v, s) - Receives arrays of Leap-Lists, keys and
values of size s, and updates the value of the key k[i] to be v[i]
in Leap-List ll[i]. If the key k[i] is not present in ll[i], it is added
to ll[i] with the given value v[i].

• Remove(ll, k, s) - Receives arrays of Leap-Lists and keys of
size s, and removes the key-value pair of the given key k[i]
from ll[i].

• Lookup(l, k) - Receives a single Leap-List and a key, and
returns the value of the corresponding given key k in l. The
operation returns an indication in case the key is not present in
l.

• Range-Query(l, kfrom, kto) - Receives a single Leap-List and
2 keys, and returns the values of all keys in l which are in the
range [kfrom, kto].

The Update and Remove are linearizable operations applied to
L Leap-Lists and Lookup and Range-Query search are linearizable
operations applied to a single Leap-List. This allows concurrent op-
erations on multiple database table indexes. We implemented the L-
Leap-List data-structure using the experimental GCC Transactional
Memory (GCC-TM). GCC-TM is a word-based STM implementa-
tion with a default configuration in which transactions are weakly
isolated.

2 2013/3/1

3 4 7 9 11 22 30 50

min 5 9 27 max

Keys

Pointers

Figure 1: A single Leap-List with maximum height of 4 and node size of
2. The number below each node is the highest possible key of that node.
The left-most node is always empty.

Leap-List Node data-structure

define Node: struct {1
live: boolean,2
high: unsigned long,3
count: unsigned long,4
level: byte,5
next: array of *node,6
values: {key-value} sorted pairs,7
trie: {key-index in node} trie8
};9

Figure 2: Data-Structure description

An example of a single Leap-List structure is depicted in Figure
1. As shown, each node may hold up to a predefined number of
data items with different keys and a set of pointers for each level
below that node level. The operations of the Leap-Lists are imple-
mented using the COP scheme [2], where in the “search phase1”
the data-structure pointers are accessed outside of a transactional
context to achieve better performance. Due to the weakly isolated
nature of GCC-TM and the need to prevent uncommitted pointers
from guiding us to uncommitted nodes, we use a novel method of
writing marked pointers in a transaction and removing the mark af-
ter a successful commit. A marked pointer indicates that the pointed
node is currently being updated by an active transaction, or was up-
dated by a transaction that was successfully committed. Another al-
ternative we explored was to access pointers in single-location read
transactions. However, this alternative proved to have a larger neg-
ative impact on performance with the current GCC-TM implemen-
tation. Nevertheless, we expect it will exhibit the best performance
with HTM support, as single-location uncontended read transac-
tions should be ideal for HTM.

2.1 Leap-List Data-Structure
The Leap-List node is presented in Figure 2. It holds a live mark,
for COP verification; high, which denotes the upper bound of its
keys range; count, which is the number of key-value pairs present
in the node, and level which is the same as a level in skip-list. It also
holds an array of forward pointers next each pointing to the next
element in the corresponding level. A trie is used to quickly find
the index of key k in the keys-values array, a technique introduced
in the String B-tree of Ferragina and Grossi [6]. Note that unlike
in a skip-list, where each node represents a single key, in Leap-List
each node represents a range of keys, i.e. all the keys from a certain
range. The keys-values array of size count holds all the keys and
their corresponding values in the node. The trie uses the minimal
number of levels to represent all the keys in the node, where the

1 We consider the “search phase” to consist of the Lookup and Range-
Query operations, and the read-only accesses that are done in the Update
and Remove operations before any write access.

Leap-List Search Predecessors
input : LeapList l, key k
output: Two node arrays of pointers - pa and na
node *x, *x next;10
int i;11
retry:12
x := l;13
for i = max level- 1; i ≥ 0; i = i - 1 do14

while (true) do15
x next := x→next[i];16
if MARKED(x next) ∨ (¬x next→live) then goto17
retry;
if x next→high ≥ k then18

break;19
else20

x := x next21
end22

end23
pa[i] := x;24
na[i] := x next;25

end26
return (pa, na);27

Figure 3: Leap-List Search Predecessors operation

lowest level is comprised of indexes of the keys’ values in the keys-
values array.

