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ABSTRACT
We describe and evaluate two methods for device pose clas-
sification and walking speed estimation that generalize well
to new users, compared to previous work. These machine
learning based methods are designed for the general case of
a person holding a mobile device in an unknown location and
require only a single low-cost, low-power sensor: a triaxial
accelerometer. We evaluate our methods in straight-path in-
door walking experiments as well as in natural indoor walk-
ing settings. Experiments with 14 human participants to test
user generalization show that our pose classifier correctly
selects among four device poses with 94% accuracy com-
pared to 82% for previous work, and our walking speed es-
timates are within 12-15% (straight/indoor walk) of ground
truth compared to 17-22% for previous work. Implementa-
tion on a mobile phone demonstrates that both methods can
run efficiently online.
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INTRODUCTION
For mobile handheld devices to intelligently react to their
environment, they must infer user activities from raw sensor
data. We anticipate that descriptions of low-level activities,
rather than raw sensor data, will be exposed to application
developers in future mobile operating systems, much like
touch screen gestures are today. Developers will then stitch
these activities together with context, such as the user’s cal-
endar entries and friends’ locations, to yield intelligent high-
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level behavior. Inference of activity type from raw sensor
data is a prerequisite for effective context-aware behavior.

We study two “activities” in particular: the device’s position,
or pose, relative to the body, and the user’s walking speed.
Inferring the pose of the device has many uses, as Kunze et
al. [11] and Miluzzo et al. [13] have discussed. For exam-
ple, in global sensing applications (e.g., pollution monitor-
ing) knowing whether the data-collecting phone is inside a
bag or pocket is crucial for labeling the data and determin-
ing if it is worthwhile to turn on a more resource-intensive
pollution sensor. Device pose is also an important input into
other classifiers (e.g., mode of transport) as the output from
many sensors can be affected by pose. Walking speed esti-
mates have numerous applications ranging from dead reck-
oning to indoor and outdoor navigation to health monitoring.
In particular, we plan to use speed estimation to approxi-
mate people’s locations in a building as part of our on-going
work on crowd-sourced positioning systems [14]. We se-
lected these two activities because they exemplify what will
be exposed to developers, and because they can be catego-
rized using similar methods from the same sensors.

We form estimates of these two activities with closely related
methods using a single triaxial accelerometer. Previous work
on inferring these activities has tended to use more sensor
modalities and, in the case of speed estimation, to place sev-
eral sensors at fixed positions on the user’s body. While fixed
sensors are realistic in specific medical contexts, such as el-
der care support [12], we are focused on the more general
case of a person carrying a personal handheld device, such
as a mobile phone or a tablet. With this case in mind, our
experimental participants walked in a normal indoor envi-
ronment, including up and down stairs, with a mobile device
held in a variety of regular poses.

This paper presents single-sensor methods for device pose
classification and walking speed estimation that generalize
well to standard mobile phones and tablets. In particular, the
paper makes the following contributions:

• We give device pose classification and walking speed es-
timation methods that are predictive for new users, and do
not assume known sensor orientation or placement;

• Our approach, based on regularized kernel methods, can
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be efficiently implemented online; and

• Through a leave-one-participant-out generalization exper-
iment with 14 participants, we show that online pose esti-
mation accuracy was 94%, and online speed estimator had
an error of less than 12-15% compared to truth.

BACKGROUND

Pose Classification
Because the pose classification problem by definition requires
a personal mobile device to classify — a recent phenomenon
— it is a significantly newer problem than walking speed
estimation. Before this phenomenon, however, the area of
activity recognition addressed several closely related topics.
For example, Bao and Intille [2] classified physical activi-
ties from acceleration data obtained from biaxial accelerom-
eters attached to five different locations of the body. Ravi et
al. [16] compared various base-level classifiers and meta-
classifiers such as bagging or boosting methods for the ac-
tivity recognition task. These studies provide useful insight
on what acceleration signal features and learning algorithms
are useful for pose classification.

Pose classification has been studied as a prior stage of activ-
ity recognition. Some previous work used the knowledge
of the device pose to guide activity recognition. For ex-
ample, Khan et al. [10] use a cascaded classifier for their
accelerometer-based position-independent activity recogni-
tion system. They first determine whether the accelerometer
is affixed to the upper or lower half of the body, then classify
the acceleration signal separately. While binary pose classi-
fication has proved effective for activity recognition, we aim
both for a broader range of applications and for finer-grained
pose classification. Kawahara et al. [9] use heuristics to infer
sensor position, then separately determine whether a subject
is walking or running. However, their approach may not be
applicable to a wider variety of device poses.

