
MIT Open Access Articles

DetH*: Approximate Hierarchical Solution
of Large Markov Decision Processes

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Barry, Jennifer, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. "DetH*: Approximate
Hierarchical Solution of Large Markov Decision Processes. In 22nd 2011 International Joint
Conference on Artificial Intelligence, IJCAI-11, Barcelona, Catalonia, Spain, 16–22 July 2011.
AAAI Press, (2011): p.1928-1935.

As Published: http://ijcai.org/papers11/Papers/IJCAI11-323.pdf

Publisher: AAAI Press/International Joint Conferences on Artificial Intelligence

Persistent URL: http://hdl.handle.net/1721.1/90898

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90898
http://creativecommons.org/licenses/by-nc-sa/4.0/

DetH*: Approximate Hierarchical Solution of Large Markov Decision Processes∗

Jennifer L. Barry, Leslie Pack Kaelbling, Tomás Lozano-Pérez
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139, USA
{jbarry,lpk,tlp}@csail.mit.edu

Abstract
This paper presents an algorithm for finding ap-
proximately optimal policies in very large Markov
decision processes by constructing a hierarchical
model and then solving it approximately. It ex-
ploits factored representations to achieve compact-
ness and efficiency and to discover connectivity
properties of the domain. We provide a bound on
the quality of the solutions and give asymptotic
analysis of the runtimes; in addition we demon-
strate performance on a collection of very large do-
mains. Results show that the quality of resulting
policies is very good and the total running times,
for both creating and solving the hierarchy, are sig-
nificantly less than for an optimal factored MDP
solver.

1 Introduction
Our goal is to find good, though not necessarily optimal, so-
lutions for large, factored Markov decision processes. We
present an approximate algorithm, DetH*, which applies two
types of leverage to the problem: it shortens the horizon using
an automatically generated temporal hierarchy and it reduces
the effective size of the state space through state aggregation.

DetH* uses connectivity heuristics to break the state space
into a number of macro-states. It then assumes that transi-
tions between these macro-states are deterministic, allowing
it to quickly compute a top-level policy mapping macro-states
to macro-states. Once this policy has been computed, DetH*
solves for policies in each macro-state independently. We
are able to construct and solve these hierarchies significantly
faster than solving the original problem.

We represent factored MDPs compactly as algebraic de-
cision diagrams (ADDs) as done by the SPUDD algo-
rithm [Hoey et al., 1999]. In order to maintain efficiency in
large problems, our algorithm is composed of operations on
ADDs and BDDs and so avoids ever enumerating the states
in the domain. We make use of the independencies in the do-
main dynamics that are revealed by the structure of the ADD
representation, and we use the SPUDD algorithm to solve the
∗This work was supported in part by ONR MURI grant N00014-

09-1-1051 and in part by AFOSR grant AOARD-104135.

MDPs that constitute the individual macro-states. SPUDD
naturally reduces the size of the effective state space by ag-
gregating sets of states with the same value.

There are two important related lines of work, focusing ei-
ther on factoring or on decomposition of large MDPs. Im-
provements on factored MDP solvers continue to treat the
MDP as a single problem, but find more compact [Sanner and
McAllester, 2005; Sanner et al., 2010] or approximate [St-
Aubin et al., 2000] representations. Recent work on topolog-
ical and focused topological value iteration [Dai and Gold-
smith, 2007; Dai et al., 2009] is similar to ours in that it de-
composes a large MDP based on the connectivity of the states.
However, TVI and FTVI cannot exploit a factored representa-
tion and, in a well-connected domain, they are not guaranteed
to find any hierarchy at all. FTVI has been run successfully
on some smaller factored problems, but requires knowledge
of an initial state to reduce the state space size. Moreover,
the size of the value function output by TVI or FTVI is nec-
essarily the size of the optimal value function and, therefore,
these cannot be run in domains where the representation of
the optimal value function is prohibitively large. By relaxing
the requirement that the algorithm output the optimal policy,
we can find a good approximate policy even in some large
problems where the optimal value function is not compactly
representable. Our work is also similar to MAXQ [Dietterich,
1998; Mehta et al., 2008] in that it uses a temporal hierarchy
to reduce the size of the state space. However, unlike the orig-
inal MAXQ algorithm, we are able to construct the hierarchy
automatically. Although the work of Mehta et al. proposes
a method for automatically creating MAXQ hierarchies, the
hierarchy creation is costly and only worthwhile if it transfers
to many domains.

We begin by introducing our hierarchical model of an
MDP. We then discuss how DetH* creates and solves this
model and conclude by presenting results on a set of large
domains.

2 Hierarchical Model
In this paper, we restrict ourselves to creating and solving
hierarchical models with only two levels and for simplicity
explain only the two level hierarchy model. However, the
extension to multi-level hierarchies is straightforward.

An MDP can be described as M = 〈S,A, T,R〉 where
S is a finite set of states, A is a finite set of actions, T is

the transition model with T (x, a, x′) specifying the proba-
bility of a transition to state x′ given that the system starts
in state x and selects action a, and R is the reward model
with R(x) specifying the real-valued reward of state x. In
addition, we assume a pre-specified set of goal states, G ⊂
S. Goal states are zero-reward absorbing states: for every
g ∈ G and a ∈ A, T (g, a, g) = 1 and R(g) = 0. Fur-
ther, we assume that all other reward values are strictly neg-
ative. We solve this problem under the undiscounted to-
tal reward criterion, making it a ‘negative stochastic short-
est path’ problem. Any discounted MDP can be transformed
into an ‘equivalent’ negative stochastic shortest path prob-
lem, which can then be solved to produce the optimal pol-
icy for the original MDP [Bertsekas and Tsitsiklis, 1996;
Bonet and Geffner, 2009].