Upon initialization the empty list contains two nodes. One, sen-
tinel node, whose range is bounded from above by −∞, and the
second, which has no keys and a high value of ∞ (and thus en-
compasses the range (−∞,∞]). The level of the sentinel node is
the maximal level (max level), and its next pointers all point to
the second node. Two consecutive nodes, define the range encom-
passed by the second node. If node N2 follows N1, then the range
of N2 is (N1.high to N2.high].

In Leap-List, a node’s keys-values array is immutable, and never
changes after an update. We do this to support consistent range-
query operations. When the key or value (and possibly the encom-
passed range) of a node is updated (due to an update or a remove
operation), that node is replaced by a newer node with the modified
keys-values array. If the node is full (i.e., the number of keys in the
node reaches some predefined number), it is split into two consecu-
tive nodes and the upper bound of the lower node is determined by
the highest value in it. In case the modified node and its subsequent
node are sparse (the number of keys in both nodes is less than some
predefined number), the nodes are merged into a single node.

Unlike to a key lookup operation which returns a single value, a
range-query operation returns an array of nodes, which are part of
a consistent snapshot and hold all the values in the given range. In
the rest of this section we will describe the Leap-List functions.

2.1.1 Searching for Predecessors
The search predecessors function from Figure 3 receives a key k,
and traverses the Leap-List until the node N (that encompasses the
range where key k is included) is reached. The function returns two
arrays of nodes each, pa and na, each of size max level. The pa
array includes all the nodes that “immediately precede” node N .
That is for each level i up to N ’s level, pa[i]→next[i] points to
N , and for levels higher than N ’s level, the nodes that encompass
keys that are smaller than k and their next pointer at level i points
to a node with higher keys than k. The na array includes all the
nodes that are adjacent to the pa nodes, and encompass keys that
are greater-than-or-equal-to k (thus na[i]→next[i] is N for all

3 2013/3/1

Leap-List Lookup
input : LeapList l, key k
output: Value or ⊥
node *na[max level];28
(null, na)←PredecessorsSearch(l,k);29
return (na[0]→values[get index(na[0]→trie,k)].value);30

Figure 4: Leap-List Lookup operation

levels up to N ’s level). This function is used in the lookup and
range-query operations, as well as in the beginning of the update
and remove operations.

The traversal only compares the high key of the node in line 18
and decides if it should continue or stop at that node. When reading
a pointer, the thread verifies that that pointer is not marked and that
the node is still live in line 17, so it only traverses committed and
valid nodes. (As previously noted, an alternative method would be
replacing the mark by executing line 16 in a transaction. However,
with the current GCC-TM implementation the overhead of starting
a transaction is too high. We estimate that with HTM this would
work much better, and will actually make the lookup wait-free, as
a single-location read transaction must succeed.)

2.1.2 Lookups
The lookup operation is presented in Figure 4, and is using the
predecessors search function. Note that the node returned in na[0]
is the node that has k in its range. We can prove the lookup is
linearizable, as the predecessors search traverses only committed
nodes. If a thread searches for the key k, it must traverse a node
that k is in its range, and if such a live node is reached, then this
node was present in the data-structure during the lookup execution.

In line 30, Lookup uses the node’s trie to extract the index of the
value of key k in the array values, and returns the value from that
index.

2.1.3 Range Queries
The range query operation is presented in Figure 5, and starts with
a predecessors search to find the node where the range starts from.
Then, within a transaction, it first checks that the node is still live
in line 39 and if not aborts, and retries the range-query operation in
line 45. If the node is still marked as live, the transaction traverses
the lowest level of the Leap-List’s pointers from the first node to
the node which has a high value which is higher than the requested
range high bound, and retrieves a snapshot range query. Note that
in line 41 the algorithm ensures that even in the case of a partial
update to the pointer to the next node (due to update or remove
operations), it can still traverse through it.

2.1.4 Updates
Figure 6 describes the update function. As previously described,
the function receives arrays of Leap-Lists, keys and values, and
their size. The update operation either inserts a new key-value pair
to each Leap-List if the key is not already present, or otherwise
updates the key’s value.

