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ABSTRACT

River flood and rainfall have been shown to exhibit scale invariance behavior over a
range of space and time scales. Although various approaches have been taken to
investigate and model the various scaling aspects of rainfall and floods, little theoretical
work has been done on the relation between the scaling of rainfall and flood. If available,
such a theory would provide frequency estimate for extreme rainfall and floods outside
the range of observations and could also be used to estimate floods at ungaged basins.
The relationship between rainfall and flood scaling is the main focus of this thesis.

We use a two step approach to investigate the relationship between exponent of peak
flows and the scaling of rain. First, we use data analysis to verify existing theories that
relate the multiscaling behavior of rainfall to the simple scaling behavior of the IDFs.
Second, we use a model to relate the scaling of the IDFs to the scaling of peak flows with
basin area. We find that, although temporal rainfall shows multiscaling, the IDFs exhibit
simple scaling and peak floods show simple or mild multiscaling. We validate our
findings by using U.S. peak annual flow data and rainfall from a few New England
stations.

Extreme floods damage mitigation requires sound and integrated policy making. We
review the flood disaster mitigation situation in the U.S., carry out policy analysis and
recommend options for a successful and sustainable flood disaster policy in the U.S.

Thesis Supervisor: Daniele Veneziano
Title: Professor of Civil and Environmental Engineering
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CHAPTER 1

Introduction

It has been found that maximum annual floods, in a given region and within certain

limits, have a scale invariant dependence on drained area. As an example, figure 1.1

shows the first four moments of annual peak flows from New England, U. S. Rainfall in

space, time, space-time and rainfall intensity distribution frequency curves (IDFs) have

also been observed to exhibit scaling behaviors of different types.

There are various aspects of rainfall scaling. Rainfall may be scaling in time, space or

both space-time. The limits of scaling of rainfall in time and space are important to

consider. It has been observed that the break in scaling varies from region to region.

Another question is whether rainfall is scaling at all times or only inside storms. Studies

have shown that even though temporal rainfall may show multiscaling, dry durations

between storms do not scale and extreme rainfall (IDFs) has been observed to exhibit

simple scaling. Moreover, season-specific IDFs have been shown to exhibit different

scaling properties.

Scaling of floods and the connections between flood generating mechanisms, effect of

spatial variability and scaling of rainfall and the role of basin response are topics of

active research and have practical importance for regional flood frequency analysis. Both

statistical frameworks and physically based models have been used to study the scaling

of floods with basin area.
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Most of the studies about scaling have dealt separately with either the scaling of rainfall

in time, space or space-time or with the scaling of floods. The relation between the

scaling behaviors of rainfall and flood has received relatively little attention. The present

study aims at relating the scaling of the rainfall to the IDF curves and the scaling of IDFs

to the scaling of river floods. We use a two step approach to investigate the relationship

between exponent of peak flows and the scaling of rain. First, we use data analysis to

verify existing theories that relate the multiscaling behavior of rainfall to the simple

scaling behavior of the IDFs. Second, we use a model to relate the scaling of the IDFs to

the scaling of peak flows with basin area. The results can be used to extrapolate the

frequency of extreme events and for flood prediction and estimation at regions with

sparse or no data.

We use theoretical results and empirical data analysis to: (1) verify if rainfall, IDFs and

peak flows exhibit scaling; (2) the limits of such scaling, if any (3) the type of scaling

(simple scaling or multiscaling in space or time); (4) the relation of scaling of rainfall to

the scaling of IDFs; (5) the effect of seasonality on scaling characteristics of rainfall and

IDFs; and (6) the relation of scaling of IDFs to the scaling of annual peak flows.

Extreme floods cause extensive damage to life and property. The techniques and

approaches used to estimate the flood frequency have an important but limited role in

mitigating the flood damage. The public perception of risk from flood and the way

financial adjustment to that risk is carried out by the government are important factors

in analyzing the damage mitigation situation. Over the last decade, the U. S. has faced
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an unprecedented array of flood related disasters, costing billions of dollars. This has

forced the government to review its policy toward flood damage mitigation.

This thesis deals with two aspects of floods. One is concerned with the scaling approach

to floods; the other is about policy analysis and recommendation for flood mitigation in

the U. S. The thesis is organized in two parts. Part 1 focuses on the scaling properties of

rainfall, intensity duration frequency curves and peak flows in the rivers and how such

properties can contribute to better knowledge of extreme hydrologic events. Part 1

consists of chapters 2 through 6. Part 2 presents an analysis of the flood mitigation

policies in the U. S. and recommends an improved set of policies. We review the history

of flood mitigation policy in the U. S., point out the problems with the current policy,

identify barriers to effective policy making for flood mitigation and outline policy

recommendations. The rest of this thesis is organized as follows:

Literature review is covered in Chapter 2. The objective of the review is to present the

current state of the scaling approach in hydrology. We discuss the past studies and

models of rainfall scaling in time, space and space-time, IDF scaling, and flood scaling.

In chapter 3, we present the analysis and modeling of temporal rainfall. We investigate

the scaling of temporal rainfall. We compare our approach and results with the literature

and propose a new model for distribution of duration of dry periods.

Chapter 4 presents the scaling of rainfall and point IDF curves in context of a theory

which relates parameters of multiscaling rainfall to the parameters of simple scaling of
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IDFs. We perform this analysis for the annual and the seasonal series and find good

match with the theory.

In chapter 5, analysis of river floods is presented and the scaling of flood peaks is

discussed. We present a simple model of floods which is based on the IDF scaling

obtained in chapter 4. We focus on the processes and hydrologic variables controlling

the scaling exponent of flood peaks with the basin scale. We find that the theoretical

results for scaling exponents of flood peaks with basin scale, derived from IDFs, are in

good agreement with the empirically observed exponents of flood peaks with basin

scale.

Chapter 6 presents a summary of the findings, discussion of the results, conclusions and

open questions and future research topics. This concludes part 1 of the thesis.

Part 2 of the thesis consists of chapters 7 and 8. Chapter 7 examines the past and current

flood policies, the role of flood insurance policies and the fiscal management of flood

damage mitigation measures by the government. We identify and discuss the problems

with the current flood mitigation policies.

In Chapter 8, we focus on land use planning and flood insurance as the main tools for

flood damage mitigation policy making. Chapter 8 outlines the barriers to effective

policy making and provides recommendations for an integrated, consistent national

policy for flood mitigation in the U. S.

-15-



10 25

10 20 _S4=3.06

00

15 10 : S3=2.32 .

0

U-

(> 10 S2=1.57

10 O O O S1=0.80

101 102 103 10

Area (mi 2)

Figure 1.1. Scaling of annual flood peaks in New England Region. Moment orders
shown are: (+) first moment, circles, second moment, asterisks, third moment and
squares, fourth moment. The lines show the fitted regression to the moment orders 1
through 4. S1, S2, S3 and S4 show the slopes of the first, second, third and fourth
moment of the peak flows respectively.
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CHAPTER 2

Literature Review

In this chapter, we review scaling models of rainfall, intensity-distribution-frequency

curves (IDFs) and peak river flows. We review and compare the main issues

surrounding scaling approach to rainfall, IDFs and peak river flows. We are interested in

finding out what characteristics of rainfall, IDFs and peak river flows scale and if so, in

what way i.e., simple scaling or multiscaling. The issues we review are related to scaling

(or nonscaling thereof) of: rainfall occurrence; complete rainfall series of including

intensity; rainfall in space; rainfall in space and time; IDFs at a point and for basins; and

spatial peak river flows.

If scaling exists, then there are a number of compelling questions about the controlling

factors on the scaling behavior. One question is that if scaling exists, what are the limits

of scaling and how does the approach, climate and data affect these limits? We are also

interested in finding out the relationship of rainfall scaling in time to that of IDFs and to

investigate the dependence of peak flow scaling on spatial rainfall scaling and basin

characteristics. One objective of this review is to give an overall idea of the consensus

and controversy on ideas surrounding scaling approach to rainfall, IDFs and peak river

flows.
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2.1 Scaling of Rainfall

Rainfall has a complicated temporal and spatial structure covering a wide range of

scales in both time and space. Such complex properties make rainfall modeling a

challenging task. Cox and Isham (1994) distinguish between three broad types of

conventional (non-scaling) mathematical models of rainfall: empirical statistical models,

dynamic meteorological models and intermediate stochastic models. Models of point

rainfall lack the ability to describe the statistical structure of rainfall over a wide range of

scales. A range of methods is needed depending on the time and spatial scales involved,

which involves estimating parameters at different scales.

Successful application of scaling models to various geophysical processes has motivated

hydrologists to explore scale invariance in hydrologic processes. Although there is

literature to support theoretical arguments and empirical evidence of scale-invariance

(Schertzer and Lovejoy, 1987; Gupta and Waymire, 1990; Gupta and Over, 1994; Gupta

et al. 1996; Olsson, 1995; Schmitt et al. 1998) yet the findings differ on important issues

and controversy exists about the approaches used to reach the conclusions.

Scaling models of rain have evolved from fractal geometry for rain areas, to monofractal

fields, to multifractals, to generalized scale invariant models, to universal multifractals

(Foufoula-Georgiou and Krajewski, 1995). Veneziano et al. (1996) have presented a

detailed classification and discussion of scaling models of rainfall. The following brief

description of the type of scaling models follows Veneziano et al. (1996). Simple scaling

models are associated with additive mechanisms; either the cumulative rainfall rate

process or the rainrate fluctuation process can be simple scaling. An example of simple
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scaling model is the first of the two wavelet models proposed by Perica and Foufoula-

Georgiou (1996). Again, there can be two ways in which rainfall may be considered

multiscaling: cumulative rainfall process (Gupta and Waymire, 1993) and rainrate

fluctuation process (Lovejoy and Schertzer, 1991). Multifractal models of rainfall can also

be classified as either conserved (Gupta and Waymire, 1993; Over and Gupta 1994, 1996)

or nonconserved (Lovejoy and Schertzer, 1991; Tessier, 1993).

Most of the scaling studies of rainfall focus either on temporal rainfall series at a point or

the spatial distribution of rainfall at a given time. Scaling and multiscaling in rainfall

time series has been reported by a number of empirical studies (e.g., Olsson et al. 1993;

Olsson 1995, Svensson et al. 1996). Similarly scaling of spatial rainfall has also been

investigated and it was found to show scaling behavior (Gupta and Waymire, 1990;

Olsson et al. 1996). Progress has also been made on building a theoretical framework for

scaling behavior of rainfall. A type of processes known as cascade processes have been

proposed as a possible mechanism to realistically represent the scaling properties and

the hierarchical structure of rainfall (Schertzer and Lovejoy, 1987; Gupta and Waymire,

1990, 1993; Tessier et al. 1996). Scaling theory has also been applied to the space-time

rainfall (Marsan and Schertzer, 1996; Over and Gupta, 1993; Deidda, 2000); however,

there is a debate whether the scaling in space-time rainfall is isotropic or anisotropic.

When analyzing empirical data for scale invariance, different methods have been used

to investigate if the process exhibits scale invariance, the limits of scaling and to model

the scale invariance behavior of rainfall process. Spectral analysis (Olsson, 1993), box

counting and correlation dimension (Olsson et al., 1993) can be used to investigate the
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existence and the limits of scaling for data sets; however, these techniques do not tell

whether the process is multiscaling or not. Moment scaling analysis (Gupta and

Waymire, 1990) is often used to investigate if the process possesses simple scaling or

multiscaling. To model the multiscaling processes and to estimate the basic multifractal

parameters, probability distribution/multiple scaling (PDMS) analysis (Lovejoy and

Schertzer, 1990) or double trace moment (DTM) analysis (Lavallee, 1991, Tessier et al.,

1993) may be used. Analysis employing above mentioned techniques has been carried

out using both radar rain reflectivities (Lovejoy and Schertzer, 1990; Gupta and

Waymire, 1993) and rain gage series data (Tessier et al. 1993; Svensson et al. 1996).

Moment scaling analysis is a common method used to investigate and analyze the

scaling behavior of hydrologic processes at different aggregation levels. Moment scaling

analysis has been applied to both time and space domains for rainfall and river flow

among other geophysical processes. For illustration purpose, consider the case for

rainfall moment scaling analysis. Let D be the duration of events for aggregation, and ID

be the aggregated rainfall over the duration D. Denote raw moment of order q and

aggregation D by E[ID' ]. The scaling analysis provides information about: (1) whether

there is log-log linearity of statistical moments E[ID'] and D, and (2) the nature of

growth (linear or non-linear) of slopes of these moments k(q). If condition (1) is satisfied,

then the behavior of the slopes, called scaling exponents, determines whether the

process obey simple scaling or multiscaling. If the slopes exhibit a linear growth with the

moment order then, according to the scaling theory, the process is simple scaling. If

however, condition (1) is satisfied but the slopes show deviation from linear growth,

then the process is multiscaling (see figure 2.1).
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Figure 2.1. Illustration of simple and multiscaling behavior of empirical data.

Simple scaling implies that the statistical spatial variability in the physical process does

not change with a change in scale. Simple scaling processes allow both scale

magnification and downscaling. For multiscaling processes, the nonlinear growth in

slopes with the order of the moment leads to the interpretation that statistical spatial

variability in such processes may increase or decrease (for a concave growth) with an

increase in scale. In the multiscaling case, the scaling properties can be used for either

scale magnification or scale contraction, but not for both (Gupta and Waymire, 1990). In

contrast to the simple scaling case where there is a linear growth in slopes, in the

multiscaling case the scaling behavior is determined by a spectrum of exponents.

Determination of these exponents in terms of measurable physical and geometrical

parameters is not only a very important research topic but also has practical applications

in rainfall downscaling and regional flood frequency analysis.
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2.1.1 Temporal Scaling of Rainfall

It has been observed and verified by a number of studies (Olsson, 1992; Schmitt, 1998)

that scale invariance of physical systems generally holds within a certain range of scales

bounded by inner cut-off and outer cut-off limits. The region and local climatological

factors are considered to play a role in imposing these limits. This represents an

important consideration when one is applying scaling as a predictive model.

Investigation of the power law spectrum of a data set can give information about the

scaling characteristic of the data set. If scaling holds for a data set, the energy spectrum

E(f) has the power law form: S(f) oc f -6 where P is spectral exponent. The power

spectrum shows the scaling of the series second order moments. A number of

researchers have included this analysis as a preliminary step to estimate the limits of the

scaling regime. If the power law holds for a certain range, the spectrum will be

approximately a straight line within that range in a double logarithmic plot.

Olsson (1993) carried out spectral analysis of rainfall data in Sweden and found a power

law form of E(f) = f -0.66 in the range of temporal scales between 8 min to

approximately 3 days. However there is uncertainty and considerable variation in the

range within which the spectrum is a straigh line. It has been hypothesized that such

break is related to the rainfall generation mechanism. The value of exponent P provides

information about the stationarity of the data. If P<1, the process is stationary. For P

betwen 1 and 3, the process is nonstationary with stationary increments. Menabde et al.

(1997) called the rainfall time series possessing power spectrum exponent I P I >1 as self-
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affine rainfall processes. Menabde et al. (1997) proposed that a cascade model with

variable parameters over scales is better suited for self-affine rainfall processes. The

exponent P also depends on the resolution of the data. Svensson et al. (1996) used daily

rainfall data and found P to be 0.28 in Sweden and 0.37 in China.

Box counting is used to estimate the fractal dimension of a data set which can be

interpreted as the degree of irregularity by which the set is distributed. The general

procedure of box counting is as follows (Olsson et al., 1992): The total data set is divided

into gradually decreasing, non-overlapping segments (boxes) of size r and for every r the

number of boxes N(r) needed to cover the set of points is counted. If the set exhibits

scaling, i.e., N(r) oc r-D , then the plot of the log count log[N(r)] as a function of log(r)

will be a straight line with the slope being an estimate of the box dimension D,.

Olsson et al. (1992) investigated the scale-invariant behavior of rainfall in time by

applying the functional box counting technique described above. They used two years of

one minute observations, 90 years of daily observations and 170 years of monthly

observations, all observed in Lund, Sweden. For the two years of one minute rainfall

observations, the plot between durations against number of boxes showed three distinct

segments with different slopes. Similar results were obtained for the other data sets. For

the minute rainfall series, The slopes in the three sections were 0.82, 0.37 and 1

respectively and the first break occurred at 45 minutes, which was also found to be the

average duration of the rainfall events. The rainfall events were defined as those rainy

events which are separated by at least 10 minute intervals of no rain. The first section, 1-

45 minutes, was interpreted as representing individual rainy minutes with the break in
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scale indicating formation of single rainfall events. The gentler slope from 45 minute to 1

week was considered to be the reflection of rainfall events scattered over time. Beyond

one week the unit slope indicated saturation of rainy boxes.

Veneziano et al. (1996) investigated the issue of scaling within a storm duration using

data from seven high-resolution rain gages in Iowa. They found a segmented frequency

spectrum of the logarithms of the series. From the slopes of the spectra, they conclude

that a cascade model is not appropriate for these events. They proposed a non-scaling

stochastic lognormal model with segmented log spectrum.

Now, we review the multifractal model theory and background and then present the

techniques used to estimate the parameters of such models. Stationary multifractal

models are in the form of discrete or continuous cascades. Discrete cascades are

stationary and scaling in a limited way and provide crude representations of rainfall in

space or time. Continuous cascades do not have these limitations. The assumption is that

fluxes of water and energy in the atmosphere may be governed by multiplicative

cascade processes transferring these quantities from larger to smaller scales. One starts

at the largest scale with a given "mass" uniformly distributed over the support. Each

subsequent step divides the support and generates a number of weights (equal to the

"branching number" of the generator), such that mass is redistributed to each of the

divided supports by multiplication with the respective weight. To achieve conservation

in the ensemble average of the mass, the expected value of the weights should be equal

to unity. Different distributions of the weights have been used to represent rainfall

including multinomial, uniform, lognormal and log-Levy. In the multinomial case, the
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weights take a finite number of values with certain probabilities. A discrete

multiplicative cascade model is parameterized by its branching number, the probability

distribution of its weights, and the initial mass. These branching numbers and the

distribution of the weights determine the multifractal properties of the cascades.

A cascade model, known as the log-Levy model, was proposed by Lovejoy and

Schertzer (1987 and subsequent work). In the log-Levy model, the logarithms of the

weights are distributed according to a non-Gaussian stable distribution. Holley and

Waymire (1992) have pointed out that the lack of ergodicity of models with log-Levy

exponents greater than unity is a problem. In support of their model, Lovejoy and

Schertzer (1990) have argued that due to nonlinear interaction at a wide range of scale,

several details of the rainfall dynamics are unimportant, and the resulting fields fall

within a universal class of log-Levy multifractals characterized by three parameters.

PDMS (Lovejoy and Schertzer, 1990) is based on the notion that the variability of the

probability distribution at different scales is connected through a dimension function.

The relationship between average field intensity e, and scale ratio A is given as

Pr(eg > Ar) -c(Y) (2.1)

where Pr is probability, y is the order of singularity and c(y) is a characteristic function

of the multifractal behavior, known as the codimension function. Values of the function

c(y) are known as codimensions and are computed as the difference of the dimension in

which the process is studied and the corresponding dimension of the process. According
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to Olsson (1996): "The sign ~ should be interpreted as equality up to prefactors slowly

varying with A. In data analysis, these prefactors are normally ignored." The

codimension function of temporal rainfall can be obtained parametrically from the

moment scaling function k(q) as

7(q)=dK(q)/dq and c(q)=qy(q)-k(q).

,r(q) is a transformation which is sometimes used instead of k(q). Double trace

moment (DTM) is another technique used to estimate the multifractal parameters (mean

codimension function, Levy index) under the assumption of universality (Lavallee,

1991). For an application of DTM analysis see Olsson, 1995.

Rainfall process can be viewed as consisting of exterior processes (storm arrival) and

interior processes (during rainy periods). The multifractal models of rainfall have

performed well for the interior processes but have less success in realistically modeling

the exterior properties of storms. Schmitt et al. (1998) have shown that the p-model

(Frisch et al. 1978), used by Over and Gupta (1994) to reproduce intermittency, lacks the

ability to reproduce the probability distribution of the wet periods of rainfall time series.

The s-model, is a simple random cascade model which has the characteristic that only

one parameter specifies the distribution.

Schmitt et al. (1998) have proposed modeling rainfall time series as a two step approach:

using two-state renewal processes to model the occurrence and non-occurrence of

rainfall and multifractals to model the rainfall variability. The model of rainy/non-rainy
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events is based on two-state renewal process with given probability densities for wet

and dry periods. The variability in the rainfall is modeled by a modified multifractal

model following Schertzer and Lovejoy's universal multifractal approach. The time

series of the rainfall is obtained by multiplying the series generated with the alternate

renewal process and the one provided by the multifractal model. Their approach takes

care of the exterior rainfall by limiting the multifractal model to the interior process.

Schmitt et al. (1998) perform data analysis on a 29 year long, 10-min resolution time

series in Uccle, Belgium. Schmitt et al. (1998) used the box counting technique to verify

that the occurrence of rain is scaling. The box counting showed a break in scaling at 3.5

days. They also found that the residence time probability density of dry period scales

with a slope of (- D, -1), where D, is the fractal dimension obtained from box

counting analysis. Schmitt et al. obtained a D, = 0.55 for the Uccle data. In contrast to

their analysis, our data analysis in New England shows that the probability of dry

period durations does not follow a power law.

There are two major assumptions in their analysis which need to be verified by data

analysis. One is that the duration of the successive wet and dry events are independent.

The second assumption, which is implicit in the analysis, is that the distribution of

rainfall intensity is independent of the duration of rainy periods. Contrary to their

assumption, Eagleson, (1970, p 186) has discussed the dependence of depth on duration.

Acreman (1990) also reports evidence of dependence of intensity on duration for an

hourly rainfall data series in England. Our analysis of rainfall data from New England,

U. S. also shows dependence of rainfall depth on duration. Therefore, in order to
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reproduce the statistical characteristics of the time series and the intensity-duration

curve of the rainfall, one should make the intensity depend on the duration of the

rainfall event.

It is of interest to relate the parameters of scaling of rainfall to physical characteristics of

rainfall. Harris et al. (1996) reported evidence that the parameters of multifractal cascade

models of rainfall are related to orography and specifically that they vary systematically

as a function of altitude along a transect.

Now we present a few investigations with a focus on practical application of scaling

theories. Svensson et al. (1996) analyzed whether presence of scaling, scaling limits and

values of scaling exponents are related to the physical parameters of the storm

environment. They compared the results of scaling analysis on rainfall data from two

distinct climatic regions: East Asian monsoon (China) and a temperate climate (Sweden).

Their analysis showed multifractal scaling to hold true for both cases in the range from

one day to one month. The temporal data (range from 1-32 days) exhibited scaling for

moments of orders up to 2.5 in the monsoon area and up to 4.0 in the temperate area.

The monsoon climate time series was dominated by exceptionally high rainfall from a

large typhoon. Since the high-order empirical moments are sensitive to large

observations, the scaling breaks down for moment order above 2.5. This is precisely

what our analysis shows for the data in Hartford, New England where a large storm in

1955 dominates the higher moments for the entire series.

Olsson (1996) described a method to use multifractal temporal rainfall properties in time
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to extract statistical information about the rainfall processes at a scale smaller than the

observation scale of the data. The method consisted of finding the valid ranges where

scale invariance is assumed to hold, verifying scaling and estimating the unknown

smaller-scale empirical pdf. There were two conditions required to estimate the smaller

scale pdf: (1) the power spectrum should exhibit scale invariance near the resolution of

the data and (2) the probability distributions Pr at different scales should follow the

result in (2.1).

The method was tested on a 2 year time series of 1-min resolution data. To increase the

accuracy, the raw 1-min data was aggregated into 8-min values. In order to enable a

comparison of results for downscaled resolution, the 8-min values were further

aggregated to 64-min resolution. The probability distribution functions for scales down

to 8 minute were estimated and compared to actual probability distribution functions.

The results showed that at low intensities the probabilities are underestimated by the

estimated distribution and at high intensities the probabilities are overestimated. Overall

scales from 8-min to 32-mn showed satisfactory to good agreement. The deviations

from the true pdf were attributed to the effect of prefactors which are dominant at the

smaller scales and were ignored in the analysis. Olsson (1996) also reported some

problems with the rain measurement system which makes these results somewhat

uncertain. However, this approach illustrates a practical use of the multifractal theory as

it has the potential to reduce the problem of inadequate rainfall data for hydrological

calculations.
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In another study, Olsson (1998) disaggregated daily rainfall time series into higher

resolution by using a cascade-based scaling model. The model divided each rainy time

period into halves of equal length and distributed the rainfall volume between the

halves. Data analysis was used to verify the approach and the results showed that for a

daily rainfall series, the model gave good results for disaggregation level of 45 minutes.

