Antialiasing Methods for Laser Printers
by
Christopher M Mayer

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering
and
M- ter of Science in Electrical Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1991
© Christopher M Mayer, MCMXCI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

AUthOT . oo e e

- D'epartﬁf?ﬁvgf EleArical Efn%neéri/ng and Computer Science

~ May 20, 1991

Certified by ..o
/

Victor Michael Bove Jr.

Assistant Professor of Media Arts and Sciences

Thesis Supervisor

Certified by

/ William Light
Digital Equipment Corporation

Thesis Supervisor
P L

Accepted by..... N g
— Leoﬁ/a.rd A. Gm

Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS IRSTITUT MASSACHUSETTS INSTITUTE
S i NS ITUTE OF TECHNOLOGY

FEB 16 2001

LIBHAHIES
ARCHIVES LIBRARIES

Antialiasing Methods for Laser Printers
by
Christopher M Mayer

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 1991, in partial fulfillment of the
requirements for the degrees of
Bachelor of Science in Electrical Engineering
and
Master of Science in Electrical Engineering

Abstract

Font and graphics antialiasing are often used methods of enhancing the output qual-
ity of video monitors. The same techniques also can enhance the quality of laser
printer output. Since the laser printing process and the monitor display process
differ radically, the assumptions made for antialiasing on monitors are reexamined.
Raster scanning, laser modulation, xerographic transfer, information transfer, and
computation are examined in the context of laser printer antialiasing. Past work on
antialiasing algorithms is evaluated.

A practical method of performing anti-aliasing of text, graphics, and images is
developed. Standard antialiasing scan conversion algorithms are adapted to function
on two dimensional binary bitmaps of vector data. Computation issues are discussed,
and a fast localized scan conversion operation based on statistical models is developed
and evaluated. Finally, an architecture for the high bandwidth modulation of the laser
by both power and time is developed, implemened, and evaluated.

Thesis Supervisor: Victor Michael Bove Jr.
Title: Assistant Professor of Media Arts and Sciences

Thesis Supervisor: William Light
Title: Digital Equipment Corporation

Acknowledgments

To Mom and Dad.
Thanks to Bill Light and Michael Bove for putting up with a year of cluelessness,
to Praveen for a place to crash in between sections, and Robin and Ted for welcome

distractions.

Contents

1 Introduction 13
1.1 Background of Laser Xerography 14
1.2 Quality in Laser Printingo 17
1.3 Statement of the Problem 18

2 Antialiasing 21
2.1 Sampling 21

2.1.1 Point Sampling and Supersampling 22
2.1.2 Areasamplingo 24
2.2 Fourier Transforms« o v v i 25
2.3 Aliasing and Antialiasingo 29
2.3.1 High Frequency Edges 30
2.3.2 Quantizationo e 32
2.3.3 Antialiasingo oo ... 36
2.4 Reconstruction and Filtering L. 36
2.5 Justification of Antialiasingo 43
2.6 Video Display vs. Laser Printer Antialiasing 45
2.6.1 Similaritieso C e e e 45
2.7 Antialiasing in Practiceo 47
2.7.1 Supersampling 47
2.7.2 AreaSampling 49
2.7.3 Gupta-Sproull antialiased lines 50
9.7.4 Antialiased brusheso oo 51

2.7.5 Character look uptables
2.7.6 Antialiasing with bit masks and look up tables

3 Proposed Antialiasing Post-filter

3.1 Edgeand Fill
3.1.1 Antialiasing edgeso
3.1.2 Enhanced filling 0.

3.2 Antialiasing using cellular automaton
321 Rulesfor PE’s.
3.2.2 Resultsand problems

3.3 Windowed ROM based algorithm
3.3.1 Description of windowed ROM algorithm
3.3.2 Window selection o
3.3.3 Selection of learning data

4 Laser diode modulation methods to support antialiasing

4.1 Hardware constraints e
4.2 Subpixel patternso
4.3 Selected encoding scheme. Lo
4.4 Simulation of laser printer modulator
4.5 Design methodology and circuit description
4.6 Laser Modulation Circuit Schematics

4.6.1 Feedback PAL (PAL1),

4.6.2 Modulation PAL (PAL2)

5 Results, Conclusions and recommendations.

5.1 Cellular automaton smoothing
5.2 Windowed ROM antialiasing
5.3 Laser modulation circuito

A Associated Computer Programs

A.1 SHOWBITMAP.C et

54
55
55
57
58
58
60
60
61
64
68

70
70
71
73
73
81
84
88
90

92
92
93
94

95

A2 FILTER.C et e e e e e 105

A3 SMOOTH.Ct e e it e it 109
A4 CREATECIRC.C 114
A5 CREATEMAP.C it 116
A6 ANTILALIAS.C o i e 131
A.T PRINTSIM.C e e e e 136
Experimental results 151
B.1 Celllular automata smoothing 151
B.2 Windowed ROM antialiasing 155

List of Figures

1-1

1-2

2-1

2-3

The seven steps of the xerographic process. (a) charging the photocon-
ductor, (b) exposing to form latent electrostatic image, (c) developing
the latent image into a real image, (d) transferring the image to pa-
per, (e) fusing the image to paper, (f) cleaning residual toner from the

photoconductor, (g) erasing the electrostatic latent image. (Redrawn

Example plot of a photoinduced discharge curve of a xerographic pho-

toconductor. (Redrawn from [24].)

Point-sampling problems. The sample grid is represented by black
dots. Objects B and D are sampled, but identical objects A and C are
not. The shapes of the objects are not preserved. (Adapted from [12].)
Unweighted area sampling. The pixel’s intensity remains constant
when the object is moving with the pixel, but changes abruptly as
the object traverses the border to another pixel. (Redrawn from [12].)
Weighted sampling without overlapping pixels. The object contributes
differing amounts of intensity to the pixel depending on its position.
The overall intensity of the page changes as the object moves. (Re-
drawn from [12].) e
Weighted sampling with overlapping pixels. The overall intensity of
the page remains roughly constant as the object moves between pixels.

(Redrawn from [12].) o

23

25

2-5

2-6

2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18

2-19

Example of a Discrete Fourier Transform (DFT). The signal is repeated

at intervals of 2r. The maximum frequency able to be represented is

1

57> the Nyquist rate. The Nyquist rate is normalized to 7 in a DFT.

Aliasing. (a) Signal is sampled above the Nyquist rate, so there is no
aliasing. (b) Signal is sampled exactly at the Nyquist rate. (c) Signal
sampled below the Nyquist rate. Aliasing is evident; the waveform is
deformed.
Probability density function for rounded quantization errors.
Quantization errors when sampling a black to white transition. (a)
Sample points correspond to grayscale values, so the error is zero. (b)
Sample points do not fall on grayscale values, so aliasing occurs. (c)
More grayscale levels are introduced, so the aliasing is reduced.
Sampling and Reconstruction. (a) Original continuous signal (b) Sam-
pled signal (c) Low pass filter (d) Reconstructed signal after passing
the (sampled) impulse train through the low pass filter.
General laser printing model.
Bitonal bitmap of the letter S
Box filtered letter S e
Bartlett filtered letter So
Gaussian filtered letter S oo oL
SINC function, truncated using a box filter.
Rectangular filter.
Laser printing model with compensated reconstruction filter.
Compensated reconstruction filter. (a) Rectangular filter. (b) Com-
pensated reconstruction filter.o
Prefiltering and Postfiltering. (a) Prefiltered data is antialiased before
scan conversion. (b) Post-filtered data is antialiased anytime after

sampling (not necessarily before bitmap storage or transmission.)

30

31

35

38
39
39
40
40
41
42
43

<4

48

2-20

2-21

2-22

3-1

3-2

3-5

4-2

Antialiasing by supersampling. The filter is mapped across the super-
sampled image. The sum of product of corresponding values deter-
mines each grayscale pixel value. (Adapted from {12])
Gupta-Sproull antialiased lines. (a) A conical filter. (b) Filter con-
volved with a line of width 1 to form a table of filter values for Gupta-
Sproull antialiased line drawing. (Adapted from {14])
Table lookup of polygon edge. The polygon intersects the pixel at
locations 25 and 61. These two values are used as the address for
a table lookup to compute the grayscale value of this pixel and also

surrounding pixels.o

Cellular Automaton Antialiasing. A bitmap is converted to higher
resolution using cellular automata and then converted to a grayscale
bitmap using the supersampling methods.
Creating the antialiasing ROM. The antialiasing ROM provides a map-
ping from the bitonal bitmap to the grayscale (antialiased) bitmap; the
address of the ROM is computed from a window in the bitonal bitmap,
and the values contained in the ROM respresent grayscale.
Creating the antialiasing ROM.
Antialiasing using ROM. Generic bitonal bitmaps (from commercial
products) are antialiased by passing them through the ROM.
Selecting a window. A nearly vertical line is the worst case for an an-
tialiasing ROM. This edge could go from (0, —20) to (—1,00) which
would mean that all the intermediate pixels (i.e. the ones shown

mapped in the window) would have grayscale values of about 0.5.

Example laser modulation pulse patterns. (a) A centered pulse (b) A
wider centered pulse (c) An edge pulse from the left edge (d) A wider
edgepulse

Pulse modulation patterns for laser modulator.

62

4-4
4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13
4-14
4-15

B-1
B-2
B-3
B-4
B-5

Laser printer simulator, OPC drum energy, vertical step, conventional
modulation L e 76
Laser printer simulator, toner, vertical step, conventional modulation 76

Laser printer simulator, OPC drum energy, vertical step, power mod-

ulationonly. Lo 7
Laser printer simulator, toner, vertical step, power modulation only.
Note the fuzziness resulting from a slow energy gradient. 77
Laser printer simulator, OPC drum energy and toner, horizontal step,
conventional modulation oo 78
Laser printer simulator, OPC drum energy and toner, horizontal step,
pulse edge modulation. Note that edge is still sharp. 78
Laser printer simulator, OPC drum energy and toner, 1 pixel wide 45
degree line, conventional modulation 79
Laser printer simulator, OPC drum energy and toner, 1 pixel wide 45
degree line, power and pulse edge modulation 79
Laser printer simulator, OPC drum energy and toner, 2 pixels wide 45
degree line, conventional modulation 80
Laser printer simulator, OPC drum energy and toner, 2 pixels wide 45
degree line, power and pulse edge modulation. Note that the edge is
smooth, because adjacent pixels 2dd to produce a straight line along
the toner threshold. 80
Laser Modulation Circuit L 85
Laser Modulation Circuit« o 86
Clock Generation for Laser Modulation Circuit 87
Original bitonal bitmap of the letter “S”. 152
Letter “S” after smoothing 1 iteration. 152
Letter “S” after smoothing 2 iterations. 153
Letter “S” after smoothing 4 iterations. 153
Letter “S” after smoothing 8 iterations. 154

10

B-6 Window shapes used in the windowed ROM antialiasing routine. (a)
five pixel window (b) nine pixel window (c) thirteen pixel window (d)
nineteen pixel window oL

B-7 Bitonal learning pattern, consisting only of one pixel wide lines.

B-8 Antialiased learning pattern, consisting only of one pixel wide lines.

B-9 Overlapping lines, bitonal bitmap.

B-10 Overlapping lines, antialiased with a window sizeof 5..

B-11 Overlapping lines, antialiased with a window sizeof 9..

B-12 Overlapping lines, antialiased with a window sizeof 13.

B-13 Overlapping lines, antialiased with a window sizeof 19.

B-14 Overlapping lines, antialiased with Gupta-Sproull method.

B-15 Horizonal and vertical lines of various widths with one pixel steps,
bitonal bitmap. This is a pathological case for windowed antialiasing.

B-16 Horizonal and vertical lines of various widths with one pixel steps,
antialiased with a window sizeof 5.

B-17 Horizonal and vertical lines of various widths with one pixel steps.
antialiased with a window sizeof 9.

B-18 Horizonal and vertical lines of various widths with one pixel steps,
antialiased with a window sizeof 13.

B-19 Horizonal and vertical lines of various widths with one pixel steps,
antialiased with a window sizeof 19.

B-20 The letter “S”, bitonal bitmap.

B-21 The letter “S”, antialiased with a window sizeof 5.

B-22 The letter “S”, antialiased with a window sizeof 9.

B-23 The letter “S”, antialiased with a window sizeof 13.

B-24 The letter “S”, antialiased with a window sizeof 19.

B-25 New bitonal learning pattern, consisting of areas and one pixel wide

161

161

162

B-27 Overlapping lines, bitonal bitmap. 167

B-28 Overlapping lines, antialiased with a window sizeof 5.. 167
B-29 Overlapping lines, antialiased with a window sizeof 9.. 168
B-30 Overlapping lines, antialiased with a window sizeof 13. 168

B-31 Overlapping lines, antialiased with a window size of 19. Note that this
learning pattern performed approximately equivalently to the previous
learning pattern.o 169

B-32 Overlapping lines, antialiased with Gupta-Sproull method. 169

B-33 Horizonal and vertical lines of various widths with one pixel steps,
bitonal bitmap. This is a pathological case for windowed antialiasing. 170

B-34 Horizonal and vertical lines of various widths with one pixel steps,
antialiased with a window sizeof 5. 170

B-35 Horizonal and vertical lines of various widths with one pixel steps,
antialiased with a window sizeof 9. 171

B-36 Horizonal and vertical lines of various widths with one pixel steps,
antialiased with a window sizeof 13. 171

B-37 Horizonal and vertical lines of various widths with one pixel steps, an-
tialiased with a window size of 19. Note that the new learning pattern

performs significantly better than the previous pattern; the two and

three pixel wide lines are no longer jagged near the step. 172
B-38 The letter “S”, bitonal bitmap. 172
B-39 The letter “S”, antialiased with a window sizeof 5. 173
B-40 The letter “S”, antialiased with a window sizeof 9. 173
B-41 The letter “S”, antialiased with a window sizeof 13. 174

B-42 The letter “S”, antialiased with a window size of 19. Note that the new

learning pattern performs significantly better than the previous pattern.174

12

Chapter 1

Introduction

Innovations in the field of laser xerography have always been motivated by the de-
sires for more detailed and accurate printing. Many improvements have resulted from
increasing the resolution of laser printers - in fact, a major advantage of laser print-
ers over other technologies is their relatively high resolution output at reasonable
speeds. However, even as 300 dot per inch printers are becoming commonplace, their
limitations are being noticed. Rather than increasing the resolution of the printer
(which affects the system size and cost), the quality of the output can be increased
without by using a technique called antialiasing. In antialiasing, the high frequency
components are filtered out of the printout and smoother edges and curves result.
The image must then be printed on a grayscale capable printer.