A factored MDP is an MDP and a set of state variables
X = {X1, ..., Xn}. For each variable Xi, we assume a finite
set of possible values ΩXi = {Xi

1, ..., X
i
mi
}. A state of the

MDP is specified by a single assignment to each state vari-
able; the value of variable Xi in state x ∈ S is given by xi.
We represent the transition model using a collection of ADDs
in the manner of SPUDD; for each action and for each value
of each variable, Xi

j , an ADD specifies the probability that
Xi will have value Xi

j on the next time-step. The reward is
represented as a single ADD.

A (two level) hierarchical model of a factored MDP con-
sists of a factored MDP and a set of macro-states, U , which
partition the state space. Each macro-state in U is a set of
states of the original MDP (primitive states), represented as
a binary decision diagram (BDD). U must contain a single
macro-state g = G, called the goal macro-state, which is
exactly the set of primitive goal states. Given a macro-state
u, we say that a variable value Xi

j ∈ u if there exists some
primitive state x ∈ u with xi = Xi

j . A hierarchical pol-
icy π = {πU , πS} consists of an upper-level policy πU and a
lower-level policy πS . The policy πU maps each macro-state
u ∈ U to another macro-state u′ ∈ U , signifying that when
the system is in a primitive state contained in u it should at-
tempt to move to some primitive state in u′. The policy πS is
a standard MDP policy, represented as an ADD, mapping the
primitive states to primitive actions.

3 DetH* Overview
The DetH* algorithm takes as input an MDP represented us-
ing ADDs and outputs a hierarchical policy. The input repre-
sentation is the same that of SPUDD. The algorithm works in
three stages:

1. It computes a set of macro-states, U , for the MDP that
partition the state space. We discuss the clustering algo-
rithm used to create these macro-states in Section 5.

2. It computes an upper-level policy πU mapping each
macro-state in U to another macro-state in U . We ex-
plain this algorithm in Section 4.

3. It uses πU to break the original, large MDP into many
smaller sub-MDPs. Specifically, for each macro-state
u ∈ U , it creates a sub-MDP by setting all states in
πU (u) to have the fixed value 0 and setting all states

not in u or πU (u) to have a fixed value −∆ where ∆ is
large. No other modifications are made to the original
transition and reward model of the MDP and any fac-
tored MDP solver can be used to solve for a policy in
this sub-MDP. Since the macro-states partition the state
space, πS is just the union of the policies of the sub-
MDPs.

We begin by describing step 2 of DetH* as it will motivate
the choices we make in designing the clustering algorithm.

4 Solving the Hierarchical Factored MDP
The solver takes as input a hierarchical model of a Markov de-
cision process (MDP) and outputs a policy, πU on the macro-
states of the hierarchy. We will discuss how to find the hier-
archical model in Section 5.

4.1 Algorithm
To find πU , we approximate the transitions between macro-
states as being deterministic. Given a function C(u, u′), rep-
resenting the cost to transition from macro-state u ∈ U to
macro-state u′ ∈ U , DetH* uses Dijkstra’s algorithm to find
a shortest path, 〈u, v1, v2, ..., g〉, for each macro-state u ∈ U
to g. It sets πU (u) = v1.

Cost Model
To model the cost C(u, u′) of transitioning from macro-state
u to u′, we assume that, at the primitive level, any action
a ∈ A taken in state x ∈ S with goal of ending in state x′ ∈ S
does make a transition to x′ with probability T (x, a, x′), but
that with the remaining probability mass, it stays in state x.
Executing such an action a repeatedly will, in expectation,
take 1/T (x, a, x′) steps to move to state x′, each of which
incurs cost −R(x). We can select whichever action would
minimize this cost, yielding a deterministic cost estimate at
the primitive level of

C(x, x′) = min
a∈A
− R(x)

T (x, a, x′)
.

If there is no action that causes a transition from x to x′ then
the cost of transitioning between the two is infinite. This cost
model is unlikely to reflect the exact dynamics of the domain,
but it allows us to incorporate both the transition probabili-
ties and reward into the cost calculation in an efficiently com-
putable manner.

Let U(x) be the macro-state containing x (since the macro-
states are a partition, U is a function). We define d(x, x′) as
the shortest distance, using C as a cost measure, from x to x′
considering only states in U(x) and U(x′). For macro-state
u′, let du

′
(x) = minx′∈u′ d(x, x′), the shortest distance from

some primitive state x to some x′ ∈ u′ considering only states
in U(x) and u′. We define C(u, u′) as the average over the
du
′
(x) for x ∈ u:

C(u, u′) =
1

|u|
∑
x∈u

du
′
(x).

Given two macro-states, u and u′, we can calculate C(u, u′)

using Dijkstra’s algorithm to find du
′
(x). Because of the fac-

tored representation, du
′
(x) is likely to be identical for many

u

u1

u2

Figure 1: A hierarchical model of an MDP. The bold rect-
angles depict the macro-states and the small circles are the
primitive states. An arrow is drawn from primitive state x to
primitive state x′ if some action can transition x to x′. For
macro-state u, regardless of which macro-state is chosen as
πU (u), either the states in u1 or the states in u2 will not be
able to reach πU (u).

x ∈ u and we can use ADD operations to treat all states with
the same du

′
(x) compactly.