2.1.2 Spatial Rainfall Scaling

Analysis and modeling of spatial structure of the rainfall has been the topic of numerous

investigations. The proposed scaling models for spatial rainfall include the work of

Schertzer and Lovejoy (1987), Gupta and Waymire (1990), Over and Gupta (1993, 1994)

and Olsson and Niemczynowicz (1996).

Gupta and Waymire (1990) identified that both spatial rainfall and river flows exhibited

multiscaling properties. They proposed using continuous multiplicative process to

provide a theoretical framework for multiscaling processes. Data from the Global

Atmosphere Research Program, Atlantic Experiment was used for the analysis. The

rainfall data were collected on an area of about 400 km in diameter with instantaneous

rainfall data being available at 15 minute intervals, binned into 4 x 4 km2 pixels. The

scale parameter A was varied by forming squares of sizes 4 x 4, 8 x 8 and 16 x 16 km2.

The exponents of the conditional rainfall moments (conditioned on positive rainfall)

showed a departure from the linear growth thus implying multifractal behavior of

spatial rainfall.

Over and Gupta (1994) applied the theory of random cascades to radar derived rainfall
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data and showed how the scaling characteristics depend on the average rain rate (large-

scale forcing). The data sets used were GATE phase I and GATE phase II data from 1974.

Phase I consisted of 19 days of data (6/28-7/16) and phase II lasted from 7/28 to 8/15.

The data consisted of radar scans taken every 15 minutes in which the rainrates are

averaged over 4 x 4 km pixels. Over and Gupta (1994) used a square region with 72

pixels (288 km) on each side and the spatial average rain rates for each scan were

obtained by averaging the rainrate in the 72 x 72 pixels region. They presented evidence

that the scaling properties of the mesoscale rainfall can be captured to a first order

approximation by a single parameter of a cascade generator for scales smaller than 100

km. Over and Gupta (1994) described the dependence of this parameter on the large-

scale forcing, as measured by the large-scale spatial average rainrate by a one-to-one

function. The results were specific for the case when spatial pattern of rainfall is a simple

function of the spatial average rain rate. A general approach was not described for the

case when spatial pattern of rainfall is not a simple function of the spatial average rain

rate.

Svensson et al. (1996) analyzed the spatial rainfall data for two climates (monsoon and

temperate) allowing for stationary front, warm front, cold front and convective rainfall

generating mechanisms. The spatial data for all rainfall mechanisms in the two climates

exhibited scaling for 15-180 km (225-332400 km2) for the monsoon climate and 7.5-90 km

(55-8100 kin2) for the temperate climate. The results were good for moments of order up

to 4.0. The convective group showed deviation from linearity for moment order higher

than 2.5. Svensson et al. (1996) explained that this deviation from linearity may be due to

the combination of highly localized nature of convective rainfall and the comparatively
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sparse density of the rain gage network due to which the observation of an intense event

at one gage is supported by small rainfall amounts at surrounding gages. The 'r(q)

functions of convective rainfall were convex, while the corresponding r(q) functions of

frontal rainfall were linear. Their results were in general agreement with the results of

Over and Gupta (1994) where the slope of the function r(q) depended on the average

rain rate. Convective rainfall is associated with a large rain rate and results in a

nonlinear or steep r(q) curve.

In another related study, Olsson and Niemczynowicz (1996) performed the multifractal

analysis of daily spatial rainfall observed by a dense gage network in Southern Sweden.

Olsson et al. studied the variation of the average statistical moments with spatial scale

which ranged from 8.2 km to 90 km (equivalent to an area approximately 70 to 8000 km2

in size). The data were analyzed by classifying the rainfall according to: (1) the storm

generating mechanism (warm fronts, cold fronts and convection) and (2) by pooling all

the data together. The results showed that multifractal behavior exists in both cases (the

k(q) functions were convex) however the degree of convexity displayed was different for

the two cases. The convective group showed the most pronounced convexity which is in

agreement with the work of Svensson et al. (1996) discussed above. According to Olsson

and Niemczynowicz (1996), "The fact that different rainfall generating mechanisms

exhibit different multifractal properties indicates that the total rainfall process may be

viewed as a mixture of multifractal processes". This also indicates the need for seasonal

scaling analysis of rainfall processes. Convective precipitation is usually predominant in

summer and is induced by simple surface heating or in combination with thermally-

forced flows, such as sea breezes or mountain/valley winds.
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Recently investigation of the statistical spatial structure of several storm types as well as

the corresponding thermodynamical parameters of the storm environments has also

been carried out. These studies are in contrast to the previous studies which look

directly at the intensities of rainfall. These studies, which investigate the statistics of the

rainfall structure and their relation to the physical properties, hypothesize that if spatial

rainfall is decomposed in multiscale means, multiscale "fluctuations" are more likely to

obey some simple universality condition like self-similarity than are rainfall intensities

themselves. Studies by Foufoula-Georgiou et al. (1996) have shed light on the

relationship of scaling parameters to physical observables such as convective available

potential energy (CAPE). Foufoula-Georgiou et al. (1996) have also discussed the

possibility of a downscaling scheme with parameters based on evolution of the

convective instability of the storm environment measured by CAPE.

2.1.3 Space-Time Scaling of Rainfall

In this section we review and discuss studies on space-time scaling of rainfall. The

fundamental issues with scaling of space-time rainfall include: the type of anisotropy if

any type of scale invariance (self-similar, self-affine or generalized scale invariance) that

can be assumed to exist and the causality and homogeneity and stationarity of data. We

review the literature and then discuss how these results can be used for meeting our

objectives of understanding the relation between extreme rainfall scaling and peak flow

scaling.
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We start with a review of the relevant terminology and background theory. To study the

space-time scaling, one needs to make the time variable dimensionally equivalent to

space variables. A commonly used method, Taylor's hypothesis of "frozen turbulence"

(Taylor, 1938), states that temporal averages t and spatial averages I are related by a

constant velocity v in the form l=vt. If the statistical properties of rainfall are the same in

space and time after transformation by a velocity parameter, then rainfall scaling is

isotropic in space and time. Therefore, Taylor's hypothesis leads to isotropic scaling of

rainfall. In this case, the velocity v which is used to rescale the time axis is independent

of scale. In the case of anisotropic scaling of space-time rainfall, a scale dependent

velocity parameter v, - AH, where A is the scale resolution, is used to rescale the time

variables. Atmospheric turbulence exhibits this behavior with an exponent

H =1/3 (Kolmogorov, 1941).

With regards to the scaling models of rainfall, self-similarity of space-time rainfall

corresponds to isotropic scaling of space-time rainfall. Self-affine processes, on the other

hand, are a case of the anisotropic scaling of space-time rainfall. Schertzer and Lovejoy

(1987) introduced the notion of generalized scale invariance to account for anisotropy in

scaling models. The space-time transformation inferred from the turbulent value of

H = 1/ 3 was expressed in the formalism of generalized scale invariance by Schertzer

and Lovejoy (1987). Tessier et al. (1993) used generalized scale invariance to interpret

anisotropy of space-time rainfall.

Marsan and Schertzer (1996) developed a causal space-time multifractal process model

by introducing causality for the continuous cascade model. They also tested generalized
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scale invariance by performing rainfall data analysis of the U.S. composite rainfall data

sets derived from National Weather Service radars. The analysis was performed on a

portion of the data set, corresponding to a 100 x 100 square domain in space and for 64

consecutive scans in time. The resolution was 8 km in space and 15 min in time . Scaling

in both time and space was observed. They obtain H = -0.1 which is different from the

expected value of H = 1/ 3 for fully developed turbulence. This result is actually close to

isotropic space-time scaling for which H = 0. In a study of daily rainfall scaling, Tessier

et al. (1996) found that for the range of 1-16 days, H = -0.1 ± 0.1, and for the range of 30-

4096 days, they obtained H = -0.35 ± 0.2. Note that for the case of 1-16 days, H = 0.

Over and Gupta (1993) extended the cascade rainfall theory from space to space-time;

however, the model is not multifractal in time. They proposed three a priori

requirements of a time-evolving cascade theory: (1) consistency: at any fixed time the

space-time cascade reduces to a spatial cascade; (2) causality (3) contingency: the

evolution must respond in an appropriate manner to a time varying force. They used a

discrete cascade model, preserving the spatial structure of the cascades. They noted that

Taylor's hypothesis breaks at times of 30 min to 2 hours (Crane, 1990). The time

dimension of the process has an evolutionary behavior that respects causality, while the

spatial dimensions have an isotropic stochastic nature.

The developed theory was tested on data from McGill weather radar which consists of

instantaneous radar snapshots taken at 5-minute intervals and converted to rain rate.

The results showed that certain specific predictions of the theory, such as scaling of

instantaneous and temporally averaged two-point Lagrangian temporal cross moments,
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were well-satisfied for a given set of data, while other predictions showed evidence of

deviation. The model presented by Over and Gupta (1996) suffers from the drawback

that even though it is scaling in space but it is not scaling in time. Also, the model did

not address the issue of conservation of rainfall mass.

Deidda (2000) presented a theory of scale covariant model and accompanying data

analysis for rainfall downscaling in a space-time multifractal framework. Deidda has

shown that space-time rainfall can be considered, with a good approximation, to be a

self-similar multifractal process.

Deidda used the GATE radar rainfall data sets described earlier in this chapter. Deidda

extracted sequences of consecutive rainfall frames from the data sets and performed

multifractal analysis. The scaling was observed to hold from 4 to 256 km for space and

from 15 min to 16 hours for time. Deidda then used different tracking techniques to

estimate the velocity needed to rescale the time dimension. The velocity estimate ranged

from 12 to 40 km/hour; values of 16 and 32 km/hour were used in the analysis. In the

analysis of autocorrelation along the x- and y-directions (figure 4, Deidda), break in

Taylor's hypothesis was not observed. As the results showed a preferential direction of

motion along the x axis, Deidda assumed that the rainfall field is isotropic in space.

Deidda extended this idea to the rescaled time axis (using a velocity of 16 km/hour) and

argued that since the rescaled time axis does not add more anisotropy, the precipitation

field can be assumed as isotropic in space-time.
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Deidda also investigated if self-affinity assumption was valid for space-time rainfall. The

resulting H values showed large variability with H, often different from H,. Average of

the estimate of H was about -0.12. These results indicate that, strictly speaking, the

rainfall in space and time should be considered as a self-affine process. However,

Deidda ignored the small average value of H and assumed a self-similar model (H ~ 0)

because of better theoretical accuracy of the self-similar model.

2.1.4 Discussion

There are a number of open questions regarding the scaling of rainfall. The review

showed that scaling models of rainfall in time need to take into account the external

structure of rainfall. Schmitt et al. (1998) have presented a model which addresses this

issue but needs improvement as some of the assumptions, e.g. independence of depth

and duration of rainy events, are not realistic. The space-time scaling models of rainfall

have received considerably less attention and there is a debate whether the space-time

scaling models can be considered as isotropic or not. Deidda (2000) has performed a

comprehensive analysis to show that indeed isotropic scaling is a valid assumption. This

has important implications for extending the results of scaling from space-time models

of rainfall to IDF scaling and subsequently to peak flow scaling. In the coming chapters,

assuming that rainfall scaling is space-time isotropic, we will discuss and develop

relationships between scaling exponents of rainfall and peak flows. This should allow us

to understand the scaling characteristics of hydrologic phenomena in a consistent

framework.
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2.2 Scaling of Intensity-Duration-Frequency Curves

Intensity-duration-frequency (IDF) curves show the relation between duration of rainfall

and the maximum rainfall intensity over that duration for the given return periods. IDF

curves are cumulative distributions of rainfall intensity, conditioned on rainfall

duration. They are derived from rainfall time series by extracting and ranking annual

maxima of average rainfall intensities for desired durations (e.g., by moving average

techniques). The ranked averages are used to calculate the intensity corresponding to

required return period. IDF curves are important design tools and standard IDF curves

are available for major cities and regions, usually derived from point values of rainfall

measured by a dense network of rain gages. For most cases however, IDF over a finite

area (e.g., a catchment) is required. To derive catchment IDF curves from point IDF

curves, areal reduction factors (ARFs) are used. (ARFs) reflect the reduction in rainfall

intensity with area.

It has been shown that IDFs obey power laws within a certain range of scales and their

rescaled distribution behaves in a self-similar fashion (Burlando and Rosso, 1996). It is

known that over a wide range of durations, ID , the distribution of intensity

corresponding to a given duration D, satisfies the simple-scaling relation (Menabde et

al., 1999):

d
ID =r HD rD (2.2)

where H usually ranges between 0.6 to 0.8.
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Let I, be the rainfall intensity exceeded by IDwith a probability p. It follows that the IDF

curves satisfy a power law of the form,

I,(D) = g(p)D-H (2.3)

where g(p) is some function of p.

For small p and for some a (Benjoudi et al., 1999)

g(P) 0 P " (2.4)

In a pioneering study, Burlando and Rosso (1996) studied the scaling and multiscaling

models of depth-duration-frequency (DDF) curves for storm precipitation for a number

of locations. Their comparison showed that in most cases the self-similar model works

well and that in the few cases when a multifractal model fits better to the data, the

nonlinearity of the slope growth curve is not large.

Burlando and Rosso (1996) analyzed the scaling properties of the maximum rainfall

depth for durations of 1, 3, 6, 12 and 24 hours, for data collected at 2 stations in Italy over

a period of 50 years. Moment orders from 1 to 5 were used. Their analysis of the scaling

of the depth of rainfall showed simple scaling for Lanzada station and departure from

simple scaling for Genoa University station. In addition to those 2 stations, Burlando et

al. also studied 14 stations in the Arno river basin in Italy. It is interesting to note that
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only 2 of those stations showed multiscaling behavior.

Burlando and Rosso do not report the scale invariance range. From their plots, we have

estimated that for Lanzada station, the scaling holds from 1 hour to 24 hours and for

Genoa University station, the scaling regime is from 5 minutes to 1 hour. Other studies,

as discussed by Burlando and Rosso, indicate a range of scaling from 45 minutes to 6

hours.

In another study of scaling of extreme rainfall, Menabde et al. (1999) present a simple

scaling model for annual maximum rainfall rate. They follow an approach of

generalized IDF in the form of

i = () (2.5)
b(d )

where i is the rainfall intensity, T is the return period and d is the duration of the event.

The denominator b(d) is expressed as,

b(d) = (d +0)" (2.6)

where 6 and q are phenomenological parameters.

The scaling property is expressed in terms of the moments of Id, the annual maximum

mean rain intensity over the duration d and by the CDF, F,(i) which characterizes Id.
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Menabde et al. use two data sets to verify their model. Set I is from Melbourne, Australia

(where it rains throughout the year) and is 24 years sequence of 6 minute rainfall

intensities. Set II is from Warmbaths, South Africa (warm, semi-arid climate) and is a 48

year sequence of rainfall at 15 minute resolution. Both sets show simple scaling in the

range of 30 minutes to 24 hours. The analysis is carried out by the method of moments

and method of direct fitting of probability distribution. The slope of k(q) against moment

order, 17 is given as 0.65 for set I and 0.76 for set II. The results obtained from CDF

scaling are obtained by assuming EV I distribution and are consistent, though slightly

different, with the moment scaling method. By assuming EV I distribution, Menabde et

al. derive a scaling relation between intensity and duration with three parameters one of

which is 17. The IDF slopes for the dataset I was 0.71, 0.66 and 0.68 for return periods of

2,5 and 10 years respectively. For dataset II, the IDF slopes were 0.75, 0.75 and 0.74 for

return periods of 2, 5 and 10 years respectively.

The approach used by Menabde et al. (1999) requires a selection of probability

distribution for the CDF. Therefore the scaling relationships depend on the fit of the

assumed distribution. The study also does not consider the effect of seasonality on

scaling of IDFs. As described next, Willems (1998) demonstrated the significance of

seasonality for scaling analysis by showing that scaling behanvior can be different for

different seasons. Willem's analysis showed that at Uccle, Belgium, the summer IDFs

possessed multiscaling and the winter IDF exhibited simple scaling.

Willems (1998) has investigated the compound IDF relationships of extreme

precipitation for two seasons and two storm types in Belgium. Willems contends that the
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properties of extreme precipitation may be very different for different storm types and

different seasons. IDF relationships permit a decomposition into different components

referring to storm types or seasons, depending on the type of decomposition. The storm

types (or the distribution components) are divided into airmass thunderstorms of short

duration (usually occurring in summer) and cyclonic and frontal storms of longer

duration in winter. The seasons are defined as: winter (October-March) and summer

(April-September).

The data set used by Willems was a 27 year long series of 10 minute rainfall at Uccle,

Belgium. This is the same data which was used by Schmitt et al. (1998) for multifractal

analysis of rainfall.Willems used generalized quantile plots, maximum likelihood

method and two-component extreme value distribution to derive equations for rainfall

probability distribution. Willems found out that winter population can be described by

one distribution component and the winter IDFs follows simple scaling. The summer

population is described by both components and the summer IDFs exhibits multiscaling.

Willems showed that the parameters of the two-component distribution also exhibited

simple scaling properties. For winter, the scaling exponent of the distribution and the

scaing exponent of the moment showed a match with both being 0.58. For summer the

scaling exponent of the moment did not match very well with the exponent of the

distribution. Average slope of the mean annual IDF was 0.71 from emprirical data and

0.58 from theory.

Hubert et al. (1993) have presented evidence that universal multifractal models for

temporal rainfall give rise to the theoretical maximum point rainfall accumulations
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whose magnitude versus duration relationship resembles the empirically found results.

Benjoudi et al. (1999) derived the parameters of IDF scaling from the codimension

function of the rainfall process under the assumption that rainfall time series is

multifractal. Let ID be the maximum of the average intensity ID (t) in duration of

[t,t+D]. Benjoudi et al. (1999) define a form of return period (let us denote it by T2) in

which the return period is related to the marginal exceedance probability P[I'D(t)>i] as

T2(D,i)= , .>(2.7)
P[I'D>]

According to Schertzer and Lovejoy (1987), for multifractal processes, there's a critical

moment order (denote it by qD) beyond which the statistical moments diverge.

Benjoudi et al. (1999) start from the fundamental equation of multifractal fields, equation

(2.1), with an explicit prefactor . Then they derive an expression for IDFs in terms of qD

(which depends on fractal dimension of the rainfall occurrence) and on a factor D,

(Benjoudi et al. call it D but we call it D, to avoid confusion with the duration D) which is the

effective dimension of the space-time over which the multifractal is averaged or

integrated. The parameter qD is estimated in terms of proababilities of exccedance and

the prefactor. Benjoudi et al. (1999) hypothesize that D, is the fractal dimension of

rainfall occurrence and estimate it by box counting.

Veneziano and Furcolo (1999) developed a theory to link the parameters of simple
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scaling of IDF to the multiscaling parameters of the rainfall process by making the same

basic assumptions as Benjoudi et al including the definition of return period T2 .

However their approach and results, are very different from those of Benjoudi et al.

Veneziano et al. (1999) derive a large-deviation property of multifractal measures and

use the result to determine an anlaytical from of the scaling of the IDF curves. They

show that i2 , the rainfall intensity corresponding to T2 must scale with T2 and D as:

'2 x:T2"lqID- (2.8)

where y, and q, are obtained from the moment scaling function k(q) of the rainfall

process. Let c(y) be the codimension function of temporal rainfall, which can be

obtained parametrically from the moment scaling function k(q) as y(q)= dK(q)/dq and

c(q) = q y(q) - k(q). Let q, be the order of the moment for which c(q,) =1 and the

associated slope of k(q). Veneziano and Furcolo (1999) show that the IDF curves satisfy

self-similarity in (2.2) and (2.4) with H = y, and a = I/q, . These theoretical results are

asymptotic and hold strictly for D -+ 0. Figure 2.2 illustrates the derivation of the

parameters from the moment scaling analysis.

Numerical validation of this results was done by simulating a rainfall sequence using

beta-lognormal model, which is a locally multifractal model, with an outer limit on

scaling of 2 weeks. The simulation results satisfied the theoretical scaling over a wide

range of durations, not just the infinitesimal durations under which (2.8) was derived.
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This is an important result to link the scaling characteristics of rainfall to the scaling

exponents of peak flows.We will return to this theory in chapter 4 where we perform

data analysis to verify these results.

35
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Figure 2.2. Illustration of the IDF scaling parameters y and qj.

The review of IDF curves so far has been about the point IDF curves. However, for most

practical purposes, catchment IDF curves are needed. As the spatial extent of a storm

increases, the average depth of rainfall over the catchment decreases. Areal reduction

factors (ARFs) are used to construct the catchment IDF curves from the point IDF curves.

ARFs are usually empirically derived functions of catchment area, storm duration and
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soemtimes, the return period. ARF have a maximum value of unity for catchment area

approaching zero. With increasing catchment area, ARF values decrease from unity, and

catchment IDF curves become lower and flatter in appearance than the corresponding

point IDF curves since both the mean and standard deviation of the point rainfall are

proportionately reduced due to multiplication by the ARFs (Sivapalan and Bloschl,

1998). This reduction is much sharper for short duration events because short duration

events are usually limited in spatial extent. Some of the empirical expressions for ARFs

can be found in Singh (1996).

Sivapalan and Bloschl (1998) present an alternative methodology to derive catchment

IDF curves which is based on the spatial correlation structure of rainfall. Their method

derives the parent distribution of catchment average rainfall intensity from that of point

rainfall intensity. The parameters of the two parent distributions are related through a

variance reduction factor which is a function of the spatial correlation structure of the

rainfall and catchment area. Sivapalan and Bloschl (1998) assume the parent distribution

of point rainfall to be exponential and transfrom it to extreme value distribution of the

Gumbel type. The parameters of the extreme rainfall distribution are then matched (for

the particular case of zero catchment area) with those of empirical point IDF curves

which have also been fitted to the Gumbel distribution. This match allows the derivation

of catchment IDF curves for catchments of any given size and for rainfall of any spatial

correlation structure. The objective of the methodology is to distinguish between the

scaling behavior of the parent and extreme value distributions of the rainfall process.

The main control on the catchment IDF curves was concluded to be the rainfall spatial

correlation length, not the rainfall duration as commonly used in empirical
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determination of ARFs. The results were applied to two storms in Austria, one

convective storm and one synoptic scale storm and the results were compared with the

empirical ARFs.

The assumption made for the analysis was that the correlation structure of the rainfall

does not change with return period. The approach has no means to take into account the

partial coverage of rainfall over a catchment. Therefore, it is only appropriate for rainfall

systems which are large relative to catchment area.

2.3 Scaling of Peak Flows

Stream flow is a reflection of the volume of water supplied to a basin in various forms of

precipitation such as rain and snow, and the hydrological retention and transport

processes in the basin. The stream flow rate at a particular point in time, such as annual

peak flow, integrates all the hydrologic processes and storages upstream of that point.

The peak flow in a basin of given size is affected by the characteristics of the storm and

other flood generating mechanisms, basin morphology, basin geology, land use and

miscellaneous factors such as antecedent conditions.

Basin area is one of the most important controls on the hydrological processes and

subsequently the stream flow exhibits strong correlation with the basin area. Power laws

relating peak flow to basin scale have been shown to be valid for a number of regions.

Let Q(A; T) be the T-year return period flood for a basin of area A. Empirical data

indicate a dependence of Q on A and T of the type
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Q(A; T)= kAIT (2.9)

where k is a constant and 6(7) is an exponent which depends on the climatic conditions,

the basin characteristics and the return period. Studies have shown that 9 usually

ranges from 0.6 to 0.9 (Gupta and Dawdy 1995). It is important to use the representative

basin area when using (2.9). Villani (2000) investigated the effect of contributing area on

the exponent of Q ~ A". Contributing area is the area contributing directly to surface

runoff. Any area not contributing directly to surface runoff should be subtracted from

the total drainage area. Villani studied a basin in Campania, Italy by comparing the

relationship between the mean annual flood and the total area to that of the mean

annual flood and the actual contributing area (which was a fraction of the total basin

area). For the case of contributing area case, Villani found a lower scaling exponent 6

and higher linear correlation coefficient for the fitted regression for (2.9).