Most methods of antialiasing require having high resolution data (in the form of
high resolution bitmaps or vector data) to work from. Subsequently, the antialiased
scan conversion produces a high quality grayscale bitmap. Unfortunately, the an-
tialiasing scan conversion must replace the conventional binary scan conversion algo-
rithms which most software uses today in order for this scheme to work. It is possible
to produce antialiased bitmaps directly from regular black and white bitmaps (at the
same resolution) with a reasonable degree of accuracy.

This paper examines previous research in the field of antialiasing, proposes an
improvement to allow antialiasing of bitmaps (without pre-scan conversion data),

and develops the hardware necessary to implement the new antialiasing algorithm on

13

an existing laser printer (it converts the printer to grayscale).

1.1 Background of Laser Xerography

Laser printers evolved from two other forms of printing; xerography and dot ma-
trix printing. Xerography, a form of electophotography, is a multistep system which
transfers a image from light to paper. The seven step are shown in diagram 1-1.

The first step of the laser printing process is to pre-charge the photoconductor.
A corotron, or a very thin wire that is biased at a high voltage, generates ions which
drift to the surface of the photoconductor. Typically for laser printers, an organic
photoconductor on a rotating drum (OPC drum) is used. After the drum has been
charged, it is ready to be imaged by selectively exposing the drum to light. A mod-
ulated laser beam is swept across the drum repeatedly as the drum rotates. In every
position the laser beam strikes, the photoconductor becomes temporarily conductive
and discharges. The amount of discharge depends on the exposure; a typical potential
vs. exposure curve is given in figure 1-2.

In the next stage, the development subsystem, the toner is applied to the pho-
toconductor drum. “Toner” is usually a compound of two types of particles; toner
particles which are 5-20 um in diameter, and toner carrier beads which are 50-150
pm in diameter. The carrier beads are magnetic, and can be transported by spinning
magnets. The toner particles are attracted to the carrier beads triboelectrically, so
development occurs when the electrostatic forces from the photoconductor exceed the
triboelectric forces and the toner particles stick to the OPC drum.

The toner particles are then transferred to paper. Paper is fed over the photocon-
ductor drum, and a strong electric potential is applied over the paper. If the potential
is large enough, the toner particles fly up and stick to the paper instead of the OPC
drum. After the toner is on the paper, it must be fused to become permanent; heat
and /or pressure are often applied with heated rollers. Finally, the system must be
cleaned of excess toner and the electrostatic image must be erased. Cleaning can be

accomplished with brushes and vacuums or a wiper blade. The electrostatic image is

14

Shield Voltage Photons
Charge (ll:aser
| ® ight)
++—E'+ ++ 4+ (@

oooooooooooooo

Organic Photoconductor R

Development Roll Paper
Carrier Beads _ Voltage

Fused Toner Toner

’ N
e SN KNGO 6 0 0 e 6
Fuser Heater S SRR

Figure 1-1: The seven steps of the xerographic process. (a) charging the photoconduc-
tor, (b) exposing to form latent electrostatic image, (c) developing the latent image
into a real image, (d) transferring the image t» paper, (e) fusing the image to pa-
per, (f) cleaning residual toner from the photoconductor, (g) erasing the electrostatic
latent image. (Redrawn from [24].)

15

guﬁace 900
otential
(Voits) °®°

700

600

500

300

200

100

log(Exposure)

Figure 1-2: Example plot of a photoinduced discharge curve of a xerographic photo-
conductor. (Red-awn from [24].)

16

erased by illuminating the drum in the absence of a electric potential.

Today’s laser printers usually accept orthogonal bitmaps of binary data. The laser
beam is swept across the page as the page is rolled through the printer, modulating
one row of data, or scan line, per pass. During each scan line, the paper is moved
forward one pixel width. To obtain a quality result, 1t is important to produce pixels
of consistent small size and shape at a correct location on the page, corresponding
to the bitmap data. Many advances have been made in decreasing the pixel size and
refining its shape to be more uniform and square.

Most new advances in printers today focus on increasing the resolution, since it
is relatively easy to form uniform dots. Commeon laser printers today are capable of
printing 300 pixels per inch in both directions. However, increasing resolution has
its cost; the memory required to hold one page of bitmap data increased from 60,000
bytes in a typical 72 DPI dot matrix printer to more than 1,000,000 bytes in a 300 DPI
laser printer. Increasing resolution has serious repercussions on the amount of memory
used to store bitmap images and the bandwidth required of printers to produce images
at the same speed and cost. Antialiasing provides a method of increasing the effective

resolution without increasing the pixel spacing.

1.2 Quality in Laser Printing

Before methods of increasing “print quality” can be addressed, a working definition
of quality must be introduced, along with a way to quantitatively measure the quality
of a printout. Most current definitions base quality directly on resolution and dot
shape of the prnter; these parameters would certainly be specified in any type of
contract for a laser printer engine. Alone, these two measures are in themselves fairly
irrelevant. A more meaningful albeit subjective method of determining quality is to
measure the ability to discern differences between two images or passages of text;
one produced “perfectly” by photographic or other such high quality means, and the
other copied xerographically. A rough measure of quality would be the distance at

which any difference became discernible.

17

To remove the subjectivity from this measurement, a very high resolution scanner
is used to sample both pages, and they can then be compared point for point. A statis-
tical comparison yields a quality rating for the xerographic process. Another method
for computing the performance of antialiased lines was proposed by J. Trueblood of
the Sony Corporation [25]. In this method, a knife edge is positioned longitudinally
parallel to the antialiased line. The intensity is scanned in high resolution along the
knife edge only. The result is compared to a standard straight line. Both methods
have the advantage of having no human intervention, but Trueblood’s method can

only be used for antialiased lines and not other graphics or image constructs.

1.3 Statement of the Problem

In order to characterize the types of data which are printed, I sectioned printed data
into three main classes; text (fonts), graphics, and images. All representations are ul-
timately converted to bitmap data (matrix representation) before printing. According

to J. Warnock [27], text can start from one of three classes:

Analytic: The font is encoded as a list of strokes which make up each character.

The entire font can be modified by simply changing the stroke algorithms.

High Resolution Bitmap: The font is represented in higher resolution than the
output will eventually be. Scan conversion includes averaging and rounding

adjacent pixel values to size the font for the desired resolution.

Parametric Curved Outlines: The shape of the font is mathematically encoded.

Scan conversion can occur at arbitrary resolution.

Graphics is very similar to text- it falls into the same three classes. Images are
a somewhat different matter, though. Images are scanned scenes and therefore do
not necessarily have a higher level representation. There is usually no way to easily

convert an image to an analytic or other such form; instead, images are bitmaps.

18

Often images are halftoned.! As a result, image data are significantly harder to
antialias than text or graphics data.

I looked for areas of low quality in text, graphics, and images. When I examined
a page of text, problems with the edges of letters were immediately apparent; jagged
edges can be found where smooth curves should exist. When fonts are digitized into
discrete-time signals, this sampling naturally results in some degree of jaggedness.
The jaggedness becomes especially noticeable along line edges, since the human eye
is excellent at discriminating when lines are not continuous. Lines and curves drawn
in graphics and image pages and images suffer from the same problem.

The problem lies with the edges of curves and lines. Mathematically, the concepts
of edges can be separated from the rest of the printing process; it has been proposed
by Bill Burling [6] that the two components of printing are fill and edge. Using these
two operators, any text or image can be defined. “Fill” is the graphical component
used to shade areas, such as the solid parts of letters and halftones in images. “Edge”
is used to mark boundaries between different regions of fill. Edges can be either sharp
(black and white boundaries) or gently rolled off by using shades of gray.

To fool the eye into thinking that an edge is continuous. the technique of an-
tialiasing can be used. Rather than printing sharp boundaries between on and off
regions (i.e. high frequency edges), a filtered edge (with the high frequency compo-
nents removed) can be used. A Nyquist rate of edge transition can be determined
for a printer, measured in distance rather than frequency. If every edge rolls off with
least two pixels of transition (i.e. in a 300 DPI system, no frequencies higher than
150 DPI), then the printer is essentially “antialiased”.

To implement antialiasing, the printing process must be changed to produce
grayscale. One way to produce gray is to modulate the laser at less than full in-
tensity. Due to the two dimensional Gaussian distribution of energy from the beam,
the threshold egion on the OPC drum will shrink in area and the dot size will de-

crease, leaving some white space around the black dot. The printer still operates at

I Note that grayscaling refers to the ability of an output device to product shades of gray, and that
halftoning is the process whereby intermediate shades of gray are produced by arranging patterns
of lighter and darker pixels.

19

the same initial resolution. Furthermore, this scheme is direction independent (it af-
fects both the main scan and sub scan directions on the paper equally). This scheme
works well in filled areas as well. Dithering is used to provide intermediate shades
of gray from a darker and lighter shade. Previously black and wlite were the only
available shades, but under the new scheme there are intermediate gray shades to
choose from- as a result, halftone consistency is greatly improved.

Traditional methods of antialiasing can be used to generate grayscale pictures for
the printer. However, many existing applications do not support antialiased output
- in these cases, a bitonal bitmap is all there is to work from. A processor is used to
filter the bitmap, edges are detected and fill zones are mapped out. The processor
actually performs a reconstruction of an original analog image which has been rounded
into the digital bitmap. Sampling this image and passing it the appropriate low pass
filter, we can obtain most of the necessary grayscale information without supplying it
from the original binary bitmap. A cellular automata method for recovering grayscale
data from a bitmap is suggested. Because of computational inefficiency, an alternate
method of grayscaling is suggested - a windowed look-up table.

Since laser printers are designed to print bitonally, modifications must be made
to the print engine to allow grayscale data to be printed. More accurate control of
the laser diode is critical. Bitonal printers operate the diodes well outside the linear
zone of the development process. A laser driver circuit capable of operating the laser
consistently at any power level from zero to the current level is needed. A higher
bandwidth channel is required to operate the laser with grayscale. However, the
video channel to the laser becomes lower bandwidth because it is now limited by the
Nyquist rate for the printer; this insures that a faster laser diode device is not needed.
The design parameters of such a laser diode circuit and their effect on the output of

the printer are addressed, and a circuit to accomplish increased laser diode control is

developed.

20

Chapter 2

Antialiasing

Antialiasing is a method of increasing the quality of text, graphics, and images without
increasing the resolution. The method has its basis in discrete time signal processing;
it is a filtering technique to remove high frequency edges from pictures. “Antialias-
ing” is somewhat of a misnomer - most antialiasing algorithms simply draw images
without aliasing in the first place, rather than removing aliasing after scan conversion.
Typically, an antialiasing filter is used during the scan conversion process. In order

to examine antialiasing in detail, a good understanding of sampling theory is needed.

2.1 Sampling

To apply sampling theory to printing systems, the page data must be represented
mathematically as a signal. A signal, which is defined as a function which conveys
information[12], is often thought of in terms of time; however, it is equally valid to
represent signals as functions of spatial coordinates. Usually, we will want to analyze
the signal in only one direction at a time, so the other dimension is held constant and
we observe “slices” of the image.

We normally think of the original two dimensional page data as a spatially con-

tinuous function. ! However, it is impossible to send a two dimensional analog image

1This is easy to see for analytic and parametric curved outline data. High resolution bitmap data
can be viewed as a sampled continuous signal. Although the bitmap is itself discrete, the origin of

21

over a wire because a wire is only one dimensional. One dimensional continuous time
signals (lines) can certainly be sent over a wire, but it is undesirable to send an ar-
bitrary analog signal because of another engineering constraint, signal noise. When
analog information is transferred, any noise added to the signal results in unwanted
changes to the transferred information. For information integrity, ease of transfer,
and ease of storage, it is best to have both dimensions broken up into discrete values

and sent digitally.

2.1.1 Point Sampling and Supersampling

The process of breaking up the continuous time signals into discrete values is called
sampling. There are several methods of sampling. For the simplest method, point
sampling, intensity values of the page function are recorded at regular points along
both dimensions of the page. For example, a typical laser printer accepts data samples
of 300 samples per inch along both dimensions of a page, horizontal and vertical. This
corresponds to the final output resolution of 300 dots per inch. Usually, the sampling
pattern is a regular orthogonal grid, although other patterns such as a hexagonal
grids may also be used.? Regular orthogonal grids will be assumed in the absence of
any other sampling grid specification.

There are several problems with regular point sampling. Objects on the page can
be “missed” if the sampling grid is either too coarse or not aligned with the object
correctly. (See figure 2-1) Objects may completely disappear when positioned off the
sampling grid.

One possible fix is to sample at a higher spatial frequency. If our sample period
is smaller than any object in both dimensions, then all objects are guaranteed to at
least contribute to the sampled image. However, smaller objects or edges of objects
are still misrepresented in the sampled version. There is still the problem that they

may overlay a different number of sampling points depending on the position, and

the bitmap can be a continuous signal.

2The hexagonal grid is claimed by some authors to be the optimal sampling grid for most prmtmg
and display output processes. However, using hexagonal bitmaps adds complexity to most processing
algorithms. [26]

22

[] ® @ [J [[
Figure 2-1: Point-sampling problems. The sample grid is represented by black dots.

Objects B and D are sampled, but identical objects A and C are not. The shapes of
the objects are not preserved. (Adapted from [12].)

23

the shapes are often lost after sampling. Effects of point sampling are even evident
on objects far larger than the sampling spacing; edges are often misrepresented.
Supersampling, the technique of sampling at several points per pixel and somehow
combining the results to form one sample, alleviates some of the problems of simple
point sampling. The sampling rate is effectively increased to a multiple of its former
frequency. Often, this produces good enough results, but the limiting case is the same.
The same failure of simple point sampling can be demonstrated with supersampling;

if the object is made small enough, it may be missed by the sampling entirely.