The function is divided into the following 3 parts: (1) setup
(Figure 8), (2) LT (Figure 9), and (3) release and update (Figure
10). During the setup part, a thread iterates over each Leap-List,
performs a predecessors search, and creates a new node with its
key-value pairs (including the updated key-value pair). Note that
in case the number of keys in the node is above some threshold, it
splits that node. During a split it creates 2 nodes: one with a new
random height that holds the first half of the key-value pairs, and
another with the same height as the old node that holds the second
half of the key-value pairs. The max level is set to the maximum

Leap-List Range Query
input : Leap list l, key low, key high
output: Set S of nodes
node *na[max level], *n;31
boolean committed← false;32
retry:33
S← ∅;34
(null, na)←Search(l,low);35
n := na[0];36
tx start;37
while n→high<high do38

if ¬n→live then tx abort;39
add(S,na[0]);40
n := unmark((n→next[0]));41

end42
committed := true;43
tx end;44
if ¬committed then goto retry;45
return S;46

Figure 5: Leap-List Range Query.

between the heights of the two nodes. The CreateNewNodes func-
tion updates the new node (nodes) with its (their) key-value pairs.

The LT part is executed in a single transaction. The algorithm
again iterates over each Leap-List and first verifies that the updated
node is still live (line 95), that all the predecessors’ next pointers
point to that node, and that the next pointers from that node are still
valid (lines 96-104). (In case of a split, the algorithm also verifies
this up to the max level height.) In lines 105-111 it continues
to verify and mark the pointers to the node and from the node,
and in case of a split the nodes to and from the nodes up to the
max height. Note that if one of the conditions does not hold, the
transaction is aborted, and the whole operation restarts. It finishes
the transaction by setting the old node’s live bit to false (line 113),
and attempting to commit the transaction. We note that in this
part, the transaction does not observe partial modifications made by
other transactions, and so a successful commit ensures a consistent
view of the nodes that are affected by the operation.

Following a successful transaction commit, the third part re-
leases and updates the pointers of the predecessor nodes to point to
the new node (nodes). In lines 116-137 the algorithm sets the next
pointer of the new node (nodes) to the previous nodes that were in
the Leap-List. It continues by setting the next pointers of the prede-
cessor nodes to the new node (nodes) in lines 139-145, and finishes
by setting the live flags of the new node (nodes) to true.

2.1.5 Remove
The remove function is presented in Figure 7. The function receives
arrays of Leap-Lists, keys and their size, and linearizably removes
the key-value pair of each given key from its corresponding Leap-
List. In case a key is not found in a Leap-List, that Leap-List is not
modified.

Similarly to the update function, the remove function is also
divided to the setup (Figure 11), LT (Figure 12) and release and
update (Figure 13) parts. During the setup part, the thread again
iterates over each Leap-List, performs a predecessors search, and
searches for the key to be removed. If a Leap-List does not contain
the corresponding key, it moves on to the next Leap-List. In case
the key exists it keeps the node that holds the key and its successor
node in the old node variables (line 154-161). The node and its
adjacent node are merged if the sum of the key-value pairs in both
nodes is below some threshold. It then verifies that the node and the

4 2013/3/1

Leap-Lists Update
input : Leap-Lists ll, keys k, values v, and size s
node *pa[max lists][max level], *na[max lists47
][max level], *n[max lists];
node *new node[max lists][2];48
int max height[max lists];49
boolean committed := false, split[max lists];50
foreach j<s do51

new node[j][0] := new node;52
new node[j][1] := new node;53

end54
retry:55
Update Setup(ll, k, v, s, pa, na, n, new node, max height,56
split);
tx start ;57
Update LT(s, pa, na, n, new node, max height);58
committed := true;59
tx end;60
if ¬committed then goto retry;61
Update Release and Update(s, pa, na, n, new node, split);62
Deallocate unneeded nodes.63

Figure 6: Leap-List Update

Leap-List Remove
input : Leap-Lists ll, keys k, size s
node *pa[max lists][max level], *na[max lists64
][max level], *n[max lists];
node *old node[max lists][2];65
boolean committed := false, merge[max lists],66
changed[max lists];
foreach j<s do67

n[j] := new node;68
end69
retry all:70
Remove Setup(ll, k, v, s, pa, na, n, old node, merge,71
changed);
tx start;72
Remove LT(s, pa, na, n, old node, merge, changed);73
committed := true;74
tx end ;75
if ¬committed then goto retry all;76
Remove Release and Update(s, pa, na, n, old node, merge,77
changed);
Deallocate unneeded nodes.78