Approximate Cost Model
Even using ADDs, the representation of the cost C tends to
grow exponentially quickly, so we approximate C by assign-
ing the same distance value to all primitive states within u that
can reach πU (u) in the same minimum number of actions.

Specifically, we break u into the set of sub-macro-states
{u1, ..., uz(u,u′)} such that for x ∈ uj , x can reach some sub-
state of u′ with non-zero probability in j actions and no fewer.
The quantity z(u, u′) is the smallest j such that all sub-states
in u that can reach some sub-state in u′ with non-zero prob-
ability can do so in j actions or fewer. If some sub-states of
u cannot reach a sub-state of u′, they are not included in the
sub-macro-states. We approximate the cost C of transition-
ing from sub-macro-state uj to uj−1 as the average cost of
transitioning from a state in uj to a state in uj−1:

C(uj , uj−1) =
1

|uj |
∑
x∈uj

min
x′∈uj−1

C(x, x′),

which can be calculated efficiently using ADD operations.
Note that since all x ∈ uj can reach some state in u′ in j
actions and no fewer and all x′ ∈ uj−1 can reach some state
in u′ in j − 1 actions and no fewer, every state in uj has
a non-zero transition probability to some state in uj−1 and
C(uj , uj−1) is finite. Letting u0 = u′, this gives us the ap-
proximation of C, C ′:

C ′(u, u′) =
1

z(u, u′)

z(u,u′)∑
i=1

i∑
j=1

C(uj , uj−1).

Solver
Given C ′, we could simply use Dijkstra’s algorithm on the
macro-states to find πU . However, consider the case of the
hierarchy shown in Figure 1. In this hierarchy, there is a
macro-state u ∈ U that is made up of two distinct sets of
primitive states, u1 and u2, such that there is no macro-state
u′ ∈ U such that all sub-states of u can reach some sub-state
of u′. Therefore, whatever the value of πU (u), there will be

some primitive state x ∈ u such that x cannot reach a sub-
state of πU (u). This could result in an infinite negative value
for x under πS even if the optimal value function is finite
everywhere. To avoid this, when calculating C ′(u, u′), we
calculate C ′ for only those sub-states uR ⊆ u that can reach
some sub-state of u′. If, after the cost calculation, u′ is on the
current path-to-goal for uR, we split u into uR and u \ uR.
This allows us to guarantee the following:
Theorem 1: Let π∗ be the optimal policy for an MDP M
and let πS be the policy found by DetH* on any hierarchy
and VπS

be the associated value function. Provided that for
all x ∈ S, VπS

(x) > −∆, then for any x ∈ S, if x has a non-
zero probability of reaching some goal state under π∗, then x
will also have a non-zero probability of reaching some goal
state under πS .
Proof: Proof of all theorems in this paper can be found in the
associated technical report [Barry et al., 2011].
Corollary 2: Let V ∗ be the optimal value function for an
MDP M and let πS be the policy found by DetH* on any
hierarchy and VπS

be the associated value function. Provided
that for all x ∈ S, VπS

(s) > −∆, if V ∗ is finite for all x ∈ S,
VπS

will be finite for all x ∈ S.
We can also give an asymptotic upper bound on the run-

ning time of the solver. We do this in terms of the set of
macro-statesH , which is the set of macro-states after running
the solver. For state x, we define T (x) = πU (U(x)) to be
the target macro-state from U(x). The bound relies on three
quantities: |H|, the number of macro-states after running the
solver, Z = maxh∈H z(h, T (h)), the maximum number of
actions required for any primitive state x to move from U(x)
to its target macro-state T (x), and B, the size of the largest
BDD representation of a set of states seen while creating or
solving the hierarchy.
Theorem 3: The running time of the upper level solver is
O(|H|2ZB2).
Proof Sketch: The running time of the upper level solver
is dominated by |H|2 calculations of C ′. Calculating C ′ re-
quires O(|Z|) calls to C, each of which takes O(B2).

4.2 Accuracy
Dietterich (1998) introduced the terms hierarchically and re-
cursively optimal for discussing the polices associated with
a hierarchy. These criteria assume a fixed hierarchy with
known sub-goals at lower levels, which allows the problem
to be solved bottom-up, with higher levels guaranteeing op-
timality subject to the quality of solutions at levels below.
In DetH*, we do not assume that appropriate subgoals are
known in advance; we must determine them, top-down, and
so the resulting policies will not generally be hierarchically
or recursively optimal. However, we can still bound the sub-
optimality of the resulting policy.

We defineO(x) = {x′|x′ 6∈ (U(x)∪T (x))} to be the “out”
set of primitive states neither in the macro-state of x nor its
target. LetB∗x,x′ be the probability that the first primitive state
not in U(x) reached under π∗ is x′. Similarly BπS

x,x′ is the
probability that the first primitive state not in U(x) reached
under πS is x′.

Algorithm 1 Input: g: the goal macro-state Output: A set of
g-connected macro-states.