2.1.2 Area sampling

Point sampling is somewhat of a “bottom up” procedure. To point sample several
objects, one must iterate through all the points of the sample grid, checking at each
one if it is within any of the objects. Area sampling, in contrast, is a “top down”
procedure; one iterates through the objects adding up their contribution to each
sample. Samples are no longer thought of as values of the page function at given
regular points; instead samples are proportional to the amount of area filled in around
points of a regular sample grid. Typically, unweighted area samples are computed by
integrating the page function over non-overlapping squares on a regular grid.

Area sampling clearly fixes the main problem of point sampling; no object, no
matter how small, is missed during the sampling. Still it has a few problems to
address. Coverage within a pixel is unweighted; the area in the corner of a pixel is
as important as the area in the center at determining its final intensity. So small
objects can be positioned arbitrarily within a pixel without affecting the final pixel
intensities. But, as soon as an object starts to traverse from one pixel’s area to
another’s, the final pixel intensities are affected disproportionately. (See figure 2-2)
This dependence on the sample grid spacing is certainly a flaw; ideally, we want any
change in object positioning to be reflected in the pixel intensity proportionally.

The concept of weighted area sampling addresses the problems of unweighted
area sampling. In weighted area sampling, areas within a pixel contribute different

amounts to the intensity of the sample. Typically, a conical or Gaussian weighting

24

(=) (b)

Figure 2-2: Unweighted area sampling. The pixel’s intensity remains constant when
the object is moving with the pixel, but changes abruptly as the object traverses the
border to another pixel. (Redrawn from [12].)

function is used, where the area along the edges of the pixel contributes less than
the area in the center of the pixel. This partially solves the problem of intra-pixel
movement; as an object moves farther away from the center of the sampled pixel. it
contributes less to the pixel’s intensity. However, a given object should contribute a
roughly constant intensity to the entire picture, regardless of where it is positioned
in between pixels. (See figure 2-3) Therefore, as an object moves and contributes
less to the intensity of a pixel, it must conversely contribute more to the intensity of
the pixels it is moving toward. To solve this problem, overlapping pixels are used.
(See figure 2-4) Every area contributes to more than one pixel, in proportion to the
weighting function. The minimum pixel size to meet these conditions is two times the
sampling area; each pixel must overlap at least halfway into all its eight neighboring

pixels.

2.2 Fourier Transforms

After a page has been sampled using any one of the methods. the resulting sequence
of intensity values can be stored and transferred digitally. At some point the page
must be re-made from its samples in a process called reconstruction. The sampling
process converts the signal from the continuous domain to the discrete domain, so

the reconstruction process must accomplish the opposite, converting from discrete

25

(a) (b)

Figure 2-3: Weighted sampling without overlapping pixels. The object contributes
differing amounts of intensity to the pixel depending on its position. The overall
intensity of the page changes as the object moves. (Redrawn from [12].)

() (b)

Figure 2-4: Weighted sampling with overlapping pixels. The overall intensity of the
page remains roughly constant as the object moves between pixels. (Redrawn from
[

{12].)

26

to continuous space. However, reconstruction is more difficult than sampling for a
number of reasons. In order to see the correct process for reconstructing a sampled
signal, Fourier analysis and signal process theory need to be used.

Until now, we have only considered signals in the spatial domain, i.e. a signal’s
changes as it is mapped across a page. Signals can also be thought of in the frequency
domain, using Fourier analysis. A new signal X(f), the Fourier Transform of z(¢), can
be generated by applying the Fourier Composition equation to z(t). X(f) represents
the frequencies which make up z(t); for every value of f, X(f) tells the amount (1.e.
the amplitude) of that frequency in z(t). A second equation is needed to convert

X(f) from the frequency domain back to z(t) in the time (or spatial) domain.

X(f) = Fle(t)} = /°° z(t)e-32"tdt (2.1)

2(t) = FHX(N} = [X(fedf (2:2)

The continuous Fourier transform can also be computed in two spatial dimensions

for a signal ¢(z;,z2) and its transform C'(f1, f2),

C(fi, f2) = Flc(z1,z2)} = / / o(zy, xq)el " hm izl dg e, (2.3)

o) = FHCUL 0 = [[T Clh e hmstmdfudfy (24)

and also in vector form for ¢(z) and C'(f).

) = Fle(7)} = /°° o(F)e-2"TEgE (2.5)
2= FHC) = [cDenTeaf (2.6)

For the remainder of this discussion, higher dimensional cases of the transforms

27

will be ignored, because we can always hide extra dimensions in one dimensional
forms by using vector variables.

r(t) and c¢(z) represent real valued functions, but their transforms X(f) and
C'(f) are complex valued functions. The transforms are broken into two real valued
functions corresponding to the magnitude and phase of the transforms. In most

analysis, the magnitude will be used exclusively and the phase will be ignored.

X(f)| = RIX(H)} + 3{X(f)}?

a(5) = tan~ [2N

[5’?{ X()}

Equations 2.1 through 2.6 all represent continuous signals in the time or spatial
domains. For the cases of analytic and parametric curved outline data, the data is
in the form of a continuous function, and the previous transforms can be used to
convert to a frequency representation. However, bitmap data is not continuous, and
the previous transforms cannot be used.

To transform a discrete signal, we need to modify the transform equations. When
a continuous function z(n) is periodically sampled, the resulting signal z(n}, is equiva-
lent to a bitmap. Therefore, we can perform a continuous transform of z(n) multiplied
by a sampling signal, and then incorporate the sampling into the transform. Sampling

signals amounts to multiplying the continuous signal with a pulse train of period T.
z[n] = z(t)- Y &(t—nT)

Multiplication of two signals in the time or spatial domain corresponds to convo-

lution of the signals’ transforms in the frequency domain.

X(Piwree = [Fleto}] |7 L 67-7)

n=-—oo

28

[l 3 £ e

n=-aoo

The sum can be taken out of the integral to simplify the equation. To remove the
sum entirely, X (f)discrete 15 normalized to 27 and only defined over one period (i.e.
one point of the sum), yielding the Discrete Fourier Transform (DFT) composition
equation. Although the transform is defined over one period, it actually repeats every
period, but only one period is considered when talking about the transform. Similarly,

a synthesis equation can be derived.

o0

X(e¥) = F{z(t)} = Z r[n]e " dw (2.7)
2(n] = F-HX(F)} = ziw [7 X(e)e du (2.8)

2.3 Aliasing and Antialiasing

X(e’*) is normalized from a sampling frequency of % to a period of 2. Since X (e’*)
repeats every 27 radians, this implies that there is a maximum frequency which a
DFT can represent. (See figure 2-5.) Any frequency greater than 37 interferes with
the next period of the transform. It is important to exclude any such high frequencies
from the signal z(n) before the sampling is performed, otherwise it will be impossible
to properly reconstruct z(n) from X(e/*). (Reconstruction will be examined in more
detail in section 2.4.)

Suppose that the signal z(n) is not band-limited before sampling; some of its
frequency components are greater than 5. High frequencies appear as low frequency
components of the next period in X(e/*) so when the signal zp(n) is reconstructed
from X(e*) = F{z(t)}, it differs from z(n). High frequency components of x(n)
appear as low frequency components in zg(n). This phenomenon is called aliasing.

(See figure 2-6.)

29

{H(w)|

l

1
d' 4lt

maximum frequency represented
by the Discrete Fourier Transform.

Figure 2-5: Example of a Discrete Fourier Transform (DFT). The signal is repeated
at intervals of 27. The maximum frequency able to be represented is 5, the Nyquist
rate. The Nyquist rate is normalized to 7 in a DFT.

2.3.1 High Frequency Edges

Aliasing causes two major problems with computer graphics. Most seriously, we
could have sampling problems such as in figure 2-1, where an object may be missed
entirely or sampled several times depending on where it is positioned on the grid.
Anytime “high frequency” objects are displayed, i.e. edges which switch faster than
the Nyquist rate of the printer, this aliasing problem exists. For example, if a letter of
a very small font is analytically defined to switch from black to white to black in less
than two pixel widths, some of its frequency components are higher than the Nyquist
rate. No printer can avoid aliasing this case; the image resolution is simply too high
to represent.

With the resolution of today’s printers, most font and graphic images have min-
imum feature sizes below the spatial Nyquist rate. On a 300 dpi printer, the spatial
Nyquist period is -1—;-5 in. 15 inch is a fairly small distance on a printed page; an
object with those dimensions on all sides is nearly invisible when examining the page
from a typical reading distance. However, long thin objects are readily visible on
the page, and they can disappear if sampled below the Nyquist rate. Fortunately,
lines are usually wider than -1%3 inch and only very small fonts have features which

are smaller than this width. As a result, objects are rarely missed totally in modern

printers. In the event that very small objects are included in the print data, a filter

30

[H(jw)|

@) 11 k1))

=347 -1l" w
IH(iw)i

=317 -1 (b) 113 31 w
IH(w)|

0
o,
»
.
0®

3 k3 = k3 3 =
-~ il N alla ol KA alla ol ol a
L T ¥ L] LS
-Sqf -3r -1 " 3 SeY w
(¢

Figure 2-6: Aliasing. (a) Signal is sampled above the Nyquist rate, so there is no
aliasing. (b) Signal is sampled exactly at the Nyquist rate. (c) Signal sampled below
the Nyquist rate. Aliasing is evident; the waveform is deformed.

can be used to remove them.

Even though objects are not usually missed completely by sampling, they may
still be sampled inaccurately by using inferior methods. In particular, when objects
are point sampled, accuracy can be lost. The result of point-sampling a bitonal
image to create a bitonal bitmap does not always have the same result as area-
sampling the pixel and then quantizing the grayscale data to a bitonal pixel (the
latter method is discussed in detail in the next section). For straight lined objects
these two methods are identical, but when curves are introduced the point-sampling
can yield inaccurate results. However, if the image is passed through a low pass
filter and subsequently point-sampled and quantized, the resulting image matches
the area-sampled and quantized result.

The key to obtaining accurate and identical results with these methods is low
pass filtering; when all the high frequency components of an image are removed
(fpicture < %f,), the sampling and quantizing is valid up to a sampling frequency of
f,. Low pass filtering removes all the sharp transitions between intensities. This
implies that all edges are tapered; a line is no longer thought of as a black region of
fixed width, but rather a tapered region of gray which is blacker at the center and
lighter near the edge. The area-sampling does not need a low pass filter to yield
good results because it in fact performs a type of low-pass filtering. In general, we
will always use a method of low pass filtering to insure accurate samples; either an

explicit low pass filter or an area sampling method may be used.

2.3.2 Quantization

The second aliasing problem results from the quantization of data into different
grayscale levels. Most laser printers have only two gray levels, black and white.

If we have a discrete signal z(n|, then[21]

X(e) = Flz(t)} = > z[n]e’“"dw (2.9)

n=-oo

When z(n] is quantized, a new signal &[n] results, where Z[n] = z[n] + Az[n]. The
)

32

transform X (e’*) is

X(e*) = ¥ #nleMdw= Y z[nleMdw+ Y Az[n]e ™" du2.10)
= X(&¥)+ AX(e") (2.11)

Assume that the signal z[n] is zero outside the domain of the page; this limits
the first sum. The quantization levels are constant across the entire page, so that
the quantization error Az[n]is constant (but not necessarily zero) off the edge of the
page. The off-page error is transformed into a constant value for AX(w = 0). The

sum can be simplified:

M M
X)) = Y z[nle " dw + Y Az[n]e " dw + §[n] - AX(w = 0) (2.12)

=0 n=0

= X(e*)+ AX(e™) (2.13)

3

11 The quantization error Az[n| depends on the page data and the quantization
levels. In general, for a “random” image, the probability density function of Az[n]
is uniform. However, typical images have a disproportionate amount of “black” and
“white” compared to a “random” image. Printers are well suited to printing black
and white, so Az[n] is nearly zero in the regions. Therefore, the typical probability
density function of Az[n] is uniform except for a large zero error region. When the
grayscale information for each pixel is represented in a B bit binary number, 2B _1
uniform grayscale intervals result.> Furthermore, Az[n] is bounded, as shown in figure
2-7, and the magnitude of the frequency error can be computed.

X (&™) < (M +1)- (2.14)

28 -1

328 gray levels implies 2B _1 grayscale intervals, since two are endpoints of the intensity spectrum.
Usually, black and white are selected as endpoints; nothing can be lighter than white, and nothing
can be darker than black.

33

A
2

mlb

Figure 2-7: Probability density function for rounded quantization errors.

Usually only X(w = 0) has a large magnitude, depending on the method of
rounding and exactly which grayscale values are used. Experimentally, it was found
that the average magnitude of the quantization errors (IX(es*)]) is much lower than

its upper bound.

1

M+1.
* 2B 1

1 X (e3%)] = (2.15)

| -

In the case of a bitonal printer, a transition from black to white must occur in
only one pixel. For an ideal edge which is lined up perfectly with the sampling grid,
the transition between black and white occurs exactly at the spatial Nyquist rate.
However, if the transition is not aligned with the sampling grid, then the resulting
quantization error causes high frequency noise in the reconstructed signal. (See figure
2-8) Thus, even a “perfectly” low pass filtered and sampled object would be incorrectly
printed. As gray levels are added to the printer, high frequency noise still exists, but
its magnitude decreases linearly. The high frequency noise results in visual effects

called “jaggies”, or staircase patterns along smooth edges.

34

Signal

Intensity
Black $=
G Grayscale
y Levels
White i
Sample Points
(a)
Signal
Intensity ;
Black -§- t - --------------
Grayscale
Gray Leveis
White 5 5
{ *__
Sample Points
(b)
Signal
Intensity ; ; i Grayscale
: : ! Levels
Black “®= . — --------------
Gray | R W LS S
White .5

©) Sample Points

Figure 2-8: Quantization errors when sampling a black to white transition. (a) Sample
points correspond to grayscale values, so the error is zero. (b) Sample points do not
fall on grayscale values, so aliasing occurs. (c) More grayscale levels are introduced,
so the aliasing is reduced.

35

2.3.3 Antialiasing

The purpose of antialiasing is to remove the high frequency components from a
printer’s final output. As shown, there are two causes for aliasing in images so it
follows that there should be two distinct methods of fixing aliasing problems. The
“high frequency data” problem can be fixed by appropriate low pass filtering to re-
move small objects and taper edges. The “quantization” problem can be repaired
with slightly more effort; it requires additional hardware and software to be added.
i.e. a printer capable of printing grayscale and antialiased scan conversion routines.