Others have attempted device pose classification using sen-
sors other than accelerometers. For example, Miluzzo et
al. [13] studied how to determine whether the phone is in-
side or outside of a person’s pocket, using acoustic signals
measured by the phone’s microphone.

Our work is most closely related to that of Kunze et al.
[11], who also approach the pose classification problem us-
ing classification algorithms. However, our method uses
features that capture the orientation of the device and an
algorithm capable of learning the complex nonlinear rela-
tionships among the data without overfitting. In our experi-
ments, our method shows superior pose classification accu-
racy when applied to new users.

Walking Speed Estimation
Accelerometer-based walking speed estimation methods can
be divided into two categories: (a) machine learning-based
methods and (b) model-based methods. Our work employs
a machine learning approach, which has the potential to ex-
ploit associative information within data beyond an explicit

model chosen by the system designer. However, most pre-
vious work that applies machine learning methods to walk-
ing speed estimation assumes that there are one or more ac-
celerometers at fixed positions on the body [8,20]. For exam-
ple, Vathsangam et al. [20] use Gaussian process regression
to estimate walking speed from one accelerometer fixed on
a subject’s hip. In contrast, our work estimator does not as-
sume that the accelerometer, embedded in the user’s mobile
device, is in any particular position.

In machine learning-based activity recognition, there have
been several different approaches to handling varying sen-
sor positions when trying to identify a user’s behavior (e.g.
walking, running, climbing stairs). For example, Yang [22]
addresses different phone positions by projecting data from
the accelerometer’s x, y, and z axes onto the horizontal and
vertical axes to obtain orientation-independent features.

An example of a model-based system, on the other hand,
is an accelerometer-based pedometer, which counts walking
steps. These approaches often strongly depend on domain-
specific knowledge, such as stride length, which may require
manual input. The AutoGait system [4] avoids manual in-
put by combining the pedometer with GPS to infer the lin-
ear relationship between step frequency and stride length.
Other pedestrian navigation systems have also studied speed
estimation, often using inertial and magnetic sensors along
with heuristic- or rule-based speed estimation [6, 15]. An-
other method posits a linear relationship between a metric
representing step bounce and stride length [21]. It has been
employed for speed estimation when the device pose is un-
known [1].

APPROACH
We approach both pose classification and speed estimation
as supervised learning problems that learn, from labeled train-
ing data, an association from the input (the acceleration sig-
nal) to the output (device pose, or walking speed). Specifi-
cally, for estimation of user walking speed and mobile device
pose, we use regularized kernel methods (or regularization
networks) [5, 18], which combine kernel methods and regu-
larization. Kernel methods are a family of statistical learning
methods that exploit training data through implicit definition
of a similarity measure between data points, from which a
learning algorithm predicts the output of a new data point.
On the other hand, regularization improves the predictive
capability of a fitted model on new data points, by prevent-
ing overfitting of the model on the training data.

In this work, we tackle device pose classification and user
walking speed estimation independently, using two different
classes of regularized kernel methods. Intuitively, one could
imagine that a speed estimation model could be affected by
phone pose — a speed estimation model with the device in
hand may be different from that with the device in pocket.
However, we found that the performance improvement in
speed estimation from knowing the phone pose was very
small when using our method. Because of this minor im-
provement in accuracy, and because keeping the processes
separate makes an online implementation more viable, we
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decided to keep them independent.

For device pose classification, we use support vector ma-
chines (SVM), a well-known kernel method, to categorize
accelerometer input as originating from one of four distinct
device poses. For walking speed estimation, we use regular-
ized least squares (RLS), a regression algorithm that benefits
from regularization and kernels, as opposed to traditional or-
dinary linear regression. We employ these regularized kernel
methods as they do not make any explicit modeling assump-
tions, and they are known to perform well for many task
domains.

Algorithm Implementation
In the implementation, the time-series acceleration signals
collected are partitioned with a sliding window into n seg-
ments, from which features are extracted to form a feature
vector xi, 1 ≤ i ≤ n. The trained algorithm can then pre-
dict a label yi for segment i based on rules learned from data
in a previously collected training set.