SIMPLE-CLUSTER(g)
1 U ← {g}
2 while ∃ unclustered states that can reach the goal
3 for each macro-state u created on the last iteration
4 // all unclustered states that reach u in 1 step

n← REGRESS(u, unclustered, 1)
5 U ← U ∪ n
6 U ← U∪ macro-state consisting of any unclustered states
7 return U

Dai and Goldsmith (2007) showed that dividing a domain
into macro-states and solving each macro-state separately can
result in an optimal solution. The error that DetH* incurs
arises from two differences between the set of macro-states
it uses and the topologically sorted set proposed by Dai and
Goldsmith. Drift measures error due to coercing the process
to stay within a macro-state until exiting to the target macro-
state, rather than moving to an out state:

δ(x) =
∑

x′∈O(x)

B∗x,x′ (V
∗(x′) + ∆) . (1)

Heterogeneity measures the error incurred from having a sub-
optimal arrival distribution over primitive states in the target
macro-state:

h(x) =
∑

x′∈T (x)

(
B∗x,x′ −B

πS

x,x′

)
V ∗(x′). (2)

Theorem 4: Provided that for all x ∈ S, VπS
(x) > −∆,

E(x) = V ∗(x)−VπS
(x) ≤ δ(x)+h(x)+

∑
x′∈T (x)

BπS

x,x′E(x′).

Because for any x inG,E(x) = 0, error in the other primi-
tive states can be characterized by backward induction on the
graph defined by πU .

In constructing a hierarchical model, we can attempt to re-
duce the drift term by creating macro-states that the optimal
policy would prefer not to exit, or to exit by chance. We can
attempt to reduce the heterogeneity term by creating macro-
states whose primitive states have similar values.

5 Creating the Hierarchical Model
Given a factored MDP, we create a hierarchical model with
the goal that it be solvable both accurately and efficiently.

g-Connected Clustering
We wish to create a set of macro-states U which require very
little splitting during solution, which will occur if there al-
ready exists a policy on U for which Theorem 1 holds. To
this end we define the property of g-connectedness:
Definition 5: A set of macro-states U with goal macro-state
g is g-connected under policy πU if
• For all u ∈ U , if u contains any primitive state that can

reach a goal state under the optimal policy, u can reach
g under πU .

Algorithm 2 Input: g: the goal macro-state, Υ: the maximum
number of macro-states Output: A hierarchy for use with the
DetH* solver.

CLUSTER(g,Υ)
1 // First create a large number of initial macro-states

U, r ← SPLIT(g,Υ, 1)
2 while ∃ unclustered states that can reach the goal
3 for each macro-state u created on the last iteration
4 // all unclustered states that reach u in ≤ r steps

n← REGRESS(u, unclustered, r)
5 for Xi ∈ X
6 // Reduce drift by adding states
7 n← GROW(n, unclustered, Xi)
8 U ← U ∪ n
9 U ← U∪ macro-state containing any unclustered states

10 return U

SPLIT(g,Υ, r)

1 U ← {S \ g}, split← True
2 while split and |U | < Υ
3 split← False, U ′ ← {}
4 for u ∈ U
5 // the subset of u that can reach g in ≤ r steps

N ← {REGRESS(g, u, r)}
6 for Xi ∈ X
7 N ′ ← {}
8 for n ∈ N
9 P ← partition of n s.t. for Xi

j ∈ nl, all Xi
k

i-reachable by Xi
j through n are in nl.

10 if ∀nj , nk ∈ P s.t. ∀Xi
m ∈ nj , X

i
p ∈ nk,

Xi
m cannot i-reach Xi

p

11 // Exogenous variable.
P ← {n}

12 if |P | > Υ, return SPLIT(g,Υ, r + 1)
13 if |P | > 1, split← True
14 for each nj ∈ P
15 nj ← GROW(nj , unclustered, Xi)
16 N ′ ← N ′ ∪ {nj}
17 N ← N ′

18 U ′ ← U ′ ∪N
19 U ← U ′

20 return U ∪ {g}, r

GROW(u,Q,Xi)

1 u′ ← empty macro-state
2 for x ∈ u
3 u′ ← u′ ∪ {x′ ∈ Q|x′i can i-reach xi through Q ∪ u

in less than maxj |ΩXj |/2 steps, x′i ∈ u, and for j 6= i,
x′j = xj}

4 return u′

• For all u ∈ U , every sub-state of u can reach some sub-
state of πU (u) without leaving u.

U is g-connected if there exists some policy under which it is
g-connected.

For example, the set of macro-states shown in Figure 1 is
not g-connected because, to fulfill the second condition of the
definition, a policy must map u to u and this cannot fulfill the
first condition.

The function REGRESS(ug, ua, i) returns all states in ua
that can reach some state in ug in i steps or fewer. There-
fore, a simple method for creating g-connected clusters is to
repeatedly call REGRESS as shown in Algorithm 1.
Theorem 6: SIMPLE-CLUSTER creates g-connected macro-
states.
Proof Sketch: By induction over Uk, the set of macro-states
after the kth call to REGRESS.

Base Case: U0 = {g} is trivially g-connected.
Induction Step: Let πUk−1

be a policy under which Uk−1
is g-connected. Assume we regress macro-state uk−1 on
iteration k creating macro-state uk. For v ∈ Uk−1, let
πUk

(v) = πUk−1
(v). Set πUk

(uk) = uk−1. Since all sub-
states of uk can reach some sub-state of uk−1 by definition of
REGRESS, it follows by induction that πUk

is a policy under
which Uk is g-connected.

Improving Clustering
SIMPLE-CLUSTER usually returns a small number of large
macro-states so that solving each macro-state is costly. In
addition, although the macro-states are g-connected, once πU
is determined, each macro-state may still have a significant
heterogeneity and drift error, decreasing the accuracy of the
solution. To improve efficiency, we would like to make more
macro-states; to improve accuracy, we would like to decrease
their drift and heterogeneity.

However, attempting to decrease drift and heterogeneity
while using exact reachability on primitive states is very ex-
pensive in large domains. We use the factored structure of the
transition model to define an efficiently-computable approx-
imate notion of connectivity by considering the connectivity
of each state variable separately.