The theory of statistical simple scaling and multiscaling predict that flood peaks are log-

log linear with respect to drainage areas. If the growth of the scaling exponents with the

order of moment is linear then the flood peaks obey simple scaling; otherwise the flood

peaks follow multiscaling. In contrast to the simple scaling case where there is a linear

growth in slopes, in the multiscaling case the scaling behavior is determined by a

spectrum of exponents (see figure 2.1).

Storms that produce floods in large drainage basins are usually dispersed and

nonuniformly distributed. The highest peak flows in large basins are most often

produced by storms that span large areas, while high peak flows in small drainage
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basins are commonly the result of intense storms that extend over limited areas. The

amount of runoff resulting from the rainfall depends on the spatial distribution of the

rainfall. If the rainfall is concentrated over a particular part of the basin, then the runoff

is higher than if the rainfall is uniformly distributed throughout the basin. This is

because infiltration capacity is exceeded more rapidly for intense and concentrated

storms than for uniformly distributed storms. Therefore, the peak flow increases as the

ratio of maximum rainfall at any point to the mean rainfall in the basin increases.

Pitlick (1994) studied the flood frequency curves for five regions in the Western USA

characterized by diverse climate but similar physiography. Pitlick (1994) suggested that

the variation in flood frequency distribution reflects largely the variability in

precipitation amount and intensity rather than differences in physiography. Floods tend

to be more variable in regions where more of the annual precipitation is concentrated

into single storm events, as is typical of semi-arid regions. Pitlick argued that in regions

characterized by snowmelt runoff, or in humid regions where runoff and floods are

produced by frontal storms, precipitation is spread out over periods of several days or

even weeks.

Other studies have also shown that the governing climatic conditions have a large

influence on the relationship between annual flood and drainage basin area. As floods

generated in the arid or semi-arid regions are a result of rainfall covering a limited

portion of the drainage basin, the flood is attenuated by infiltration and other losses. On

the other hand, in humid regions, floods are almost proportional to the rainfall. In areas

where snowmelt or rainfall over snow contributes to the floods, large discharges are to
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be expected.

Gupta and Dawdy (1995) studied the scaling between peak flows and basin area for

three States in the U.S. These states have been subdivided in smaller regions by the

United Sates Geological Survey (USGS) and the flood generating mechanisms in each

region has been investigated and documented by the USGS. Their analysis showed that

there is evidence of both simple and multiscaling in regional floods. The value of the

exponent varied from region to region as a reflection of the differences in other

characteristics of these regions. The analysis of Gupta and Dawdy (1995) showed that

the runoff is almost directly related to the drainage area (with 0 about 0.9) for regions in

New Mexico where floods are produced by snowmelt runoff. Results from Utah state

regions with snowmelt generated floods also showed high scaling exponent of peak

flow. They hypothesized that snowmelt generated floods exhibit simple scaling and

rainfall generated floods exhibit multiscaling. They argue that multiscaling structure in

floods inherits from rainfall.

Using an artificially constructed basin and HEC-1 lumped rainfall-runoff model with

input from a random rainfall set, kinematic wave routing was used to route the flows.

Then, fixing recurring frequency, ratios of flood discharge quantiles were related to

ratios of corresponding drainage areas. In the second set of analyses, different quantiles

corresponding to different return periods were computed, and the exponents of

drainage area ratios for different sub-basins were computed in a manner similar to the

first set of analyses. Results showed that exponents increase with the return period

which supported their theoretical result. This experiment by Gupta and Dawdy (1995)
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suggests that behavior of flood exponents in small basins is determined by basin

response rather than precipitation input.

Dubreuil (1986) reviewed the relationships between geophysical factors and

hydrological characteristics in the tropics. Dubreuil (1986) showed that the exponent 6

is about 0.5 in the arid and semi-arid areas and 0.8 in areas with higher rainfall. Dubreuil

(1986) noted that the relationship between Q and A varies markedly with the drainage

area and identified four different scales within which the relationship of Q - AO was

expected to remain stable. The scales were: hillslope, characterized by homogeneity;

small watershed, likely to be affected by a small single storm; medium watershed, where

runoff mechanism and transport is important and large watersheds where runoff may

be composed of separate events with possibly different origins.

Pilgrim et al. (1982) investigated the hydrological relationships between small and large

catchments using data for eastern Australia. Annual rainfall-runoff relations were

developed for 22 catchments in four regions of New South Wales. These relations were

derived by assuming a constant nonlinear relation for every point on a catchment

making allowance for the non-uniform distribution of rainfall over the catchment.

Pilgrim et al. (1982) computed the loss, defined as the difference between the line of

equal runoff and rainfall (with no loss) and the rainfall-runoff curve at high rainfall

values, where it became almost parallel to the line of equality. The result of interest for

our purpose is that the median loss rate did not vary significantly with the area.
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Runoff rates are also sensitive to soils and topography (Kirkby, 1978). Peak rates of

runoff from hillslope and small watersheds may vary over several orders of magnitude

depending on the mechanism of runoff production. Kirkby (1976) suggested that with

increasing drainage area, the travel time of runoff on hillslope becomes negligible in

comparison with the travel time through the channel network.

A related area of research to flood scaling is the regional flood frequency analysis

(RFFA). Regionalization is carried out to estimate the magnitude of flood peaks for sites

where at-site data are either unavailable or too short to allow for a reliable frequency

estimate. For sites with available data, the joint use of data measured at a site and

regional data from a number of stations in a region provides additional information.

Traditionally regional flood frequency modeling has been carried out by methods such

as index flood and quantile regression. Both of these methods lack sound physical and

theoretical backgrounds. The key assumption in the index flood method is that the

distribution of floods at different sites in a region is the same except for a scale or index

flood parameter, which reflects rainfall and runoff characteristics of the basin. The index

flood is usually taken as the mean flood. Eagleson (1970), among others, has

emphasized the importance of physically based flood frequency models. With the

current progress in identification and validation of scaling theories for spatial hydrologic

processes such as rainfall, runoff and flood peaks, there is an increasing interest in

applying scaling theories to regional flood frequency. Scaling theories have the potential

of application to ungaged catchments which remains as one of the most important

hydrologic problems to be solved. The simple scaling concept corresponds to the index

-52-



flood method of regional flood analysis. Thus, the index flood method can be justified if

the flood series exhibits simple scaling.

Scaling of flows, that is the log-log linearity of flows with area, is only meaningful for a

homogenous area. Identification of homogeneous area is itself a major area of research.

USGS uses quantile regression approach for flood frequency studies for different states.

Each state is divided in regions based on features such as topography and land use; then

adjustments are made based on goodness of fit of the quantile regression equations in

these areas. A recent study of homogeneous regions in Australia which compared a

number of current techniques for identifying homogeneous regions has indicated that

geographical proximity alone may not be a reasonable indicator of hydrologic similarity

(Bates et al. 1998). Preliminary data analysis of flood peaks from more than a 1000

gaging stations in 18 regions of the US has indicated that both simple and multiscaling

of peak flows exists and smaller and larger basins tend to show different scaling

behavior. This shows that the precise nature of scaling in spatial runoff over successively

larger scales is still unclear. There is a need for a physical underpinning for the scaling

models of flood peaks so that there is a broad theoretical framework for their application

and extension to basins with varying climatological and physiographic characteristics.

The scaling literature on flood peaks can be divided in two approaches: scaling theories

based on moment analysis (Smith 1992;Gupta et al. 1994a, 1995; Gupta et al., 1994b) and

physically based flood frequency models (Sivapalan 1987, 1997). In the first approach,

used by Gupta and Waymire (1990) and Smith (1992) among others, the scaling behavior

of the floods is assessed by the variation of the conventional statistical moments with the
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basin area. On the other hand, Sivapalan et al. (1987, 1997) have used similarity analysis

and physically based flood frequency models to study the process controls and the effect

of rainfall characteristics and basin properties on the flood frequency.

Gupta and Waymire (1990) studied the multiscaling behavior of runoff by using

empirical moment analysis of a data set of river flow averages from Pennsylvania. They

showed that the spatial river flows exhibit a departure from simple scaling as the

growth of slopes with respect to order of moments was nonlinear and concave. The

spatial variability in these processes increases with a decrease in spatial scale. Gupta and

Waymire suggested that this multiscaling behavior is a consequence of the cascading

down of some large-scale flux to successively smaller scales.

Gupta and Dawdy (1994a and 1994b) discuss the relation between flood quantiles and

the return period for the log-normal multiscaling model. They argue that a physical

implication of this observation is that the scaling exponent appearing in the multiscaling

representation of peak flows remain the same within a given homogenous region but

can vary among different regions. Gupta and Dawdy (1994a) used a log-normal

multiscaling model and the notion of a critical basin area with the result that spatial

variability in Q(A) increases with the drainage area until a critical drainage area and

after that the variability in Q(A) decreases with the drainage area. According to their

multiscaling theory, there are two different equations to describe the quantiles q,(A) (for

the i-th station with a drainage area A, and with exceedance probability p for large basins

and for small basins.
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Gupta et al. (1994a, 1995) addressed the issue of providing a physical interpretation of

multiscaling theory by linking their multiscaling theory to the dimensionless parameters

derived by Sivapalan (1990). Sivapalan et al. (1990) developed a dimensionless flood

frequency model by extending a partial area runoff generation model to a

Geomorphologic Unit Hydrograph (GUH) based model to form a generalized GUH.

They identified five dimensionless parameters which were shown to be related to return

period. They also found that slope of the relation between return period and peak is

flatter for large basins than that of smaller basins. Empirical verification of the theory

was not presented by Sivapalan et al.

In a study to represent basin scale in flood peak distributions, Smith (1992) performed a

moment-based analysis using a lognormal cascade model. The model was developed

from the multiplicative cascade modeling framework developed by Gupta and Waymire

(1990) for spatial hydrologic processes. Smith used the lognormal model to study the

scale properties of annual flood peaks from 104 stations in the central Appalachian

region of Maryland and Virginia. Smith showed that coefficient of variation of floods

does not increase monotonically with drainage area but shows a decline after a certain

critical or threshold area. Simple scaling corresponds to a constant CV over a region, that

is, the index flood method of regional flood frequency analysis.

In another attempt to explain the behavior of CV of flood peaks with drainage area of

the basin, Bloschl and Sivapalan (1997) developed a model which would explain the

process controls on regional flood frequency. They used data from 489 catchments in

Austria to show the scatter in CV against drainage area and proceeded to develop a
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derived flood frequency model. Catchment IDF curves were used to specify catchment-

average rainfall intensity as a function of storm duration and return period. A

correlation structure was decided for the rainfall. The runoff model consisted of

multiplying rainfall intensity by a runoff coefficient to get the effective storm rainfall.

The parameters were calibrated. Then by using this model, Bloschl and Sivapalan

studied the interaction of storm duration and catchment response time. They argued

that the interplay of duration and the catchment response time and the dependence of

storm intensity on duration results in a lower CV for runoff than that of precipitation.

Bloschl and Sivapalan (1997) also investigated the effect of nonlinearity in runoff

generation and showed that nonlinear runoff processes are an important mechanism for

increasing CV. Bloschl and Sivapalan (1997) conclude that much of the variability of CV

between catchments is due to runoff processes rather than to rainfall variability. They

found the CV of rain to be in the range of 0.23 to 0.43. They also concluded that

catchment area is not the most important control on regional CV thus implying that the

explanation of the relationship between CV of runoff and catchment scale suggested in

the literature is too simplistic. Contrary to the findings of Gupta and Dawdy (1995),

Bloschl and Sivapalan find that CVs do not necessarily increase with catchment scale

and that both rainfall and runoff processes are important at small scale. Bloschl and

Sivapalan (1997) agree with the conclusion drawn by Gupta and Dawdy (1995) that at

large catchment scales, CV is mainly controlled by precipitation.

Robinson and Sivapalan (1997) studied the implications of temporal scales and

hydrological regimes for flood frequency scaling. Robinson and Sivapalan (1997)

investigated the interactions among storm, within-storm, between-storm and seasonal
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variabilities of rainfall and catchment response time and how these interactions can help

identify different hydrological regimes. They assumed a multiscaling spatial structure

for rainfall and used a linear theoretical rainfall-runoff to propose five hydrological

regimes ranging from very fast to very slow. Robinson and Sivapalan (1997) then

studied how the interactions between the time scales in the rainfall and in the runoff

response influence the flood peak response for each class of regime. Robinson and

Sivapalan (1997) found that slow regimes have lower CV and faster regimes have higher

CV. Robinson and Sivapalan (1997) illustrated that the interaction between rainfall

duration and time to peak flow is a major factor in producing the empirically observed

differences in CV values for peak flows between large and small basins. They also found

that the scaling exponent in the relationship between mean annual flood and catchment

size, for a linear runoff response, is higher for slow catchments and lower for fast

catchments, and in both cases it remains constant with catchment area. One important

result of this paper is that the combined effects of within-storm patterns, multiple

storms, and seasonality have an important control on the observed scaling behavior in

empirical flood frequency curves, each being dominant over a certain range of basin

size.

A few studies have tried to link the scaling of rainfall to that of floods. Among these

studies, Gupta et al. (1994a, 1994b, 1995, 1996) and Tessier et al. (1996) are notable.

As discussed above, Gupta et al. (1995) performed a simple rainfall-runoff experiment

with a lumped model to study the variation of exponents of flood quantiles with

catchment size.
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Tessier et al. (1996) empirically investigate the scaling properties of daily rainfall and

river flows and determine the statistical relations between the rainfall and runoff.

Tessier et al. (1996) carried out multifractal analysis of daily river flow data using 30

small basin (40 to 200 km2) distributed in different regions in France. In each basin, they

used daily rainfall series recorded by a single rain gage. Spectral analysis of the river

flow series and daily rainfall series showed a break in scaling at about 16 days. They

used the double trace moment (DTM) method to perform moment analysis on daily

river flow and rainfall series.

The results of DTM showed that there is a break in scaling for rainfall at 16 days. For

DTM analysis on rainfall (1-16 days) they obtained a =0.7 ±0.2, C, =0.4 ±0.1 and

H = -0.1 ± 0.1 where 0 a 2 is the multifractal index, which quantifies the distance of

the process from monofractality (a =0 is the monofractal p model and a = 2 for the

lognormal model); C, is the so-called codimension of the mean of the process, and H is a

scaling exponent. For river flows (1-16 days) they obtained a =1.45 ± 0.25,

C, =0.2 0. 1, and H = 0.4 ± 0.3 with no break in the double-trace moments. The a for

rain is considerably lower than the a of river flows because the DTM is particularly

sensitive to low values or zeros found in rainfall series. This is a drawback of this

technique and this is one reason why an approach such as that of Schmitt et al. (1998),

who used separate models for exterior and interior rainfall, is useful. Tessier et al. (1996)

comment that for timescales of 1 to 16 days the rainfall and river flows belong to two

different multifractal classes (different a and C,) but still compatible with quantities

preserved by cascade process.
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Tessier et al. (1996) checked the multifractal parameters described above for possible

systematic variations with regional climate types, size of the basins, and the geology of

the region but found no such systematic variation. Therefore, they claimed that the

measured properties are general. They also extended the multifractal model to take into

account the requirement that the series are causal. Using the exponents given above,

they performed causal multifractal time series simulations and show how a linear

scaling transfer function can be used to relate the low-frequency rainfall series to the

corresponding river flow series. Limitations of their approach include the sensitivity of

the approach to low or zero values and neglecting the annual cycle.

The results of Tessier et al (1996) are in contrast with those of Gupta et al. (1994b). Gupta

et al. (1994b) assumed that river flow followed a multiplicative process (H =0) and

fitted log-Levy multiscaling model to the flows. Gupta et al. (1994b) found that a in the

range of 1.5 to 2 provided good fits but were unable to estimate a from the data and

chose the lognormal model, which is the same model used by Smith (1992).

Gupta et al. (1996) used a random cascade model of spatial rainfall intensities and the

Peano basin as an idealized model of a river basin to calculate the statistical scaling

exponents of peak river flows. The maximum contributing set approximately determines

the magnitudes of peak flows in a self-similar manner in different sub-basins of the

Peano basin. For an instantaneously applied random, spatially uniform rainfall, the

Hausdorff dimension of the maximum contributing set appears as the statistical simple

scaling exponent of peak flows. This result is generalized to an instantaneously applied

cascade rainfall, and it is shown to give rise to statistical multiscaling in peak flows. The
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multiscaling exponent of peak flows is interpreted as a Hausdorff dimension of a fractal

set supporting rainfall intensity on the maximum contributing set of the Peano basin.

Although interesting from academic point of view, the study is limited in scope as it is

not based on realistic basin networks and lacks theoretical generalization.

Gupta and Waymire (1998) extended their work on Peano basins to study the effect of

rainfall duration on the scaling exponent of peak flows. They argue, through the derived

equations for the Peano basin, that for durations less than the concentration time, a

fraction of the area contributes to flow and the exponent of the peak flow 6 is lower, for

example 0.6. When the rainfall duration exceeds the time of concentration of a basin,

then the entire basin contributes to the peak flow and the peak flow is almost directly

proportional to the drainage area.

The paucity of theoretical and empirical studies on the connections between rainfall and

flood scaling indicates that there is a need to have a consistent and unified theory for

scaling of floods based on scaling of rainfall. This theory would need to take into

account the spatial variability of rainfall, behavior of extreme rainfall scaling and the

effect of basin characteristics on the scaling exponents of peak flows. A step in this

direction would be to use theory to establish the relation of scaling of rainfall and scaling

of IDFs and to use data analysis to investigate the relation of scaling of IDFs and scaling

exhibited by flood peaks.
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CHAPTER 3

Analysis and Modeling of Temporal Rainfall

3.1 Objective

The focus of this chapter is the probabilistic structure of temporal rainfall. In section

2.1.1, we reviewed literature related to scaling of rainfall in time. The scale invariance

approach can represent the rainfall structure within a range of scales with parsimonious

parameterization.

There are various aspects of scaling of rainfall. In this chapter, we investigate the scaling

properties of occurrence of rainfall, scaling behavior of the dry period distribution,

scaling of storms and the connection to relation of rainfall intensity with duration. We

follow the approach of Schmitt et al. (1998). Finally, we propose a new model for

distribution of dry periods and discuss its applications to estimate the critical dry

duration.

3.2 Approach

Schmitt et al. (1998) have presented a stochastic model for rainfall which includes an

alternating renewal model for storm arrivals. We carry out data analysis to test the

assumptions and results presented by Schmitt et al. (1998). We investigate if scale

invariance applies to occurrence of rainfall and study the distribution of durations of dry

periods. Dry periods can occur both inside storms or in dry periods only.
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The literature survey shows that judgement has been used to estimate the critical dry

duration (Robinson and Sivapalan, 1997; Menabde and Sivapalan, in press). Motivated

by previous work (Schmitt, 1998; Hawk, 1992) and the need for a model of dry period

durations, we propose a new model for the distribution of durations of dry periods and

verify it by data analysis.

3.3 Data

We analyze the hourly rainfall data for rainfall gagging stations distributed in New

England, U. S. The data used in this study are based on the National Climatic Data

Center database. Figure 3.1 shows the location of selected gaging stations. Table 3.1

provides a summary of the stations and their location. These stations are located in

Connecticut, Massachusetts and Rhode Island. The length of the hourly rainfall series

varies from station to station; the average length is about 29 years. These stations are

checked for completeness and accuracy. Only those stations are considered for analysis

which had less than 10% missing values. Only those years are used which had 99% or

more complete data. The 1% or less missing data in a year was assumed to be zero.

However, for most of the analysis, we selected stations and years with no missing data.

Most of our analysis uses the data from station 3456 (see table 3.1) in Hartford,

Connecticut. This station has 40 years of complete data, from 1955 to 1994. Figure 3.2

shows the time series of rainfall intensity for 1956 at station 3456.

The gage is located at Bradley International Airport, about 3 miles west of the

Connecticut River on a slight rise of ground in a broad portion of the Connecticut River
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Valley between north-south mountain ranges whose heights do not exceed 1,200 feet.

The station is in the northern temperate climate zone. The prevailing west to east

movement of air brings the majority of weather systems into Connecticut from the west.

The average wintertime position of the Polar Front boundary between cold, dry polar air

and warm, moist tropical air is just south of New England, which helps to explain the

extensive winter storm activity and day to day variability of local weather. In summer,

the Polar Front has an average position along the New England-Canada border with this

station in a warm and pleasant atmosphere.

The location of Hartford, relative to continent and ocean, is also significant. Rapid

weather changes result when storms move northward along the mid-Atlantic coast,

frequently producing strong and persistent northeast winds associated with storms

known locally as coastal or northeasters. Seasonally, weather characteristics vary from

the cold and dry continental-polar air of winter to the warm and humid maritime

air of summer. Summer thunderstorms develop in the Berkshire Mountains to the west

and northwest and move over to the Connecticut Valley.
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Table 3.1: List of rain gage station locations and available data

Station# Name State Total Useful Latitude Longitude
Years Years

806 BRIDGEPORT WSO AP CT 48 45 41.17 73.13
1093 CANDLEWOOD LAKE CT 28 23 41.48 73.47
3451 HARTFORD BRAINARD FLD CT 49 30 41.73 72.65
3456 HARTFORD WSO AP CT 42 40 41.93 72.68
3857 JEWETT CITY CT 48 35 41.63 71.90
4488 MANSFIELD HOLLOW LAKE CT 44 37 41.75 72.18
5018 MOODUS RESERVOIR CT 29 24 41.50 72.43
5273 NEW HAVEN AIRPORT CT 22 19 41.27 72.88
5445 NORFOLK 2 SW CT 48 14 41.97 73.22
6942 ROCKVILLE CT 48 28 41.87 72.43
8138 STORRS CT 48 13 41.80 72.25
8330 THOMASTON DAM CT 35 22 41.70 73.05
9388 WEST THOMPSON LAKE CT 31 19 41.95 71.90
408 BARRE FALLS DAM MA 38 27 42.43 72.03
510 BECKET 2 SW MA 17 10 42.32 73.12
575 BELLINGHAM MA 18 8 42.10 71.48
666 BIRCH HILL DAM MA 48 43 42.63 72.12
736 BLUE HILL WSO MA 48 44 42.22 71.12
770 BOSTON WSO AP MA 48 45 42.37 71.03
840 BRIDGEWATER M C I MA 40 29 41.95 70.95
998 BUFFUMVILLE LAKE MA 38 19 42.12 71.90
1097 CAMBRIDGE MA 10 7 42.38 71.12
3821 HYANNIS MA 48 35 41.67 70.30
3985 KNIGHTVILLE DAM MA 48 38 42.28 72.87
4246 LITTLEVILLE LAKE MA 31 22 42.27 72.88
4667 MENDON MA 31 21 42.10 71.57
5159 NANTUCKET FAA AP MA 22 20 41.25 70.07
5246 NEW BEDFORD MA 48 42 41.63 70.93
6322 PETERSHAM 3 N MA 42 29 42.53 72.18
6414 PITTSFIELD MA 23 19 42.43 73.28
6681 PROVINCETOWN MA 42 23 42.05 70.18
6977 ROCKPORT 1 ESE MA 36 25 42.65 70.60
8159 STERLING 2 NNW MA 25 18 42.45 71.80
8843 WASHINGTON 2 MA 23 20 42.37 73.15
9093 WEST BRIMFIELD MA 48 22 42.17 72.27
9923 WORCESTER WSO AP MA 43 35 42.27 71.87
896 BLOCK ISLAND STATE AP RI 48 42 41.17 71.58
6698 PROVIDENCE WSO AP RI 48 45 41.73 71.43
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3.4 Analysis

First, we compile the main statistics of the rainfall data series. Figure 3.3 shows selected

statistics of the rainfall for the annual series at station 3456. This includes the number of

rainy events, mean intensity and variance of aggregated events for different durations

against duration of events. Rainy events are taken as all the periods when there is

rainfall; the rainy event durations ranged from 1 hour to 42 hours for the data series at

Hartford.

The analysis shows that a few years were subject to exceptionally intense storms. The

data set was matched with the storm data archives of National Oceanic and

Atmospheric Administration to ensure accuracy and to obtain further background

information about the causes of the storms.

We perform an analysis to detect any influential rainy events for all the stations which

exhibited particularly intense storms. This analysis is carried out by aggregating rainfall

over a set of durations ranging from 1 hour to 15 days. For each aggregation level, we

first compute the average maximum annual rainfall for the complete series. For example,

for Hartford station, we get a mean maximum of 3.23 in for 24 hour aggregation. Then

we use a sliding window to extract those storm events where the ratio of the aggregated

rainfall to the corresponding mean maximum annual rainfall is equal to or greater than

2.5. For example, for Hartford station, the 24 hour aggregated maximum rainfall for year

1955 is 12.1 in. Therefore the ratio is computed as 12.05/3.23 = 3.73, which is greater than

2.5 so this is classified as an influential event. For station 3456, we identify the dates of

events where the ratio of the aggregated rainfall to the average rainfall over the
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aggregation exceeded 2.5. The analysis shows that year 1955 can be regarded as an

influential year. These intense events correspond to the Hurricane Diane in August 1955

which caused major flooding in Connecticut (Platt, 1999). Results of the above

mentioned analysis for the Hartford station are given in Table 3.2.