For a detailed explanation of regularized kernel methods,
readers may refer to Schölkopf and Smola [18], Bishop [3],
or Evgeniou et al. [5]. We note only that both algorithms,
support vector machines and regularized kernel methods, can
be formulated in the Tikhonov regularization framework [5],
and have the same functional form for their prediction func-
tion for a new input x′ as

f(x′) =

n∑
i=1

c∗iK(x′,xi) (1)

which is a finite expansion of symmetric, real-valued kernel
functions k(x′,xi), with the optimal coefficient c∗i for the i-
th training example xi. Therefore, once each algorithm com-
putes the optimal coefficients offline at the training phase, a
host computer where predictions occur (i.e., a mobile de-
vice) need only store training examples xi along with its
optimal coefficients c∗i to compute a prediction f(x′). The
computation is linear in the number of training examples,
and can be done in tens of milliseconds on modern handheld
devices, as we show in the online evaluation.

We also note that one can derive a task-specific kernel func-
tion by combining two or more kernels. Given two valid ker-
nels K1(x,x

′) and K2(x,x
′), the following are also valid:

K3(x,x
′) = cK1(x,x

′) (2)

K4(x,x
′) = K1(x,x

′) +K2(x,x
′) (3)

where c > 0 is a constant. We use these properties to com-
bine different features into one kernel matrix.

Feature Extraction
We extract features from the time-series acceleration signals
by partitioning them with a sliding-window of m samples
(m = 256 or 512), depending on the evaluation scenario,
with 50% overlap between subsequent windows. At a sam-
pling rate of 100 Hz, each window corresponds to a time
period of 2.56 or 5.12 seconds. We then represent each seg-

ment as a vector of features based on the accelerometer sig-
nal.

The primary features we use are the magnitudes of the low-
frequency portion of the acceleration signal spectrum, as in
previous work [2, 16]. Because human walking is cyclic,
the frequency components of the discrete Fourier transform
(DFT) of the acceleration signal contain information about
walking motion. For example, the largest peak in the spec-
trum (usually located around 2 Hz) corresponds to the gait
cycle, the spectral energy represents walking intensity, and
the shape of the spectrum represents how each individual
walks and/or where the phone is placed on the body.

Let aj = (xj , yj , zj), 1 ≤ j ≤ m, represent one sample
within the window. Since we want our method to be robust
with respect to device orientation, we first compute three dif-
ferent components of the triaxial accelerometer data: the ac-
celeration magnitude, mj = ‖aj‖, and the magnitudes of
the vertical and horizontal components of the acceleration,
vj and hj .

The horizontal and vertical components of the acceleration
are computed as in [22]; we first estimate the unit gravity
vector by taking the mean of the x, y, and z components
over the entire window, and normalizing the result:

ĝ =
(x, y, z)

‖(x, y, z)‖
. (4)

The magnitude of the vertical component of the acceleration
vector aj is then computed by taking the dot product of the
gravity vector and the original acceleration vector:

vj = aj · ĝ (5)

We can also compute the projection of the acceleration onto
the vertical component:

vproj
j = vj ĝ (6)

The magnitude of the horizontal acceleration is found by
subtracting the vertical projection from the original accel-
eration vector, and computing the magnitude of the result:

hproj
j = aj − vproj

j (7)

hj = ‖hproj
j ‖. (8)

The DFT components of the acceleration magnitude are used
for speed estimation, while the DFT components of the hor-
izontal and vertical acceleration are used for pose classifica-
tion. We compute the DFT components using a 512-point
FFT, after subtracting the mean value (i.e., DC component)
from each sample. Because the low-frequency bands typi-
cally represent human motion, while higher-frequency bands
may contain noise, we use only the first 60 components (up
to 11.7 Hz).

While prior work on activity recognition employs various
acceleration data features including mean, spectral entropy,
and cepstral coefficients, we found that a DFT vector with
one set of additional features for each task was sufficient
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to achieve good performance. We next describe what addi-
tional features are used for each task, and how to combine
features to compute a kernel function between data points.

Features and Kernels for Pose Classification
For device pose classification, we use a vector composed of
the DFTs of the horizontal and vertical components of the
acceleration signal as well as tilt features derived from the
gravity vector. The decomposition into horizontal and ver-
tical components is used due to the different oscillation pat-
terns of the mobile device along the horizontal and vertical
plane when it is placed in different positions of the body. For
example, when the mobile is in a trouser pocket, the horizon-
tal movement is stronger than when it is in the user’s hand.
Overall acceleration magnitude did not capture this differ-
ence very well.

However, we found that using only horizontal and vertical
DFT features was insufficient for achieving high-accuracy
device pose classification. The DFT vectors alone did not
give a clear separation between different device poses (Fig-
ure 1a). Therefore, we added a set of features derived from
the gravity vector, obtained by averaging the acceleration
signal over the entire segmentation window. However, we
did not use the raw gravity vector (Figure 1b). Our choice of
features is inspired by the fact that some device poses have a
canonical tilt angle when the phone is held naturally. For in-
stance, when a user makes a phone call and places the phone
at the ear, it is mostly upright with a slight tilt outward from
the face. Similarly, when the phone is in a trouser pocket,
it is not usually positioned with its front or back pointing
down.