Define a variable value Xi
j to be adjacent to a variable

value Xi
k if Xi

j = Xi
k or there exist states x, x′ ∈ S with

xi = Xi
k and x′i = Xi

j and action a ∈ A such that
T (x, a, x′) > εwhere ε is a small (possibly zero) user-defined
constant. Only variable values of the same variable can be ad-
jacent.
Definition 7: Primitive state x′ ∈ S is i-adjacent (inde-
pendently adjacent) to state x ∈ S if, for all Xi ∈ X, x′i is
adjacent to xi. A macro-state u′ ∈ U is i-adjacent to a macro-
state u ∈ U if there exist primitive states x′ ∈ u′ and x ∈ u
such that x′ is i-adjacent to x. An element (variable value or
state) j is i-reachable from an element i if j is i-adjacent to i
or j is i-reachable from some element k that is i-adjacent to i.
A set of macro-states is ig-connected if they are g-connected
under i-adjacency.

Note that the existence of a ∈ A such that T (x, a, x′) > ε
is sufficient for x′ to be i-adjacent to x, but not necessary.
In most domains many more states will be i-adjacent than
are actually adjacent. While the solver will be most efficient
when ig-connectedness implies actual g-connectedness, all of
the results of Section 4 hold for any hierarchy input to the
solver.

Pseudo-code for creating improved ig-connected clusters is
shown in Algorithm 2. CLUSTER addresses the problems of
few macro-states, drift, and heterogeneity in two ways.

Improving Drift: The GROW function adds to each macro-
state a large number of primitive states that can easily i-reach
the macro-state u in an attempt to reduce the drift error in later
created macro-states by ensuring that states that can easily i-
reach u are part of u. The limit of maxi |ΩXi |/2 is in place
on line 3 of GROW to keep all states from being placed into
the same macro-state in well connected domains.

Improving Heterogeneity: The SPLIT function creates
several initial macro-states, which addresses the problem of
few macro-states and heterogeneity. Since each macro-state
created in SPLIT will be regressed separately on line 4 of
CLUSTER, the splits made in this function will propagate, cre-
ating a much larger number of macro-states than if we simply
called REGRESS repeatedly.1

The SPLIT function essentially splits a macro-state based
on i-reachability so that the resulting macro-states contain
only those primitive states which can i-reach each other.
Primitive states that can easily i-reach one another are likely
to have similar values, addressing the issue of heterogeneity.
Because we use i-reachability, we can consider each variable
separately, which allows this computation to be performed
efficiently. The procedure for splitting a macro-state into par-
titions containing only primitive states that can i-reach each
other is shown on lines 6-9 of SPLIT.

However, we found that splitting macro-states only on i-
reachability created far too many macro-states if there were
many variables in the domain whose values were not well-
connected. We use the check on line 10 to identify vari-
ables with large numbers of values that cannot reach each
other. The partition formed on line 9 of SPLIT only consid-
ers reachability through the current macro-state n. Line 10
checks if there is a path between two partitions through the
entire domain, although there may not be one in n. If the
partitions could never reach one another then we do not split
the macro-state. This check is an attempt to identify exoge-
nous variables, variables over which the agent has no con-
trol. These variables often have values set a priori that never
change so splitting on them creates a large number of macro-
states. Moreover, for many values of an exogenous variable,
the value function is the same over a short horizon. Therefore,
there is no need to split on the values of an exogenous vari-
able; it will neither improve the homogeneity of the macro-
state nor the efficiency of the solution at the bottom level.

Even attempting to avoid splitting on exogenous variables,
it is possible that SPLIT creates too many macro-states, In this
case, we redo SPLIT on line 12 by forming a macro-state that
contains all primitive states that can reach a goal state in two
steps rather than one. This larger macro-state is likely to split
into fewer partitions.

Because we consider each variable individually, after par-
titioning and growing the macro-states, it is possible that re-

1In a very large domain, it is possible that better clusters could
be created by splitting later macro-states as well, but, in general,
this will create so many macro-states that the factors of |H| in the
running time of the solver will have a noticeable impact on running
time. We found that just splitting the first macro-state worked well
on all domains we tried.

peating the process will give us an even more refined set of
macro-states. Therefore, we repeat the process until conver-
gence is reached or we have a maximum number of macro-
states.
Theorem 8: The macro-states created by CLUSTER are ig-
connected and partition the state space.
Proof Sketch: In SPLIT, we initially call REGRESS on the
full set of non-goal states. Subsequently, we partition the
states and then only add to them states that have not yet been
added to a macro-state. Similarly, during the main loop of
CLUSTER, we only consider the set of states not yet clustered
when we REGRESS and GROW macro-states. Therefore, the
resulting macro-states partition the state space.

By Theorem 6, repeatedly calling REGRESS creates g-
connected clusters. Now consider the GROW(u,Q,Xi) func-
tion where u is some macro-state belonging to a g-connected
set of macro-states U and let πU be some policy under which
U is g-connected. The call to GROW creates a new set of
macro-states U ′ = (U \u)∪u′ where u′ = GROW(u,Q,Xi),
which we claim is ig-connected. For v ∈ (U \ u), let
πU ′(v) = πU (v) if πU (v) 6= u and u′ otherwise. Set
πU ′(u

′) = πU (u). Since u ⊆ u′, for macro-state v ∈ U ,
all sub-states of v can i-reach some sub-state of πU ′(v) with-
out leaving v. Now consider u′. For each x ∈ u′, either x ∈ u
or x can i-reach some x′ ∈ u without leaving u′ by line 3 of
GROW. Therefore, for all x ∈ u′, x can i-reach some sub-
state of πU ′(u′) and U ′ is ig-connected under πU ′ .