Table 3.2: Analysis of influential storms at Hartford station

Event

Aggregation

Duration (Hr)

9

12

18

24

36

48

72

96

120

240

360

Rain

(in)

6.8

8.4

9.5

12.1

14.0

14.2

14.4

14.4

14.4

19.0

21.3

Ratio of event

rainfall

to mean rainfall

2.82

3.12

3.15

3.73

4.04

3.93

3.67

3.48

3.21

3.33

3.23

Event date

Year Month

1955 8

1955 8

1955 8

1955 8

1955 8

1955 8

1955 8

1955 8

1955 8

1955 8

1955 8

Figure 3.4 shows the coefficient of variation (CV) against durations for the Hartford

station. For each duration or aggregation level, we compute the mean and the standard

deviation of rainfall intensity; CV is then given by the ratio of standard deviation to the

mean . Figure 3.4 shows the CV for two cases: open circles show the complete data series

and + shows the series without the year 1955. Note that the CV is considerably higher

for longer durations for the case with 1955 data. For the series with 1955 data, the

maximum CV is about 0.58. This is the effect of the heavy and persistent storms

occurring in year 1955 (see table 3.2). The data series without year 1955 data has a
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19

19

19

19

19

19

19

19

23

19
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maximum CV of about 0.43 and a standard deviation of 0.055. The data series with year

1955 has a standard deviation of 0.11. This analysis clearly shows that year 1955

considerably influences the analysis. As the higher moments are sensitive to such

dominating events, all of the analysis in chapter 4 is carried out without the 1955 data.

Since New England region has distinct seasons, we also investigated the seasonal

characteristics of the rainfall time series. The work of Olsson et al. (1996) and Svensson et

al. (1996) shows that seasonality effect is important in assessing the scaling behavior. To

investigate the seasonality effects, we divided the annual data into four seasons as

described below:

Season 1: Spring - March, April and May

Season 2: Summer - June, July and August

Season 3: Fall - September, October and November

Season 4: Winter - December, January and February

Events are centered based on their duration and a month/season is assigned to each

event. Our investigation shows that most storms occur in summer season when

convective type rainfall is dominant; the short intense bursts of rainfall in summer often

cause flooding in Connecticut.

In chapter 2, we discussed a stochastic model of rainfall, proposed by Schmitt et al.

(1998). The model combines a two state alternating renewal process for modeling dry

durations with a multifractal model for internal rainfall modeling. Schmitt et al. (1998)
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use the empirical distribution of rainy and dry residence times to produce succession of

rainy and dry events. A multifractal model is used to model the variability of rainfall

within rainy events. In this chapter, we limit the discussion to the modeling of temporal

rainfall i.e., modeling of rainy and dry durations.

The approach used by Schmitt et al. (1998) has the advantage of modeling the interior

rainfall independently from the external rainfall. While the interior rainfall might be

multifractal at micro-meso scales, the exterior rainfall process is probably not scaling at

all.

The data used by Schmitt et al. is a 29 year long, 10 minute rainfall sequence in Uccle,

Belgium. We give a detailed description of the approach used by Schmitt et al. (1998),

discuss the assumptions they have made, discuss the validity of those assumptions and

compare our results with the results obtained by Schmitt et al. (1998). Based on our

analysis, we suggest possible improvements in the model.

Schmitt et. al (1998) analyze the scaling properties of occurrence and nonoccurrence of

rainfall. They follow the finding of Hubert and Carbonnel (1989), who showed that

occurrence and nonoccurrence of rainfall is scaling according to

-D,

Nwet(r) = Nwet(T ) (3.1)

where Nwet, is the average number of rainy events at timescale '; Nwet(,) is the average
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number of rainy events at timescale -r , which is the largest scale for which the scale

invariance holds; and D, is the fractal dimension of the rainy set. Schmitt et al. verify

the scaling of occurrence of rainfall for their data and obtain a D, of 0.55 for timescales

between 10 minute and 3.5 days. Olsson et al. (1993) have performed similar analysis on

a rainfall time series in Sweden and found a D, of 0.37 for timescales between 45 minute

and 1 week. A discussion of the results by Olsson was provided in chapter 2. For the

Hartford station, we performed a box counting analysis for comparison with Schmitt et

al. (1998). The rainfall time series is divided into non-overlapping sets of boxes. The box

size ranges from 1 hour to 2" hours where n = 1,2,...9. Then we count the number of

boxes which have at least partial rain and denote it by N(t) where t is the box size (or the

duration). In the plot of log[N(t)] against log(t), the slope of the linear portion (if any) is

termed as fractal dimension of the occurrence of rain. The result of the box counting

analysis is shown in figure 3.5.

For the Hartford station, we observe a slight curvature in the initial portion of the box

counting curve. A break in scaling occurs at a duration of approximately 4 days. In other

words, beyond 4 days, almost 100% of the 'boxes' have rain and the slope of the line

becomes 1. From the box counting curve of Hartford station, we can see that for the

durations between 1 and 3 hours the slope of the curve is steep (about 0.64) which

indicates that if it rains for 1 hour it is likely to continue for longer durations as well. For

durations between 8 and 64 hours, the slope is gentler (about 0.44) which shows the

intermittency of short duration rain events.

Schmitt et al. (1998) derive the probability of the system to be in dry state and show that
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it follows a power law which can be expressed in terms of D,. Through data analysis,

they show that a discrete or continuous p-model is not adequate to represent the

residence time probability of rainy events. A p-model is a random cascade model which

generates a two-value state variable, one being zero. As an alternative to the p-model,

they propose to use the empirical distribution of rainy and dry residence times to

reproduce succession of rainy and dry events. For modeling the characteristics of rainy

periods, they use a universal multifractal model (Schertzer and Lovejoy, 1987). Time

series of the rainfall is obtained by multiplying term-by-term the series generated with

the alternating renewal process and the one provided by multifractal model.

There are two major assumptions in the analysis of Schmitt et. al (1998) which need to be

verified. One assumption is that the duration of the successive rainy and dry events are

independent. The second assumption which is implicit in the analysis is that distribution

of intensity is independent of the duration of rainy events. Our analysis of rainfall data

from New England shows that the first assumption is reasonable (see figures 3.8, 3.9) but

the second assumption is not (see figure 3.3).

The distribution of duration of dry events

We consider the duration of dry events for both the annual series and the four seasons

we defined above. To associate rainy and dry events with one of the four seasons, the

dry and rainy events are associated with a season. Based on the length of the event, we

find the month where the center the event lies and the event is assigned the season

according to the definition of the seasons discussed above. Figure 3.6 shows the

probability plots of dry and rainy durations for the annual series. Figure 3.7 shows the
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probability plots of dry durations for the four seasons. Our data analysis clearly shows

(see figure 3.6) that distribution of dry periods does not follow a power law.

One assumption, which is implicit in the work of Schmitt et al. (1998) is that the intensity

of rainy events is independent of the duration. On the contrary, it has been shown by

many researchers that the rainfall variability within a rainy event depends on the

duration. For instance, Pilgrim and Cordery (1975) concluded that rainfall variability

increases with duration. Acreman (1990) shows significant correlation between intensity

and duration within each precipitation event. Our data analysis also substantiates that

duration and depth are not independent. Figure 3.3(b) shows the plot of mean intensity

against duration in double logarithmic scale. The fitted linear line has a slope of 0.24.

This shows some dependence of intensity on duration. Bloschl and Sivapalan (1997)

found a slope of 0.08 for their data set and assumed intensity to be independent of the

duration. We also carried out an analysis to check if the successive dry and rainy

duration are independent. As we can see from figures 3.8 and 3.9, it is reasonable to

assume that dry and rainy periods are statistically independent of each other, as they

did not show any significant correlation. Acreman (1990) reached similar conclusion for

his stochastic model of hourly rainfall in England, U. K.

Lack of consideration of seasonality

Schmitt et. al (1998) carry out the analysis without any consideration for the seasonality.

Our data analysis shows a distinct difference between the characteristics of rainfall from

one season to another in New England. Table 3.3 gives mean duration of dry and rainy

events on annual and seasonal basis for the Hartford station. Note that the decreasing
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mean duration in summer agrees with our previous discussion.

Table 3.3: Seasonality and duration of dry and rainy events

Mean duration (hr) Annual Spring Summer Fall Winter

Dry Events 43.5 39.8 44.5 46.4 43.6

Rainy Events 3.9 4.1 2.7 3.9 4.9

To summarize the review and discussion of the work done by Schmitt et al. (1998), we

found, through box counting approach, that temporal rainfall displays deviation from

multifractality. We confirmed that durations of successive rainy and dry events are

independent. However, we find that intensity is not independent of duration.

A New Model for the Distribution of Dry Period Durations

We propose a new method based on data analysis and distribution fitting. The

distribution of dry periods is shown in figure 3.6 (top plot). First, we considered fitting a

mixture of power law and exponential distribution to describe the dry period

dsitribution. However, we found that even though the power law gives a better fit for

the initial portion yet it causes a misfit for longer durations. The power law needs to be

truncated after a certain duration but it is difficult to determine this truncation point.

Without truncation, the power law does not fit the dry distribution well. As an

alternative, the dry duration distribution can be fitted with a mixed exponential

distribution. The proposed distribution for the dry duration t is:

f(t) = pe-' 0-') + (1 - p)e~'-') (3.2)
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where p ,, A2 and to are parameters characterizing the distribution of dry periods.

Figure 3.10 shows the relative frequency of dry durations at Hartford along with the

fitted curve given by (3.2). The parameters of the distribution are estimated by

maximum likelihood method. For this case, the estimated parameters are: A, = 0.68, A2=

0.0145, to= 0.5 hour and p = 0.59. Figure 3.10 shows the relative frequency plot for the

data, averaged data and the fitted distribution. The mixed exponential model in (3.2)

gives a better overall fit to the empirical distribution of dry periods as compared to the

fit with a power law.

For longer dry durations (say between 300-900 hours), there may not exist events with

that duration, e.g., in our data set there was no dry duration of 102 hours. Such

durations are assigned zero probability, but do not appear in figure 3.10. This is the

reason why in figure 3.10 the asterisks, which are averages over duration intervals

appear lower than the dot s for long durations. Figure 3.11(a) shows the probability of

exceedance for empirical and fitted distribution of dry durations. Again the effect of the

zeros may give the misleading impression that the fit is not good for durations beyond

400 hours. Figure 3.11(b) shows a zoom of the initial portion of figure 3.11(a) but plotted

in arithmetic scale. Figure 3.11(b) shows the normal probability plot for the fit. From

figure 3.11(b), it is interesting to note that the distribution of dry periods can also be

approximated as composed of three lognormal distribution segments. Another

observation from this plot is the sharp change in distribution at durations of

approximately 4 hours and 72 hours. These breaks indicate the underlying change in

rainfall structure at the corresponding durations; for example, the rainfall generated by
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convective and frontal storms has average durations close to these values. Figures

3.12(a) through 3.12(d) show the model fitting for the relative frequency of the seasons

using the same parameters as given above.

Separation of Storms

The issue of defining independent storms and interstorm periods is important for many

hydrologic modeling applications. This discussion is appropriate here because the

modeling of residence time distribution of dry and rainy distribution is closely linked to

the issue of interstorm duration. We present a brief review of various approaches to this

problem before presenting our own methodology for separating independent storms.

As Acreman (1990) points out, it is difficult to find consensus on an objective definition

of a precipitation event. Different criteria that have been used for separating

independent storm events include those based on meteorological independence, lack of

significant correlation or partial correlation between pairs of storms or from the point of

view of a drainage basin, the duration of rainfall to which the basin responds. Some

methods seek to determine a certain minimum duration, the critical dry period, for

defining statistically independent storms. The significance of a critical dry period is that

dry periods below that duration are regarded as 'within-storm' and may be expected to

have different distribution than the longer dry durations.

Restrepo and Eagleson (1982) assumed that the arrival times of independent

precipitation events is a Poisson process; thus, as an approximation, the dry periods

between storms are assumed to be exponentially distributed. The problem with this
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approach is that the Poisson process models the arrival rates of storms with zero

duration or with insignificant duration compared to dry periods. Their method tests for

successively larger critical dry period until a value is found for which all larger dry

periods satisfy the necessary (but not sufficient) condition for exponential distribution of

dry periods. The model is approximate but simple. Hawk (1992) proposed a stepwise

two-phase regression method where then dry period durations is fitted with two

separate linear fits on semi-log plot of cumulative probability against dry period

durations. The intersection for the best combination of the regression segments is taken

as the critical dry duration. This method is sensitive to the large dry period durations

and gives unrealistic results unless the data is truncated to ignore the long durations.

Moreover, the regression fits are not always good enough to justify this approach.

Robinson and Sivapalan (1997) used 3 years of meteorological records to estimate a

minimum dry period such that each isolated event corresponded to an identifiable

synoptic event on weather charts. They estimated the critical dry period to be 7 hours.

The results of different researchers are summarized in table 3.4.

Study by

Grace and Eagleson

(1967)

Huff (1967)

Koutsoyiannis et al

(1993)

Cordova et al (1985)

Table 3.4: Storm separation studies

Critical dry Criteria used

period used

2 hours serial correlation o

3 hours storm depth

6 hours judgement

7 hours exponential

12 hours

f

distribution

unspecified

Geographical

location

New England

Arizona

Illinois

Greece

Spain
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Robinson et al.(1992) 2 hours judgement South East US

Sivapalan et al. (1997) 7 hours weather maps Australia

The definitions result in different results and the selection of a critical dry period which

divides a storm and dry period has been subjective. We carried out a sensitivity analysis

of the rainfall characteristics to critical dry period. Using 40 years of hourly precipitation

data at Hartford, we extracted storms based on increasingly large critical dry periods.

Increasing the threshold above one hour means that a dry period equal or less than the

critical duration, bounded on left and right by rainfall will be included as a within-storm

period and not a separate dry period. Obviously, this would result in a decrease in

average intensity of the storms as compared with the rainy events considered before.

We compute the percentage of rainfall contributed from extracted independent storms

based on different critical dry periods. The results are shown in table 3.5.

Table 3.5: Statistics related to separation of storms

Critical dry Number of extracted Contributed rain (in) / % of rain contributed

period used (hr) storms in 40 years number of storms by storms

1 7391 23.8 100

2 4202 40.9 96.3

3 3103 53.2 92.4

4 2642 60.9 90.2

5 2347 66.3 87.1

6 2121 71.6 85.1

7 1950 76.6 83.7
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The review of the approaches used to determine interstorm durations and critical dry

period shows that there is a need for a better method to find critical dry duration. All the

above described approaches to estimate critical dry periods are deterministic. However,

a better approach to separate statistically independent storms would be to use a

stochastic model which assigns a certain probability for a duration to be in the rainy or

dry state.

One could hypothesize that the transition in shape of the distribution indicates the shift

from within-storm dry periods to interstorm dry periods. Referring to figure 3.10, we

can see that the proposed mixed exponential model shows a change in distribution after

a certain duration.

In order to illustrate this point, consider the two exponential distribution in (3.2)

individually with the same parameters as given above. Figure 3.13 shows the probability

density function of the two distributions plotted separately against durations. We

hypothesize that the first distribution (open circles) represents dry durations outside

storms and the second distribution (filled circles) represents the dry durations within

rainfall events. The duration corresponding to the intersection of the two curves is 5.74

hours. There is equal probability that this duration of 5.74 hours belongs to either of the

two populations. Hawk (1992) has used the same approach, although she does not use

an exponential model for the dry duration distribution. This plot also shows how the

relative probabilities change with the choice of a critical dry period; for example, for

durations beyond 5.74 hours, the probability that the duration comes from a dry

duration outside storms decreases rapidly.
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Figure 3.10. Relative frequency plot for mixed exponential model for dry duration
distribution of Hartford station. Filled circles represents data, star represents averaged
data points in log space and the model fit is shown as continuous line.
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Figure 3.11(a). Probability of exceedance for the empirical dry period durations(filled
circles) and the fit of mixed exponential model (continuous line) for the annual series of
Hartford station.
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Figure 3.11(b). Initial portion of the plot 3.11(a) plotted on arithmetic scale.
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Figure 3.11(c). Normal probability for mixed exponential model for dry duration
distribution for the annual series of Hartford station.
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Figure 3.12(a). Model fit for March, April, May.
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Figure 3.12(b). Model fit for June, July, August.
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Figure 3.12(c). Model fit for September, October, November.
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Figure 3.12(d). Model fit for December, January, February.
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Figure 3.13. Exponential model distribution for within storm (open circles) and outside
storm (filled circles).Dotted dashed line shows the duration corresponding to equal
probability of a duration to be outside or inside storm.
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CHAPTER 4

Scaling of Rainfall and Intensity Duration

Frequency Curves

4.1 Objective and Approach

An important question is whether the extremes of the rainfall scale in a way which is

related to the scaling of the averages. The problem is to reconcile the observed

multiscaling behavior of temporal rainfall and simple scaling shown by IDFs, and to

relate the scaling exponents of rainfall to those of IDFs. The objective of this chapter is to

present the analysis of scaling of rainfall and intensity distribution frequency curves

(IDFs) and to investigate and verify the relationship between the scaling characteristics

of rainfall and IDFs.

Recently, a few studies have investigated the scaling of extreme rainfall and intensity

duration frequency curves (IDFs). Burlando and Rosso (1996) presented a lognormal

model to derive depth duration curves from extreme rainfall. Benjoudi et al. (1999) have

derived the parameters of scaling of IDFs from the codimension function of the rainfall

process under the assumption that rainfall time series is multifractal. Veneziano and

Furcolo (1999) made the same basic assumptions as Benjoudi et al. (1999), but used a

different approach to relate parameters of multiscaling temporal rainfall to those of

simple scaling IDFs.
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In this chapter, we follow the theoretical framework presented by Veneziano and

Furcolo (1999) and use data analysis to investigate the scaling characteristics of intensity

duration frequency curves and to verify their results. We test this theory for annual and

seasonal series and find that it fits the data very well for all cases. Finally we extend the

analysis from point rainfall to spatial rainfall and discuss the results.

4.2 Analysis of Rainfall Scaling

We discussed different approaches and techniques for scaling analysis of rainfall.

Results from the analysis of box counting, were discussed in chapter 3. Box counting

analysis provides limited information about the scaling characteristics of rainfall

(Lovejoy and Schertzer, 1995). Spectral theory is another common preliminary

investigation method to examine the scaling behavior and range of scaling of rainfall

time series. If scaling holds for a data set, the energy spectrum E(f) has the power law

form: S(f) oc f f where P is spectral exponent.

Figure 4.1 shows the smoothed spectral plot for the Hartford station. The spectrum was

averaged over logarithmically spaced frequency intervals. The portion of the double

logarithmic plot of E(f) againstf which exhibits straight line behavior indicates the range

where scale invariance holds. Figure 4.1 shows a good power law between the

approximate ranges of 2 hours (Nyquist frequency) and 3-4 days. The slope P = 0.86

shown in the plot was obtained by regression. This result is in agreement with the box

counting analysis in figure 3.5 which also shows a break around 4 days.
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The slope and limits of power law exhibited by the power spectrum tend to differ from

region to region. To see how this result compares with the other values reported in the

literature, we summarize a few results below:

Table 4.1: Results of spectral analysis for rainfall scaling

Data Study by Slope p Scaling Regime

Resolution Limits

Hourly Olsson 1995 (Sweden) 0.66 8 min-3 days

Hourly Schmitt 1998 (Belgium) 0.77 10 min-10 days

Daily Svensson 1996(China) 0.37 1-32 days

Daily Svensson 1996 (Sweden) 0.28 1-32 days

The results reported by Svensson are based on a data set for daily regime and therefore,

are not directly comparable with the hourly analysis results.

Next, we perform the multiscaling analysis of the averages of the rainfall. The averages

are calculated for durations D ranging from 1 hour to 512 hours. Aggregations are made

on a non-sliding basis and statistical moments of the averages E[I'], q = 0.5, 1, 1.5, 2 ...

4 are calculated. According to the scaling theory if (1) the statistical moments E[ID ] are

log-log linear in D, and (2) the slopes of these moments k(q) are nonlinear in q, then

rainfall is multiscaling. A plot of the statistical moments is shown in figure 4.2 for the

annual series.
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The straight lines are the regressions fitted for each of the moment order. The regression

was fitted using data points corresponding to durations of 8, 16, 32, 64 and 128 hours

The multifractality is good between 8 and 128 hours. The results of box counting

analysis and spectral analysis provide evidence that the scaling limits are in the range of

2 hours to about 4 days. We observe a corresponding break in scaling in the moment

analysis after 128 hours. For the summer season, we found that a good fit exists between

the range of 4 to 128 hours.

The slopes k(q) of the linear fitted curves to the moments are plotted against the moment

order q in the same figure (bottom plot). The results of moment analysis show that

rainfall exhibits multiscaling behavior. We repeat the analysis for the four seasons as

defined in chapter 3. The results are presented in figures 4.3 through 4.6.

4.3 Scaling of Intensity Distribution Frequency Curves

Intensity distribution frequency curves are important tools for hydrologic design. In this

section we discuss a framework for relating IDF scaling to the multifractal properties of

rainfall, perform data analysis to verify the validity of the theory described and compare

our results with results from the literature.

Willems (1998) investigated the compound IDF relationships of extreme precipitation for

two seasons and two storm types in Belgium. Willems used the same data set which was

used by Schmitt et al. (1998) and used two-component extreme value distribution to

derive equations for IDFs. Willems found out that winter population can be described

by one distribution component and that the winter IDFs follows simple scaling. The

slope of the IDF for winter was 0.58 which matched well with their theoretical result.
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The summer population is described by both components and the summer IDFs exhibits

multiscaling. The slope of the IDF for summer was about 0.71.

Benjoudi et al (1999) have derived the parameters of IDF scaling from the codimension

function of the rainfall process under the assumption that rainfall time series is

multifractal. As discussed in section 2.2, the result of Benjoudi et al. (1999) expresses the

scaling of IDFs in terms of qD,which is a multifractal characteristic of rainfall series and

on a factor which they assume to be the fractal dimension of the rainfall D,. Benjoudi et

al. (1999) performed data analysis on a 5 year hourly rainfall in Bordeaux, France. They

estimated qD by fitting a regression for the tail portion (seven points) of the log-log plot

of probability of exceedance (estimated by Weibull formula) of rainfall intensity. The

slope of the fitted regression gave qD = 3.5 ± 0.8. The fractal dimension of the rainfall

occurrence was estimated by box counting to be D, = 0.64 ± 0.08. The procedure used

by Benjoudi et al. (1999) to determine q is subjective as to the number of points to be

included in the fit and the goodness of the fit.

Veneziano and Furcolo (1999) developed a theory to link the parameters of scaling of

IDF to those of the rainfall process. They make the same basic assumptions as Benjoudi

et al but use a different approach and reach at different conclusions about the scaling of

the IDFs. Below, we describe the theory of Veneziano and Furcolo (1999). In the next

section we will verify their theory by data analysis.
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Theory

Let ID be the annual maximum rainfall intensity in a period of duration D and denote

by I, (D) the value exceeded by ID with probability p. The IDF curves are plots of

I, (D) against D for selected exceedance probabilities p. Denote the average intensity in

duration of [tt+D] as I'D (t).

The recurrence interval of an extreme event is the average time between occurrences of

extreme events. The return period T can be defined in different ways. A common

definition of the return period is the average recurrence interval between events equal or

greater than a specified magnitude. If T(D,i) is the return period of events with average

rainfall intensity i over duration D, then the definition given above corresponds to,

1
T,(D,i) . (4.1)

Another way to define return period, call it T2, is to relate the return period to the

marginal exceedance probability P[I'D (t) > i] as

T2(D,i) = D (4.2)
P[F I't) > i]

Let us deonte the rainfall intensity corresponding to T2 and D as i2 (T2, D).

It has been observed (Burlando and Rosso, 1996; Menabde, 1999) that the distribution of
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annual maximum intensity in a period of duration D, ID, satisfies the simple-scaling

relation:

d
ID ,=r" HirD

with H between 0.6 and 0.8.