Thus, we compute the following gravity tilt feature vector:

xG =
(
|gx|, |gy|, |gz|,

√
g2x + g2y,

√
g2x + g2z ,

√
g2y + g2z

)
(9)

where gx, gy , and gz are gravity components along x-, y-,
and z-axis of the accelerometer respectively. The first three
elements of the gravity feature represent one-dimensional
projections of the gravity vector, while the last three rep-
resent two-dimensional projections on the x-y, x-z, or y-z
plane. The pair |gz| and

√
g2x + g2y represent the tilt angle

along the x-y plane of the device and are invariant to rotation
along the z-axis. This representation gave a good separation
between different poses (Figure 1c). Let xHV denote a vec-
tor composed by concatenating horizontal and vertical DFT
vectors. Our final feature vector for the pose classification
task is then x = (xHV ,xG).

We sum two radial basis function (RBF) kernels for the DFT
vectors and the gravity tilt feature to obtain the pose classi-
fication kernel function. We take the weighted sum of these
kernels as:

KP (x,x
′) = exp

(
−‖xHV − x′HV ‖2

2σ2
HV

)
+ ωG exp

(
−‖xG − x′G‖2

2σ2
G

)
(10)

with ωG = 0.1, an empirically determined parameter. The
kernel widths σHV and σG could be chosen empirically to
maximize cross-validation performance. However, doing so
leaves the problem of simultaneously searching for optimal
values of three parameters: σHV , σG, and the regulariza-
tion parameter λ. Instead we compute the median pairwise
distance among all xHV and among all xG in the training
dataset, and fix σHV and σG to be half the respective me-
dian distances.

Features and Kernels for Speed Estimation
In addition to overall acceleration magnitude, we compute
the energy, or the sum of the squared magnitudes of the
components of the signal, and use it as an additional feature
for speed estimation. We incorporate this quantity because
the energy represents walking intensity, which shows a good
correlation with walking speed (R2 = 0.615 in our data).
By Parseval’s theorem, the signal energy can be estimated in
the frequency domain by summing squared frequency mag-
nitudes. That is, given a DFT vector of the acceleration mag-
nitude signal mj where the magnitude of each coefficient is
taken (|M(f1)|, ..., |M(fN )|), the energy is

xE =

N∑
j=1

|M(fj)|2. (11)

In order to make the DFT vector independent of the overall
energy (so that the two different feature sets capture differ-
ent aspects of walking), we normalize the DFT magnitude
vector by the square root of the energy . Let this normalized
vector xM = (|M(f1)|/

√
xE , ..., |M(fN )|/√xE). Then,

our final feature vector is x = (xM , xE).

We combine the two feature sets in a way analogous to pose
classification. The kernel function for speed estimation is the
sum of RBF kernels defined by the FFT and by the energy:

KS(x,x
′) = exp

(
−‖xM − x′M‖2

2σ2
M

)
+ exp

(
− (xE − x′E)2

2σ2
E

)
(12)

where both kernels are given the same weight. The kernel
widths σM and σE are determined similarly to the corre-
sponding parameters used in pose classification: each is half
the respective median pairwise distance.

HARDWARE AND ONLINE IMPLEMENTATION
To demonstrate that our method can be directly applied to
a commodity device, we used a Nokia N900 mobile phone
and a Nokia Sensorbox to implement an online version of
the pose and speed estimation algorithms.

The sensing device we used for experimentation and the on-
line implementation is the Nokia Sensorbox (Figure 2a), de-
veloped for research and containing five sensing modalities
in a compact package: a consumer-grade accelerometer, gy-
roscope, magnetometer, thermometer, and barometer. We
use only the accelerometer signal, both for simplicity and
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(a) Horizontal/vertical DFT vector
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(b) Raw gravity vector
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(c) Gravity tilt feature vector (Equation (9))

Figure 1. Low-dimensional visualization of feature vectors used for device pose classification. Each feature set is visualized in a three-dimensional
space by PCA. The DFT vector of horizontal/vertical component alone does not give a clear separation between different poses (1a). While raw
gravity vector gives separation between poses, several clusters exist for each pose, making the classification algorithm unable to find a good decision
boundary between poses (1b). Our representation of the gravity vector (Equation (9)) places data points from the same pose adjacent to each other
(1c).

(a) (b)

Figure 2. Nokia Sensorbox and data logging program

because this was generally sufficient to achieve high perfor-
mance on our tasks.