This analysis assumes several ideal components. These assumptions must be ex-
amined before any method of antialiasing can be developed. In particular, a perfect
low pass filter cannot be built, and it is also difficult to build an efficient low pass
filter. It is difficult to convert images from analog signals to digital information and
back to analog signals. Also, an ideal printing device is also assumed in the previous

analysis; this must also be challenged.

2.4 Reconstruction and Filtering

The method of reconstructing a continuous signal zg(t) from its discrete counterpart,
z[n] is fairly straightforward; convert z[n] to an impulse train and pass the result
through a low pass filter. Assuming that the original signal z(t) was properly sampled
above the Nyquist rate, then the reconstructed signal will be identical, i.e. (zr(t) =
z(t)). (See figure 2-9 and 2-10.) In the Fourier domain, the reconstruction process is

represented as

Xr(jQ) = X(&’*)Hrpr(f) (2.16)

where Hypr is the ideal low pass filter function.

T, .
Hrpr(f) = Il < £ (2.17)

0, Wfll> 1

36

1x()i

1 1 L
]
- 21, e 0 fs 21,
(a)
1Xg (W)l
1 i | L \
L 1 T L]
4N - 211 o 27 411
(b)
1 IH pe (DI
1 I 1 I
¥ v Ll ¥
()
IXR(NI
FLAALAA L) ...l‘.'..llll.lll-
[l L] L
_ ! ! ¥ 1
- 2fg g 0 fs 2fg

(d)

Figure 2-9: Sampling and Reconstruction. (a) Original continuous signal (b) Sampled
signal (c) Low pass filter (d) Reconstructed signal after passing the (sampled) impulse

train through the low pass filter.

Vector Antiaiiasing | ___| Scan
Data Pre-filter Conversion

" Bitmap D/A
\ Converter

Figure 2-10: General laser printing model.

In the time (or spatial) domain, the corresponding function for the low pass filter
is the sinc function, or
>, sinwt/T
h t) = —_— 2.
tpr(t) = D t/T (2.18)

Unfortunately, there are two problems with making an ideal reconstruction filter;
a low puss filter cannot be perfect, and it is impossible to make a perfect impulse
train.

The sinc function (low pass filter) is in infinite impulse response (IIR) filter; it is
non-zero over an infinite range. However, sinc approaches zero at locations far away
from the origin, so it seems plausible to truncate the sinc in physical systems. A
simple box filter can be applied for easy truncation, but the box filter is infinite in
the frequency domain and only loosely approximates the sinc. A Bartlett filter (or
triangular filter) gives a better approximation to the sinc, and a Gaussian filter is

better yet. (See figures 2-11 through 2-14.)

38

; o1, Gt
Ptona, Ditmap of The getier S

=
4

};gl],’r' R4 " RBox Hiterrd jetter S

b e

. ot I
Pooaaseee) Hartint HYitpres opte- S

Figure 201 Coansaan ditered fettoer S

1o

1.5 : Spatial Donrlain of Truncated SINC Function

T
|

0.5

Frgquency ngam of Tgmcated gmc Functi'on

1.5 T

T
1

0.5

_0.5 ! L 1 ! i I
-4 -3 -2 -1 0 1 2 3 4

Figure 2-15: SINC function, truncated using a box filter.

More complex windowing methods can be used. For example, near-optimal win-
dows can be designed using the Kaiser window filter design method, which used a
window based a modified zeroth order Bessel function of the first kind. The impact in
the frequency domain is easily seen; regardless of the windowing scheme, the result-
ing windowed sinc frequency waveform exhibits ringing (see figure 2-15). However,
by making the windowed function large enough, it is possible to closely approximate
a low pass filter, so it is usually possible to overcome the problem of accuracy of the
sinc function.

The problem of physically converting digital samples into a pulse train is usually
more bothersome; devices called digital to analog (D to A) converters usually per-
form the conversion. At regular intervals, a D-A converter accepts digital samples

which are converted to analog and held; this “zero order hold” method is expressed

41

Pulse rFunction (§mnple anq hold)

05 s

15 : : Transfqrm of Pu.lsg (SINC anction)

T
!

0.5

0.5 : : : - : :
-4 -3 -2 1 0 1 2 3 4

Figure 2-16: Rectangular filter.

mathematically as a pulse function. (Equations 2.19 and 2.20.) The pulse function’s
frequency spectrum looks little like an ideal low pass filter spectrum (see figure 2-16);
the pulse function is actually a sinc function in the frequency domain. A so called
“rectangular filter” still has some properties of a low pass filter, but it is far from
ideal. In particular, its nonlinearity in the pass (low frequency) zone can distort the
output, and there are prominent negative lobes in the frequency domain which can

cause the resulting signal to fall out of the desired output intensity range.

hpurse(t) = = i /T (2.19)
1, s

Hpurse(f) = Il <1 {2.20)
0, Ifll > f

Vector _| Antialiasing { | Scan Bitmap
Data Pre-filter | Conversion

Compensated ol

D/A 3 Printed
—| Reconstruction

Converter Filter | Pge

Figure 2-17: Laser printing model with compensated reconstruction filter.

As a result, A-D converters are often post-filtered to compensate for the rectan-
gular filtering they inherently perform. The design of a compensated reconstruction
filter follows from the definition of a low pass filter, the ideal reconstruction filter and

the rectangular filter, which we are forced to use. (See figure 2-18 and 2-17.)

Hipr
— 2.21
Hpurse ()

Hcomp =

Often, accurate reconstruction filters are not included in systems because of their
relative complexity for the realized benefit. The most important function a com-
pensated reconstruction filter performs is low pass filtering the image data; this can
be accomplished with a simple low pass filter. The compensation for the frequency
domain non-linearity of the zero-order hold filter is not nearly as important; at worst,

the zero order hold filter attenuates the signal by —4 dB. As long as low pass filtering

is done, there is little need for having a compensated reconstruction filter.

2.5 Justification of Antialiasing

It might seem that antialiasing is no more than an optical illusion - since antialiasing
routines convert sharp edges to gradual (grayscale) edges, it might seem that the
smoothing effect we witness is just blurring. This would clearly be a degradation of the

image quality. However, from the signal processing analysis, we see that antialiasing

43

Rectangular Filter (zero order hold)

L5 T

-20 -10 0 10 20

Compensated Reconstruction Filter

1+ N

0.5 .

0

0.5 ' : : ' -
-20 -10 0 10 20

Figure 2-18: Compensated reconstruction filter. (a) Rectangular filter. (b) Compen-
sated reconstruction filter.

44

only attenuates above the Nyquist frequency. The question is whether there is any
useful data in the high frequency data, or whether it serves merely as a distraction to
the eye. Although antialiased lines appear smoother to the eye, it was not clear that
a two pixel wide line could be the same accuracy as a one pixel wide line. Since then,
it has been shown that antialiasing increases the quality of the line as measured by a
knife edge aperture (to measure the consistency of intensity perpendicular to the line

direction)(25].

2.6 Video Display vs. Laser Printer Antialiasing

Much of the research in scan conversion algorithms has been motivated by video
monitors rather than laser printers, so it’s important to justify that the research
devoted to video text and graphics can still apply to laser printers. Therefore, I will

look at the similarities and differences between video monitors and laser printers.

2.6.1 Similarities

Similar Aliasing Problems The same types of problems due to aliasing in images

are apparent in both media, such as “jaggies”.

Scanning Both video monitors and laser printers write information with scanning
beams. A page is displayed or imaged by writing across each scan line in
succession. Rastering, or discontinuities between adjacent pixels as a result of

scanning, is similar in both media.

Gaussian Beams Gaussian beams are used as a transfer device in both video mon-
itors and laser printers. In a monitor, a scanning electron beam impacts the
phosphor surface to create light. The distribution of the beam (in both verti-
cal and horizontal) directions is Gaussian. Likewise, the laser beam in a laser
printer which discharges regions on the OPC drum also has a Gaussian distri-

bution. Any filtering due to the Gaussian beam would happen in both systems.

45

Response of Transfer Device In a video monitor, the phosphor is struck by a
scanning Gaussian electron beam. The phosphor provides a capacitive effect to
the beam - in effect, it integrates the beam’s energy as the beam sweeps across
which results in an intensity at every spot. Mathematically, the intensity of a

point I(z,y) is the convolution of a Gaussian with a pulse function.

X3 2 2
I(z,y) = Eo/ e~ Killz-2P +(Kay)] 4, (2.22)
-X,

Laser printers employ a similar scheme. In a laser printer, the laser beam strikes
a photoconductor (OPC) drum, causing parts to discharge. Although the OPC drum
is not a linear capacitive device, the drum does perform some degree of integration
as the laser beam is scanned. In the printing process, a particle of toner is analogous
to a phosphor atom of a video screen. If the voltage left on the drum is high enough,
the a toner particle will transfer to that point during the development stage. As long
as the toner particles are small enough in comparison to the pixel width, then the
drum can integrate the Gaussian laser beam to produce density. However, because of
the non-linearity of the drum capacitance, a transfer function must be incorporated
for the development process. Drawn as a density vs. log(Energy) curve (d-log-E),
the transfer curve T(Energy) typically maps the entire development process and not

just the drum capacitive effects.* The density function is

Xa 2 2
D(z,y) = T(Eo/_X e~ Ki(z-2)+(Kay) dz) (2.23)

The capacitance of the drum is somewhat dependent on the frequency of the
laser pulse striking it[24], but it is guaranteed that the integration performed to find
D(z,y) is valid when the frequency of the modulating pulse is less than or equal to the
original frequency. Fortunately, antialiasing implies that we do not need to increase
the frequency of the laser beam signal; in fact, we are guaranteed that the maximum

laser beam frequency will be reduced because of the low pass filtering. Also, the pixel

4 Adding levels of gray to a laser printer directly contradicts a design goal of bitonal laser printers;
for a bitonal process, it is desirable to have a very non-linear development transfer curve!

46

size remains unchanged even if more levels of gray are added.

2.7 Antialiasing in Practice

Numerous methods have been proposed to form antialiased bitmaps from vector data.
The simplest form of antialiasing is simply to low pass filter the vector representation
so that all frequencies above the spatial Nyquist rate are cut off. A general two
dimensional low pass filter is extremely inefficient, requiring O(M?) flops per pixel,
where M . M is the size of the filter. For a filter with M = 20, a page would require
in the order of many hundreds of MFLOP to filter. General two dimensional filters
are not used for this reason; instead, separable filters are used, which reduce the
computation to O(M) at the expense of some accuracy.

Most antialiasing methods break into two categories of filters, “pre-filters” and
“post-filters”. (See figure 2-19.) A pre-filter is employed to low pass filter data before
it is sampled. In contrast, a post-filter is used to low pass filter data after it has been

sampled.

2.7.1 Supersampling

Supersampling is one method of trading off memory for computation. The method is
conceptually quite simple: The image is drawn bitonally on a “supersample” grid.
A grid sampled at N times the Nyquist sampling rate would require N - N times as
much memory. After the image is scan converted, clusters of samples are combined
(with a filter) to form grayscale pixels. (See figure 2-20.) Although it may seem
that this idea is as computationally unreasonable as the original method (low pass
filtering), only enough samples to differentiate grayscales are needed; for example,
if a laser printer were capable of 16 grayscales, a 4 - 4 window would probably be
sufficient. A rule of thumb is that supersampling four times in each dimension often
will be satisfactory.[12]

Variations of supersampling can be used to increase efficiency. For example, adap-

tive supersampling uses different sampling rates across the image. When the sys-

47

{ Vector \ _|Antialiasing Scan Bitmap

e. Pre-filter [| Conversion @
D/A Printed

Converter Page

(a)

Scan Antialiasing {__{ Bitmap
Conversion Post-filter ‘

(Bltmap , D/A (Printed
| Converter Page

(b)

Figure 2-19: Prefiltering and Postfiltering. (a) Prefiltered data is antialiased before
scan conversion. (b) Post-filtered data is antialiased anytime after sampling (not
necessarily before bitmap storage or transmission.)

48

Filtering window

Resulting grayscale
bitmap

/\/ Supersampled image

Figure 2-20: Antialiasing by supersampling. The filter is mapped across the super-
sampled image. The sum of product of corresponding values determines each grayscale
pixel value. (Adapted from [12])

tem determines that more samples are needed, it changes the sampling rate for that
region. Edges would require the maximum sampling rate, while large areas with

monotonic data would need a much lower sampling rate.

2.7.2 Area Sampling

Area sampling is nothing more than a pre-filtered version of supersampling; area
computations are done directly from vector data rather than converting to a high
resolution bitmap first. Since the grayscale values result directly from the vector data
without sampling, this method yields highly accurate results. However, weighted
area sampling can be very computationally expensive; each object’s area must be
integrated with a weighting function to obtain the grayscale value. In addition, each
object must be examined to determine the contribution to a single pixel.
Overlapping objects become a serious problem for area sampling. In supersam-

pling, the scan conversion algorithm takes care of overlapping areas by mapping them

49

on to the same supersampled pixels. However, in area sampling, all objects must be
considered simultaneously to resolve such conflicts. Otherwise, overlapping areas from
different objects would be counted twice in computing the grayscale value of the pixel.

As in adaptive supersampling, adaptive area sampling can be used to increase
efficiency without loss of accuracy. Edges still require an integration (or a table

lookup), but large areas can easily be precomputed.

2.7.3 Gupta-Sproull antialiased lines

The previous approaches to antialiasing are extremely time consuming. Optimized
methods of drawing lines and objects have been developed to overcome the ineffi-
ciency of supersampling and area sampling. One such method is the Gupta-Sproull
antialiased scan conversion for lines.[14] Gupta-Sproull antialiasing uses the endpoints
of a line and a pixel filter function to approximate antialiasing. A conical filter of ra-
dius 2 is suggested, and the algorithm is documented for one pixel wide lines, although
this may easily be changed.

The algorithm precomputes the integration of the filter with a line, as shown in
diagram 2-21. A table is made with the line distance from the pixel’s center vs. the
grayscale value which should appear at that pixel. The grayscale values are computed
by performing an integration over the intersection of the conical filter and the line.