Therefore the IDF curves satisfy a power law of the form

I, (D) = g(p)D-H (4.4)

where g(p) is some function of p.

In some cases and for small p (Benjoudi et al., 1999),

g(p) oc p-" (4.5)

for some a.

Next, consider a multiplicative cascade that starts at level 0 with a uniform unit measure

in the unit interval. Denote by b the multiplicity of the cascade, by B the cascade

generator, by r an integer power of b and by er the average measure density in a generic

cascade tile of length 1 / r. Schertzer and Lovejoy (1987) showed that, for any given y

(4.6)P[er > r] ~ r-c(Y)
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where - denotes asymptotic equalities as r -> oo, up to a slowly varying function of

r and c(y) is the Legendre transform of the moment scaling function K(q) = log,[Bq].

The function c() may be obtained from the moment scaling function as

y(q) = dK(q)
dq

c(q) = qy(q) - K(q) (4.7)

For the scaling analysis of the IDF curves, (4.6) was extended by Veneziano and Furcolo

(1999) to obtain the probability P[Er > arr] for any given positive number a with the

result

P[e, > ar'] = P[er > r+Oaraa] -q(rr-Ma (4.8)

Next, Veneziano and Furcolo (1999) used the result in (4.8) to obtain the scaling

properties of i2 (T 2 , D) for large T2 I'D has a unit-mean cascade representation of the type

I'D = meD, /D where D, is the outer limit of the scaling regime for rainfall. Substitute

D I'
r=' and Er = E/D,,I= -in (4.8) to get,D m

P[I'D> ma ]~ a-qy (4.9)
D( D

Eqaution (4.9) holds for D<<D,.
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D
Since i2(T2 , D) satisfies P[IT'2 ]= -, the right hand side of (4.9) should be made

2

D
equal to y. This happens for

T2

y= y, such that c(y,)=1

TIa = (--)q' (4.10)
Do

where q, = q(y) . The parameters y, and q, are obtained from the moment scaling

function k(q) of the rainfall process. From convexity of k(q) and the conditions

k(1)= 0 and k(q*) = q* -1 (see figure 2.2), it follows that < 1 < *. With y, and a in

(4.10), (4.9) becomes,

T-D D
P[I' > M - q( D -]~- (.11

D D T2

Note that q* here is the same as qm discussed earlier.

Hence for D<<D,, i2must scale with T2 and D as:

i2 oc T21q'D-' (4.12)

As (4.9) was derived for DID, infinitesmal, theoretically (4.12) holds for D<<D,. This
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result has practical implications, particularly for extrapolating the frequency of extreme

events. Later, we shall perform data analysis to investigate the accuracy of (4.12) also for

large durations.

4.4 Data Analysis for IDF Scaling

In chapter 3, our analysis of major storms at the Hartford station revealed that year 1955

was particularly influential. Since such influential points dominate the moment scaling

and IDF analysis, for the data analysis in this chapter, we excluded the year 1955 and

only used the data from 1956 to 1994. A similar approach was taken by Svensson (1996).

The first step to obtain IDFs from a data series is to extract the annual maximum rainfall

corresponding to a given set of durations. The annual maxima for the whole series are

then ranked in descending order. The return period for the length of the time series is

calculated based on the definition of the return period, that is, T, or T2 . Then, for the

desired return period, the maximum intensity values corresponding to the durations

listed above give the IDFs. Figure 4.7 shows the IDFs for Hartford station based on T,

for return periods of 1, 2, 5, 10, 20 and 40 years. Figure 4.8 shows the same IDFs as in 4.7

but based on T2 . Theoretically, the results from T, and T2 should be close for large

return periods if the extraction of maximum intensities is based on non-overlapping

(discrete) duration sets. Comparison of figure 4.7 and figure 4.8 shows that indeed the

definitions of return periods are quite close to each other for large return periods. From

now on, our analysis will focus on the IDFs defined by T2 .

The slope and spacing of the IDF curves give information about the scaling
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characteristics of these curves. We estimated the slopes of the IDFs curves by fitting

regression lines through selected data range. For durations beyond 128 hours, the slopes

become flat. This observation is consistent with the break of scale shown in the power

spectrum and with our analysis for rainfall moments. Between 8 and 128 hours, the IDFs

show good multifractal behavior. Season 2, Summer, is an exception as it shows a good

fit from 4 hours onwards. Figure 4.8 shows the IDFs for annual series at Hartford

station. This analysis was repeated for the four seasons. See figures 4.9 through 4.12 for

IDFs for seasons 1 through 4. The results of IDF analysis are summarized in table 4.2.

Table 4.2: Slopes of the IDF

Return period Annual S1 S2 S3 S4
(years)

1 0.80 0.75 0.85 0.83 0.79

2 0.80 0.74 0.80 0.80 0.79

5 0.78 0.79 0.79 0.79 0.74

10 0.76 0.81 0.79 0.76 0.76

20 0.73 0.73 0.71 0.80 0.76

40 0.74 0.68 0.64 0.78 0.73

Mean 0.77 0.76 0.76 0.79 0.76

Now that we have investigated the statistical properties of rainfall, scaling analysis of

the rainfall and the IDFs based on different definitions of return periods we can test the

approach suggested by Veneziano and Furcolo (1999), described in section 4.3.

If (4.12) holds, the slope of the IDFs and the tangent slope y should coincide. The point

of tangency then gives the corresponding moment order q,. Figure 4.2 shows the results
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of moment scaling analysis for the annual series at Hartford. In the plot of K(q) we have

shown the slope of the corresponding IDFs curve as a dashed line for comparison. Note

that it is not possible to determine q, accurately from the range of the analysis - one can

only make an approximate visual estimate. Figures 4.3 through 4.6 show the comparison

of IDFs slope and y, for the seasonal cases.

The comparison of results from moment and IDF analysis are summarized in table 4.3.

This shows that the IDF slope and y, match very well for the annual and for the

seasonal cases.

Table 4.3: Comparison of results of IDF and moment scaling analysis

Rainfall Series Yi IDF Slope

Annual 0.78 0.77

S1 0.80 0.76

S2 0.76 0.76

S3 0.78 0.79

S4 0.80 0.76

Figure 4.13 shows the relation between mean[log(IDF)] and return period for annual and

seasonal series on a log-log plot. According to (4.12), the slope of this curve should be

1 / q,. However, we can see from figures 4.3 through 4.6 that q, can not determined

within the moment orders (4.0) used in the analysis. If the k(q) plot were to be

extrapolated beyond q = 4, we would get a q, > 4. We estimate the slopes of the

mean[log(IDF)]~return period curves by fitting a regression to the data points. The last

point showed a marked deviation from the linear fit. Therefore, we perform the
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regression neglecting the last point which results in a better fit. The last point

corresponds to return period of 40 years and is not as robust as the smaller return

periods. We have summarized the resulting slopes for regression without the last point

(table 4.4) and for regression using all points (table 4.5). The resulting values of q, are all

considerably higher than 4.0 which is in agreement with the moment analysis where we

find that q, > 4.

It is interesting to observe that the mean[log(IDF)]-return period curve bends upward

beyond a return period of 20 years. This shows that the higher return periods are

sensitive to the curvature of the curve. This characteristic has not been reported

elsewhere. This issue is of primary importance because one is interested in extrapolating

this curve to higher return periods and therefore deserves further investigation.

Table 4.4: Mean[log(IDF)]

Rainfall

Series

Annual

Si

S2

S3

S4

against return period, regression without the last point

slope of

mean[log(IDF)]- q1=1/slope

return period

0.12 8.3

0.11 9.1

0.13 7.7

0.12 8.3

0.08 12.5
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Table 4.5: Mean[log(IDF)] against return period, regression using all points

Rainfall slope of

Series mean[log(IDF )]- q1=1/slope
return period

Annual 0.14 7.1

S1 0.14 7.1

S2 0.15 6.67

S3 0.13 7.7

S4 0.08 12.5

4.5 Extension to Areal Rainfall

In section 2.1.3 we provided a review of the space-time models of rainfall. In this section

we extend our analysis of scaling rainfall and IDFs to space-time rainfall and areal IDFs.

Due to the sparse rain gage density and the limited length of the time for which

continuous data are available, the analysis has limited scope. However, as we show, we

find results which agree with the more detailed studies we presented in chapter 2.

We perform space-time analysis on one year (1962) of hourly data for a set of 7 rain

gages near the Hartford station in the New England region. The 7 stations used for the

space-time analysis are: 3451, 3456, 4667, 6942, 6698, 8330 and 998; see figure 4.14 for

their location. These stations are within a radius of 88 miles from Hartford station. For

the space-time analysis, we divide the area covered by these seven stations into three

regions of overlapping and increasing spatial extent. Region 1 covers two stations (3451

and 3456) and an area of approximately 600 mi 2; region 2 covers four stations (3451,

3456, 6942 and 8330) over an area of 2800 mi 2; region 3 includes all seven stations and

covers an area of 24000 mi 2.

-107-



In order to carry out the space-time analysis, we need to estimate a response time for

each of the three regions described above. This is done by transforming the spatial

extent of each region to time scale by using a suitable celerity value. Support for this

simplified transformation comes from the recent work of Deidda (2000) who performed

space-time multifractal analysis on radar rainfall sequences and showed that space-time

rainfall scaling is isotropic within spatial scale from 4 to 256 km and timescales from 15

min to 16 hours.

The response time T can be estimated as LIV where L is the stream length and V is the

celerity. For the areas of regions given above, we assume celerity of 5 to 8 ft/sec and L is

estimated by Hack's law as 0.5A ". This gives the response time as approximately 3, 7

and 14 hours for the three regions respectively. For each region, we average the rainfall

over the number of stations covering that region. Then we perform moment scaling

analysis corresponding to the response time of the region. For example, in region 1, we

average the rainfall over 3 hour durations and then compute the moments. Results of

space-time analysis are show in figure 4.15. Note the curvature of the k(q) curve. Figure

4.16 is the same as figure 4.15 but it shows the estimation of parameter yi. We can see

from figure 4.16 that q1 is about 3.0. Table 4.6 shows the parameters of this analysis and

comparison with the point k(q) curve parameter for the Hartford station, as presented in

table 4.3. Strictly speaking, this comparison should be between the point rainfall for the

year 1962 and not for the point rainfall series of 40 years as shown in table 4.6.
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Table 4.6: Comparison of scaling parameters for rainfall space-time analysis

Rainfall Series Yi q1

Areal average 0.67 3.0

Point Rainfall 0.78 > 4.0

If we assume that rainfall in space-time is a locally stationary process with isotropic

multifractaliy, then it can be shown (Veneziano and Furcolo, 2000) that the theory of

point IDFs discussed earlier holds also for spatial IDFs. Therefore, the spatial IDF scaling

parameters q, and y can be obtained from the moment scaling function k(q) of spatial

rainfall, in the same way as for temporal rainfall. Therefore, the key question is the

assumption of isotropic scaling of rainfall in space-time. We discussed this issue in

section 2.1.3 where we presented the two opposing views on the isotropic scaling of

rainfall in space-time. Marsan et al. (1996) argue that scaling is isotropic in space but not

in time. On the other hand, Deidda (2000) has shown by an extensive analysis of GATE

rainfall that space-time rainfall scaling is isotropic within spatial scale from 4 to 256 km

and timescales from 15 min to 16 hours.
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Extension of point IDFs to areal IDFs

Now we discuss the extension of point IDFs to areal IDFs. When point catchment IDFs

are used for catchments they are adjusted for the reduction in intensity over the area by

the Areal Reduction Factors (ARF). In chapter 2, we discussed the background and the

approaches which are used to derive catchment IDFs from point IDFs. It is important to

note that the ARF depends on the catchment size, duration of the storm and the return

period (Berndtsson et al., 1988). A set of ARF curves for catchments up to 400 mi 2 is

shown in figure 4.17. This was prepared by the National Weather Service from a dense

network of rain gages. This curve might be used if no other information about the

regional ARF is available. Figure 4.18 shows 100-year and 2-year ARF at Chicago,

Illinois. Figure 4.17 shows a comparison of various ARF values used in different regions

of the world. This comparison plot shows different ARF values depending on the

climate and location; for example, for U.K., the ARF value for a storm of 1 hour duration

and 2-year year return period is about 0.44 for an area of 300 km2.

Empirical formulas are widely used to determine ARFs. Leclerc and Schaake (1972) have

expressed the relation shown in figure 4.17 as

K = 1- exp(-1. ID 0 2s )+ exp(-1.1Do.25 - 0.0 1A) (4.13)

where K is the ARF, D is the rainfall duration in hours and A is the area in square miles.

Many other formulas exist which express the ARF as a funciton of area and rainfall

duration.
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Sivapalan and Bloschl (1998) have recently proposed a new method of deriving

catchment IDFs (see section 2.2 for the details of the method). They applied their

approach to two storm events in Austria: (1) a short, intense convective storm; and (2) a

longer, synoptic storm. They found that for the convective storm (assessed to be a storm

with return period of 1000 years) the ARFs are fairly low (~0.3) within 50 km2 area. For

the larger scale storm (of return period 1000 years) the ARF was about 0.75 at 3000 km2

(figure 10, Sivapalan and Bloschl, 1998). Sivapalan et al. (1998) found the ARFs to

decrease with increasing return period.

For our case, the availability of data for deriving spatial IDFs is limited because of the

widely spaced rain gages and the missing data at certain stations. After doing a

preliminary analysis, we chose a group of 5 stations where continuous data for 13 years

(1955 to 1967) was available. The stations are: 3451, 3456, 5273, 6414 and 806 (see figure

4.14 for location of these stations). Since the original hourly rainfall time series is only 13

years long, we constructed a series from the five stations by pooling all the data into a

single time series. Then IDF analysis was carried out on the constructed series. The

results of the IDF for the Hartford station is shown in figure 4.20 and the IDF for the

constructed series is shown in figure 4.21. The areal IDF is dervied by averaging the

rainfall intensity from the five stations; see figure 4.22 for the areal IDF. All the IDFs are

shown for return periods of 2, 3, 5 and 7 years.

In order to compare the single-station point IDFs with the group of stations areal IDFs,

we computed the ratios of the maximum rainfall intensities for different durations and

return periods. Figures 4.23 and 4.24 shows the ratios of areal IDFs to point IDFs and the
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ratio of areal IDF to constructed series. These ratios provide us with an estimate of the

ARFs for this region for the particular duration corresponding to the response time of

the areal extent under consideration. Note the peculiarly high ARFs for the return period

of 7 years. This is a result of the sparse data set and localized nature of storms; a likely

explanation is that an intense event of limited extent was captured at one station but not

at the other stations. Figures 4.23 and 4.24 show that ARF decrease with return period

for most cases but not all. Our analysis is limited as the rain gages are not located

sufficiently close to guarantee averaging to give a representative rainfall.

As discussed earlier, under the assumption of isotropic scaling of rainfall in space-time,

the spatial IDF scaling parameters q, and y, can be obtained from the moment scaling

function k(q) of spatial rainfall in the same way as for temporal rainfall. Further analysis

is required to verify this approach.
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Figure 4.1. Spectral analysis for Hartford.
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Figure 4.2. Multifractal analysis for annual series at Hartford (regression from 8-128 hrs).
The moment order q (from the top) is 0.5 (circle and +), 1 (asterisk), 1.5 (circle),
2 (square), 2.5 (+), 3 (circle) and 3.5 (asterisk) and 4 (square).
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Figure 4.3. Multifractal analysis for season 1 (March, April, May) at Hartford (regression
from 8-128 hrs). The moment order q (from the top) is 0.5 (circle and +), 1 (asterisk), 1.5
(circle), 2 (square), 2.5 (+), 3 (circle) and 3.5 (asterisk) and 4 (square).
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Figure 4.4. Multifractal analysis for season 2 (June, July, August) at Hartford (regression
from 4-128 hrs). The moment order q (from the top) is 0.5 (circle and +), 1 (asterisk), 1.5
(circle), 2 (square), 2.5 (+), 3 (circle) and 3.5 (asterisk) and 4 (square).
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Figure 4.5. Multifractal analysis for season 3 (September, October, November) at
Hartford (regression from 8-128 hrs). The moment order q (from the top) is 0.5 (circle
and +), 1 (asterisk), 1.5 (circle), 2 (square), 2.5 (+), 3 (circle) and 3.5 (asterisk) and 4
(square).
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Figure 4.6. Multifractal analysis for season 4 (December, January, February) at Hartford
(regression from 8-128 hrs). The moment order q (from the top) is 0.5 (circle and +), 1
(asterisk), 1.5 (circle), 2 (square), 2.5 (+), 3 (circle) and 3.5 (asterisk) and 4 (square).
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Figure 4.9. Intensity distribution frequency curve for season 1 (March, April, May) at
Hartford (regression from 8-128 hrs).
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Figure 4.10. Intensity distribution frequency curve for season 2 (June, July, August)
at Hartford (regression from 4-128 hrs).
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Figure 4.11. Intensity distribution frequency curve for season 3 (September, October,
November) at Hartford (regression from 8-128 hrs).
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Figure 4.14. Rain gage location for space-time analysis.
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Figure 4.15. Space-time scaling for 7 stations.

-127-

10

10

U)

E
0

* * *

O ~104

104

10~

10-

10~

2.5



10

10-2

10-3

0.5 1 1.5 2 2.5 3 3.5 4
q

Figure 4.16. Space time scaling for 7 stations (estimate of y,).
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NOTES: t. From Weather Bureau Technical Paper No. 40, Figure 15
2. The 2-hr and It-hr curves a sterpolotd from the TP 40 data

too

4
24HR RAINFALL

I RAINFALL

6-HR RAINFALL

0
U- so-

3-HR RAINFALL

2-HR RAINFALL

I-
z 70

IL-
LLIH -IFL

z
Q 60-
ha 30-MkIN RAWNALL

50 t
0 50 t00 I50 2o0 250 S00 350, 400

AREA (square miles)

Figure 4.17. ARF based on Weather Bureau Technical Paper No. 40. This set of curve is
used unless specific curves derived from regional analysis are available.
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Figure 4.18. ARF for Chicago, Illinois by duration for 100- and 2-year return periods.
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Figure 4.20. Scaling of IDFs for Hartford station, for return periods of 2 (circles), 3
(asterisks), 5 (+) and 7 (squares) years. The average slope is -0.77 for the range between 2
hours and 5 days.
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Figure 4.21. Scaling of IDF for the constructed series from 5 stations, for return periods
of 2 (circles), 3 (asterisks), 5 (+) and 7 (squares) years. For the range between 2 hours and
5 days, the average slope is -0.79.
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Figure 4.22. Scaling of areal IDF derived from average of 5 stations, for return periods of
2 (circles), 3 (asterisks), 5 (+) and 7 (squares) years. For the range between 2 hours and 5
days, the average slope is -0.65.
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Figure 4.23. ARF for return periods of 2, 3, 5 and 7 years, obtained from the ratio of areal
average IDFs (figure 4.22) and the IDF from single station (figure 4.20).
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Figure 4.24. ARF for return periods of 2, 3, 5 and 7 years, obtained from the ratio of areal
average IDFs (figure 4.22) and the IDF from constructed series of 5 stations (figure 4.21).
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CHAPTER 5

Scaling of River Floods

5.1 Objective and Approach

The objective of this chapter is to investigate the relationship between scaling of peak

flows and the scaling of rainfall and IDFs. This has practical applications for regional

flood frequency analysis and prediction and the estimation of floods at ungaged basins.

We investigate the characteristics of peak flows scaling using a data set of peak annual

flows from rivers distributed across the U. S. The United States Geological Survey

(USGS), which operates under the Department of the Interior, U.S., operates a network

of stream flow gages in the U. S. The USGS uses a classification system for hydrologic

regions in the U.S. Such regions are called Hydrologic Units. We investigate the

differences found in scaling exponent of flows for different Hydrologic Units and for

small and large basins. We compare our results with the quantile regression method

used by USGS.

Smith (1992) has observed that the coefficient of variation (CV) of peak annual flow in

the Appalachian region varies non-monotonically with drainage area, having a

maximum at an area of about 20 mi 2. A number of studies followed this observation

(Gupta et al. 1994b; Robinson and Sivapalan, 1997) with alternative explanations for the
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dependence of CV on drainage area and the processes controlling CV. We use our data

set to investigate how CV of peak annual flows varies with drainage area for different

regions.

We also aim to link the scaling of the IDFs to the scaling of peak flows. For this purpose,

we use a variant of empirical rational formula and explain the dependence of the scaling

exponent of peak flows on the scaling exponent of IDFs. We focus on the New England

region and show that the model results in good fit with the empirical observations.

5.2 Regional Flood Frequency Analysis and Scaling of Peak

Flows

Regional flood frequency analysis (RFFA) enables flood quantile estimates for any site in

a region to be expressed in terms of flood data at other gaging sites in that region.

Regionalization is useful for sites where at-site data are either unavailable or too short to

allow for a reliable frequency estimate. For sites with available data, the joint use of data

measured at a site and regional data from a number of stations in a region provides

additional information. Regional homogeneity can be defined in a number of ways. The

definition of regional homogeneity is dependent on which aspects of flood frequency

behavior is considered to be homogeneous (Cunnane, 1988). One definition of

homogeneity can be in terms of index flood. The USGS uses a quantile regression

regionalization method. See section 2.3 for definitions and discussion of the index flood

and the quantile regression methods.

-138-



The simple scaling concept corresponds to the index flood method of regional flood

analysis. Thus, the index flood method can be justified if the annual floods exhibit

simple scaling. USGS uses quantile regression approach for flood frequency studies for

different states. Each state is divided into regions based on features such as topography

and land use; then adjustments are made based on goodness of fit of the quantile

regression equations in these areas. A recent study of homogeneous regions in Australia

compared a number of current techniques for identifying homogeneous regions (Bates et

al., 1998). This study indicated that geographical proximity alone may not be a

reasonable indicator of hydrologic similarity. Gupta and Dawdy (1995) performed data

analysis for 3 States in the U.S. and concluded that the rainfall generated flood peaks

exhibit multiscaling and the snowmelt generated floods show simple scaling. Our

preliminary data analysis of flood peaks from more than a thousand gaging stations in

15 regions of the US has indicated that flood peaks exhibit both simple and multiscaling.

5.3 Data

As mentioned earlier, USGS operates a network of stream gages in the U.S. The data for

the USGS peak stream flow values was historically stored in the USGS WATSTORE

database. Currently the access for data is through the USGS web site

(http://water.usgs.gov). The web site provides historic and real time stream flow data.

The peak flow data is available through National Water Information System (NWIS)

page at (http://waterdata.usgs.gov/nwis-w/US). It is possible to search and retrieve

data for a stream flow station by the station number or station location in a state, county

etc. This provides a quick way to get data if one is interested in retrieving data for a

small number of stations. However, it is inconvenient to retrieve data manually for a

large number of stations. A Java applet and application was developed to retrieve,
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process and save peak flow data from the USGS-NWIS web site, based on the

preferences of the user (Bhatti, 1998).

The USGS follows the delineation of water resources regions set up by the Water

Resource Council (WRC) in 1970. This was done to ensure consistent criteria for names,

codes etc of hydrologic regions. The Water Resources Council developed a hierarchical

classification of hydrologic drainage basins in the United States. Each hydrologic unit is

identified by a unique hydrologic unit code (HUC) consisting of two to eight digits

based on the four levels of classification in the hydrologic unit system . The first level of

classification consists of 18 water-resources regions in the conterminous U. S.

Subsequent levels include 222 sub-regions, 352 accounting units, and 2150 cataloging

units. This division is based on geographic considerations, that is, the drainage divides.

These hydrologic regions are listed in table 5.1.In the analysis to follow, we use peak

flow data from hydrologic units 1 to 15. We used the Java tool described above to

retrieve peak flow data from 15 regions. There was some doubt about whether the flow

in regions 16, 17 and 18 was completely free of regulation or not. Therefore we decided

not to use the regions 16, 17 or 18.

Figure 5.1 shows the geographical location of these regions. Location of selected stations

in region 01, New England, is shown in figure 5.2.
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Table 5.1: List of Hydrologic Units

Region Name

Region 01 New England

Region 02 Mid-Atlantic

Region 03 South Atlantic-Gulf

Region 04 Great Lakes

Region 05 Ohio

Region 06 Tennessee

Region 07 Upper Mississippi

Region 08 Lower Mississippi

Region 09 Souris-Red-Rainy

Region 10 Missouri

Region 11 Arkansas-White-Red

Region 12 Texas-Gulf

Region 13 Rio Grande

Region 14 Upper Colorado

Region 15 Lower Colorado

Region 16 Great Basin

Region 17 Pacific Northwest

Region 18 California
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5.4 Analysis

To investigate if peak flows exhibit seasonality, we perform a frequency analysis of the

time of occurrence of peak annual flows. Results of this analysis are shown in figure

5.3(a), 5.3(b) and 5.3(c). For example, in regions 2, 3, 5, 6, and 7, most peaks are in March;

in regions 1, 4, 8 and 9, most peaks occur in April; in region 11, 12 and 13, May has the

highest number of peaks; and for regions 10 and 14 most peak flows occur in June.