The Nokia Sensorbox was connected to a host computer, a
Nokia N900 mobile phone, via Bluetooth. We wrote a data
logging program (Figure 2b) that records sensor data trans-
ferred via Bluetooth. The ground-truth annotations were
made either through manual input on the N900 or by cap-
turing simultaneous video and later annotating it.

For each run, the device pose and the user’s perceived speed
were recorded in the corresponding log file. Even though the
N900 has its own accelerometer, we used the separate sens-
ing device so that the annotation actions would not perturb
natural walking motion.

We used data collected from previous experiments to train
the system offline. The minimizer vector c∗ in Equation 1 as
well as the feature vectors from the training data were out-
put to a file, which was then transferred onto the N900. Our
program on the phone computes feature vectors based on the
accelerometer signal obtained from the Sensorbox, and uses
the training information in the file to estimate walking speed
and device pose, according to Equation 1. For this imple-
mentation, we compute feature vectors based on 512-sample
windows. At a 100 Hz sampling rate and with a 50% overlap
between adjacent windows, our online C++ implementation
produces speed and pose estimates approximately every 2.6
seconds.

EVALUATION

Methodology
We evaluated our algorithms under two scenarios: a con-
trolled experiment evaluating different aspects of the algo-
rithm, and an end-to-end evaluation with more natural walk-
ing indoors. We collected data from 14 participants total (of
whom three participated in both experiments).

In the first experiment, we collected data from nine par-
ticipants walking along a long corridor in a campus build-
ing. The participants consisted of five men and four women
of varying ages and heights. Each participant was asked
to carry a sensing device in one of four representative de-
vice poses — in hand (hand), at ear (ear), in trouser pocket
(pocket), or in a backpack (bag) — and walk along the cor-
ridor with three different speeds — slow, medium, or fast, as
perceived by the walker. Therefore, there were twelve com-
binations of device poses and (subjective) walking speeds.
We did not ask the participants to carry the device in a cer-
tain orientation or with a certain hand, and did not attempt to
guide their walking speed during the data collection process.
That is, we attempted to capture data from each participant’s
natural walking motion. We collected 2853 data samples
(121.7 person·minutes) in total.

To measure ground-truth speeds for the first experiment, we
relied on colored tiles which occurred every 18 feet in our
test corridor. Whenever the participant stepped on a col-
ored tile, an experimenter following the participant recorded
a timestamp by pressing a button on the N900 he or she was
holding. Because the sensor data was received wirelessly,
the data and ground-truth annotations were recorded with-
out interfering with the participant.

The second set of experiments was designed to evaluate our
walking speed estimation algorithm in indoor environments
under a more natural setting. The target scenario for this
experiment was the use of a mobile handheld device with
an inertial measurement unit (IMU) for indoor positioning
and navigation, where good walking speed estimation is ex-
pected to improve positioning accuracy.
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Figure 3. Path for the indoor walking experiment

In the experiment, we had eight participants walk naturally
along a choreographed path consisting of gentle curves, doors,
turns, stairs, and “special” intervals (Figure 3). Each partic-
ipant walked two round trips on the path, was asked to walk
faster on the special interval on the first trip, and to put the
Sensorbox to the ear as if he/she was making a phone call
during the second trip. The experimenter following the par-
ticipant captured video of the participant’s walking, which
was later used for ground-truth annotation. The experiment
took about 7-10 minutes per participant.

Device Pose Classification
Here we describe the performance of our pose classification
method. For the training of the SVM classifier, we used
Shogun [19], a machine learning toolbox that provides a
MATLAB interface.

Cross-Validation Test
We tested the performance of the algorithm by 10-fold cross
validation including all participants from the first experi-
ment. By using DFT and gravity tilt features together, we
were able to obtain near-perfect overall accuracy of 99.6%
in cross-validation. When only the DFT features were used,
the classification accuracy was about 82% (confusion matrix
not shown), among which a large portion of confusion was
between hand and ear, whose oscillatory patterns are rela-
tively similar compared to the other poses. However, as they
have clearly different tilt angles (Figure 1c), the inclusion of
the gravity tilt feature greatly improves accuracy.

Generalization to New Participants
We evaluated the algorithm using a leave-one-participant-
out approach. For each user, we held out data from that user
and trained the algorithm on data from all other users. Then,
the algorithm was evaluated on the data from the held-out
user.