Figure 7: Leap-List Remove

Leap-List Update - Setup
input : Leap-Lists ll, keys k, values v, size s, nodes pa,

nodes na, nodes n, nodes new node, integers
max height, booleans split

foreach j<s do79
(pa[j],na[j])←PredecessorSearch(ll[j],k[j]);80
n[j] := na[j][0];81
if n[j]→count = node size then82

split[j] := true;83
new node[j][1]→level := n[j]→level;84
new node[j][0]→level := get level();85
max height[j] := max(new node[j][0]→level,86
new node[j][1]→level);

else87
split[j] := false;88
new node[j][0]→level := n[j]→level;89
max height[j] := new node[j][0]→level;90

end91
CreateNewNodes(new node[j], n[j], k[j], v[j], split[j]);92

end93

Figure 8: Leap-List Update - Setup.

Leap-List Update - LT
input : size s, nodes pa, nodes na, nodes n, nodes new node,

integers max height
foreach j<s do94

if ¬n[j]→live then tx abort;95
foreach i<n[j]→level do96

if pa[j][i]→next[i]̸=n[j] then tx abort;97
if ¬n[j]→next[i]→live then tx abort;98

end99
foreach i<max height[j] do100

if pa[j][i]→next[j][i]̸=na[j][i] then tx abort;101
if ¬pa[j][i]→live then tx abort;102
if ¬na[j][i]→live then tx abort;103

end104
foreach i<n[j]→level do105

if MARKED(n[j]→next[i]) then tx abort;106
n[j]→next[i] := MARK(n[j]→next[i]);107

end108
foreach i<max height[j] do109

if MARKED(pa[j][i]→next[i]) then tx abort;110
pa[j][i]→next[i] := MARK(pa[j][i]→next[i]);111

end112
n[j]→live := false ;113

end114

Figure 9: Leap-List Update - LT.

adjacent node (upon merge) are live, and if not, the retry of the last
key removal from the current Leap-List is performed. The thread
concludes this part by calling RemoveAndMerge which updates a
new node with the key-value pairs from the node (and the adjacent
node), without the removed key-value pair.

The second part, the LT, is performed in a single transaction. In
this part the thread first verifies the nodes that were found in the
setup part are still valid (i.e., they are still live), their successive
nodes are still live, and the pointers from their predecessors point
to them. If one of the conditions does not hold, the transaction
is aborted, and the whole remove operation is restarted. It then

5 2013/3/1

Leap-List Update - Release and Update
input : size s, nodes pa, nodes na, nodes n, nodes new node,

booleans split
foreach j<s do115

if split[j] then116
if new node[j][1]→level > new node[j][0]→level117
then

foreach i<new node[j][0]→level do118
new node[j][0]→next[i] := new node[j][1];119
new node[j][1]→next[i] :=120
UNMARK(n[j]→next[i]);

end121
foreach122
new node[j][0]→level≤i<old node[j][1]→level
do

new node[j][1]→next[i] :=123
UNMARK(n[j]→next[i]);

end124
else125

foreach i<new node[j][1]→level do126
new node[j][0]→next[i] := new node[j][1];127
new node[j][1]→next[i] :=128
UNMARK(n[j]→next[i]);

end129
foreach130
new node[j][1]→level≤i<old node[j][0]→level
do

new node[j][0]→next[i] :=131
UNMARK(na[j][i]);

end132
end133

else134
foreach i<new node[j][0]→level do135

new node[j][0]→next[i] :=136
UNMARK(n[j]→next[i]);

end137
end138
foreach i<new node[j][0]→level do139

pa[j][i]→next[i] := new node[j][0];140
end141
if split[j] ∧ (new node[j][1]→level >142
new node[j][0]→level) then

foreach143
new node[j][0]→level≤i<old node[j][1]→level do

pa[j][i]→next[i] := new node[j][1];144
end145

end146
new node[j][0]→live := true;147
if split[j] then new node[j][1]→live := true;148

end149

Figure 10: Leap-List Update - Release and Update.

continues to mark the next pointers of the nodes that are about
to be removed, and the next pointers of their predecessors. The
transaction concludes by setting the live bit of the nodes to false,
and attempts to commit. In case the commit fails, the remove
operation is retried from the beginning of the setup part.