The proof that SPLIT creates ig-connected macro-states is
similar. An induction over the calls to REGRESS, SPLIT, and
GROW completes the full proof.�

In practice, to save computation time, we break the ig-
connectivity slightly: we always let Q = S for the GROW
function and compute the partition afterwards by subtracting
earlier created macro-states from later ones. We also estimate
reachability for the variable values by assuming that all val-
ues can only reach one sink and therefore that all values that
reach the same sink should be put in the same partition.
Theorem 9: The running time of CLUSTER is O(|H|ZB2).

Let |VH | be the size of the largest value function, in terms
of the ADD representation, that SPUDD constructs during
the solution of any macro-state in stage 3 of DetH*, and IH
be the largest number of iterations SPUDD requires in any
macro-state. Then
Theorem 10: The total running time for DetH* is bounded
by O(|H|2ZB2) +O(|H|IHB|VH |).
Proof Sketch: The running time of CLUSTER is dominated
by the running time of the upper level solver. For each macro-
state, each iteration of SPUDD is bounded by O(B|VH |) so
stage 3 is bounded by O(|H|IHB|VH |).

Efficiency Advantage of DetH*: The effect of DetH* is
to break the solution of one large SPUDD problem into many
smaller problems. Although the number of iterations, IH , that
SPUDD requires is not easily evaluated in the infinite horizon
case, intuitively it should be approximately upper bounded by
the number of states with different values, which can be up-
per bounded |VH |, giving us a running time of O(|VH |2) for

v1 v2

0.4

0.6

0.4

0.6

1.0 0.6 0.4

0.4

0.6 1.0

(a) Solving for the optimal
value function.

0

1.0

1.0

1.0

(b) Solving the
bottom macro-
state as a sub-
MDP.

Figure 2: An MDP in which |VH | � |V ∗|. Here sets of
primitive states with different values are shown as small cir-
cles and macro-states are shown by the rectangles. Actions
are shown as arrows with the probability of transition written
on the edge (to avoid clutter, we assume all rewards are -1).
To find the optimal solution, two distinct values of the top
macro-state must be considered, as shown in (a), which leads
to an exponential explosion in the number of different val-
ues in the bottom macro-state. Therefore, both the SPUDD
and (F)TVI would be unable to solve this problem. However,
DetH* solves the bottom macro-state by assuming all values
in the top macro-state are zero as shown in (b). Therefore,
it is able to aggregate many more states together, resulting
in a much smaller representation of the value function in the
bottom macro-state.

SPUDD. Therefore, we expect that the divide-and-conquer
approach of DetH* will show an improvement in the same
manner as topological value iteration improves value itera-
tion. However, because of the manner in which we create
sub-MDPs, the running time improvement is likely to be even
more significant. For each sub-MDP, we only allow the val-
ues of the states in that sub-MDP to change, fixing the rest at 0
or−∆. This can exponentially decrease the size of the result-
ing value function as shown in Figure 2. Therefore, in almost
all cases, |VH | � |V |, the largest value function SPUDD con-
siders in solving the flat problem, and DetH* can solve prob-
lems for which the representation of the optimal value func-
tion (or even some intermediate value function) is too large to
be machine-representable. Unfortunately, there are patholog-
ical cases in which, by forcing states in u to choose actions
that will push them towards πU (u), we can have |VH | > |V |,
but we expect that these cases are very rare in practice. An
example of such a pathological case can be found in Barry et
al., 2011.

6 Results
We compared DetH* against SPUDD 3.6.2, which is a state-
of-the-art optimal solver for factored domains. In order to
illustrate our point about using any solver at the bottom level,
we used two different variable orderings of primed variables
relative to unprimed variables. The SPUDD default order-

Domain SPUDD SPUDDO DetH*

Name Variables Actions Order1 Order2 Order1 Order2 Order1
Time

Order2
Time ValueTime Value Time Value Time Value Time Value

factory 25 15 156.6 (50) -17.2 41.3 (50) -17.2 119.2 (40) – 31.7 (40) – 19.0 7.9 -18.5
tire50 25 166 34.8 (6) 0.77 23.8 (50) 0.83 1.5 (5) 0.75 0.2 (6) 0.77 27.7 12.0 0.75
tire80 27 254 127.3 (6) 0.64 268.9 (50) 0.73 1.0 (5) 0.62 0.3 (6) 0.64 52.8 32.2 0.63
tire90 33 291 1556.0 (6) 0.70 2063.9 (50) 0.76 12.2 (5) 0.67 0.5 (6) 0.70 85.3 48.4 0.69
tire110 45 364 – (6) – > 105 (50) – 6415.8 (5) 0.74 0.6 (5) 0.74 266.2 126.8 0.75
tire120 45 391 – (6) – > 105 (50) – 38.6 (5) 0.67 0.5 (5) 0.67 7328.8 108.0 0.66