Figure 5.4 shows the scaling of moments for hydrologic regions 1 through 6. We can see

that the condition of log-log linearity is well satisfied in all the regions. In figure 5.5, we

show the plot of scaling exponents against the moment order for the hydrologic regions

1 to 6. The solid lines show the linear growth of the exponent for comparison with the

actual growth of exponents. Similarly figure 5.6 shows the moments of peak flows for

regions 7 through 12 and figure 5.7 shows the corresponding k(q) plots. Figure 5.8 and

5.9 show the same for regions 13 to 15.

For some regions, for example hydrologic units 5 and 6, the growth of scaling exponents

with the moment order is almost linear which indicates that peak flows in these regions

exhibit simple scaling with basin area. For many regions, however, the slopes depend in

a non-linear way on the moment order. The deviation of slope growth from linearity

indicates that the peak flows are multiscaling (Gupta and Waymire, 1990). However, the

deviations from linearity are for the most part insignificant. Gupta and Waymire (1990)

noted the concave curvature of the slope growth of the multiscaling flows and

interpreted it as a decrease in variability of flows with the scale. For our analysis, most

of the deviations are also concave. We conclude that both simple and multiscaling can
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occur in peak flows. However, the question is to explain the underlying reasons for the

difference in scaling behavior in different regions.

The scaling exponents for the first moment of the 15 regions are summarized in table 5.2.

The scaling exponents for the first moment range from 0.33 to 0.86. As we discussed in

chapter 2, climatic factors have an effect on the scaling exponent (Dubreuil, 1986); for

example dry or arid regions having a lower scaling exponent than humid regions. As

described by Gupta and Dawdy (1995) and also discussed in section 2.3, we observe that

regions with snowmelt generated floods (e.g., regions 1, 2, 13) tend to have higher

scaling exponents. However, contrary to the argument of Gupta and Dawdy (1995), we

find that there is no evidence that snowmelt generated floods per se cause simple scaling

of annual peak flows.

Gupta and Dawdy (1995) studied the scaling between peak flows and basin area for

three States in the U.S. These states have been subdivided in smaller regions by the

United Sates Geological Survey (USGS) and the flood generating mechanisms in each

region has been investigated and documented by the USGS. Let us consider the cases of

New Mexico and Utah to illustrate the difference in scaling exponents from region to

region and for comparing our results with those of Gupta and Dawdy (1995).

Region 14 is the Upper Colorado Region which includes parts of Arizona, Colorado,

New Mexico, Utah, and Wyoming. Our analysis shows a scaling exponent of 0.60 for

region 14. Gupta et al. (1995) analyzed the peak flows in 5 subregions of Utah (as

defined by USGS) and found that for the subregions where snowmelt generated floods,
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the exponents showed little variability with return period. For a flow with return period

of 25 years (close to our average record of peak annual flows), they found exponents of

0.87, 0.73, 0.27, 0.68 and 0.37 in the 5 subregions. The average value of 0.58 is close to our

result of 0.60 for the whole region 14.

Table 5.2: Result of moment scaling analysis

Region Scaling exponent of

moment order = 1

Region 01 0.80

Region 02 0.84

Region 03 0.58

Region 04 0.68

Region 05 0.71

Region 06 0.73

Region 07 0.57

Region 08 0.58

Region 09 0.61

Region 10 0.62

Region 11 0.45

Region 12 0.33

Region 13 0.86

Region 14 0.60

Region 15 0.55
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Next, we focus on the scaling of peak flows in hydrologic unit 1 which is the New

England region. Figure 5.4 shows the scaling of moments in hydrologic unit 1. The

scaling exponent of the first moment of annual peak flow with drainage area is 0.8. Let

us compare this exponent with the results from quantile regression method of USGS. In

this method the USGS divides each state into homogeneous regions and each flow

quantile is regressed against a set of basin descriptors which include watershed and

climatic characteristics (for example, basin slope, precipitation of certain duration for

various recurrence intervals, channel length etc). USGS calls these basin descriptors as

the explanatory basin variables. Drainage area is the most important and some time, the

only explanatory variable. For example, USGS uses the following equations for

Merrimack River basin in Eastern Massachusetts: Q25 = 96.7 lA0 651 and

Q100 = 143.1A. 63 s, where Q25 is the peak discharge with recurrence interval of 25 years,

Q100 is the peak discharge with recurrence interval of 100 years and A is the drainage

area (Jennings et al., 1994). In table 5.3, we list the exponents of Q25 with drainage area

for different basins in New England as reported by USGS (Jennings et al., 1994).

Table 5.3: Scaling exponents from USGS defined basins in New England

Basin/State Valid for Scaling exponent

Connecticut Drainage area >100 mi2 0.87

Eastern Massachusetts Drainage area < 260 mi2 0.65

Central Massachusetts Drainage area < 260 mi2  0.78

Western Massachusetts Drainage area < 260 mi2  0.97

Maine 0.92
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It has been argued that the first moment of the peak annual flows and their coefficient

of variation are the two most important statistical descriptors of floods. We also

investigated the relation between coefficient of variation of peak annual flows with

drainage area. As discussed earlier, Smith (1992) had an interesting observation about

the non-monotonic variation of CV with basin area. Bloschl and Sivapalan (1997)

investigated process controls on CV of peak flows with basin size for 489 catchments in

Austria. Robinson and Sivapalan (1997a) refer to the work of Bloschl and Sivapalan

(1997) and comment that: "In view of the large amount of scatter in the relationship

between CV[Q] and catchment area A, one may choose to remain skeptical of Gupta et

al.'s (1994) contention of a systematic relationship between CV[Q] and basin area A."

Bloschl and Sivapalan et al. (1997) concluded that the behavior of CV should be

explained by both rainfall and basin characteristics.

The results of our analysis for CV are shown in: figure 5.10 which shows CV of peak

flow vs. basin area for all data; figure 5.11(a) which shows CV vs. area for hydrologic

units 1-6; figure 5.11(b) which shows CV vs. area for hydrologic units 7-12; figure 5.11(c)

which shows CV vs. area for hydrologic units 13-15; and figure 5.12 which shows the CV

against peak flow/area. It is clear that a large scatter is present in all the plots. These

figures show that CV vs. area plots do not (necessarily) show the type of non-monotonic

behavior as Smith (1992) found in Appalachian basins. Form figures 5.11(a), 5.11(b) and

5.11(c), we can see that in some regions (e.g., 1, 2, 3, 7) the CV has a maximum around an

area of 100 mi 2. This is different from the maximum of CV at 20 mi2 which Smith (1992)

and Bloschl and Sivapalan (1997) found. Large areas (larger than 1000 mi 2) tend to have

low values of CV; intermediate areas (100-1000 mi 2) show a large dispersion of CV. Small
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areas (less than 100 mi2) tend to have low CV for most regions but not for all. Gupta and

Dawdy (1995) have suggested that behavior of flood exponents in small basins is

determined by basin response rather than precipitation input.

5.5 Relation Between Scaling of IDF and Scaling of Flows

We started with the objective of developing a unified and consistent framework for

scaling of rainfall, IDFs and floods. In chapter 4 we showed how the scaling of the IDF

curves is related to the scaling exhibited by rainfall.

We use a modified form of the probabilistic rational formula to study the dependence of

flows on rainfall intensity, duration and the time scales of flows. The rational formula

can be written as:

Q = cIA (5.1)

Where c is a runoff coefficient, I is the rainfall intensity in space (which can be obtained

by point IDF and ARF) and A is the drainage area. In section 2.3 we discussed that

Pilgrim (1982) showed by data analysis that the loss (inverse of runoff coefficient) does

not change with drainage area.

From the IDF analysis we can write

I oc D~' (5.2)
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where D is the duration which is a function of the drainage area and I is the intensity for

the area A. We will discuss more about the approaches to estimate the areal IDF later.

For basins larger than 50 mi2, overland flow time is dominated by the channel travel

time. Therefore to find the response time of the basin, we need to find the channel travel

time as a function of basin area. The travel time in the main channel of length L is given

by,

D L d1
f V(1)

(5.3)

where V(l) is the celerity in the channel at length 1. the length of the main channel is

given by Hack's law, that is,

(5.4)

where k, is a constant and depends on the units used.

Bras (1990, p588 ) has given relationships between velocity and discharge as,

V = KQm  (5.5)

where m is an exponent the value of which varies from 0.1 for semi-arid regions to 0.34

otherwise.
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Since we have

d
Q(l I A)=A 1 2Q(A 11 2 ,1) (5.6)

V(l) =l 2mV(1) (5.7)

Substitute (5.8) into (5.3) to get

D =- -±,;- (5.8)
v(1) 0 2

Solving (5.9) gives

D x A2-" (5.9)

Using (5.10) we can go from a point IDF which is a function of D and return period T, to

the areal IDF which is a function of area A, D and T.

In chapter 4, we discussed an approach to estimate the areal IDF scaling. There we

discussed that if rainfall scaling is isotropic in space-time then the same procedure can

be used to get the scaling for areal IDFs as we used for scaling of temporal rainfall. This

method assumes that m = 0 in (5.9). If celerity is not constant, i.e., m # 0, then we can

convert the point IDF to areal IDF for the duration obtained from (5.9) using appropriate

ARF values. One we have the spatial IDF then we can assume that the flow is also given

by the same A and T as that of rain in space and time and use (5.1) to estimate the flow.
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Figure 5.1 Hydrologic Units for the U.S.
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Figure 5.2. Location of selected stream flow gages in New England region.
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CHAPTER 6

Conclusion

This thesis has investigated the scaling of peak flows and its relation with the scaling of

rainfall and the IDFs. We have used a two step approach. In the first step, we have

related the scaling behavior of rainfall to the scaling of the IDFs and in the second step,

we have developed a model to explain the scaling of peak flows from the scaling of

IDFs. We have validated both scaling models by extensive data analysis. Our main

findings are as follows.

Scaling of Temporal Rainfall

Data analysis of a 40-year hourly time series from Hartford, Connecticut, showed that

rainfall exhibits multifractal scaling behavior between 2 hours and 4 days. Box counting

analysis of rainfall time series showed how the series deviates from the multifractal

behavior after 4 days. Similar conflicting evidence has been reported by others (Olsson

1995, Schmitt 1998). In particular we have confirmed the observation of Schmitt et al.

(1998) that the dry duration distribution is not consistent with a multifractal model over

all durations. We have found that a reasonable model for dry duration is a mixed

exponential model. We found the fit of this model to be good for both the annual and

the seasonal rainfall. Based on this model, a stochastic approach to estimate critical dry

duration is recommended.
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The moment scaling analysis of temporal rainfall supports the multifractality of rainfall

from 8 hours to 128 hours. This is consistent with the limits of scaling indicated by the

spectral analysis.

Scaling of the IDF Curves

We have used the Hartford rainfall time series to confirm the observation (Burlando,

1996; Menabde, 1999) that the IDFs at a point follow simple scaling in the range of

durations for which rainfall itself is multifractal. We have used the theory of Veneziano

and Furcolo (1999) to obtain the scaling exponents of the IDFs from the multifractal

parameters of rainfall and compared these exponents with the actual behavior of the

empirical IDF curves. The theory was verified to hold for both large and small durations

and for all seasons.

The confirmation of scaling in return period T could not be made conclusively, because

the scaling exponent requires accurate estimation of high-order rainfall moments.

We have made a limited extension of the above analysis of temporal rainfall and IDF to

space-time by averaging rainfall from rain gage locations near Hartford. Ideally, a radar

rainfall data set with fine spatial and temporal resolution should be used for space-time

analysis or rainfall. We find that the scaling holds for the space-time rainfall and spatial

IDFs.

Veneziano and Furcolo (2000) have argued that if rainfall in spade-time is a locally

stationary and homogeneous process with isotropic multifractality, then it could be
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hypothesized that the scaling of IDFs in space is the same as the scaling of IDFs at a

point; therefore, one could obtain the scaling parameters of spatial IDFs from the

temporal time series. This is an issue which deserves further research .

We pooled the rainfall data from the 5 available gages into one long series and derived

ARFs corresponding to different durations and return periods. As discussed in section

4.5, these results are only valid for the duration corresponding to the response time of

the basin under consideration.

Scaling of Peak Flows

We have performed moment scaling analysis of peak flows for more than 1000 stations

distributed across the U.S. and grouped by the hydrologic units, as defined by the USGS.

We found that peak flows exhibit both simple and multiscaling with basin area. Most of

the deviations from the simple scaling were mild and the non-linearity was mostly

concave which indicated a decrease in variability with scale. For simple scaling, the

exponent of peak flow varies from 0.33 to 0.86, most likely due to climatic differences

(Pitlick, 1994; Gupta et al., 1995).

In order to connect the scaling of peak flows with the scaling of IDFs, we developed a

simple model which expresses the scaling exponent of the peak flow in terms of: (1) the

scaling exponent of the spatial IDFs, and (2) an exponent which describes the basin

response and is composed of how the channel length and basin area are related and the

celerity in the channel. This allows us to systematically study the relative effect of the

spatial rainfall and basin response.
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Other factors, such as physiographic characteristics of the basin and climatic features

such as the role and contribution of snowmelt and baseflow, which are not represented

in our simple model, should also be considered. Further work needs to be done in this

direction. The USGS uses a quantile regression method with a number of descriptors

(such as basin area, precipitation, basin topography) to estimate the flood for a given

return period. Scaling studies can provide a sound basis for such analysis. Sivapalan et

al. (1987, 1997) have used numerical-physical models to explain the underlying physical

mechanisms controlling flood frequency curves. One can use the understanding of the

physical phenomenon with the scaling observation to improve the extrapolation of

frequency of extreme events. This would also be an important direction because of the

practical significance of such results for regional flood frequency analysis. Gupta et al.

(1994, 1996) have tried to address the issue and concluded that: (1) rainfall generated

floods show multiscaling and (2) peak flow scaling in small basins is controlled by the

basin characteristics. Further in-depth analysis, using a dense network of gages and

stream flow from nested basins, combined with information about the basin

physiographic characteristics (such as those reported by the USGS) is needed to confirm

if and how the flood generating mechanism control the simple or multiscaling behavior

of flood peaks.
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CHAPTER 7

Review of Flood Damage Mitigation Policies

7.1 Flood Damage Mitigation through Effective Public Policies -

Introduction and Issues

The objective of this chapter is to review the formulation of effective polices for

mitigating flood damage in the United States. Mitigation has been defined as any action

taken to permanently eliminate or reduce the long-term risk to human life and property

that can be caused by natural and technological hazards (Interagency Flood

Management Review Committee, 1994). Flood mitigation measures can be classified

from the standpoints of adjustment to natural hazards, flood damage prevention, flood

damage reduction and flood policy making (Yevjevich, 1994). The main branches of

flood control measures include structural flood defense and regulatory measures.

Structural flood control is achieved by building levees, flood walls and dams.

Regulatory approaches include floodplain management, flood insurance, better warning

systems and educating the public about the risk. The limitations of hazard reduction

through structural protection were well recognized by 1950. Experience with the levees

only policy in the U.S. has shown that such policies prove to be unsuccessful due to a

number of reasons. Structural measures are not only expensive but they also alter the

floodplain and may have a negative impact on the environment. By preventing small

and medium-sized floods, dams and levees convey a false sense of security to the public.
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This, in turn, leads to increased urbanization of the floodplain resulting in increased

exposure of the region to flood risk.

Non-structural or regulatory measures, such as floodplain management and flood

insurance, were introduced by the Government in the 1960s after their successful use at

a number of locations. Regulatory measures include both cooperative and mandated

programs. Programs can be cooperative, based on agreements and sharing of

responsibilities; mandated where a community is coerced or required to implement a

given program; or a combination of the mandated and cooperative. Financial policies

include both positive and negative incentives through subsidies, loans and differential

tax systems and can be formulated to encourage appropriate levels of development in

some areas and discourage investment in hazardous areas. Some policies may encourage

or require insurance against flood. National Flood Insurance Program (NFIP) began as a

cooperative program where the federal government subsidized flood insurance for

homeowners in communities that adopted floodplain management regulations.

However, due to minimal participation, the National Flood Insurance program was

changed from a cooperative to a mandated approach in 1973. Other non-structural flood

mitigation programs include public loss recovery program, relocation and direct public

acquisition.

Over the years, a number of studies and task forces have presented the results of their

findings and recommended actions (see for example, Federal Interagency Floodplain

Management Task Force,1992; Interagency Floodplain Management Review Committee,

1994). The regulatory measures have received considerable attention from such studies.
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However, to the extent that the non-structural policies have been adopted and

implemented by the government, these policies have not been able to meet their

expected goals. In this chapter, we look at the issues associated with flood mitigation

policy, evolution of the policy with time, analyze the rationale behind different

mitigation measures and identify the barriers to effective implementation of flood

mitigation policies. We attempt to answer questions such as:

" How have the flood damage mitigation policies evolved in the U.S. ?

" What is the role of politics in flood mitigation policies?

" How do the regulating agencies assess risk?

* How does the public perceive the risk?

* How is disaster assistance carried out?

* Who pays for the damages incurred - individuals, state government, federal

government or the taxpayers?

7.2 Literature Review of Policies for Flood Mitigation

This section summarizes the evolution of policies dealing with floods in the United

States. The changing socioeconomic and demographic conditions in the U. S. have

resulted in an increase in both the damages from floods and the accompanying

protection costs. The U. S. has witnessed an event-driven flood policy where large and

damaging flood events resulted in "windows of opportunity", the politically active

period immediately after an event with the heightened awareness among public and
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pressure on Congress to act. Listed below are some of the main timelines in the history

of U. S. flood policy making:

1861 Levees only policy - funds provided for the Army Corps of Engineers.

1879 Mississippi River Commission.

1927 Great Flood of 1927.

1933 Tennessee Valley Authority created.

1938 Flood Control Act; National Crop Insurance Program.

1950 Disaster Relief Act of 1950 marked the start of federal involvement in disasters.

President could declare disaster and provide assistance to the communities in

disaster zones.

1959 Report submitted to the government: A Program for Reducing the National

Flood Damage Potential.

1965 Establishment of the Bureau of the Budget Task Force on Federal Flood Control

Policy.

1966 Report of the Task Force: House Document 465 cites numerous problems with

the past approach of levees and advocates a broader perspective on flood control

within the context of floodplain development and use.

1967 National Flood Insurance Program (NFIP) set up by Congress; NFIP provided

relief from the impacts of flood damages in the form of federally subsidized

flood insurance to participating communities, contingent on flood loss reduction

measures embodied in local floodplain regulations.

1970 Disaster Assistance Act.

1974 Disaster Relief Amendment.
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1979 Federal Emergency Management Agency (FEMA) was set up.

1988 Stafford Act - constituted principal federal authority for providing disaster relief.

1992 Federal Interagency Floodplain Management Task Force Report and

Recommendations.

1993 The Great Flood of 1993.

1994 National Flood Insurance Reform Act - tightened flood insurance purchase

requirements and expanded mitigation incentives.

In response to the recurrent flooding in the Mississippi Valley, Congress created the

Mississippi River Commission in 1879. The Commission was to survey the Mississippi

and its tributaries, formulate plans for flood control, and report on the practicality and

costs of various alternative courses of action. The commission agreed on the levees only

approach to control flooding on the Lower Mississippi.

The Great Flood of 1927 showed the vulnerability of the levees-only policy. Changnon

(1996) reports that "much of the levee system along the Mississippi failed, and the flood

torrent fanned out over the flat delta." In the 1940s, a number of experts voiced concern

about the prevailing levees-only policy. White (1942) advocated "adjusting human

occupancy to the flood plain environment so as to utilize most effectively the natural

resources of the flood plain, and simultaneously applying practicable measures to

minimize the detrimental impacts of floods". White (1942) characterized the prevailing

national policy as "essentially one of protecting the occupants of floodplains against

floods, of aiding them when they suffer flood losses, and of encouraging more intensive
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use of floodplains". Interestingly, even after 60 years, the national policy still faces the

same problems.

By the mid 1950s national flood damage potential was increasing at a faster rate than it

could be controlled under existing flood protection construction programs (Changnon,

1996). In 1933 Congress created Tennessee Valley Authority (TVA), a federal regional

agency to provide a sound technical basis for flood damage prevention planning.

In 1965 the Bureau of the Budget Task Force on Federal Flood Control Policy was

established under the leadership of Gilbert White. A broader perspective on flood

control within the context of floodplain development and use provided the groundwork

for redirecting the federal involvement from structural control to a more comprehensive

approach for a flood plain management, which included establishment of the National

Flood Insurance Program (NFIP) and passage of the National Environmental Policy Act

(NEPA) (Changnon, 1996). Congress created the NFIP in 1968 in response to increasing

flood losses and escalating costs to the general taxpayer for disaster relief. NFIP

represents a policy of distributing losses among potential flood victims rather than

among all taxpayers, with additional goal of reducing vulnerability through land use

management. The standards published by the NFIP are designed to supplement the

federal government's program of structural flood works. The NFIP includes three main

components: risk identification, hazard mitigation and insurance. Effective integration of

these three components requires cooperation between the federal government, state and

local governments, and the private property insurance industry. Risk identification is

discussed in the next section (FEMA web site).
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Since flood hazards are considered uninsurable by private insurers, FEMA provides

direct insurance against flood losses through the National Flood Insurance Program

(NFIP). The NFIP requires flood insurance and imposes hazard mitigation requirements

on all properties with federally insured mortgages in flood-prone areas. Flood insurance

is covered in detail in the next chapter. The NFIP is funded through the National Flood

Insurance Fund, which was established in the U.S. Treasury by the National Flood

Insurance Act (FIA) of 1968. The collected premiums are deposited into the fund and the

fund pays for the expenses. The NFIP also has the authority to borrow up to $1 billion

from the Treasury. In 1981, the administrator of the FIA established a goal of making the

program self-supporting for the average historical loss year by 1988. The National Flood

Insurance Program has been operating at a loss since 1993. A major issue for the NFIP is

to deal with those existing structures that are subject to repeated damages. Issues with

NFIP are discussed again in the next chapter in the context of insurance as a tool for

flood disaster mitigation policy (Kunreuther et al., 1998).

FEMA makes the Flood Mitigation Assistance program (FMA) available to a State on an

annual basis. The FMA program provides grants to communities for projects that reduce

the risk of flood damage to structures that have flood insurance coverage. This funding

is available for mitigation planning and implementation of mitigation measures only.

The State is the administrator of the FMA program and is responsible for selecting

projects for funding from the applicants submitted by all communities within the State.

The State then forwards selected applications to FEMA for an eligibility determination.

-176-



Although individuals cannot apply directly for FMA funds, their local government may

submit an application on their behalf.

Since 1968, government agencies have been working on developing strategies and tools

to guide federal, state, and local decision makers in implementing a unified national

program for floodplain management. A Federal Interagency Floodplain Management

Task Force (FIFM) prepared reports in 1976 with updates in 1979 and 1986. The 1986

report had two main ideas for floodplain management: to reduce loss of life and

property, and to reduce the loss of beneficial sources from unwise land use. An excerpt

from the report lists the four primary strategies to achieve the two floodplain

management goals:

Strategy 1: Modify Susceptibility to Flood Damage and Disruption

1. Floodplain regulations

2. Development and redevelopment policies

3. Disaster preparedness

4. Disaster assistance

5. Floodproofing

6. Flood forecasting and warning systems and emergency plans

Strategy 2: Modify Flooding

1. Dams and reservoirs

2. Dikes, levees, and floodwalls

3. Channel alterations

4. High flow diversions

5. Land treatment measures
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6. On-site detention measures

Strategy 3: Modify the Impact of Flooding on Individuals and the Community

1. Information and education

2. Flood insurance

3. Tax adjustments

4. Flood emergency measures

5. Post-flood recovery

Strategy 4: Restore and Preserve the Natural and Cultural Resources of Floodplains

1. Flood, wetland, coastal barrier resources regulations

2. Development and redevelopment policies

3. Information and education

4. Tax adjustments

Another report related to floodplains damage mitigation was published by the Federal

Interagency Floodplain Management Task Force in 1992. This report had a number of

important findings which included: increasing individual risk awareness, need for

enhanced technology, need for interdisciplinary approaches, role of disaster assistance

and a need for setting up national goals. According to the recommendation of the FIFM

report, national assessment of the floodplains was initiated and a group of specialists

evaluated the effectiveness of floodplain management. Changnon (1996, p259-260) has

listed the key findings as:

* Individual Risk Awareness Although substantial progress has been made in

increasing institutional awareness of flood risk, individual awareness falls far
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short of what is needed, resulting in unwise use and development of flood

hazard areas.