However, if the transaction successfully commits, the third part
releases and updates each Leap-List to include the new nodes. It
first sets the next pointers of the new node to point to the unmarked
removed nodes next pointers in lines 217-227. Following this we

Leap-List Remove - Setup
input : Leap-Lists ll, keys k, values v, size s, nodes pa,

nodes na, nodes n, nodes old node, booleans merge,
booleans changed

foreach j<s do150
int total;151
retry last: merge[j] := false;152
(pa,na)←PredecessorSearch(ll[j],k[j]);153
old node[j][0] := na[j][0];154
if get index(old node[j][0]→trie,k[j]) =155
NOT FOUND then

changed[j] := false;156
continue;157

end158
repeat159

old node[j][1] := old node[j][0]→next[0];160
if ¬ then goto retry last;161

until ¬is marked(old node[j][1]) ;162
total := old node[j][0]→count;163
if old node[j][1] then164

total += old node[j][1]→count;165
if total≤node size then merge[j] := true;166

end167
Set n[j] level, count, high and low;168
if ¬old node[j][0]→live then goto retry last;169
if merge[j] ∧ ¬old node[j][1]→live then goto retry last;170
changed[j] := RemoveAndMerge(old node[j], n[j], k[j],171
merge[j]);

end172

Figure 11: Leap-List Remove - Setup.

set the next pointers of the old nodes pointers to the new node (lines
229-230). It concludes, in line 232, by setting the new nodes live
bit.

3. Evaluation
In this section we present the evaluation of our Leap-List imple-
mentation using COP and the LT technique and compare it to an
STM-based Leap-List, an STM based Leap-List implementation
that uses only COP, and a RW-Lock Leap-List implementation that
uses a reader-writer lock. In Section 3.1 we compare to Skip-list
implementations.
Experimental setup: We collected results on a machine powered
by four Intel E7-4870. An Intel E7-4870 is a chip multithreading
(CMT) processor, with 10 2.4 GHz cores each multiplexing 2
hardware threads, for a total of 20 hardware strands per chip.
All implementations were compiled using GCC version 4.7 [1]
which has built-in support for transactional memory. We used the
linearizable memory allocation manager which was proposed in
[7]. We compared the throughput (operations per second) of the
following four algorithms:

1. Leap-LT - our proposed algorithm that uses COP and the LT
technique as described in Section 2.

2. Leap-tm - a Leap-List implementation which wraps each oper-
ation within a transaction.

3. Leap-COP - an STM-based Leap-List implementation that
uses COP (separating the search and update/remove operation).

4. Leap-rwlock - A Read-Write lock Leap-List implementation,
in which the lookup and range-query operations acquire the

6 2013/3/1

Leap-List Remove - LT
input : size s, nodes pa, nodes na, nodes n, nodes old node,

booleans merge, booleans changed
foreach j<s do173

if changed[j] then174
if ¬old node[j][0]→live then tx abort;175
if merge[j] ∧ ¬old node[j][1]→live then tx abort;176
foreach i<old node[j][0]→level do177

if pa[j][i]→next[i]̸=old node[j][0] then178
tx abort;
if ¬pa[j][i]→live then tx abort;179
if ¬old node[j][0]→next[i]→live then180
tx abort;

end181
if merge[j] then182

if old node[j][0]→next[0]̸=old node[j][1]183
then tx abort;
if old node[j][1]→level >184
old node[j][0]→level then

foreach i<old node[j][0]→level do185
if ¬old node[j][1]→next[i]→live then186
tx abort;

end187
foreach old node[j][0]→level ≤ i <188
old node[j][1]→level do

if pa[j][i]→next[i]̸=old node[j][1]189
then tx abort;
if ¬pa[j][i]→live then tx abort;190
if ¬old node[j][1]→next[i]→live then191
tx abort;

end192
else193

foreach i<old node[j][1]→level do194
if ¬old node[j][1]→next[i]→live then195
tx abort;

end196
end197
foreach i<old node[j][1]→level do198

if MARKED(old node[j][1]→next[i]) then199
tx abort;
old node[j][1]→next[i] :=200
MARK(old node[j][1]→next[i]);

end201
end202
foreach i<old node[j][0]→level do203

if MARKED(old node[j][0]→next[i]) then204
tx abort;
old node[j][0]→next[i] :=205
MARK(old node[j][0]→next[i]);

end206
foreach i<n[j]→level do207

if MARKED(pa[j][i]→next[i]) then tx abort;208
pa[j][i]→next[i] := MARK(pa[j][i]→next[i]);209

end210
old node[j][0]→live := false;211
if merge[j] then old node[j][1]→live := false;212

end213
end214

Figure 12: Leap-List Remove - LT.

read-lock, and the update and remove operations acquire the
write-lock.