elev10-8 20 3 57.3 -18.6 18.3 -18.6 31.4 (25) -18.6 10.6 (25) -18.6 7.8 7.7 -18.9
elev10-10 24 3 485.2 -20.1 256.2 -20.1 219.7 (25) -20.1 71.3 (25) -20.1 8.7 6.2 -20.8
elev10-12 28 3 3921.1 -24.9 923.3 -24.9 1614.4 (30) – 390.8 (30) – 104.9 95.0 -25.7
trash3-40 51 4 236.5 -15.4 2.3 -15.4 231.0 (29) – 2.1 (29) – 2.0 1.2 -16.8
trash3-50 61 4 344.3 -17.9 3.2 -17.9 324.7 (30) – 2.6 (30) – 3.1 1.9 -19.9
trash3-60 71 4 421.6 -19.9 4.4 -19.9 378.5 (30) – 2.7 (30) – 3.6 2.4 -23.0
trash3-90 102 4 823.5 -27.7 7.8 -27.7 791.6 (50) – 7.4 (50) – 10.5 5.8 -33.0
trash5-40 51 4 19496.8 -17.2 23.5 -17.2 19254.3 (30) – 16.5 (30) – 2.1 1.4 -18.0
trash5-60 71 4 35642.7 -22.3 37.4 -22.3 34751.1 (30) – 16.8 (30) – 4.2 2.7 -24.4
surv3-3 17 11 54.9 -7.2 18.9 -7.2 0.2 (4) -7.5 0.05 (4) -7.5 1.9 1.9 -10.0
surv3-5 24 25 – – – – 100.4 (4) -5.5 1.4 (4) -5.5 57.6 101.0 -8.3
surv4-5 29 28 – – – – 4458.7 (4) -5.6 2.7 (4) -5.6 129.8 217.0 -8.4

survA2-9 29 13 – – – – – (6) – 1228.3 (6) -5.7 1868.2 2294.0 -6.3
survA2-10 29 13 – – – – – (6) – – (6) – 6876.6 9393.5 -6.4

Table 1: Results for SPUDD, SPUDDO , and DetH*. All times are in seconds. Note that the number of variables reported is the number
binary variables used to express the domain. Since |ΩXi | might not be a power of two for all Xi, the actual domain size may be less than
two to this number. If a horizon was set, the horizon is shown in parentheses after the time. A – under time indicates that more than 2 GB of
memory was used and the process was killed. A – under value indicates that at least one of the tested states could not reach the goal under
the policy even though it could under the optimal policy. We used SPUDD as the factored MDP solver required by DetH*. All SPUDD
algorithms were run to a convergence of 0.1 with no pre-multiplication of ADDs. We set ε = 0.1, ∆ = 100, and Υ = 100. Order1 is an
ordering that places all primed variables above unprimed variables. Order2 is an ordering that interleaves primed and unprimed variables. For
tire, the fraction of time the policy could reach a goal state is reported rather than value.

ing is shown as Order2, while an ordering which places all
primed variables above unprimed variables is shown as Or-
der1. Since one of DetH*’s major advantages over SPUDD
is shortening the horizon, we also compared to SPUDDO,
an idealized version of SPUDD with a horizon oracle that
knew in advance the best time/accuracy trade-off for running
SPUDD. Because we solve using an undiscounted model, in
domains where not all states can reach a goal state, SPUDD
will never terminate. In these domains, we attempted to pick
a horizon that gave the optimal policy (listed under SPUDD)
and then tried to find the shortest horizon that gave a reason-
able approximate policy (listed under SPUDDO). In some
domains we showed that running SPUDD to anything less
than convergence resulted in infinitely bad policies since a
state that could reach a goal state under the optimal policy
could no longer reach a goal state under the approximate pol-
icy. In these domains, we report that SPUDDO was unable to
find a good policy. We ran the algorithms on instances of five
domains:

1. factory: A version of the builder domain distributed
with SPUDD modified very slightly to have negative re-
wards and goal states. Many states cannot reach a goal
state, but all states that can reach a goal state have a finite
optimal value.

2. tire: A version of the PPDDL Tireworld domain [Bonet
and Givan, 2006] adapted to the SPUDD language. We
chose roads mostly randomly but in such a way that we
guaranteed a path from every location to the goal loca-
tion. Every location had a 25% chance of having a spare
tire. Almost all states can reach some state that cannot
reach the goal. Therefore, comparing values is not very

informative and, instead, we compare the fraction of the
time the policy was able to reach a goal state. The size of
this domain is approximately controlled by the number
of locations; this is shown as tire#locations.

3. elev: The elevator domain distributed with SPUDD
scaled up and slightly modified to have negative rewards
and goal states. The size of this domain is controlled by
the number of floors and the number of people waiting
for an elevator; this is shown as elev#floors-#people.

4. trash: An example domain involving a robot mov-
ing trash bags either by hand or with a cart [Barry et
al., 2011]. The size of this domain is controlled by
the number of intervening locations between the bags
and the cart and the number of bags; this is shown as
trash#locations-#bags.

5. surv/survA: Surveillance domains in which an au-
tonomous agent is trying to take a picture of an interest-
ing location [Barry et al., 2011]. Locations become in-
teresting or not interesting non-deterministically, partly
depending on the current location of the agent. The
world is divided into neighborhoods, which are far apart,
and locations within a neighborhood, which are close to-
gether. Once an agent leaves a neighborhood it cannot
return. The size of these domains is controlled by the
number of neighborhoods and the number locations; this
is shown as surv#neighborhoods-#locations.

Evaluation: For each problem, we randomly chose 1000
transient states and, for each algorithm, averaged the values
of 1000 trials of the policy starting at each of the states. A

state was determined not to be able to reach a goal state if,
during policy evaluation, its value fell below -500.

As shown in Table 1, DetH* runs significantly faster than
SPUDD on all domains and never runs out of memory. In
addition, it is clear that, as claimed, using a faster solver on
the macro-states also decreases the time DetH* requires. In
all domains where SPUDD was able to run to completion,
Order2 was faster than Order1 for both SPUDD and DetH*.