Scan conversion of arbitrary lines is performed using an incremental algorithm,
similar to Bresenham’s line drawing routine[4]. For lines in the first octant, a vertical
cluster of three pixels is examined for every horizontal position. For each of the thrze
pixels, the perpendicular distance from the center of the pixel to the center of the
line is computed, and the pixel is intensified as indicated by the table.

The algorithm is easily extended to the other seven octants using symmetry. It
is highly efficient because the distances are computed incrementally. The results can
be made arbitrarily accurate by increasing the size and resolution of the table; for
a four bit grayscale output, a table size of 24 bits sufficed[4]. The Gupta-Sproull
algorithm is also easily adapted to antialias polygon edges and endpoints of a line by

using different tables.

50

One pixel

Reglon around wide line

Conical Filter a pixel
\/\ + e }
> +
> > +
3 >
e +

(a) (b)

Figure 2-21: Gupta-Sproull antialiased lines. (a) A conical filter. (b) Filter convolved
with a line of width 1 to form a table of filter values for Gupta-Sproull antialiased
line drawing. (Adapted from [14])

2.7.4 Antialiased brushes

Few general curve antialiasing routines exist. One such method is Turner Whitted’s
method of using antialiased brushes to draw arbitrary curves.[29] The brush is first
constructed at high resolution (i.e. a supersampled bitmap) and then digitally filtered
to reduce the component frequencies to below the Nyquist rate of the drawing. Each
pixel of the brush is additionally tagged with a depth (z), which prevents it from
being overwritten by less important pixels as the brushes moves incrementally across
the page. The supersampled brush is then dragged across the page, but only the
brush pixels which exactly coincide with the lower resolution page pixels are copied
to the page. A generic z-buffer algorithm is used to determine if the page pixel should
actually be updated.

There are several disadvantages to antialiased brushes. For every different type of
line, a different brush is needed, so libraries of brushes must be kept. Additionally,
the z-buffer algorithm is computationally expensive; the brush must have three or
four bits of depth information per pixel to operate properly. Despite its drawbacks,

the method does produce high quality output.

51

2.7.5 Character look up tables

When displaying fonts, it is time consuming to antialias each letter as it is scan
converted. Fonts are especially painful because each character is both complex (con-
sisting of possibly dozens of strokes) and interconnected. Rather than antialias during
scan conversion, it is better to store grayscale antialiased copies of the font in arrays
and simply copy (bit-blit) the characters to the video memory.[27]

A common problem with scan converting fonts occurs when the output resolu-
tion (pixel spacing) is too coarse to properly position the glyphs. Proper sub-pixel
positioning can be achieved by storing various different positioned fonts in separate
arrays, and bit-bliting from the correctly sub-positioned font array. This method has
the disadvantage of using a lot of memory, but usually the fonts which have pixel
spacing problems are small enough that it is irrelevant. Excellent results can be

achieved using this method if enough memory is available for all the fonts.

2.7.6 Antialiasing with bit masks and look up tables

A efficient algorithm for scan-converting antialiased polygons uses a table lookup to
draw antialiased edges. For each pixel, the pixel edge — polygon edge intersections
are computed, and these values are used as the address to a lookup table.[1] (See
figure 2-22.)

Most edges intersect at two points, creating either triangular or trapezoidal pieces.
More complex intersection can be usually handled by representing area covered as a
combination of simple fragments; i.e. more than one lookup is performed in the table
and values are added or subtracted to yield the final grayscale value. Since an edge
contained within a pixel affects surrounding pixels as well, lookup tables are computed
for all the immediately surrounding pixels and grayscale values are summed.

Good results were obtained from this algorithm when processing graphics images.
One serious weakness is the inability to accurately compute highly curved line seg-
ments; this algorithm would probably not be suitable for small text due to the tight

curves which comprise most letters.

52

The two intersections shown (25 and 61)
are used as addresses for a table lookup.

Figure 2-22: Table lookup of polygon edge. The polygon intersects the pixel at
locations 25 and 61. These two values are used as the address for a table lookup to
compute the grayscale value of this pixel and also surrounding pixels.

53

Chapter 3

Proposed Antialiasing Post-filter

There are several serious limitations with the methods of antialiasing discussed in the
last chapter. All the current techniques (with the exception of supersampling) are
pre-filters, so they operate solely on analytic or parametric curved outline data (not
bitmaps or images). On the other hand, supersampling is computationally expensive,
so it is not an attractive alternative. A more serious although perhaps less academic
problem is that each method (including supersampling) requires changes to the scan
conversion algorithm so that grayscale data can be generated. This is a very serious
limitation, because current graphics packages cannot be easily adapted to produce
antialiased bitmaps. For example, PostScript! would be very difficult to adapt to print
grayscale bitmaps, because every scan conversion algorithm would have to be changed
to an antialiased counterpart. So, a high level description of the desired antialiasing
routine might be: “The desired algorithm makes use of current bitonal scan conversion
routines, converting bitonal bitmaps to antialiased (grayscale) bitmaps with little
computation.”

In the following arguments, shades of black, white, and different grays will need
to be discussed numerically. Black is assigned a value of 1.0, white is assigned a value
of 0.0, and gray shades are real numbers in between black and white. For example,

0.25 denotes a shade of gray which is 25% black and 75% white.

1 PostScript copyright Adobe Systems Inc.

54

3.1 Edge and Fill

Before designing such an algorithm, it is necessary to combine the different types of
page data into common classes. Rather than having analytic data, parametric curved
outlines, bitmaps, and images, we can classify all pictures as a combination of two
components, edge and fill.[6] “Fill” is the graphical component used to shade areas,
such as the solid parts of letters and halftones in images. “Edge” is used as transitions

between different areas of fill.

3.1.1 Antialiasing edges

Antialiasing is simplified when using the graphical components, edge and fill. Filled
regions no longer need to be considered at all when antialiasing. Only edges need to

be filtered, and the antialiasing rules are fairly straightforward:

e A transition between black and white should occur at the spatial Nyquist rate,
i.e. edges must must take a full pixel wide for black to white transitions. This
rule is derived from the definition of the Nyquist rate; the maximum frequency
allowable is equal to one half the sampling frequency. A transition from black
to white and back to black corresponds to one period, so a transition from black
to white corresponds to half a period. By the Nyquist criterion, a transition
from black to white must occur over at least one sampling period. For less
extreme transitions, such as between two similar shades of gray, the width of
the edge can be scaled proportionally to the intensity difference. Analytically,
the minimum width of an edge between two different shades of gray (G4 and

GB) is

erdge = |GB - GA! (3~1)

e Edges cannot be of length shorter than one pixel for a black/white transition.
This is justified by the same reasoning as the previous width argument. Simi-

larly, between shades of gray an edge can be shorter.

55

Ledge = |GB - GAl (3.2)

e When edges cross, special methods must be used to antialias the region. Con-
sider drawing lines i; and 15, which overlap at (z,y). Many different approaches

can be taken:

— The first question is what it means to have two lines cross; is one line
actually placed on top of the other, or are they considered equally? If i,
is on top, then i, could be scan converted first and those pixels should be

used as background values while converting the second line.

I(z,y) =1 + I + ap1, (3.3)

where af3 is a background blending function.[29] This unfortunately leads
to the resulting intersection being overly bright. If instead black is used
as the background when the second line is drawn, then the points around

the intersection will not be bright enough.[12]

I(z,y) =1, (3.4)

’
— When both lines are considered equally, things become more complex.

Clearly, if the intensities are simply added, the result is too bright. Even
worse, the result of adding bright lines may fall off the top of the intensity

scale, so the result needs to be truncated.

Icombined = trunc [Il + Iz] (35)

— Supersampling can be used to intersect both lines; the lines are drawn at
very high resolution, and the supersampled intersection is simply converted
to grayscale. This method is attractive because the intensities do not fall

off the scale, and consistent results can be obtained; a drawback is the

56

computational expense. Supersampling only considers opaque lines.

I(zay)=Il +-[2_fouerlap(i1’i2) (36)

— For ideal transparent line drawing, the energy is added linearly and inten-
sities are added logarithmically. Adding intensities logarithmically might
result in an intensity off the scale, so the resulting intensity must be trun-

cated.

Eombined = trunc [El + Ez] (3.7)

Icombﬂ'led = trunc [1093 l:BIl + BI:]] (3.8)

This process is computationally expensive, so simpler methods of combin-

ing lines are normally used.

— A very simple but reasonably effective method is to take the maximum of

the two intensities at every point when scan converting.[12]

3.1.2 Enhanced filling

Adding grayscale to a printing system can radically improve edges, and filled regions
can also be enhanced by using grayscale. Gray fill is achieved on a bitonal printer
through the process of halftoning; a cluster of black and white dots are duplicated
over the filled region, causing the overall appearance to fall somewhere in between
black and white, i.e. gray. By using grayscale pixels instead of only black and white,
smaller clusters of dots are needed to achieve the same shade of gray. In a printer
capable of producing n uniformly spaced shades of gray, the halftoning cluster size

will be reduced by a factor of n over that of a bitonal printer.?

2This assumes that the printer is using a fixed cluster dither. In the case of a random dither such
as Ulichney's blue noise dithering, there is no cluster size per se, but the consistency of the gray
improves by adding more grayscale levels.

57

3.2 Antialiasing using cellular automaton

When considering analytic and parametric curved outline data (i.e. mathematically
defined graphical data), it is readily apparent where edges and fill regions are located.
Conversely, in a bitmap form, it is impossible to exactly locate edges and filled regions.
Only approximations can be made, and sometimes a region will not be intelligible
at all. However, if the sampling grid period is sufficiently small compared to the
dimensions of the edges and filled regions, then the region can at least be recognized
as an edge or fill, and the boundaries can be isolated to within one pixel.

Based on the assumption that most features on a bitmap are far larger than the
sampling period, an antialiasing routine can be developed which converts a bitmap
to a higher resolution format and then performs antialiasing by supersampling. The
method is shown in diagram 3-1.

The drawback to this method is the huge memory requirement as the bitmap
is stepped up to higher resolution. The goal is a grayscale bitmap at the original
resolution, so it would be better if the grayscale could be added without increasing
the resolution in the intermediate stages. Ultimately, antialiasing by unweighted
supersampling simply counts the number of shaded subpixels within a pixel and
assigns a grayscale value equal to the percentage of shaded subpixels. The positions of
the pixels are not needed for unweighted supersampling, so a method can be devised
which does not consider the positions of the pixel and does not step up the resolution.

The rules for this procedure are given below:

3.2.1 Rules for PE’s

o Only certain edge pixels are considered for modification; any pixel whose north.

south, east, or west neighbors do not vary is not included in the smoothing.

e Any pixel which starts out white cannot become less than 50% white. Likewise,

any pixel which starts out black cannot become less than 50% black.

e Each modified pixel assumes a grayscale value computed as the weighted aver-

58

Figure 3-1: Cellular Automaton Antialiasing. A bitmap is converted to higher res-
olution using cellular automata and then converted to a grayscale bitmap using the
supersampling methods.

00|(00|00|00|.75| 1.0
00}00|00|.37| 10| 1.0
00|00|.25{10|10| 1.0
00|00|.75|10| 10} 1.0
00|.37| 10 (10|10 | 1.0
25|10 10|10(1.0| 1.0 .

59

age value of the eight surrounding pixels (north, south, east, west, northeast,
northwest, southeast, and southwest). The pixels are weighted as the inverse of

the distance to the center pixel.
e All pixels are updated with lockstep synchronization.

e Multiple iterations of this routine can be performed on a bitmap.

3.2.2 Results and problems

As shown in the photographs in Appendix B, the cellnlar automata method performs
reasonably well at smoothing text and graphics. For a parallel processor such as
the Connection Machine, the routine would be highly efficient; each pixel could be
assigned to a virtual processor, and the NEWS grid could be effectively used because
of the routine’s data locality - each pixel must look only at the pixels surrounding it.
However, for a conventional sequential processor, this method is very computationally
inefficient; a processor needs to make decisions on each pixel in sequence, and worse

yet do this for several iterations.

3.3 Windowed ROM based algorithm

To make a more efficient method of antialiasing, it is important to not have to have
a processor perform a computation on every pixel.

Using the cellular automata method of antialiasing, a processor must modify ev-
ery pixel several times before the result is available. There are several problems to
be addressed when designing a more efficient algorithm. Ideally, a processor should
only be used in the pre-computation instead of performing elaborate computations
on every pixel. The routine should be “one-pass”; results should be available immedi-
ately. Perhaps most importantly, the routine should be pipelined. Results should be
computed as the bitmap is fed to the routine, rather than storing the entire bitmap
and then computing results. A minimal buffer can be used to allow some storage.

A lookup table meets the efficiency requirements; if each pixel is computed with a

60

simple lookup table, then antialiasing becomes fast enough to include in even low cost
output devices. The lookup table is trained to map from a special bitonal bitmap to
its corresponding antialiased version. Ideally, after it is programmed, the lookup table
can perform a mapping from arbitrary bitonal bitmaps to produce their antialiased
counterparts.

This method is very similar to vector gquantization. Vector quantization is a
method of data compression where blocks of information are coded as symbols rather
than individual elements.[18] Vector quantization is noisy; the result of compressing
and decompressing and image is not guaranteed or even expected to be exactly the
same as the original image. However, if the correct symbols, or “code vectors” are
picked, the result will be similar to the original.[2]

Drawing an analogy to the windowed ROM algorithm, the code vectors correspond
to the list of all possible window patterns. One major difference between the windowed
ROM algorithm and vector quantization is that in vector quantization, the code
vectors are independent of each other. In the windowed ROM algorithm, window
mappings overlap so the window patterns are not independent in the same sense.
Although the objective is different, the two classes of algorithms (vector quantization

and windowed antialiasing) are somewhat similar.

3.3.1 Description of windowed ROM algorithm

e Each window pattern provides an address to the ROM. (See figures 3-2 and
3-3.)

e Each window pattern corresponds to a grayscale value, which is output from

the ROM.

e If there is more than one distinct grayscale value corresponding to one window
pattern, this is called a conflict. The grayscale values are averaged and the
standard deviation is kept. A high overall standard deviation indicated that
the window is too small or shaped incorrectly, and there are not enough bits

in the window to discriminate between two fundamentally distinct antialiasing

61

Example data

@ Vectors

@ Text
Antialiased Bitonal
Scan Scan
Conversion Conversion

Grayscale |
Bitmap

9

” Bitonal
\ Bitmap

Mapping
Function |

Figure 3-2: Creating the antialiasing ROM. The antialiasing ROM provides a mapping
from the bitonal bitmap to the grayscale (antialiased) bitmap; the address of the ROM
is computed from a window in the bitonal bitmap, and the values contained in the

ROM represent grayscale.