Leap-List Remove - Release and Update
input : size s, nodes pa, nodes na, nodes n, nodes old node,

booleans merge, booleans changed
foreach j<s do215

if changed[j] then216
if merge[j] then217

foreach i<old node[j][1]→level do218
n[j]→next[i] :=219
UNMARK(old node[j][1]→next[i]);

end220
foreach221
old node[j][1]→level≤i<old node[j][0]→level
do

n[j]→next[i] :=222
UNMARK(old node[j][0]→next[i]);

end223
else224

foreach i<old node[j][0]→level do225
n[j]→next[i] :=226
UNMARK(old node[j][0]→next[i]);

end227
end228
foreach i<n[j]→level do229

pa[j][i]→next[i] := n[j];230
end231
n[j]→live := true ;232

end233
end234

Figure 13: Leap-List Remove - Release and Update.

Settings: We compared different mixtures of update, remove,
lookup and range-query operations using the above algorithms on
4 Leap-Lists (i.e., the size of the arrays on update and remove oper-
ations is 4). Each Leap-List is configured with a node of size 300,
and with a maximal level of 102. Each experiment execution is set
to 10 seconds, and is repeated three times. We show the average
of the three results. We now present the throughput of the above
algorithms using various workload configurations. The keys range
between 0 to 100000, and a range-query operation range spans a
random range between 1000 to 2000.

Figure 14 exhibits the throughput of the different algorithms
when varying the number of threads from 1 to 80. In this scenario
each Leap-List is initialized with 100,000 successive elements. The
write-only case, 100% modifications (only updates and removes),
is presented in figure 14-(a). We observe that the throughput of
the Leap-LT is better than all other algorithms, and scales well
up to 32 threads. It achieves up to 220%, 355%, and 930% better
throughput compared with the Leap-COP, Leap-tm, and Leap-
rwlock algorithms respectively. This shows that even under an
extreme write-dominated workload, our algorithm still performs
well.

In Figure 14-(b) we present a read-dominated case with a mix-
ture of 40% lookups, 40% range-queries and 20% modifications.
Leap-LT scales up to 40 threads because there are less modifica-
tions. Compared with the Leap-COP, Leap-tm, and Leap-rwlock
algorithms it achieves up to 200%, 330%, and 980% better through-
put respectively. When comparing the absolute throughput values,
one can see that the read-dominated workload has a higher through-
put than the write-only workload. This is because a higher modifi-
cations rate incurs a high overhead of update and remove operations

2 We experimentally found these values achieve good performance.

7 2013/3/1

 0

 100000

 200000

 300000

 400000

 1 2 4 8 16 32 40 64 80

threads

100% Modify

op
s/

se
c

Leap-tm
Leap-rwlock

Leap-COP
Leap-LT

(a) various threads - 100% modify operations

 0

 500000

 1e+06

 1.5e+06

 2e+06

 1 2 4 8 16 32 40 64 80

threads

40% Lookup, 40% Range-Query, 20% Modify

op
s/

se
c

Leap-tm
Leap-rwlock

Leap-COP
Leap-LT

(b) various threads - 40% lookup, 40% range-query, 20%
modify operations

Figure 14: Leap-List size 100K. Workload: different amount of modifica-
tions (updates and removes), lookups and range queries. (a) 100% modify
operations, (b) 40% lookup, 40% range-query and 20% modify operations.

 0

 100000

 200000

 300000

 400000

 1000 10000 100000 1e+06 1e+07

elements

100% Modify

op
s/

se
c

Leap-tm
Leap-rwlock

Leap-COP
Leap-LT

(a) various total elements -
100% modify operations

 0

 1e+08

 2e+08

 3e+08

 4e+08

 1000 10000 100000 1e+06 1e+07

elements

100% Lookup

op
s/

se
c

Leap-tm
Leap-rwlock

Leap-COP
Leap-LT

(b) various total elements -
100% lookup operations

Figure 15: Various total elements number. Workload: different amount of
modifications (updates and removes) and lookups. (a) 100% modifications,

(b) 100% lookups.