" Migration to Water People are attracted to riverine and coastal environments but

not usually due to economic necessity. In recent decades, the annual growth rate

in these areas has greatly exceeded that of the nation as a whole.

" Flood plain Losses Despite attempts to cope with the problem, the large-scale

development and modification of riverine and coastal floodplains has resulted in

increasing damages and loss of floodplain resources.

" Short-term Economic Returns In many instances, private interests develop land

to maximize economic return without regard to long-term economic and natural

resource losses. This increases public expenditures for relief, recovery, and

corrective actions.

" Enhanced Knowledge and Technology Institutions and individuals that deal

with floodplain problems require a broad range of information, a variety of

technologies to deal with emerging problems, and standards to which they can

refer for guidance. Research enhances our knowledge about these areas.

* National Flood Protection Standard Protection from the effects of greater, less

frequent flooding is still needed in areas where such flooding will cause

unacceptable or catastrophic damages.

" Limited Governmental Capabilities Many states and communities lack the full

resources necessary to bring about comprehensive local action to mitigate flood
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problems without federal support. Local governments are necessary partners to

any successful solution.

" Need for Interdisciplinary Approaches Plans to solve flood problems have to

encompass the entire hydrologic unit and be part of a broader water resources

management program. Training in a variety of disciplines is required to devise

and carry out mitigation strategies.

" Application of Measures The measures implemented locally typically involve

only floodplain regulations (to meet the requirement of NFIP and state

programs) and eligibility for the individuals to purchase insurance.

Communities typically have not implemented other floodplain management

measures.

" Effectiveness of Mitigation Measures Structural flood control measures have

been effective in reducing economic losses. The application of additional

structural measures is limited because of economic and environmental

considerations. Land use regulations required by some federal programs and

implemented by state and local governments have reduced the rate of floodplain

development. Compliance with regulatory controls is a significant problem. New

technologies and techniques associated with risk management, forecasting,

warning, and construction practices have substantially improved these activities.

The potential of NFIP has not been realized: less than 20 percent of floodplain

residents have insurance.
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" Role of Disaster Assistance Liberal federal assistance in post-flood relief and

recovery has reinforced expectations of government aid when flood disasters

occur. This view has resulted in limited mitigation planning and actions by

communities and individuals.

* National Goals and Resources Despite significant progress, the United States

still lacks a truly unified program for floodplain management. Ambiguity in

national goals has hindered the effective employment of limited financial and

human resources.

The role of disaster assistance merits further comments and discussion as we believe

that this is one of the most important issue in managing flood mitigation. As the report

pointed out above, if the state and local governments believe that the federal

government will meet their needs in every disaster, there is very little incentive to spend

scarce state and local resources on disaster preparedness, mitigation, response and

recovery. This has the effect of raising the cost of disaster to federal taxpayers. People

are encouraged to take risks which they otherwise would not take. Due to the attention

which the disasters get from media and politicians, the decisions for disaster assistance

in the past have been political as well. This undermines the very idea of effective

disaster mitigation strategies recommended by the experts. Congress provides

additional benefits to disaster victims through the federal tax code. Businesses in

particular may write off many kinds of uninsured expenses involved in restoring

property to predisaster condition (Kunreuther et al., 1998).
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The Great Flood of 1993 flooded 20.1 million acres of land and caused 12.7 billion dollars

damage. Due to the heavy damages, 532 counties were declared to be disaster areas by

the President. The President also issued a statement that described the "Cost-Share

Adjustment for Midwest Flood Recovery." It led the president to change the

reimbursement of eligible public assistance disaster costs from the 75 percent federal/25

percent nonfederal to 90 percent federal/10 percent nonfederal. With the passage of the

Hazard Mitigation and Relocation Assistance Act of 1993, the funding for hazard

mitigation was increased. Under the new legislation, the federal government could fund

up to 75 percent of the eligible costs of a project, a change from 50-50 cost-share formula.

The funds which were made available were mostly used for buying out flood damaged

property from willing sellers. The act also made clear the condition for such buyouts:

complete removal of flood-prone structures and the dedication of the purchased land

"in perpetuity for a use that is compatible with open space, recreational, or wetlands

management practices." More than 20,000 people agreed to sell their homes to the

government and move to higher ground.

The Disaster Relief Fund of the Federal Emergency Management Agency (FEMA) is the

major source of federal disaster recovery assistance to state and local governments. To

replenish the fund, FEMA requests annual appropriations from Congress that are based

on an average of annual fund expenditures over the previous 10 years. When incurred

costs rise above the average, FEMA relies on supplementary financial allocations. Flood

aid is distributed by FEMA under the Stafford Disaster Relief and Emergency Assistance

Act of 1974, amended in 1988. The most typical form of federal disaster assistance is a
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loan that must be paid back with interest and the average "Individual and Family Grant"

payment is limited to US$2500.

The National Flood Insurance Reform Act of 1994 introduced major changes to the flood

policy of the United States. One of the provisions of the Act was the establishment of the

Technical Mapping Advisory Council to advise FEMA on the accuracy and quality of

the Flood Insurance Rate Maps (FRIM). Part of the 1968 National Flood Insurance Act

was repealed and replaced by a new National Flood Mitigation Fund into which $20

million will be transferred annually from the National Flood Insurance Fund. The

mitigation fund is intended to provide grants to states and local jurisdictions, on a 75/25

percent share basis, for urban planning and for the implementation of longer-term

projects such as relocation, property buy-outs, floor elevation etc. The 1994 Act also

required lending institutions to complete a "Standard Flood Hazard Determination

Form" for every loan secured by improved real estate. The purpose was to ensure that

legally required flood insurance is actually bought. For existing loans, and where

borrowers are not carrying flood insurance, lenders are directed to notify such

borrowers that insurance is mandatory. If the borrowers do not then purchase insurance,

the Act directs the lenders to purchase it on the borrower's behalf and charge

appropriate premium and fees. To prevent opportunistic buying of policies, the Federal

Insurance Agency (FIA) introduced a 30-day waiting period for flood insurance cover to

take effect under the Standard Flood Insurance Policy (Platt, 1999).

In January 1994, the Executive Office of the President assigned to a federal Interagency

Floodplain Management Review Committee the mission of delineating major causes and
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consequences of the 1993 Midwest flooding and evaluating the performance of existing

floodplain management. The Interagency Floodplain Management Review Committee

Report was based on research and interaction with the stakeholders such as federal,

state and local officials, businesses and interest groups. The report emphasized that the

support for those in floodplain should be conditioned on their participation in self-help

mitigation programs such as flood insurance. The report also pointed out that the state

and local governments must have a fiscal stake in floodplain management. The federal

government, on the other hand, has ignored these recommendations and has continued

helping disaster victims unconditionally. President Clinton has nearly doubled the

number of official disaster declarations in recent years, making federal aid available for

even modest weather events, such as eastern Massachusetts flooding in 1998 that drew

$12.5 million in aid (Boston Globe, September 20 1999).

During the last decade, FEMA introduced "Project Impact" which is a pre-emptive strike

to remove homes from flood plains and reduce the risk of future flood loss. Project

Impact encourages communities, businesses and individuals to take personal

responsibility for preventing disaster losses before they occur (Platt, 1999; FEMA web

site). Project impact has contributed to the buy out payments for flood prone properties.

Between 1978 and January 2000, the federally subsidized national flood insurance

program paid out $3.5 billion for 87,500 buildings that had been flooded more than once.

The National Flood Insurance Program has been operating at a loss since 1993. About 30

percent of the 4.1 million insured properties have subsidized premiums, costing just

one-third of the actuarial premium, which is the premium based on the calculated risk.
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In 1999 Congress, supported by the Federal Emergency Management Agency, attempted

to tackle the problem of repetitive flood loss buildings insured under the National Flood

Insurance Program through legislation (FEMA web site; The Times-Picayune, August 9,

1999). House Resolution 2728 was introduced in Congress which would authorize an

additional $400 million during the next four years for FEMA's current mitigation grant

program. This program would offer money to relocate, elevate or flood-proof properties

that are at the greatest risk from flooding. The increased funding proposed in HR 2728

would be an added investment to help FEMA get more people who have been flooded

time and time again finally out of harm's way or at least get them high and dry above

the reach of the next base flood. FEMA estimates that this investment would save almost

$80 million each year in flood insurance claims and pay for itself upon completion of the

effort in five or six years.

7.3 Flood Hazard Assessment

Flood hazard assessment is carried out by hazard mapping. Hazard maps are used to

show areas of relative safety and degrees of risk. An important part of the risk

assessment of an area includes details on the frequency and expected intensity of flood

events. Hazard maps form the basis of sound land use planning and insurance rates.

In the U.S. the Federal Emergency Management Agency (FEMA), as the administrator of

the National Flood Insurance Program (NFIP), is responsible for mapping flood hazards.

With the help of the U. S. Army Corps of Engineers and engineering firms, FEMA has

developed floodplain hazard maps throughout the United States that designate the 100-

year floodplain. These maps show where the flood risks are based on local hydrology,
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topology, precipitation, flood protection measures such as levees, and other scientific

data. Due to land development, variable weather patterns, and other factors, these maps

continually change. A Flood Insurance Rate Map (FIRM) is the official map of a

community on which Federal Emergency Management Agency has delineated both the

special flood hazard areas and the flood risk premium zones applicable to the

community. Communities are mapped by the Army Corps of Engineers. Special Flood

Hazard Areas, SFHA's, a darkly shaded area on a FIRM or Flood Hazard Boundary

Map, FHBM, identify an area with a one percent chance of being flooded in any given

year; hence the property is in the 100-year floodplain. Any land area susceptible to being

inundated by flood waters from any source, is identified as a floodplain (FEMA web

site).

FEMA determines the flood hazard areas by using statistical analyses of records of river

flow, storm tides, and rainfall; information obtained through consultation with the

community; floodplain topographic surveys; and hydrologic and hydraulic analyses.

The Flood Insurance Study (FIS) covers those areas subject to flooding from rivers and

streams, along coastal areas and lake shores, or shallow flooding areas. In 1997, FEMA

introduced its Map Modernization Plan, with the goal of modernizing the flood hazard

mapping effort. The basic components of this plan include the improvement of map

accuracy and completeness, map utility, map production, and public awareness and

customer service.

The hazard maps are prepared on the basis of hydrologic modeling and flood frequency

analysis. The lumped hydrologic models (e.g. HEC-1 and HEC-2) developed by the
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U. S. Army Corps of Engineers are the most commonly used models. Analysis begins

with the rainfall record for the local area and then simulates the likely discharge that

will result from storms of various probabilities. The simulated discharge is routed

through the channels and floodplains to estimate flood depth at various locations (Deyle

et al., 1998).

The determination of hazardous areas also suffers from the other inherent shortcomings

associated with lumped hydrologic modeling and flood frequency analysis. Earlier

chapters have discussed the limitations of flood frequency analysis in detail and

emphasized the need for better models and understanding for extreme hydrologic

events. Scaling approach was presented as an alternative to conventional flood

frequency. The statistical analysis currently used by FEMA to assess limits of flood

hazard areas is sensitive to the data size and representativeness. It is rare to have

sufficiently lengthy records to determine accurately the return period for extreme

events. As more data becomes available it becomes part of the record and as

subsequently the results of the analysis will also change - this is particularly true for

large flood events. However, this is considered to be the best index of flood damage risk

and continued to be used. Another important factor in risk estimation is the level of

government making the determination of the risk. The risk of flooding for a state is

much greater than that for individual regions in the state. Similarly, the risk and the

uncertainty becomes even higher at the federal level.

A major problem with traditional flood hazard mapping is the fact that it is based on

existing upstream conditions in the watershed. The flood discharge depends on the
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upstream land use conditions. In case of an upstream development, the amount of

runoff in the watershed can increase beyond the prior estimation. Such regions require

frequent updating of flood hazard maps. Some governments have tackled this problem

by assuming complete development of each watershed for its models.

It is important to evaluate the significance of the 100-year flood event, the procedure for

estimating the 100-year flood and the accuracy of those procedures. This is important

because the limits of a 100-year map affect the development and infrastructure in the

floodplain. It is also critical to evaluate how the public perceives the risk associated with

a 100-year event and the limits prescribed by the hazard map. There are a number of

misconceptions associated with the flood frequency and the 100-year flood. Hazard

maps have a psychological effect on the risk perception of individuals. It is important to

inform the public about the real meaning of the '100-year' flood and the limitations of

the procedure by which it is estimated. For example, in Sacramento, CA, updated

FEMA hazard maps showed a tremendous expansion of the 100-year floodplain, which

created political chaos in the floodplain region. Tobin (1993) states three concepts which

the public should be aware: (1) the probability that a 100-year flood will strike a river is

the same every year, regardless of how long it has been since the last 100-year flood; (2)

it is not a certainty that the 100-year event will occur sometimes in the next 100 years; (3)

it is a virtual certainty that the defined 100-year floodplain is not the actual 100-year

floodplain.
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Friends of the river, a non-profit organization dedicated to preserving, protecting, and

restoring California's rivers, streams, and their watersheds, criticizes the current

mapping practices (http://friendsoftheriver.org):

"In many circumstances, simply because homes are no longer in the regulatory

floodplain does not mean they are no longer in danger of being flooded. The

much coveted status of being mapped outside of the regulatory floodplain

provides the legal fiction that a community or home has complete flood

protection. It lulls communities into sense of security because they could be in an

area by its geographic location, not its uncertain structural protection that

remains at risk from a foreseeable flood event."

7.4 Conclusions

This chapter has briefly presented how federal policies, programs and pronouncements

concerning flood hazard mitigation have evolved over the years. Literature review

shows that the event-driven policy for mitigating flood damage in the US has come a

long way. The focus has shifted from the levees-only policy toward non-structural

measures. Adopting non-structural measures has resulted in some improvements but

the penetration and effectiveness of these measures is still below their expected level.

The recent highly damaging, low probability flood disaster events have had a profound

effect on the policies of both the federal government and the insurance industry.

The literature review shows that various task forces, special reports and individual

researchers have pointed out a number of problems associated with current flood

mitigation policy. Similarly, solutions to those problems have also been suggested by
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multiple sources involving individual researchers and government committees etc. The

recommendations of the Interagency Floodplain Management Review Committee

Report are important for policy making. It is critical to note that the report reiterates

earlier recommendations which were neglected by the government. It is obvious that the

real problem lies with implementing the recommended policies. Without doubt, the

implementation issues are complex and governments at different levels have exhibited

reluctance to carry the burden of fiscal and political consequences of such policy

implementation. Lack of intergovernmental cooperation and coordination is a key factor

impeding progress in flood mitigation policies.

One of the most important issues is of appropriate division of fiscal and political

responsibility between the federal government and the American society. The state and

local elected officials are encouraged by the system to ask for maximum federal disaster

assistance. This brings up the question whether the national policy is a program of

grants through the federal government or whether it is primarily the responsibility of

local communities and private owners to protect themselves, with financial assistance

from the federal government when absolutely needed (Platt and Rubin, 1999)

The risk perceived by the people in a community has a large influence on the success of

any flood mitigation policies and strategies there. A variety of factors can contribute to

the formation of risk perception, including the availability of information about the risk,

ability to estimate risk to personal property and life, perceived cause of flood hazard

associated with extreme hydrologic events and personal experience with flood hazards.

It is believed that people use heuristics to simplify risk assessment. Individuals have
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difficulty imagining low probability, high consequence events happening to themselves.

This may be one reason why a certain percentage of the populations has a high risk

tolerance level. Earlier sections discussed the misunderstandings associated with the

100-year flood events and the unintended effects of the 100-year flood concept. Critics

argue that by choosing the 100-year flood, FEMA increases the exposure to low

probability, high consequence floods.

Information dissemination can be used to increase awareness. FEMA has been using

various channels of information (including advertising and Internet) to provide detailed

information for both public and technical professionals. Mitigation through information,

however, is not enough because the cost of hazard mitigation and exposure is spread out

to society as a whole. Mandatory programs such as required flood insurance in high risk

areas are used to counter such attitudes.

In the next chapter, we evaluate policy options for flood hazard mitigation, discuss land

use planning and insurance policies in detail, identify the barriers to effective flood

damage policy formulation and present recommendations.
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CHAPTER 8

Recommendations for Flood Damage

Mitigation Policy Options

8.1 Policy Goals

Public policy goals for mitigating flood disaster damages involve a complex blend of

social, political, economic and psychological factors. Policy, which can be made and set

at any level of government (see figure 8.1), sets the framework within which actions are

taken. The policy process is dynamic and iterative, starting with analysis and

continuing with formulation of policy and implementation. It involves a number of

steps: problem definition, analysis of the cast of characters, bring together multiple

interest stakeholders, definition of strategy, developing alternative solutions or

strategies, determining a means of implementation, enforcement and regulation and

finally revision of the policy. Chapter 7 presented a history of the issues and discussed

the role of stakeholders and the political nature of flood policies. This chapter would

focus on policy formulation and policy implementation.
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Figure 8.1. Agencies and levels of government sharing responsibility for flood hazards.
Source: Burby (1998); Federal Emergency Management Agency.

In order to formulate effective policies for flood damage mitigation, the goals of the

desired policy should be clear. The goals of the policy serve to specify the appropriate

levels of responsibility and the appropriate relationships among public authorities

(Tobin, 1993). In general the goal of any hazard-related policy is to reduce exposure and

vulnerability in a cost-effective manner while placing the burden of recovery on those

who suffer losses from natural disasters. Any goals of reducing vulnerability to floods

has a number of options embedded in it, each of which must be considered in relation to

the nature, values and operations of the political system as well as the needs and

constraints associated with flood hazards. We would discuss the policy options for flood

damage mitigation in the next section. Then, we will focus on: (1) land use planning and

management and (2) Insurance, as the tools for mitigating flood damage. For each of

these options, we will consider the history, issues, effectiveness of the approach and the

obstacles to formulating effective policies. Finally recommendations and strategies for

implementing the land-use and insurance policies are described.
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8.2 Alternative Flood Damage Mitigation Policy Options

Evaluation of alternative flood damage mitigation policies can be carried out through a

variety of methods and approaches. A detailed evaluation of policy optoins is necessary

in order to understand their effectiveness and limitation. It should be emphasized that

comprehensive flood mitigation policy is a combination of careful planning and

implementation of a number of different policy options, not just any one option in

isolation.

Godschalk et al. (1998) have enumerated a comprehensive list of principles and criteria

for preparing and evaluating mitigation plans. The principles include clarity of purpose,

citizen participation, issue identification, policy specification, fact base, policy

integration, linkage with community development, multiple hazard scope, organization

and presentation, internal consistency, performance monitoring and implementation.

Economic criteria are often used to decide about the planning for disaster planning and

mitigation. Planning for hazard mitigation has clear benefits in terms of reduced losses,

but must be balanced against the costs of implementing and maintaining a policy. The

opportunity cost of a piece of land not being utilized must be taken into account. As

mentioned earlier, this presents a situation where an economic value has to be placed on

many intangible factors including loss of human life and social disruption. Clearly, this

is a difficult question and answer to this problem remains elusive. A common economic

based method is the benefit-cost analysis, in which all costs and benefits are evaluated in

terms of dollars and a net benefit-cost ratio is computed to determine
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whether a project should be undertaken. Usually a hydrologic-hydraulic-economic

model is used to estimate expected flood damage.

Evaluating costs and benefits of flood mitigation policies is a complex task. Not all of the

damages and costs are financial and therefore are difficult to quantify. Also, flood events

produce ripple-effects throughout the community thus increasing the variables to be

considered. To the extent possible, efforts are made to base decisions on objective criteria

and to get an objective understanding of the net benefit or loss associated with these

actions.

Another approach to evaluate the flood damage mitigation policies is the cost-

effectiveness method. Cost-effectiveness analysis evaluates how best to spend a given

amount of money to achieve a specific goal; this type of analysis does not necessarily

measure costs and benefits in terms of dollars, or any other common unit of

measurement.

In a study entitled "Report on Costs and Benefits of Natural Hazard Mitigation", the

Federal Emergency Management Agency (FEMA) used both benefit/cost analysis and

cost-effectiveness analysis because of the inherent difficulties in empirically measuring

all the disaster impacts and the corresponding value of mitigation measures (FEMA web

site). Wherever possible however, associated costs and benefits of mitigation measures

were measured in terms of dollars by FEMA. The report notes that land use planning is

generally most effective in areas that have not been developed, or where there has been

minimal investment in capital improvements. Since location is a key factor in
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determining the risks associated with natural hazards, land use plans are a valuable tool

in that they can designate low-risk uses for areas that are most vulnerable to natural

hazards impacts.

The conclusions presented at the end of chapter 7 also point out that land use planning

has the potential to be a very effective tool for mitigating flood damages in the future. It

was also discussed that flood insurance has a potential to be effective measures for flood

damage mitigation but it has not been fully utilized in the past. In the next sections we

discuss in detail the possible advantages of using land use planning and insurance and

the associated issues and concerns of the various stakeholders.

8.3 Land Use Planning

Land use planning in the floodplain encourages controlled development in flood hazard

areas through open space reservation, building restrictions and flood insurance

requirements. The basic idea is to keep the people out of the flood's way (instead of the

other way round) by discouraging development of hazardous areas or, where

development is warranted on economic grounds and little environment harm results, by

imposing special building standards that reduce vulnerability. Land use regulations

transfer much of the burden of avoiding disaster costs to the owner of the affected

property. Compared to other measures for flood mitigation, land use planning provides

a less expensive and highly effective means of controlling damages from floods.

Even though the logic of land use planning and management as a main instrument for

mitigating flood disaster is clear, there are a number of reasons why only a few regions
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have proactively implemented land use planning. Space occasionally inundated by

floods is often ideal for residential and commercial use during nonfood periods.

Floodplains provide relatively flat lands where buildings, roads and utilities can be

easily constructed.

The stakeholders in the flood disaster mitigation policy have conflicting objectives with

regard to land use planning. Accordingly, there is a conflict in public policy goals of

promoting the economically beneficial uses of land and the accompanying desire to

allow individuals free use of their property with the goal of promoting public safety and

protection against flood damages. Further complicating factors include the inaccuracy in

estimation of the risk and preparation of hazard maps, public misconception of the risk

and lack of incentive in the public for bearing higher share of the responsibility and

financial cost of the damage.

The two main types of land use measures are location and design (Burby, 1998). The

goal of the locational approach is to reduce losses in future disasters by limiting

development in hazardous areas. This approach tends to be effective in reducing losses,

preserving environmental values and providing opportunities for outdoor recreation.

Tokyo city is an example where floodplain space is utilized for parks. These gains come

at the cost of giving up some of the economic benefits offered by hazard prone land. The

goal of the design approach is safe construction in hazardous areas. This type of land

use allows economic gains to be realized, but at the cost of susceptibility to greater

damage when flood event is of a greater magnitude than the design standards employed

can resist. It is important to develop a right mix of these two land use approaches.
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Location planning includes land use regulation such as zoning and a number of

nonregulatory techniques such as buying hazardous areas and using them for

temporary activities such as recreation and locating development-inducing public

facilities and services only in areas that are relatively free of hazards.

Design and development of structures is also subject to regulatory and nonregulatory

measures. Regulatory measures includes building codes and ordinances controlling

design. Nonregulatory measures include disseminating public information and training

programs about flood-proofing design techniques and low-cost loans and other types of

subsidies for making the improved designs attractive and affordable.

It should be emphasized that land use approach is not suitable for all locations and there

are complex socioeconomic and political barriers to this approach. Later sections will

discuss these issues in detail.

Land Use Planning and Management in the United States

Land use planning and management for flood disaster management in the U.S. started

in 1930s. The Tennessee Valley Authority developed pioneering programs in floodplain

management along with other related programs in 1933. The National Flood Insurance

Program was another major step towards land use planning for flood mitigation in

combination with insurance. The Flood Disaster Protection Act of 1973 made land use

management and participation in the NFIP prerequisites for federal financial assistance

including disaster assistance. The Act required (in contrast to 'encourage' as it was

stated in the 1968 law) states or local communities as a condition of future federal
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financial assistance, to participate in the flood insurance program and to adopt adequate

flood plain ordinances with effective enforcement provisions consistent with federal

standards to reduce or avoid future losses. Until 1960s, zoning considerations did not

include hazards.