DetH* also runs significantly faster than SPUDDO in all
big domains except surv using Order2 and tire. In both of
these domains, a correct guess of a good short horizon can
give an accurate answer to the whole MDP so quickly that
the overhead of solving many sub-MDPs is unjustified. How-
ever, finding this horizon is not possible in general. In the
tire domain, the first few iterations are very fast so it would
be possible to test a large number of them and find that 5
or 6 iterations gives a good performance faster than DetH*
can solve the problem. However, in the surv domains, the
increase in running time tends to be very non-linear. Four or
five iterations may be run very quickly and then the sixth may
take a very long time. Therefore, it is not clear how to find
a good horizon in this domain. As the rest of Table 1 attests,
simply running SPUDD for a fixed amount of time, but not
to convergence will not always give good performance (for
example, in the elev domain).

7 Conclusion
There have been many adaptations to SPUDD, from the sug-
gestions of optimization in the original paper [Hoey et al.,
1999], to approximating value functions [St-Aubin et al.,
2000], to using affine ADDs [Sanner et al., 2010]. All of
these adaptations can be applied to DetH* since it can use
any solver for the sub-MDPs. In addition, the COST and
REGRESS functions used in clustering and solving require the
same ADD operations as a SPUDD Bellman backup. Thus
any optimization, such as pre-multiplying action ADDs or us-
ing affine ADDs, that decrease the running time of those oper-
ations will also be expected to decrease the time required for
DetH*’s clustering and upper-level solving. The real power
of DetH* lies in its ability to break the problem of solving
a large MDP into many smaller MDPs. Any advance in the
solving of those small MDPs will be reflected directly in the
running time of DetH*.

Planning in very large MDPs is difficult because of long
horizons, uncertainty in outcomes and large state spaces. The
DetH* algorithm addresses each of these. By constructing
a temporal hierarchy, DetH* reduces a single long-horizon
planning problem to several planning problems with much
shorter horizons, considerably reducing planning time. Un-
certain planning problems can always be simplified by mak-
ing a deterministic approximation, but sometimes this simpli-
fication comes at a great cost. DetH* makes only a limited
deterministic approximation, taking care to model stochastic-
ity in the domain in the short horizon by solving MDPs at
the leaf nodes of the hierarchy, but summarizing the cost of
longer-term decisions with their expectations. A combina-
tion of the shortened horizon and the use of ADD represen-
tations significantly reduces the effective state-space size of

the remaining MDPs to be solved. The combination of these
strategies results in accurate, but still efficient, decisions and
we have shown empirically that DetH* can find good approx-
imate policies very quickly.

References
[Barry et al., 2011] J. Barry, L. Kaelbling, and T. Lozano-

Pérez. Hierarchical Solution of Large Markov Decision
Processes. Technical report, Massachusetts Institute of
Technology, 2011.

[Bertsekas and Tsitsiklis, 1996] Dimitri P. Bertsekas and
John N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, Massachusetts, 1996.

[Bonet and Geffner, 2009] Blai Bonet and Hector Geffner.
Solving POMDPs: RTDP-Bel vs. Point-based Algorithms.
In 21st Int. Joint. Conf. on Artificial Intelligence (IJCAI),
Pasadena, California, 2009.

[Bonet and Givan, 2006] Blai Bonet and Bob Givan. Non-
Deterministic Planning Track of the 2006 Interna-
tional Planning Competition. www.ldc.usb.ve/
%7ebonet/ipc5, 2006.

[Dai and Goldsmith, 2007] Peng Dai and Judy Goldsmith.
Topological value iteration. In Twentieth International
Joint Conference on Artificial Intelligence, pages 1860–
65, Hyderabad, India, January 2007.

[Dai et al., 2009] Peng Dai, Mausam, and Daniel S. Weld.
Focused topological value iteration. In Nineteenth Inter-
national Conference on Automated Planning and Schedul-
ing, pages 82–89, Thessaloniki, Greece, September 2009.

[Dietterich, 1998] Thomas G. Dietterich. The MAXQ
Method for Hierarchical Reinforcement Learning. In
ICML, pages 118–126, San Francisco, 1998.

[Hoey et al., 1999] Jesse Hoey, Robert St-Aubin, Alan J Hu,
and Craig Boutilier. Spudd: Stochastic planning using de-
cision diagrams. In Uncertainty in Artificial Intelligence,
Stockholm, Sweden, 1999.

[Mehta et al., 2008] Neville Mehta, Soumya Ray, Prasad
Tadepalli, and Thomas Dietterich. Automatic Discovery
and Transfer of MAXQ Hierarchies. In ICML-08, Helin-
ski, Finland, 2008.

[Sanner and McAllester, 2005] S. Sanner and D. McAllester.
Affine algebraic decision diagrams and their application to
structured probabilistic inference. In Nineteenth Interna-
tional Joint Conference on Artificial Intelligence, 2005.

[Sanner et al., 2010] S. Sanner, W. Uther, and K. V. Del-
gado. Approximate dynamic programming with affine
adds. In Ninth International Conference on Autonomous
Agents and Multiagent Systems, Toronto, Canada, 2010.

[St-Aubin et al., 2000] Robert St-Aubin, Jesse Hoey, and
Craig Boutilier. Apricodd: Approximate policy construc-
tion using decision diagrams. In Neural Information Pro-
cessing Systems, Denver, CO, 2000.