62

1[0[0[1]1]1] [0.60.30.4/0.61.0/1.0
ofof1[1]1]1]| |0.30.4/0.60.91.01.0
0| 1| 1F1]1|1]| [0.400.50.70.90.70.8
1f13lo] 1] 0] 1] |0.5/0.60.40.50.40.5
1/0['0[0] 0]0]| [0.5/0.30.20.20.1/0.2
o/o|/olo|o|o0]| |0.20.10.0/0.0/0.0,0.0
Bitonal Bitmap Grayscaie Bitmap
B, non i

Figure 3-3: Creating the antialiasing ROM.

63

cases.
e A set of typical data (the learning pattern) is used to create the ROM.

e After performing the ROM learning process on a test suite of data, some bit
patterns may not be associated with a grayscale level. Their grayscale values
must be extrapolated from similar bit patterns which do have grayscale data.
Each pixel in the window is weighted as the inverse of its distance from the
center of the window. If a window pattern does not have a corresponding gray
scale value, similar window patterns (as defined by the weighting function) are

searched until a grayscale value is found and copied to the first window.

o After the entire table is complete, the ROM can be used to antialias arbitrary
bitonal bitmaps. With the same window pattern as was used to create the
ROM, map the window across the bitonal bitmap. At every window position,
the value contained in the ROM is used as the antialiased (grayscale) pixel

value. (See figure 3-4)

3.3.2 Window selection

Selecting the proper size and shape window is critical to the ROM antialiasing routine.
The pixels selected in each window should be relevant to the center pixel in the
antialiasing process. Note that the center pixel does not necessarily lie in the center
of the window; in the case of a 2 x 2 window, there is no center pixel of the window, so
one of the pixels must arbitrarily be selected as the centered pixel during the mapping.
To avoid confusion, the centered pixel will be referred to as (0,0), and other window
pixels will be referred to relative to (0,0), i.e. the closest northeast pixel from (0,0)
is (1,1) and the closest northwest pixel is (—1,1).

The following discussion does not consider dithered images. In a bitonal system
all objects are drawn either white or black; there are no gray objects. When such
an image is antialiased, grayscale is introduced only near edges, not in previously

solid white or solid black regions. As in the cellular automaton method, I make the

64

............
......

Application Data

@ Text
@ Graphics

_ Application
... Program Bitonal
Scan
Conversion

.
Se
-
ceel
.........

~ Bitonal ,
Bitmap

Mapping
Function

Grayscale
Bitmap

Figure 3-4: Antialiasing using ROM. Generic bitonal bitmaps (from commercial prod-
ucts) are antialiased by passing them through the ROM.

assumption that any pixel which is on in the bitonal bitmap should not be less than
50% in the antialiased bitmap, and any pixel which is off in the bitonal bitmap should
not be more than 50% in the antialiased bitmap.

It is useful to figure out how much contribution each surrounding pixel makes to
the center pixel. There are always pathological cases of nearly vertical or horizontal
edges which must be guessed, unless it can be guaranteed that the window is larger
than the edge length. We are concerned with windows of less than 21 positions®, and
it is obvious that edges are often much longer than 5 or 10 pixels, so we can expect
to encounter many such cases. In the event of a nearly vertical or horizontal line, the
maximum error is 50%. (See figure 3-5.)

To develop a metric for determining how important each pixel is, the following

method can be used. To compute the importance of pizel(n,n):

e Integrate over all possible infinite length edges the error which occurs from not
including pizel(n,n) in the window. The error is computed by comparing a

perfectly antialiased bitmap to the test bitmap.

o Repeat the integration assuming that pizel(n,n) isincluded in the window, and

subtract.

e Since only edges affect antialiasing, and the edge width is related to the spatial
Nyquist rate, then only the edges which pass within one pixel of pizel(n,n) and

pizel(0,0) should be considered.

e Certain direction edges are more frequent than others; for example, most fonts
have many horizontal and vertical strokes. When computing the importance
of a window pixel, this distribution should also be factored in; lines should be

picked according to their probability in real text.

By now, this method a selecting a window is too complicated to implement. A
better idea is to ignore the original vector data and antialiased bitmap entirely; con-

centrate only on the bitonal bitmap. To compute the importance of pizel(n,n):

321 positions leads to a ROM size of 22! =2 MBYTE

66

./ \Edge

boundary

Area covered
by edge is
less than a
half pixel.

.
asd

sssscey,
.

< llIl..;

Area covered
by edge is
more than a
half pixel.

Figure 3-5: Selecting a window. A nearly vertical line is the worst case for an an-
tialiasing ROM. This edge could go from (0. —) to (—1,00) which would mean that
all the intermediate pixels (i.e. the ones shown mapped in the window) would have
grayscale values of about 0.5.

67

e Take a typical bitonal bitmap and perform the windowed antialiasing without
including pizel(n,n) in the window. Take a Fourier transform and compute
the error as the weighted magnitude of the all frequency components over the

Nyquist frequency.

e Repeat the computation assuming that pizel(n,n) is included in the window,

and subtract.

Note that this routine does not guarantee accuracy of results; the transform is
not compared against the transform of the original data. As a result, the antialiasing
method should not be optimized to reduce error with a given window; this would
probably degrade the accuracy of the routine. Instead, 1t offers a quick way to check
the importance of particular window bits in removing high frequency components.

The size of the ROM is simply a physical design tradeoff, so larger ROMs yield
better antialiasing, particularly with nearly vertical or nearly horizontal lines. In
experiments (see Appendix B), good results were achieved with a ROM size of 13 x 8

or 17 x 8 bits.

3.3.3 Selection of learning data

The composition of the learning data is an important part of the ROM antialias-
ing routine; it should be similar to the data which is later converted. Theoretically,
only edge and fill need be considered as graphical features, but subtleties are intro-
duced when they are combined and overlapping. The following complex graphical

components should be considered when designing a learning pattern.

e Lines: Lines are combinations of two edges a fixed distance apart. For example,
a one pixel wide line is two opposite facing edges spaced one pixel apart. For
a large line widths (i.e. greater than several pixels) there is no interaction
between the two edges, and the edges can be considered separately. For small
line widths, the edges interfere and the center point will not reach full intensity.
Since the edges can no longer be separated, narrow lines are pseudo-graphical

components.

68

Lines can be drawn at arbitrary angles, and this should be reflected in the
learning data by including many lines at various angles. The length of each line
should be several times the window width to allow the ROM to learn different

sub-pixel positionings of the line.

Edges: Edges should be included in the learning data at various angles. The
length of each edge should be several times the window width to allow the ROM

to learn sub-pixel positioning.

Curves: Curves can be added to the set of learning data, but usually only
small radius curves are valuable because large radius curves appear as lines to
the window. A useful way to implement curves in learning data is to include

several small solid circles.

Intersections: Intersections are important to consider. It is beneficial to in-
clude a region of random overlap of lines, edges and curves in the training data.
Care must be taken that the overlapped regions are scan-converted correctly as

discussed in section 3.1.1.

Text: Small fonts of text should be included in the learning data. Large fonts
are comprised of edges, curves, and intersections and do not need to be mapped

again, although there is nothing wrong with including them as well.

Dithering: Regular dithering can be converted to grayscale if the window is
large enough. By including sections of dithering in the learning bitmap and pro-
viding a sophisticated scan-conversion routine, the ROM can recognize dithered

areas and convert them to grayscaled areas.

69

Chapter 4

Laser diode modulation methods

to support antialiasing

The laser modulation circuit provides an digital interface to the diode laser in
the printer. The motivation for designing this circuit stems from the difficulty of
controlling the laser diode under a varying environment - the laser diode is electrically
a very sensitive device, which is easily destroyed by voltage spikes and overheating. In
addition, its transfer curve changes radically depending on the junction temperature

of the device, which means that constant re-adjustment is necessary.

4.1 Hardware constraints

Ideally, the grayscale bitmap data originating from an application program would
pass through the laser modulation circuitzy and be transformed into uniform pixels
of varying shades of gray on the page. There are several difficulties which must be

addressed with the laser modulation circuitry.

o Gaussian laser beam: The laser beam which strikes the OPC (photocon-
ductive) drum is Gaussian in distribution, and does not necessarily fall totally
within one pixel. . ais presents two problems; the center of the pixel receives
more energy than the sides, and the sides overlap with neighboring pixels. The

net result is that it is impossible to make a square pixel so pixels overlap.

70

e Shades of gray: Toner is black, so the only way to generate shades of gray
is to partially fill a pixel with toner. For example, a gray value of 0.50 would

require half of the pixel area to be filled with toner.

e Information bandwidth: Although it is necessary to modulate the laser beam
within a pixel, it is important to consider the information bandwidth going to
the laser. For example, to arbitrarily modulate eight subpixels within each
pixel, eight bits per pixel are needed. It is better to figure out only the subpixel

patterns which are needed, and encode each pixel with a pattern number.

4.2 Subpixel patterns

Two different classes of pixel patterns should be implemented: centered pulses, and
edge pulses. Centered pulses (shown in figure 4-1) are used for general grayscaling. A
centered pulse will produce a scan-direction symmetric energy distribution within the
pixel. If the proper power is applied to the laser during the on time of the pulse. the
sub-scan energy distribution can be matched to the scan-direction energy distribution.
and an x and y symmetric subpixel dot can be produced (i.e. a rounded square dot).
By using different energy levels and different pulse widths. various size dots can be
constructed which correspond to various shades of gray.

One other type of subpixel pattern should be implemented, the edge pulses. An-
tialiasing increases the effective resolution, but does not actually change the spacing of
the pixels. However, by using edge pulses, the real resolution can actually be increased
in the scan direction. Another way of stating this is that antialiased grayscaling in-
creases the information placed on the page. but does not change the positioning of
pixels. By using edge pulses, sub pixel positioning is possible.

Although the antialiasing routines in chapter 3 do not necessarily make use of this
feature. it is fairly easy to adapt the ROM based routine to recognize scan-direction

edges and use pulse positioning (as well as antialiasing) to improve the quality.

orr :
: (a)
OM eeerenceenen e o ————— -+ i
orry 3———_ ---------------------------- ———-———-—:
(b)
oM ;—_— -- -
orr -----------------
g (c)
ON emeere————— e n e e R nn e s i
OFF feeereeeememmereeanennneneae
(d)
‘e -

1 pixel

Figure 4-1: Example laser modulation pulse patterns. (a) A centered pulse (b) A
wider centered pulse (c) An edge pulse from the left edge (d) A wider edge pulse

-1
[%]

4.3 Selected encoding scheme

To experiment with the effects of different modulation schemes on a printer, the laser
modulator was designed with power modulation, pulse width modulation, and pulse
position modulation. For each bit, an eight bit encoded control word is passed to the

modulator board, consisting of the following fields.

e E[2:0] is laser power for the pixel. E = 0b111 corresponds to full power, and
E = 0b000 corresponds to one eighth of full power.!

e P[2:0]is the encoded pulse pattern for the pixel. The pulse patterns are shown

in figure 4-2.

e [is the inverse bit for the pixel. When I = 1, then the pulse pattern is flipped,

j.e. at every sub-pixel the laser is turned off instead of on, or on instead of off.

e M is the mode bit for the pixel, which indicated if the pulse pattern is a centered
pulse or an edge pulse. M = 1 corresponds to centered pulses, and M = 0

corresponds to edge pulses.

4.4 Simulation of laser printer modulator

Before implementing the laser printer modulator in hardware, the modulation en-
coding was tested with software to insure that the encoding was robust enough to
smooth jagged pixel edges. A laser printer simulator was developed to graphically
display the results of various modulation techniques. OPC drum energy is displayed
in color. with lighter colors representing higher drum energies. Toner distribution is
displayed in black and white, and is statistically approximated at transition zones.
Equations 2.22 and 2.23 are used to compute the OPC' drum energy distribution

and the toner distribution. Values for E,, X; and X, are derived from decoded

LThe laser is fully turned off by using the correct pulse modulation signal, not by the power
signal.

M P2 P1 PO

0000

000O01

0010

Figure 4-2: Pulse modulation patterns for laser modulator.

modulation data. K; and K, are approximated from the laser energy distribution
curves. The final unknown variable, the density function D{e] is approximated by

comparing a standard bitonal modulation simulation with actual printed results.

it

oy

e

Fignre 1.7+ Laser printer simulator. OP¢" drum energy and toner. horizontal step.

conventional modulation

Figure 4-%: Laser printer simulator, OPC drum energy and toner. horizontal step.

pulse edge modulation Nate that edge s still <harp.

Figure 4-9: Laser printer simulator. OPC drum energy and toner. | pixel wide 15

degree line. conventional modulation

Figure 4-10: Laser printer simulator. OPC drum energy and toner. 1 pixel wide 45

degree line. power and pulse edge modulation

9

{ 1 ' e - A : trre ey a T | s IR ol v N
Fooame b0l Laser printer simiator, OPC qrum energy and toner. 2 ooinens wnne
tedrees iree cannenTiond, o hation

. C) \ . R
Fognre + 072 Laser printer simutator, OPC deg enerds and toners 2 praeis soae o
dearee el power ated pitdse edge modaiation Note thid The edge s smooth, hecanse

. . y N I .
Attiar ot prKers aded o [)T“(i‘h e straienlt o ine e e toner '}ET"\““L’i

4.5 Design methodology and circuit description

The laser diode is a current driven device; it turns on when it is forward biased at
between 1.2 and 1.8 Volts. For 5 mW operation approximately 80 mA of forward
current is needed. and the output is roughly proportional to the current. All of these
parameters can vary significantly depending on the temperature of the laser diode
junction, which in turn changes during normal operation. A monitoring photodiode is
included in the package, which is used in reverse bias configuration. The photodiode
operates by monitoring the laser light output and letting through a proportional
amount of back-current, roughly 1 mA for 3 mW of laser output power.