Figure 4 shows the average precision/recall using the leave-
one-participant-out evaluation method. The addition of the
gravity tilt feature (Equation 9) substantially increases the
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Figure 4. Generalization performance of pose classifiers to new users.
The regularized kernel method with proper features (SVM w/ Tilt)
outperforms other combinations for new users.

Predicted

Bag Ear Hand Pocket Total

Actual

Bag 701(92.6%) 0 0 56(7.4%) 757

Ear 13(1.8%) 672(94.5%) 0 26(3.7%) 711

Hand 15(2.0%) 0 730(97.9%) 1(0.1%) 746

Pocket 13(1.7%) 50(6.4%) 0 714(91.9%) 777

Total 742 722 730 797 2991

Table 1. Confusion matrix of pose classification - leave-one-participant-
out validation

ability of the algorithm to generalize to a new user. Table 1
shows the confusion matrix of the classification results.

We also compare the performance of SVMs to that of the
C4.5 decision tree algorithm, another classification algorithm
that was shown to have good device classification results by
Kunze et al. [11]. When the same set of features are used,
our regularized kernel method shows better generalization
capability, as it captures the similarity between the training
and test data more effectively. As in [11], we use WEKA [7]
for the decision tree implementation.

Online System Evaluation
Figure 5 shows the behavior of online pose classification in
a test run. The participant followed a choreographed de-
vice pose pattern while walking. Overall, the pose classi-
fier predicted true device pose well. As the classifier was
running while the participant changed the device pose, the
algorithm sometimes misclassified instances near pose tran-
sitions. However, the misclassification did not propagate be-
cause the classifier uses only the most recent 512 samples.

We also measured the running time of the online pose clas-
sification on an N900. The average running time for one
run was 10.46 ms (std. err. = 1.14 ms). Considering that
estimation occurs at every 256 samples (2.56 sec.), the com-
putation time is negligible. While both algorithms require a
large amount of training data, which can be done offline, the
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Figure 5. True and predicted device pose online. Pose classifier predicts
true pose accurately, with a few misclassifications near pose transitions.
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Figure 6. Comparison of ordinary least squares (OLS) with regularized
least squares. OLS is compared to the kernelized least squares with
varying regularization parameters λ = 0.001 to 10. Regularized least
squares gives the best performance when the regularization parameter
is suitably chosen (0.1).

prediction rule in Equation 1 for the online phase is relatively
simple, making the algorithm viable for online use.

Speed Estimation
In this section, we show the performance of our speed esti-
mation algorithm under various settings. We first study the
role of regularization and kernels in speed estimation, com-
paring it against a simpler linear regression model. Then,
we show that the performance improvement by knowing the
device pose is minimal with our algorithm. We evaluated
the algorithm’s performance for new users by comparing it
to previous work. Finally, we present results from an indoor
walking scenario, assessing the comparative advantages and
limitations of our walking speed estimation method.

Regularization and Kernels
Here we highlight the benefit of kernels and regularization.
We compared the RLS algorithm to the ordinary linear least
squares method, which does not take advantage of kernels
and regularization. We used MATLAB’s regress function
to perform ordinary linear regression.

Figure 6 shows the median absolute speed error from a 10-
fold cross-validation test. The inclusion of the kernel (Equa-
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Figure 7. Comparison of pose-independent vs. pose-specific training
for speed estimation. The rightmost bar is the average speed error of
the four pose-specific training results.

tion (12)), greatly improves speed prediction, giving a me-
dian error under 0.05 m/s. The inclusion of regularization
with a suitable choice of the regularization parameter further
improves speed estimation performance. The median abso-
lute speed error achieved was 0.039 m/s, which amounts to
3% of the average normal walking speed (1.26 m/s) of the
participants.

Pose-Independent Training vs Pose-Specific Training
Our intuition was that knowledge of device pose would im-
prove speed estimation. We also wondered how much im-
provement pose-specific training would yield.

We studied two cases to resolve these questions. In the first
case, we trained the algorithm using all available data in
the training set. In the second case, we chose training data
from each specific device pose only and evaluated each pose
separately. As shown in Figure 7, prior knowledge of the
pose indeed improves speed estimation performance, but the
improvement is very small: less than 0.01 m/s on average,
amounting to less than 0.6 meters in distance for each minute
of walking. This improvement is achievable only when the
device pose can be determined accurately in advance.

Accumulated Distance Error
One of the primary applications of speed estimation using
mobile devices is indoor navigation. We tested the applica-
bility of our speed estimation algorithm to indoor navigation
by examining a single continuous user trajectory and observ-
ing end-to-end behavior. Figure 8 shows the result obtained
by accumulating speed estimates from two combinations of
user, device pose, and perceived speed. The predicted dis-
tance lies within 7-9% of ground truth over a duration of
100 seconds.