(compared to the lookup operations), and increased number of con-
flicts and retries.

Figure 15 shows the performance of the algorithms while vary-
ing the number of elements each Leap-List is initialized with, and
setting the number of threads to 80. (The x-axis is log-scaled). We
observe that when there are only update and remove operations
(Figure 15-(a)), the highest throughput is achieved when a Leap-
List is initialized with 1,000,000 elements. This is because there
are less conflicts due to the high number of nodes. Note that when
the number of elements is higher, the overhead stems from the long
predecessors search operation. In figure 15-(b) we see that when
there are only lookup operations, the highest throughput is achieved
when the number of elements is 10,000. This is again due to the

 0

 1e+06

 2e+06

 3e+06

 4e+06

 0 10 20 30 40 50 60 70 80 90

Lookup%

80 threads, 0% Range-Query

op
s/

se
c

Leap-tm
Leap-rwlock

Leap-COP
Leap-LT

(a) No range-query

 0

 1e+06

 2e+06

 3e+06

 0 10 20 30 40 50 60 70 80 90

Range-Query%

80 threads, 0% Lookup

op
s/

se
c

Leap-tm
Leap-rwlock

Leap-COP
Leap-LT

(b) No lookup

Figure 16: Leap-List size 100K, 80 threads. Workload: different rates of
modifications. (a) 0%-90% lookup and modify operations (no

range-query), (b) 0%-90% range-query and modify operations (no lookup).

long predecessors search operations when the number of nodes is
larger.

Figure 16-(a) and figure 16-(b) depict the throughput when
using 80 threads, a Leap-List with 100,000 elements and varying
the rate of lookup and range-query operations respectively between
0% to 90%. Both figures show that as the modifications rate is
decreased, the throughput of all algorithms increases. In the case
where no range-query operations occur (Figure 16-(a)) Leap-LT
shows between 190% (0% lookup rate) to 260% (90% lookup rate)
higher throughput compared with Leap-COP. The case where no
lookup operations occur (Figure 16-(b)) exhibits similar results
where Leap-LT shows between 240% (0% range-queries rate) to
200% (90% range-queries rate) higher throughput compared with
Leap-COP. Note that in the case of 100% lookup and range-query
operations rate (not shown here) the Leap-LT results are even
better. Leap-LT is better by 650% and 320% compared to the
second best Leap-COP in the 100% lookup and 100% range-query
cases respectively.

3.1 Comparison to skip-lists
It is natural to compare our Leap-LT to the known Skip-List data-
structure. We compare the throughput of various settings of a single
Leap-List to: (1) Skip-tm - a skip-list implementation that uses
the GCC-TM to synchronize operations; (2) Skip-cas - a skip-list
implementation as described in [8]. These implementations store a
single key-value pair in each node, and use mutable objects, thus
having a lower modify operations overhead compared to our Leap-
LT. Note that for this comparison we used a single Leap-List data-
structure (L = 1), and that the range-query operations of the Skip-
cas implementation do not return a consistent range-query (i.e., this
operation is non-atomic and may return an inconsistent result).

Figures 17-(a), 17-(b), and 17-(c) show the throughput when
using a data-structure with 1,000,000 elements, and varying the
number of threads between 1 to 80. When there are only modify
operations (Figure 17-(a)), we observe that both Skip-cas and Skip-
tm are better than Leap-LT, and that Skip-cas is much better. This
is due to the higher overhead of the update and remove operations
in Leap-LT.

However, we see different results when there are more lookup
and range-query operations, as can be seen in Figure 17-(b) where
there are 40% lookups, 40% range-queries and 20% modifications.
Here we see that Leap-LT is up to 2x and 38x better than Skip-cas
and Skip-tm respectively. This is due to the overhead of the range-
query operation that needs to iterate many nodes and to the large
number of elements which reduces conflicts between concurrent
modifying operations.