One can easily construct an analog feedback loop to turn the laser diode on and
maintain a steady output power. However, the laser printer application places some
additional constraints on the laser modulation subsystem. When using the laser in a
printer, the laser must be able to be switched at a high frequency (to produce arbitrary
patterns on the page), not just turned on for long periods of time. To accomplish this
modulation, the feedback loop must be interrupted at the same frequency to prevent
it from compensating when the laser is off. Also. since the laser diode is electrically
fragile. it is a necessary characteristic of the feedback loop that it be overdamped:
otherwise, the overshoot could damage the laser diode.

The laser is digitally modulated at speeds of 20 MHz or more. The laser should
be capable of being switched at least three times faster than this to insure sharp
edges: this implies a control loop bandwidth of 60 MHz. Keeping in mind that a
slightly overdamped system is needed, the analog voltage mus. be sampled at a rate
of over 120 MHz. Even if accurate amplification were available at that bandwidth,
the sample and hold device necessary to switch on and off the feedback loop is not
available in current technology at this speed. In addition. it is difficult to modulate
the laser at lower power levels without the feedback causing problems. A different
solution is needed.

The laser modulation signal can be broken into three basic signals of various

speeds. The three signals are combined to make the modulation signal at the last

81

stage. There needs to be a bias signal which is derived from the feedback loop. This
signal sets the operation point of the laser - it indicates how much power to send to
the laser when it is fully on. Second, there is a power signal which determines the
percentage of power at which the laser is operating, i.e. a grayscale level. With these
two signals alone grayscaling could be accomplished, but a third signal - a modulation
signal - adds generality and improves the capability of the circuit. The modulation
signal is the fastest of the three control signals, and simply turns on or off the laser
at the specified power level and bias.

Now that the component signals are identified, bandwidths must be considered.
The pixel rate of the modulator is 5 MHz, and the sub-pixel rate is 20 MHz.? To
generate the sub-pixel clock, a phase lock loop is used to multiply the basic 5 MHz
signal. (See figure 4-15.)

The modulation signal clearly must be capable of switching at the highest rate,
20 MHz. Since the modulation signal is a one bit digital signal. there is no difficulty.
The power level signal can be slower if resolution is sacrificed. i.e. if one power level
is used over all the sub-pixels of a pixel. In this implementaticn the power signal
changes at 5 MHz. It is important to turn off the feedback loop when the laser is off
and also when the laser is operating at low power levels because the feedback loop is
only calibrated to a 5 mW output (laser fully on). Even though the feedback loop
must be turned on and off relatively quickly, it does not need to respond quickly
when it is on; its purpose is to respond to thermal fluctuations. which are very low
bandwidth changes. Therefore, the choice for the feedback loop is a limited slew rate
digital feedback loop.

The principle behind the limited slew rate digital feedback loop is that the “op-
erating point” of the feedback loop is held in a digital register. Depending on the
feedback. the operating point is either increased or decreased a fixed amount, after
which it is converted to an analog signal through a digital to analog converter. Most

of the components of this loop (such as the D-A converter) are allowed to be slow

2As shown, the modulation PAL (PAL2) generates 8 sub-pixels per pixel, which implies a 40 MHz
modulation rate. However, the circuit was built and tested at 20 MHz before trying to increase to

40 MHz.

82

because the amount of change to the operating point is small, and instability of the
feedback loop due to slow components is bounded by the magnitude of the changes
to the operating point. In other words, the feedback loop will be unstable, but the
amount of instability will be relatively small and it will occur only within a valid
output range.

The feedback circuit is implemented with three cascaded L5169 up/down counters
(E3, E4, E5) to hold the operating point of the feedback loop. (See figure 4-13.)
Under the control of a PAL, they can be enabled to add one or subtract one from the
operating point every cycle. Together, there are 12 bits of resolution in the operating
point. The output of the counters is fed into a 12 bit D-A converter (E6). The output
of the D-A converter is fed into an op-amp follower (E7) to provide isolation. The
resulting signal, LaserBias, is a voltage which indicates the bias level of the laser
diode.

The feedback portion of the loop starts with the photodiode. The voltage at the
base of the photodiode is compared to a variable set voltage using an open loop op-
amp (E1). (The set voltage determines the operating point of the laser. The operating
point can be adjusted by a variable resistor.) The op-amp saturates positively or
negatively depending on whether the photodiode voltage is higher oi lower than the
set voltage. The output of the op-amp is fed into a line receiver (E2) to convert it
to a TTL signal. The TTL signal simply indicates “high” or “low”. and is fed into
the control PAL (PAL1) for the feedback loop. PALI1 generates enable and direction
signals for the LS169’s (E3, E4, E5) based on the value of the feedback signal. The
PAL must also be able to switch off the feedback loop (i.e. signal the LS169’s to hold
the current value without changing) depending on the video data being sent to the
laser. Therefore, the I, Power[2:0], and Pattern/2:0] signals are gated together and
the resulting signal is sent to PAL1 as well to tell it when the laser is at full power.

After the laser diode bias is determined. it is dropped across a voltage divider of
eight resistors to scale it for the eight different power levels. Each of these power
levels has the laser bias incorporated within it; when the bias changes, so do all the

power levels. The eight power levels are sent to an analog multiplexor (E8), which can

83

select one of the voltages based on the signal Power[2:0], and pass it to the output.
Since the analog MUX has a finite resistance and limited current capacity, an op-amp
follower (E9) is used for isolation. The op-amp follower has a diode forward biased
in its feedback path, which adds an offset 0.7 Volts to the output. (This is of some
use for driving the transistor (Q1) linearly. since the base emitter voltage drop is
approximately 0.7 Volts).

The modulation transistor (Q1l) is connected in a common emitter fashion to
drive the laser (in the collector). (See figure 4-14.) It acts as roughly linear voltage
controlled current source. The gain is controlled by the 6K resistor in series at the
base. The transistor must be capable of drawing a collector current of about 150 mA.
switching smoothly at speeds of more than 20 MHz, and sinking at least 500 mW of
power.

Finally. the modulation circuitry (which must be very fast) is added. The analog
MUX and the op-amp are too slow to support the bandwidth of the modulation
signal, so the modulation signal is added after the power signal is generated in E9.
Transistor Q2 is used in a common emitter setup. with the base being driven by the
modulation signal. When Q2 is switched on. the variable resistor in the base of Q2
should be adjusted so that Q2 does not saturate but does draw enough current to
switch off Q1, thereby shutting off the laser. When Q2 is in shut off. Q1 is unaffected
and the laser operates as usual. The modulation signal used to drive Q2 is generated
from the encoded bit data by the modulation PAL (PAL2).

The result is a circuit which is capable of digitally modulating a diode laser at
speeds of up to 20 MHz while simultaneously power modulation the diode laser at
speeds of up to 5 MHz. The circuit uses the feedback of the laser diode to correctly

set the operating point of the laser and modulate only in the correct range.

4.6 Laser Modulation Circuit Schematics

R4

e TEIO U]

T9E9W1

Yo3a
I1€ 1

93

MOl

h u N

ar’n
S3 e
dna
ol FZM
10
" ; mﬂ vod
€0 8 A ATOoePTA
o v | 0:Z]uze3yqeg
DDA
691671 —{o0:z)romog
1
€ETA
i
v3 on
[6) e}
Lt}
o M _ 8AST TVE
0 2
o m w
oo 1 1vd
691861
qot NG
-~ o
€3 b o il
[84 (o2} —
4Nz
00 N3 L
10 a
0 2
3] e M
ooy v u..mﬂ
6918671

epotra o304a

Figure 4-13: Laser Modulation Circuit

1oty

1oet

A —— 0ZXTOo%PTA

1¢]

°PoTa

104 M0¢
.|||\|| [0:2}uaezqwy
uor3eTnpon| ||qm| [0:z]xemcg
FA o) [0:z]aemog , L]
1
+ L0 -
cs 8A9T T¥a
o]
€ e Zvd
£
01
- £5
wo R €8
63 €8
XoN
T+ Oo.ﬂlﬂ.‘ (]
T9€9MI _.I
TSOYOHY LI P
83
Iese]

Figure 4-14: Laser Modulation Clircuit

86

1

Axeutry

P
L
z

Jde- m%

EST&

QZATOO®PTA

T R
5 .mib 0
€1)
= c 3
z1 AT
3d v.m‘: olul
L <
L m.ﬂn ant-o
001 3 —gsxTO0®PTA
z =
3
TIa R 4
00€ ot’t |_l
G+ 996 IAS/IEN S+

Clock Generation for Laser Modulation Circuit

Figure 4-15:

87

4.6.1 Feedback PAL (PAL1)

Name Christopher Mayer;

Fartno XX;

Date {Date};

Revision {0};

Designer Christopher Mayer;

Company Digital Equipment Corporation;
Assembly Laser Feedback Control GAL;
Location H

Device giévs;

Format A

/‘t“‘t‘“‘t"‘#.t‘tlltt‘ttt‘l“tt“t#‘ttt"ttttt‘itt“tttt‘tt“‘tt“‘.&“‘
#+ This pal generates control signals for up/down counters used to set the

** operating point of a larer diode.

‘tﬁ‘ttl#‘ﬁt““"l“.“l“tt“t‘mtt““‘l‘ﬂl‘t“tti.‘t“t““#.“‘-““‘t!#/

/“‘*ttt#t‘.‘#.“““t‘-‘.tt“t‘*‘ti‘i“‘.“““‘ttt‘ﬁt“'ﬁ‘t‘tt“.it“tt‘-t‘tt'

* Inputs (Pins 2-9)

“ﬁt.‘t“t‘tt“tll““““tl‘ttl“‘t"“ﬂli.‘.-‘t‘tttﬁ“ttt‘tt.i#‘t“““!t‘tit/

Pin 2 = feadback; /* Feedback from laser */

Pin 3 = !laser_on; /* Indicates laser is full power */
Pin 4 = reset; /* spare */

Pin & = sparel; /* spare =/

Pin 8 = spare2; /* spare */

Pin 7 = spare3; /¢ spare -/

Pin 8 = spare4; /* spare «/

Pin 8 = spareb; /* spare =/

/“.“‘“0“ﬁ‘“ﬁ.““i‘.t““.#.!‘t.‘t“tt“‘tt"t“““i“t.““"t“.“‘0...‘

»s Outputs (Pins 12-19) e

-“““‘..‘.t‘.“.“.““.““.‘t‘..“l‘t‘t“‘t-“‘--‘l‘t‘t‘“t‘t“‘t“.#‘.-.“/

Pin 12 = 'enable_count; /* enables up/down counters *«/

Pin 13 tclear_count; /* Reset counters, turn off laser ./

88

Pin
Pin
Pin
Pin
Pin

Pin

SDEFINE
$DEFINE

14
15
16
17
18
19

= up_down; /* counter direction

= delayl; /*
= delay2; /=
= delay3; /=
= delay4; /»
= delay5; /=

TRUE 'b’1
FALSE ’b’0

registered delay line
registered delay line
registered delay line
registered delay line

registered delay line

enable_count.d = laser_on & 'enable_count &

delay5 & delay4 & delay3d & delay2 & delayl;

/* Enables counters if laser =*/

/* was on for several cycles =/

clear_count.d = reset;

up_down.d = !feedback; /* Control term

delayl.d = !'enable_count; /* delay line.

delay2.d = delayi;

delay3.d = delay2;

delay4.d = delay3;

delay5.d = delay4;

x9

./

*/
*/
*/
=/
*/

*/

4.6.2 Modulation PAL (PAL2)

Name Christopher Mayer;

Partno XX;

Date {Date};

Revision {0};

Designer Christopher Mayer;

Company Digital Equipment Corporation;
Assembly Laser Modulation Control GAL;
Location ;

Device gi6vs;

Format A

/t"tt-t“t“‘tt‘.“t‘.ltttt‘t“.‘t‘t“‘itlt‘t“‘lt.‘tt.ttt‘#.‘tot‘.t."ttt

»* This pal generates control signals for pulse width modulating a laser.
tt!tttt‘it‘t"tttt“ttttttttt“‘t‘.l“t‘ﬁt‘t't“t“‘t.t-ttt#.t‘tl-t"““t‘/
/t##‘#it.tt‘.t‘tt‘t#‘tt“““t-tttt‘0““".‘#."tt“t‘ttt‘tttt#“.‘tt‘tt‘tt‘t‘.

. Inputs (Pins 2-9)

“‘.‘tt##ﬁ“‘i.““‘“ti‘“‘..tﬂ‘““.‘..““““‘“tt."tll“.“‘t“-“‘l-‘“‘/

Pin 2 = i; /* Inverse ./

Pin 3 = m; /* Mode (0 = Edge, 1 = Fill) ~/
Pin 4 = p2; /* Pulse pattern, bit 2 */
Pin 5 = pl; /% Pulse pattern, bit 1 */
Pin 6 = pO; /* Pulse pattern, bit 0 ./
Pin 7 = c2; /* Count 2 ./

Pin 8 = cl; /#* Count 1 »/

Pin 8 = c0; /* Count 0 */

/‘.“"tﬁ“‘t#“t““l“‘-‘l““‘l.“.‘tt“"“-‘t'-."t‘.ﬂ‘t‘it‘.l‘t“-‘.“...t

= Qutputs (Pins 12-19) e

t‘t‘ﬁ““.““.‘.‘l-“““.“““““‘#“‘t.t‘t-t‘“‘.tt.-.‘.-‘.O“‘tl.““““/

Pin 12 = 03; /» First stage of output. c2=1, cli=1 ./
Pin 13 = 02; /* First stage of output. c2=1, c1=0 »/
Pin 14 = ol; /= First stage of output. ¢2=0, cli=1 ./
Pin 16 = 00; /* First stage of output. c¢2=0, c1=0 ./
Pin 16 = mod; /* Second stage of output ./

Pin 17 = modout; /#* Third (and last) stage of output «/
Pin 18 = i2; /* Delay line for i ./

90

Pin 19 = spare2; /* Spare
$DEFINE TRUE 'b’1
$DEFINE FALSE ’b’0

00

ol

02

03

i2.

mo

mo

= 1cO& (m&p2 &pl £p0) #
cO & ('m&p2 & pl & poO®
m&p2& (p1 #p0));

=!'cO& ('m&p2 &kpl#
mé& (p2#
pl & po)) #
cO & ('m&p2¢& (p1 #p0) #
mé& (p2#%pi#p0));

= 1c0& ('m & p2 #
me& (p2#pl))¢
cO & ('m& (p2#
pl &£ p0) &
m & p2);

=1coOk ('mé& (p2#pt)#
mé&p2&pl)#

cO & !'m& (p2 # p1 # p0);

d.d=(c2é& cl & 03 #
c2 & 'cl &£ 02 #
1c2 & c1 & ol #

1c2 & 'cl & o0);

dout.d = mod § i2;

*/

91

Chapter 5

Results, Conclusions and

recommendations.