Generalization to New Participants
We tested the algorithm’s ability to predict the walking speed
of new users whose data were not used for training. We com-
pared our walking speed estimator to four previous methods
for walking speed estimation. Every method compared as-
sumes a different linear model between user’s stride length
and acceleration signal characteristics:
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Figure 8. True and predicted distances of one participant’s trajectories.
The participant carried the Sensorbox in a bag while walking slowly or
fast. For each data window, the walking speed was predicted and the
corresponding distance was accumulated. The distance errors at the
end of the trajectory were 7.4 m (fast) and 9.2 m (slow).
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Figure 9. Leave-one-participant-out speed estimation error. The cu-
mulative distribution of our algorithm (blue, solid) and other step-
counting methods (dashed) are shown.

1. k1 (constant stride length)

2. k2 · h (proportional to user height)

3. k3 · fs (proportional to step frequency [4])

4. k4 · 4
√
amax − amin (proportional to 4th root of accelera-

tion range [21])

The linear coefficients for all methods were computed from
the same training data as our method. Due to limited space,
we report comparisons only with AutoGait [4] and Wein-
berg’s method [21], the two best-performing among the four
methods compared.

To evaluate each algorithm’s generalization performance on
new users, we compared both algorithms to our RLS-based
method using a leave-one-participant-out method, as in our
evaluation of the device pose classification. The resulting
cumulative error distribution is shown in Figure 9. The re-
sulting median speed error for the RLS method was about
0.154 m/s (12.2% of the average normal walking speed),
which outperforms both step-counting methods. In addi-
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Figure 10. True and predicted walking speed online. Our online estima-
tor predicts walking speed consistently with average error just under
0.1 m/s.

tion, our algorithm has fewer extreme errors (0.87% samples
with> 1 m/s error) than the others (5.55% for Weinberg and
2.67% for AutoGait).

Online System Evaluation
Similarly to the online pose classification, we tested our on-
line speed estimator on an N900 while a participant was
walking along a straight corridor. The online walking speed
algorithm estimates the true speed consistently, while slightly
underestimating it by 0.098 m/s (Figure 10). From the con-
sistent underestimation of the speed, we may infer that the
participant walked with lower walking intensity compared
to the average of all participants. The online walking speed
estimator was running concurrently with the pose classifica-
tion algorithm, and the average running time was 9.37 ms
(std. err. = 2.4 ms), which was similar to that of online pose
classification.

Indoor Walking Experiment
As described earlier, we performed an end-to-end test of
the speed estimation algorithm for an indoor walking sce-
nario. In this scenario, each user experienced various types
of movements other than walking straight at normal speed,
including walking on a gently curved path, turning a corner,
opening a door, walking faster, changing phone pose to/from
the ear, and walking up/down stairs (Figure 3). We used 256-
sample windows for each data point to accommodate rapid
motion changes in the designed experiment path.

Figure 11 compares the performance of our method against
Weinberg’s method, the best-performing one among the al-
gorithms compared in the previous section The result was
computed by the leave-one-participant-out method, similarly
to the previous evaluations.

In general, our method predicts walking speed better than
Weinberg’s method, having comparable prediction error on
curves or fast-walk interval, while performing better (with
statistical significance) when the participant is holding de-
vice on ear, or walking on stairs. In particular, Weinberg’s
method tended to overestimate walking speed on stairs, be-
cause walking up/down stairs has higher acceleration range
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Figure 11. Walking speed estimation performance on a variety of mo-
tion segments in the indoor walking experiment.

compared to walking on a flat surface, while the actual strides
were confined to the step length of the stairs. Therefore,
Weinberg’s method, which assumes that the stride length is
proportional to the acceleration range, consistently overesti-
mated the walking speed. Our method makes better use of
additional information from the FFT spectrum, whose shape
is different when walking on stairs (See right corner of FFT
spectrum in Figure 12).

However, this experiment reveals some limitations of our
current method. Figure 12 demonstrates one instance where
our method performed poorly compared to Weinberg’s, along
the “fast” interval (from 45 to 56 sec.). In this case, the par-
ticipant was “running” at around 3 Hz, which is considerably
higher than normal walking frequency, and in fact higher
than most of walking frequencies in our training data set.
(We instructed participants to walk faster, rather than to run.)
That is, that specific motion segment from this particular par-
ticipant was an unseen pattern that machine-learning based
approach may have difficulties with.