A workload which exhibits only lookup operations (Figure 17-
(c)), shows that Leap-LT and Skip-cas are comparable and are
much better than Skip-tm. This is because no contention occurs,

8 2013/3/1

 0

 1e+07

 2e+07

 3e+07

 1 2 4 8 16 32 40 64 80

threads

100% Modify

op
s/

se
c

Skiplist-tm
Skiplist-cas

Leap-LT

(a) 100% modify operations

 0

 2.5e+06

 5e+06

 7.5e+06

 1 2 4 8 16 32 40 64 80

threads

40% Lookup, 40% Range-Query, 20% Modify

op
s/

se
c

Skiplist-tm
Skiplist-cas

Leap-LT

(b) 40% lookup, 40% range-query, 20%
modify operations

 0

 2.5e+07

 5e+07

 7.5e+07

 1e+08

 1 2 4 8 16 32 40 64 80

threads

100% Lookup

op
s/

se
c

Skiplist-tm
Skiplist-cas

Leap-LT

(c) 100% lookup operations

 0

 1.5e+07

 3e+07

 4.5e+07

 1 2 4 8 16 32 40 64 80

threads

100% Range-Query

op
s/

se
c

Skiplist-tm
Skiplist-cas

Leap-LT

(d) 100% range-query operations

Figure 17: Leap-List comparison to Skip-Lists with 1M elements. Work-
load: different amount of modifications (updates and removes), lookups and
range queries. (a) 100% modify operations, (b) 40% lookup, 40% range-
query and 20% modify operations, (c) 100% lookup operations, (d) 100%
range-query operations.

and the reduced overhead of the former algorithms produces better
throughput.

Figure 17-(d) shows the main strength of our Leap-LT im-
plementation on a workload of only range-query operations. It
achieves better scalability and up to 35x better throughput on this
workload compared to the Skip-cas implementation. Moreover, we
note that this is achieved while ensuring a consistent operation re-
sult (which is not ensured in Skip-cas).

4. Summary
In this paper we presented a novel concurrent data-structure, Leap-
List, that provides linearizable range queries. We implemented it
using a technique called Locking Transactions, which reduces the
executed transactions’ lengths. We compared different Leap-List
implementations, and also compared our technique to a Skip-List
implementation.

We believe that the availability of hardware transactions will
greatly enhance Leap-List performance because its implementation
is based on short transactions. In the future we plan to test the Leap-
List in an In-Memory Data-Base implementation, to replace the
B-trees for indexes. We believe this can significantly improve the
throughput of many Data-Base workloads.

5. Acknowledgements
This work was supported in part by NSF grant CCF-1217921 and
by grants from the Oracle and Intel corporations.

References
[1] Gcc version 4.7.0, (http://gcc.gnu.org/gcc-4.7/), Apr. 2012. URL

http://gcc.gnu.org/gcc-4.7/.

[2] Y. Afek, H. Avni, and N. Shavit. Towards consistency oblivious
programming. In OPODIS, pages 65–79, 2011.

[3] A. Braginsky and E. Petrank. A lock-free b+tree. In SPAA, pages
58–67, 2012.

[4] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. Transactional
predication: high-performance concurrent sets and maps for stm. In
PODC, pages 6–15, 2010.

[5] T. Brown and H. Avni. Range queries in non-blocking k-ary search
trees. In OPODIS, 2012.

[6] P. Ferragina and R. Grossi. The string b-tree: a new data structure for
string search in external memory and its applications. J. ACM, pages
236–280, 1999.

[7] K. Fraser. Practical lock freedom. PhD thesis, Cambridge Univer-
sity Computer Laboratory, 2003. Also available as Technical Report
UCAM-CL-TR-579.

[8] K. Fraser. Practical lock-freedom. Ph. D. dissertation, UCAM-CL-
TR-579, Computer Laboratory, University of Cambridge, 2004.

[9] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A simple optimistic
skiplist algorithm. In Proceedings of the 14th international conference
on Structural information and communication complexity, pages 124–
138, 2007.

[10] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky. Concurrent
tries with efficient non-blocking snapshots. In Proceedings of the 17th
ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming, PPoPP ’12, pages 151–160, 2012. ISBN 978-1-4503-
1160-1.

[11] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. In
WADS, pages 437–449, 1989.

[12] O. Rodeh. B-trees, shadowing, and clones. Trans. Storage, 3(4):2:1–
2:27, Feb. 2008. ISSN 1553-3077.

9 2013/3/1