Dunham (1959) argued that floodplain zoning should be held valid to protect (1)

unwary individuals from investing or dwelling in hazardous locations, (2) riparian

landowners from higher flood levels due to ill-considered encroachment on floodplains

by their neighbors, and (3) the community from the costs of rescue and disaster

assistance (Platt, 1999). In 1972, the Massachusetts Supreme Judicial Courts in Turnpike

Reality Co. v. Town of Dedham provided a strong decision upholding a local floodplain

zoning ordinance. The court relied on the Dunham (1959) rationale mentioned above

and declared that the general necessity of flood plain zoning to reduce the damage to life

and property caused by flooding is unquestionable. During the 1970s and the 1980s,

state and local floodplain regulations were widely adopted in response to the National

Flood Insurance Program and increasing public recognition of floods. When dealing

with challenges to these laws, the courts mostly followed the Turnpike Realty rationale.

The report of the Interagency Floodplain Management Review Committee in 1994 had a

cautious view of land use control. The report stated that land use control is the sole

responsibility of state and local entities. The federal responsibility rests with providing

leadership, technical information, data and advice to assist the states.
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In the 1990s, the property rights movement and some other political movements

presented strong opposition toward governmental regulations over the use of private

land. The property rights movement has challenged public land use regulations of many

types through political action, litigation, public outreach, and, in extreme cases,

intimidation. Restrictions on building along hazardous coastal shorelines have been

particularly controversial. Property right advocates have also sought to enlarge the

scope of compensation for "regulatory takings" in many recent Supreme Court

decisions. They base their argument on the fifth amendment to the U.S. Constitution,

which states in part: "nor shall private property be taken for public use without just

compensation." Jansujwicz (1999) provides a detailed account of the backlash against

regulation by the property rights movement.

8.4 Flood Insurance

Insurance is a method for redistributing flood losses. The people at risk join forces, in

advance, with a large financial organization to spread the cash burden from one major

flood disaster over a number of years through the payment of an annual premium

(Smith, 1998). If the premiums are set at an appropriate rate, those premiums can be

used to compensate the minority who suffer loss in any given year. Due to the high

direct cost of floods, insurance is regarded as an important loss-sharing strategy.

Insurers can address the problem of the increasing economic cost of disasters through

joint efforts with other stakeholders, and through the use of strategies that combine

insurance with well-enforced building codes and land use regulations. In this section we

look at the supply and demand of insurance policies for flood damages, the effectiveness
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of the National Flood Insurance Program (NFIP) in the past, the problems and issues

surrounding NFIP, regulation of insurance and the possible future role of private

insurance companies.

Flood insurance poses some special problems for the insurance companies. The ratio of

claims to premium is unfavorable for the insurers. The setting of appropriate premium

is difficult. These problems are exacerbated by adverse selection which occurs when a

large potential loss is spread over a relatively narrow policyholder base (Smith ,1988).

Since the flood-prone area residents are more likely to buy insurance, the insurers face a

higher risk of paying large claims. Therefore, policy underwriters try to ensure that the

property they insure is spread over diverse geographical areas so that only a fraction of

the total value at risk could be destroyed by a single event.

Moral hazard, another problem faced by both the insurance and the reinsurance

industries, refers to an increase in the probability of loss caused by the behavior of the

policy holder. A usual way to deal with moral hazard is to provide deductibles and

coinsurance as part of the insurance contract. A sufficiently large deductible can act as

an incentive for the insureds to continue to behave carefully after purchasing coverage

because they will be forced to cover a significant portion of their loss themselves.

Insurance may even encourage invasion into flood-prone zones. The very availability of

flood insurance guarantees reimbursement and removes the risk of catastrophic

financial failure (Lind, 1967). The premiums should be such that the flood insurance
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costs at least as much as the average annual damage. Subsidizing the premium can make

the land use in a flood-prone area more attractive.

Reinsurance provides protection to the insurance companies against extraordinary

losses. It is important for offering insurance against natural hazards where there is a

potential for catastrophic damage. In a reinsurance contract, the reinsurer charges a

premium to indemnify another insurance company against part of the loss it may

sustain under its policies of insurance. A common type of reinsurance contract is a

treaty, a broad agreement covering some portion of a particular class of business.

Different sharing arrangements are possible between the reinsurer and the insurer:

quota share treaty, pro rata treaty or excess of loss treaty are examples of the common

treaties.

Reinsurance is a global business because of the need to spread risk and access domestic

and foreign capital markets to help cover losses. About two-thirds of all property

reinsurance placed on risks occurring in the United States is held by foreign reinsurance

companies. In the 1990s, the cost of natural disasters rose to alarming heights due to a

number of low probabilities, highly damaging events. These events exposed the

vulnerability of the financial performance of the insurance agencies. For the first time,

the risk of market failure was real. Since then the insurance and reinsurance industry

have taken steps to ensure a better response from their industry to catastrophic events.

In 1993, reinsurers renegotiated contract terms according to the reevaluation of

catastrophic exposure. Also there has been a trend of consolidation among reinsurers

which reflects a demand by ceding companies for greater reinsurance security.
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National Flood Insurance Program

The market conditions for flood insurance made it unprofitable for the private

companies to provide insurance against floods. The National Flood Insurance Program

(NFIP) was set up by Congress in 1968 to ensure the nationwide availability of insurance

for floods. The NFIP was based on cooperation between the federal government and the

private insurance industry. The insurance structure of NFIP includes two classes of

properties: those insured at full actuarial rates and those that, because of their date of

construction, are statutorily eligible to be insured at lower rates which do not reflect the

full risk to which the property is exposed. Flood Insurance Rate Map (FIRM) is used to

determine the rates. Properties built prior to the date of availability of FIRM (called pre-

FIRM structures) are insured at subsidized rates to provide incentive to local

communities to participate in the NFIP. These subsidized rates as a percentage of the

actuarial rate, have been increasing over the years. At the same time, the number of

properties requiring a subsidy has also declined from 75 percent in 1978 to 35 percent in

1997. The premium paid by this group of insureds are estimated to be about 38 percent

of the full-risk premium needed to fund the long-term expectation for losses.

In 1983, NFIP involved the private insurance companies through the Write-Your-Own-

Program (WYO), an arrangement by which the private insurers sell and service federally

underwritten flood insurance policies under their own names, retaining a percentage of

premium for administrative purposes. The responsibilities of both the insurers and the

federal government are specified in an annual contract. The companies are represented
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on the WYO Standards Committee. At present, about 92 percent of NFIP policies are

written by WYO companies (FEMA web site).

The National Flood Insurance Program's (NFIP) Community Rating System (CRS) was

implemented in 1990 as a program for recognizing and encouraging community

floodplain management activities that exceed the minimum NFIP standards. The

National Flood Insurance Reform Act of 1994 codified the Community Rating System in

the NFIP. Under the CRS, flood insurance premium rates are adjusted to reflect the

reduced flood risk resulting from community activities that meet the three goals of the

CRS: (1) reduce flood losses; (2) facilitate accurate insurance rating; and (3) promote the

awareness of flood insurance. The communities are recognized based on their

floodplain management activities. A community receives a CRS classification based on

the scores of its activities, evaluated by field verification of the activities included in the

application. There are ten CRS classes: class 1 requires the most credit points and gives

the largest premium reduction; class 10 receives no premium reduction. A community

that does not apply for the CRS or does not obtain a minimum number of credit points is

a class 10 community. About 32 percent of the CRS communities are a class 8 or better.

Now we review the financial status of NFIP. As discussed previously, the NFIP is

funded throughout the National Flood Insurance Fund. Before 1981, no action was taken

regarding the level of subsidy for existing properties in high-risk areas because the

program wanted to promote community participation. Consequently, program expenses

exceeded income. The continuing statutory requirement to subsidize certain existing

properties in high-hazard areas still makes actuarial soundness an unrealistic goal
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(Kunreuther et al., 1998). About 30 percent of the 4.1 million insured properties have

subsidized premiums, costing just one-third of the actuarial premium, which is the

premium based on the calculated risk. Until 1986, federal salaries and expenses, as well

as the costs associated with flood mapping and floodplain management, were paid by

an annual appropriation by the Congress. From 1987 to 1990, however, Congress asked

the program to pay these expenses out of premium dollars. FEMA suffered a loss of

about $350 million because it could not adjust the premium rates till 1990. Currently, a

federal policy fee of $30 is levied on most policies in order to generate the funds for

salaries, expenses and mitigation costs (Kunreuther et al., 1998).

NFIP, nevertheless, operated with a positive cash balance from 1986 to 1995. However in

the four fiscal years from 1993 through 1996, the program experienced over $3.4 billion

in losses. Since 1995, the program has started borrowing from the Treasury and the

outstanding amount in August 1999 was $541 million.

Out of the 4.1 million NFIP policies in force (PIF) currently, non-residential structures

account for only 4.3 percent of all PIF. The Interagency Floodplain Management Review

Committee Report in 1994 criticized the extent of the NFIP market penetration: "The

NFIP has not achieved the public participation needed to reach its objectives. This

situation is evidenced by the assistance provided to individuals and businesses during

the Midwest Floods ... Estimates of those covered by flood insurance nationwide range

from 20 to 30 percent of the insurable buildings in identified flood hazard areas".
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Kunreuther et al.(1998) identifies the following reasons for this low market penetration

as:

* Many floodplain residents fail to estimate the real risk of floods.

" Moral hazard plays a key role - people expect federal disaster assistance in case

of a disaster.

" Lack of information and awareness about NFIP. The insurance policies of NFIP

are not marketed aggressively.

* Lenders have not been especially zealous in requiring the purchase of flood

insurance as the law requires. The insurance NFIP policies are difficult to write.

* NFIP policies are single-peril policies and are considered more costly than other

lines of coverage.

In 1995, NFIP launched an advertising campaign to raise national awareness about flood

insurance. In the first two years of this campaign, the policy base increased five fold

more than the annual average growth.

The 1994 Reform Act was intended to address some of the factors responsible for low

market penetration of the NFIP. Some of the changes brought by the National Flood

Insurance Reform Act were presented in chapter 7. Some of the ways in which the 1994

act expands the mandatory purchase provisions include:

* The 1973 act required purchase of insurance only at loan inception. The 1994

act calls for lenders to buy flood insurance whenever it becomes known that

the property is located in the flood hazard zone.
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" It allowed the homeowners to pay for a portion of the premium each month

as part of a mortgage payment eliminates the annual temptation to drop the

coverage.

" The 1994 Reform Act provides for financial penalties for noncompliance. The

absence of real consequences for lenders not requiring flood insurance had

created a situation where the importance of flood coverage as mortgage

protection was recognized only at the time of an actual flood.

The 1994 Act also provided for additional mitigation tools and buyout options. A

"National Flood Mitigation" fund was established to provide grants to states and

municipalities for a variety of measures to address local circumstances related to serious

flood hazard. Coverage of NFIP was extended to include the additional cost needed to

meet NFIP building standards after a flood. Also statutory recognition of the

Community Rating System was made.

Issues and Problems with National Flood Insurance Program

NFIP has a complex relationship to federal disaster assistance policies. The role of

insurance industry is closely linked to the subsidy provided by the general taxpayers for

the disaster struck areas. If the subsidy is low, the burden of paying for the damage is on

those living in the hazard prone areas. The availability of federal disaster assistance is

considered to be a major disincentive for people to buy flood insurance. In chapter 7, the

recommendations of the Interagency Floodplain Management Review Committee

provide support for this view. The public perception that federal disaster assistance is

equivalent to the financial protection provided by insurance is wrong and serves as a
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deterrent to the purchase of flood insurance. Objections have been raised on the buyout

programs authorized by the Stafford Disaster Relief and Emergency Assistance Act. The

buyouts are available to all affected residents of targeted area whether they are insured

or not. If the owners assume the availability of buyouts in the event of a flood, the

incentive to purchase flood insurance is reduced considerably.

A main defect of FEMA's floodplain policy is the continuing reliance on the 100-year

flood because an increasing percentage of the annual flood damage results from very

large floods of low probability, such as the Mississippi flood of 1993. At the least, FEMA

should ensure that such exposure to risk is well known to the residents.

In theory, insurance is one of the most effective policy tools for achieving the objectives

of cost-effective risk reduction measures while placing the burden of recovery on those

who suffer losses from natural disasters. In practice, insurance has not been able to play

this role. Insurers do not charge a premium that encourage loss prevention measures

because they believe that few people would voluntarily adopt these measures based on

the small annual premium reductions in relation to the large up-front cost of investing in

these measures. Insurance is a highly regulated industry; rate changes and new policies

generally require the approval of state insurance commissioners. Premium schedules

with rate reductions for adopting certain mitigation measures require administrative

time and energy both to develop and to promote to the state insurance commissioners. If

potential policy holders do not view mitigation measures as attractive investments,

insurers who developed those premium reduction programs would be at a competitive
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disadvantage relative to those firms who did not develop such program (Kunreuther et

al., 1998).

8.5 Identification of Constraints and Barriers to Policy Making

for Flood Damage Mitigation

In this section, first we discuss the type of constraints on public policy making for flood

damage mitigation. Then, based on our discussion of land use planning and insurance

as measures of flood disaster measures, we present a list of the most important barriers

to implement the policies most likely to bring the highest benefit of flood damage

mitigation. The next section will discuss ways of dealing with these barriers.

Type of Constraints

The constraints on public policy can be categorized as:

" physical and technical;

* financial;

e legal, administrative and ownership.

Physical and technical constraints apply most directly to issues of engineering

feasibility. Site-specific studies are important and plans should be contingent upon

detailed analysis of the local environment. The problem of estimating low probability

events is one of the major technical constraint.
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Financial resources are perhaps the largest constraint on policy makers. Financial

feasibility is dependent on finding enough funds for the project - economic viability is a

separate issue which was discussed in a prior section. Usually the projects where results

are more readily visible and salient are preferred by politicians.

Questions of legality and administration also constrain the public policy. Individual

property rights can directly interfere with the effectiveness of land use planning. There

has been a hostile reaction to regulation of private property in the U.S., as witnessed in a

number of court cases. Lack of sufficient administrative workforce is an important

constraint for enforcement of regulations.

Barriers to Flood Damage Mitigation Policies

We divide the discussion on barriers to flood damage policies in three parts. Before

discussing the particular barriers applicable to land use planning and insurance policies,

we describe the broad barriers which we find are the most important.

" A need for integrated and coordinated policies at various levels of government. The

nation needs a shift from the incremental decision making of the past and pay

attention to the score of recommendations by the task forces and investigation

groups. For example, inconsistent policies have resulted in a patchwork of land use

governance. Federal efforts are limited in focus and undermine the objective of

reducing exposure to risk (e.g. by inappropriate disaster assistance).

" Governmental assumption of risk and misguided funding priorities. Current policies

place a large financial burden on taxpayers when a disaster occurs. This creates the
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classical problem of moral hazard and provides a disincentive for buying insurance

and encourages building and development hazardous areas.

e Improper use of fiscal incentives by the federal government in the past. The

presidential disaster announcement of even small disasters encourages state and

local governments to avoid responsibility of local disasters. The process of disaster

declaration is largely political. The nonfederal share of disaster assistance is only 25

percent and even this share has been waived to varying degrees in at least 15 major

disasters since 1985. Furthermore, the nonfederal share itself may be obtained from

federal sources.

e Lack of a political entity to enforce regulations. Governments at all levels have been

reluctant to act on regulations which are politically unpopular.

e Improvement of risk estimation As discussed in chapter 7, the current risk

estimation techniques suffer from a number of shortcomings. Improved risk

estimation is a critical factor in effective policy making. The recent technical

advances should be helpful in making progress in this direction.

* Lack of a clear role of private sector in mitigating flood. Both the local community

and private sector need to be engaged more actively in flood damage policies.

- A need to improve public perception of risk by education and information

dissemination. Awareness levels are still low. Advertising through the new media

can be effective.

e Failure to act regionally. Many of the improvements are only possible at the local

regional level. Unless the local communities and governments get actively involved

in flood hazard mitigation, the public policies do not have a good chance of success.
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" Inconsistent policies. One form of inconstant has taken place with policies that

promote development and policies that seek to limit exposure to risk. The second

level of inconsistency is between state and federal provisions. When federal

programs rely on incentives and inducements, there is the potential for divergent

state policies to undermine federal initiatives (May and Deyle, 1998).

* Complicated stakeholder arrangement. Different stakeholders have a difficult time

understanding each others' point of view. For instance, insurance industry and

building industry differ on important issues. The large number of government

agencies involved in flood hazard mitigation have conflicts. Property right owners

are another politically powerful group.

Barriers to Effective Land Use Planning

We have discussed the history of land use policy making in the U.S., the current status

of land use and the issues surrounding land use planning. Summarizing, the major

barriers to effective land use planning are listed below.

e Avoidance or hesitation at all levels of government to enforce effective land use

controls in areas of known hazards. The federal government depends on local

government to put hazard mitigation measures in place. However the local

governments, facing the problem of balancing desires for development against needs

for mitigation, shirks the fiscal and political burden of regulating land use in areas

subject to floods (or for that matter, other natural hazards).

* Legal constraints to land use planning. The property right groups have strong

lobbying and political power.
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* Intergovernmental relationship has been difficult. Local governments complain

about the overly prescriptive and coercive attitude of federal government. This

results in a lack of trust and divergence in policy goals.

" Uncertainty in the flood hazard maps This underscores the importance of accurate

risk mapping and the associated psychological impact on the public perception of

risk.

" Insufficient management at local levels to implement policy and ensure compliance

" Fragmentation and inconsistency of policies at various levels of government.

" Conflicts of interest between sectoral (housing, business, agriculture) and public

hazard management policies.

Barriers to Effective Insurance Policy Planning

In section 8.4, a detailed discussion was presented on the NFIP and how the private

insurance industry can play a role in the flood insurance market. Here we present the

obstacles to implementing cost-effective flood insurance policies. These obstacles can be

summarized as follows:

" Uncertainty of the risk or in other words, improving the estimate of risk. This is a

critical element for the insurance industry.

" Reliance of FEMA on the 100-year flood. This exposes large developed areas to low

probability, high consequence floods. This also has the effect of promoting

development in areas outside the 100-year floodplain as the public wrongly

perceives them to be practically risk-free.

" Property subject to repetitive damages. Such properties account for a high

percentage of claims paid by NFIP.
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" Public perception of the risk. Unless the public realizes the risk and is able to weigh

it against the benefits provided by insurance, insurance penetration will remain low.

* Misunderstanding of the capabilities of insurance industry. Other stakeholders do

not fully grasp the limitations and problems faced by the insurance industry.

" Regulation. Insurance premiums are subject to regulation by the government.

* Federal disaster assistance serves as a disincentive to purchasing insurance.

* Subsidized premium rates cost heavily and make it difficult for NFIP to sustain

itself. Subsidies partially account for the massive increase in development in hazard-

pone regions.

8.6 Policy Recommendation for Implementation

Now that we have presented the history and current conditions, defined the needed

changes, identified the impediments and suggest strategies, we present

recommendations on how to implement those strategies.

This section answers questions such as:

" What should be done to ensure that the recommended policies are implemented

successfully?

" What are the requirements for such implementation?

" Is it realistic to hope that these recommendations would be implemented?

The recommendations are divided in three parts. The first two sets of recommendations

deal with land use planning and insurance. Finally some emerging trends and ideas are
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presented. Throughout the previous and current chapter, it has been pointed out that

federal government has assumed a large portion of the natural disaster cost in the US. It

is high time for the federal government to shift the responsibility of mitigating flood

damages to the local governments and communities through land use planning,

insurance and other measures. The federal government should support the appropriate

legislative measures. According to a 1994 report of the National Academy of Sciences,

only a fraction of the mitigation measures known to be effective have been

implemented. Before we discuss specific recommendations for land use planning and

insurance, we present some broad flood disaster policy recommendations.

* Provide consistent and long-term policies at different levels of government

" Improve intergovernmental working relationship

* Reduce need for declaration by depoliticizing individual assistance

* Reduce the share of federal disaster assistance

" Support the non-federal flood mitigation

" Share decision making from the whole array of stake holders

Recommendations and Suggestions for Land Use planning

The Interagency Floodplain Management Review Committee Report (1994)

recommended improvements to the floodplain management program. To ensure a long

term, nationwide approach to floodplain management, the committee proposed

legislation to develop and fund a national floodplain management program with

principal responsibility and accountability at the state level.
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State and local governments must develop commitment to manage hazardous areas.

This will involve citizen participation. The Community Rating System of FEMA is a step

in this direction and has been fairly successful. However, for communities with

floodplains that have not been developed extensively, the Community Rating System

does not provide enough incentive for communities to begin planning before these areas

are committed irreversibly to urban development (Burby et al., 1998).

A few states have experimented with state growth management programs that feature

the formulation of integrated and internally consistent state goals and policies along

with state mandates that local governments engage in systematic processes to plan and

manage land use (Burby et al., 1998).

Burby et al. (1998) recommend the following steps for the federal government to ensure

that state and local planning and land use management include natural hazard

management considerations:

" Local preparation of floodplain management plans

" Requiring area wide hazard adjustment plans that give full consideration to land

use, not just plans for individual projects

* Increase the payoffs for planning by increasing the insurance credit given through

the Community Rating System

" In addition to flood hazard maps, provide expanded risk analysis

Recommendation on Effective Insurance Policies
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The recent developments in technology and data analysis and the recent availability of

capital market funding for supplementing traditional reinsurance, allow us to develop a

strategy in which private insurance can play a major role in encouraging cost-effective

risk reduction measures.

Obviously, improving the estimates of risk would be very valuable for the insurance

industry. The federal government can play an important role by using the existing

knowledge base and transferring that knowledge to the private-sector decisions related

to flood hazards.

An individual's perception of risk plays an important role for the individual's decision

to purchase an insurance. The public should be educated about the risk and the options

to mitigate the risk. Experience has shown that aware and informed property owners are

more likely to engage in risk reduction activities. Technologies such as Geographic

Information Systems (GIS) have greatly improved the accuracy and speed of producing

maps. Similarly, Internet has proved invaluable for spreading useful and timely

information to the public.

Providing financial incentive to buy the insurance is another way to encourage purchase

of flood insurance. The most common financial incentives include premium reductions,

lowering the deductible, changes in coinsurance schedules etc. Deductibles and

coinsurance encourage the policy holder to proactively guard oneself against minor

losses; the insurance company is spared the expense of dealing with small claims. The
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open question is: What would be the most effective ways of providing subsidies to low-

income families to encourage them to adopt cost-effective risk reduction measures?

Property owners will most likely be encouraged to implement mitigation measures if

obtaining insurance depends on verification that the property to be insured has been

built to an acceptable standard, or retrofitted to reduce the risk of property damage

(Kunreuther et al., 1998). The Federal Insurance Administration has demonstrated the

power of conditional availability as an incentive by making flood insurance under the

NFIP dependent on the participating community's adoption and enforcement of

floodplain management regulations.

Other Alternatives for Protection Against Catastrophic Losses

In order to broaden the protection against catastrophic losses, new sources of capital

from the private and public sectors could be utilized by the insurers. In the recent years,

investment banks and brokerage firms have shown considerable interest in developing

new financial instruments for protecting against natural disaster losses. Their objective is

to find ways to make investors comfortable trading new securitized instruments

covering catastrophe exposures. One example is the Act of God bonds floated by the

insurance company USAA in 1997, which provided them with protection should a major

hurricane hit Florida. Use of insurance pools has also been considered. However, there

are a number of legal and political challenges faced by such pools (Kunreuther et al.,

1998).
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Lewis and Murdock (1996) proposed that the federal government offer catastrophe

reinsurance contracts, which would be auctioned annually. The Treasury would auction

a limited number of excess-of-loss (XOL) contracts covering industry losses between $25

billion and $50billion from a single natural disaster. XOL contracts would be sold to the

highest bidder above a base reserve risk-priced price. Insurers, reinsurers, and state and

national reinsurance pools would be eligible purchasers. Half of the proceeds above the

reserve price would go into a mitigation fund and the other half to be used for payouts.

Another proposed option is for the federal government to provide reinsurance

protection to the private insurers by charging a fee for excess-loss-coverage. This allows

the government to use its resources to protect the insurers and the insurers do not have

to pay the higher-risk premium that the reinsurance market demands.
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