We observed one other condition in which our method (as
well as Weinberg’s) performed poorly: when the participant
was swinging the device while walking. Swinging involves
higher energy motion (Equation 11) than the pose conditions
we originally considered for the experiment. This makes the
algorithm predict a walking speed that is considerably higher
than the true speed.

DISCUSSION AND LIMITATIONS
Evaluation of our methods with different criteria show that
regularized kernel methods combined with suitable features
and kernels can accurately classify device pose and estimate
walking speed. We also demonstrated the viability of these
algorithms in an online prediction system, which can serve
as a foundation for higher-level context-aware applications.
In particular, the results showed good performance on new
users whose data were not used for training.

We tackled the problems of device pose classification and
walking speed estimation independently after investigating
the potential benefit of knowing device pose beforehand in
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Figure 12. An example of an indoor walking experiment from a par-
ticular participant for which our walking speed estimator performed
poorly. The first subplot shows true and estimated speeds. The second
and third plot show spectral energy feature and FFT spectrum (the first
20 components). Our algorithm performed worse than the compared
method for the fast walk interval.

walking speed prediction. Indeed, the resulting improve-
ment was marginal even when perfect knowledge of device
pose was assumed. This observation confirms the findings
of Reddy et al. [17], where it is shown that the accuracy
of pose-independent transport mode classifier using mobile
phone sensors decreases only by 1.1 %. Furthermore, there
is always a risk of pose misclassification, which may lead to
degraded performance in subsequent speed estimation.

One explanation of why pose-specific did not outperform
pose-independent classifiers could be the number of train-
ing samples, because, for k poses, each pose-specific classi-
fier was able to use only about 1/k of the training data that
the all-pose classifier had. That is, the number of training
examples compensates for pose-specific difference in walk-
ing speed estimation. Therefore, we may attempt a trans-
fer learning approach to train four pose-specific classifiers
while simultaneously sharing knowledge among them. This
is a direction for future work.

Our pose classifier cannot effectively handle the case when
the user is not moving, because it utilizes frequency spec-
trum vectors as an important source of information. Even
though the gravity tilt vector can provide some information
about the device pose when the user is not moving, there are
limitations on how much information we can obtain from the
accelerometer found in a typical mobile phone. We expect
that the pose classifier can be augmented with other sensing
modalities, including light, acoustic, proximity, and touch
sensors, to improve accuracy when the user is at rest.

Another limitation that our methods have as a machine learn-
ing application is that they may not perform well on an un-
seen pattern. If the user’s motion behavior deviates too much
from those in training, for example, the walking speed is far
outside of the trained speed range, or the user performs unex-
pected motion with the device, the algorithm’s reliance only
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on training data can result in inaccurate output. On the other
hand, model-based approaches such as step-counting may
result in better predictions as long as the model assumptions
hold. Therefore, the generalization ability that our methods
exhibit should be understood as an improved ability to detect
observed patterns in the presence of significant noise, rather
than an ability to interpret previously unseen patterns.

This is again related to our limited sample size, which is a
limitation of our experimental methodology. Even though
we tried to capture data from participants with diverse de-
mographics, the sample size used for the evaluation, 17 se-
quences from 14 different participants, was limited due to
practical constraints. In particular, one of the biggest diffi-
culties we faced was to obtain precisely annotated data with-
out hampering participants’ walking motion in real walking
experiments, not on treadmills. Despite these limitations of
our presented results, we expect that the algorithm would
perform better as it learns from a more diverse population.
We anticipate future work with extensive real-world exper-
iments in more natural settings. Our datasets will be made
public at http://rvsn.csail.mit.edu/location.

CONCLUSION
This paper describes methods for classifying device pose
and estimating walking speed using standard mobile devices,
such as phones and tablets. We do not assume absolute
knowledge of the location of the sensors on the body, but
instead analyze a set of a few typical device poses. We use
time-series acceleration signals from a single triaxial accel-
erometer and extract a few sets of features, including spec-
tral magnitudes, gravity tilt features, and spectral energy,
which are suitable for each task. We apply support vec-
tor machines for pose classification, and regularized least
squares for speed estimation. By incorporating appropriate
features and kernels, our methods achieve high performance
in a series of evaluations, and show good generalization to
new users. We also discussed the limitations and possible
extensions of the presented approach.

In future work, we plan to integrate our speed and device
pose classification system within an indoor navigation sys-
tem. In addition, even though our online system requires
minimal computation in the prediction phase, we plan to in-
vestigate if further energy saving is achievable. For example,
by integrating our algorithms with a simpler predictor that
determines whether the user is walking without computing
full FFTs, we can run our system adaptively, computing re-
sults only when the user is believed to be walking.
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