The results of the algorithms presented in chapter 3 are quite promising. (See Ap-
pendix B for pictures.) A brief analysis of the results with suggestions for future

research follows:

5.1 Cellular automaton smoothing

The cellular automaton smoothing algorithm provided adequate results within a few
iterations: often the difference between two and four passes was impossible to distin-
guish. Many edge pixels attain half gray value and can progress no further, i.e. edge
pixels either turn from white (1.0) to mid-gray (0.50) or from black (0.0) to mid-gray
(0.50). This boundary condition is encountered along entire edges, as shown in figure
B-4 in Appendix B. This indicates a problem with the algorithm;: far too many pixels
are stopped from crossing gray level 0.50 by the boundary condition. which indicates
that the smoothing is unstable with the current rules.

A statistical comparison of antialiased images and smoothed images would prob-
ably indicate gross inaccuracies in the current smoothing algorithm for output with
more accuracy than two bit grayscale: this comparison should be done. The smooth-

ing rules (and formula) should be changed to more closely approximate antialiasing

99

T

and avoid the instability problem discussed above.

5.2 Windowed ROM antialiasing

The windowed ROM algorithm performed quite admirably. A thirteen or seventeen
bit ROM mapping yields results practically indistinguishable from “perfect”™ methods
of antialiasing such as supersampling or weighted area sampling, with practically no
run-time computation. The first work which should be done to validate the windowed
ROM algorithm is a statistical study comparing the algorithm to standard methods
of antialiasing, devoting particular attention to conflict patterns. Although the algo-
rithm seems to work extremely well, a better set of learning data is probably needed
for general antialiasing work.

In the current set of learning data. lines and areas are well represented. This set
of data performs quite good antialiasing on large fonts. At 300dpi. the letter “S™
shown in Appendix B is printed at 18 points. However. for smaller fonts. the tight
curves demand specialized learning patterns to properly antialias. It would be useful
to study how well the current mapping performs on 6 point text, and to possible
expand the learning data set to include some smaller fonts.

A halftone to grayscale mapping would be challenging to implement using the
windowed ROM antialiasing. Probably the easiest way to account for halftone is
simply to include halftone areas in the learning data. but this challenges the window
shape selection; halftone clusters may work better with different (i.e. more round)
window shapes rather than the hyperbolic star which is currently used. Halftone
patterns might be introduced into the mapping by hand which would result in very
consistent gray fields, but this would prove very tedious to do near edges. Perhaps a
combination of an augmented learning pattern and some hand improvements to the
mapping would produce better results.

Implementing a routine to convert blue noise dithering to grayscale would also be
possible, although this would probably best be accomplished by including blue noise

dithered areas in the learning pattern.

93

The windowed ROM algorithm should be adapted to provide not only grayscale
values but also edge position information. This can be used by the laser printer driver
to increase the resolution in the scan direction. while still maintaining antialiasing
in the sub-scan direction. This modification could be made most easily by adding
another few bits of output to the ROM and encoding the position.

Finally, the windowed. ROM algorithm can be customized to the particular laser
modulator being used. This could be accomplished two ways: the laser modulation
codes could be programmed directly into the ROM instead of grayscale values. or an-
other level of circuitry could be added to accomplish a mapping between the grayscale

value and position to the laser modulation codes.

5.3 Laser modulation circuit

The laser modulation circuit should be installed in a laser printer engine to test the
simulation results. After the simulation model is validated. there is work to be done
developing a mapping between grayscale values and modulation codes to achieve the

proper balance of pulse width and power for different gray levels.

04

Appendix A

Associated Computer Programs

A.1 SHOW BITMAP.C

SHOW_BITMAP displays a grayscale bitmap using X windows.

/ * show _bitmap.c windows grayscale bitmap previewer */

/* C. Mayer, 10—15—90, Digital Equipment Corp. */

#include <X11/Xlib.h>
#include <X11/Xutilh>
#include <stdio.h>
#include <math.h>

#include <strings.h>

#define fontWidth(f) ((f)—>max_bounds.width)
#tdefine fontHeight(f) ((f)— >max_bounds.ascent + (f)— >max_bounds.descent)

#define X_GRID 1000
#define Y_GRID 1000

#define TRUE 1
#define FALSE 0

int grayscale_image{Y_GRID|[X_GRID}:

int x_grid, y_grid; 20
char data_file_name[128], name[128];

int gray levels;

int drawn;

int pixel_size;

int max_level;

int autolevel;

#define COLORLEVELS 100
char *colornames{ COLORLEVELS+1];
unsigned long pixelvalue{COLORLEVELS+1]; a0

Display *dpy;
Window window_grayscale;
GC gc_grayscale, gc_grayscale_text:

XFontStruct *font_text;

/i AARE R R AR IR R RS E I R E R G R LRI G IR D R G R IR GRS IR SN S U RN G R RZ SRR f b t/

/t RN RN R RN R RN R R IR R BRI R R R R E R R R R SRR R RS G R BN R RN KRR R R R G R RS R QO RO * ¥/
/ i

void GetArgs(argc, argv) 40
char **argv:

int argc;

{

char s[80];

int flag;

strcpy(data_file_name, ""bitmap.dat");

gray levels = 100;

autolevel = FALSE; 50
max_level = 255;

pixel_size = 10;

argv++;

arge——;

while(arge > 0){

96

arge—--;
flag = 0;
strepy(s, *argv++);

if(strcasecmp(s, "-GRAYLEVELS") == 0){
gray levels = atoi(*argv++);

arge——;

if((gray_levels > COLORLEVELS) || (gray_levels < 0)){

printf("Error: GRAYLEVELS out of range.\n");
exit(0);

}

flag = 1;

}

if(strcasecmp(s, "~MAXLEVEL") == 0){
if (strcasecmp(*argv, "AUT0") == O}
autolevel = TRUE;
max_level = 0;
*argv++;
arge——:
} else {
max_level = atoi(*argv++);
arge——;
if(max level < 0){
printf("Exrror: MAXLEVEL out of range.\n"):
exit(0);

}

flag = 1;

if(strcasecmp(s. "-PIXELSIZE") == 0){
pixel_size = atoi{*argv++):
arge——.
if{(pixel_size > 100) || (pixel_size < 0)){
printf("Error: PIXELSIZE out of range.\n"}):

97

80

80

80

exit(0);

flag = 1;

if(strcasecmp(s, "~-FILENAME") == 0){
argc——;
strcpy(data_file_name, *argv++);
flag = 1; 100

}

if(strcasecmp(s, "~-NAME") == 0){
arge——;
strcpy(name, *argv++);
flag = 1;

}

if(flag == 0){
printf("Illegal argument: %s\n",s); 110
printf("'show_bitmap -filename <fn> -pixelsize # -maxlevel #
-graylevels #\n");
exit(0);
}
}
}

/# RNA R G IR R R E R F R R PR R R R RRR R BT R F R RR RN IR R R IR R R AR R LR R i/

void UpdateScreen() 120

{

XEvent event;

int 1, j, c, lastc;

while (XEventsQueued(dpy, QueuedAlready))
{

98

XNextEvent(dpy, &event);
switch(event.type)
{ 130
case Expose :
if (event.xexpose.count == 0)

{ XClearWindow(dpy, window_grayscale);

drawn = 0;
}
break;
case ButtonPress:
XCloseDisplay(dpy);
exit(0);
break; 140

case MappingNotify:
XRefreshKeyboardMapping((XMappingEvent *)&event);
break;

}

}
if (!drawn) {

lastc = —1;
for(i = 0; i < x_grid; i++){
if (XEventsQueued(dpy, QueuedAlready))
drawn = FALSE; 150
else {
for(j = 0; j < y_grid; j++) {
¢ = Map _grayscale_process(grayscale_imagel[j][i]);
if (¢ != lastc) {
lastc = ¢;
XSetForeground(dpy, gc_grayscale, pixelvalue|c]);
}
XFillRectangle(dpy, window grayscale, gc_grayscale,
i*pixel_size, j*pixel_size,

pixel_size, pixel_size); 160

99

XSync(dpy, 0);
drawn = TRUE;
}

XSync(dpy, 0);
} 170

/¥ ***#****#***#*tl##****#*t###**t**t##ﬁ**t*#*##tt***#!*#tt**#t */

int Map_grayscale_process(x)
int x;
{
int temp;

double r;

if(x <0)x=0; 180
t = (double) x / (double) max_level;

r = (double) floor(r * (double) gray levels);

r = r / (double) (gray levels — 1) * (double) COLORLEVELS;

temp = floor(r + 0.5);

return(temp);

/* *t##*#*#t"#l***I*t#i#*#*t#ﬁ"tr#l*t*#t*###tt*t#*#**#*#t*##** #’/

void Compute() 190
{

int i, j;

int n;

char s[80];

FILE *{p;

fp = fopen(data_file_name, "),
fscanf(fp, "%8", s);

x_grid = atoi(s);

100

fscanf(fp, "%s", s); 200
y_grid = atoi(s);
for(j = 0; j < y_grid; j++){
for(i = 0;i < x_grid; i++){
fscanf(fp, "%s", s);
n = atoi(s);
grayscale_image[j][i] = n;
if (autolevel)
if (n > max level) max level = n;
}
} 210
fclose(fp);

max_level++;

/* ##**t*t*#&#**l’**#I#i*#t*****#*#**##**#*#*#t*t#’t****#ilit*l* #/

void InitScreen()

{

XEvent event;

unsigned long foreground, background, pixvalues(8], status; 220
Colormap cmap;

XColor cdef;

int screen;

XSizeHints hint;
int i, i;

char c_ten,c_one, s[80];

dpy = XOpenDisplay("");

screen = DefaultScreen(dpy); 230
cmap = DefaultColormap(dpy, screen);

foreground = WhitePixel(dpy, screen);

background = BlackPixel(dpy, screen);

hint.x = (DisplayWidth(dpy, screen) — (x_grid * pixel_size)) / 2;

hint.y = (DisplayHeight(dpy, screen) — (y_grid * pixel_size)) / 2;

101

hint.width = (x_grid * pixel size);
hint.height = (y_grid * pixel_size);
hint.flags = PPosition | PSize;
window_grayscale =
XCreateWindow(dpy, DefaultRootWindow(dgpy), hint.x, hint.y,
hint.width, hint.height, 5, DefaultDepth(dpy, screen),
InputOutput, (Visual *)CopyFromParent, 0L, NULL);

strepy(s, "*");
for(c_ten="0"; c_ten <= ’9’; c_ten++) {
for(c_one="0’; c_one <= ’9’; c_one++){
i=(c_ten — ’0°) * 10 + (c_one — ’0’);
colornames(i] = (char *) malloc(10);
strepy(colornames(i], “gray");
if (c_ten != 707){
s[0] = c_ten;
strcat(colornames|i], s);
}
s[0] = c_one;
strcat(colornamesi}, s);
}

}
colornames[100] = (char *) malloc(10);

strepy(colornames({100], ""gray100");

for(i=0; i < (COLORLEVELS+1}); i++){
status = XParseColor(dpy, cmap, colornamesi], &cdef);
if (status == 0) {
printf("%d %s Color Parse Error.\n",i, colornames(i]);
}
status = XAllocColor{dpy, cmap, &cdef);
if (status == 0) {
printf("%s Color Allocation Error.\n", colornamesli});
}
pixelvalue[i] = cdef.pixel;

}

102

240

250

260

270

status = XParseColor(dpy, cmap, "WHITE", &cdef);
status = XAllocColor(dpy, cmap, &cdef);

foreground = cdef.pixel;

status = XParseColor(dpy, cmap, "BLACK", &cdef);
status = XAllocColor(dpy, cmap, &cdef);
background = cdef.pixel;

XSetWindowBackground(dpy, window grayscale, background);
XSetWindowBorder(dpy, window_grayscale, foreground);
XSetStandardProperties(dpy, window _grayscale, name, name,

None, NULL, 0, &hint);
ge_grayscale = XCreateGC(dpy, window grayscale, 0, 0);
XSetForeground(dpy, gc_grayscale, foreground);
XSetBackground(dpy, gc_grayscale, background);
gc_grayscale_text = XCreateGC(dpy, window grayscale, 0, 0);
XSetForeground(dpy, gc_grayscale_text, foreground);

XSetBackground(dpy, gc_grayscale_text, background);

XSelectInput(dpy, window_grayscale,
ButtonPressMask|ExposureMask|VisibilityChangeMask);

XMapRaised(dpy, window_grayscale);

font_text = XLoadQueryFont(dpy,
"-adobe-new century schoolbook-bold-i-normal--12-120-75-75-p-76-i808859-1");

XSetFont(dpy, gc_grayscale_text, font_text—>fid);
do

XNextEvent(dpy, &event);
while (event.type != VisibilityNotify);

103

280

290

300

XClearWindow(dpy, window _grayscale);
XSync(dpy, 0);

drawn = 0;

}

main(argc, argv)

char **argv;

int arge;

{
GetArgs(arge, argv);
Compute();
InitScreen();
while (1) {

UpdateScreen();

}

}

310

320

104

A.2 FILTER.C

FILTER reads a bitmap, filters it using the specified digital filter, and writes the

resulting bitmap.

/ * filter.c — program to digitally filter one bitmap with another */
/* C. Mayer, 10/16/90, Digital Equipment Corp. */

#include <stdio.h>

#include <strings.h>

#define TRUE 1
#define FALSE 0

char bitmapname[132], filtername([132];
int *bitmap, *filter;

int bitmap_x, bitmap_y, filter_x, filter_y, output_x, output_y;

/I AR RR R IR R R RT G R R R RGN R R I ISR T RRRRRRNRF TR RF IR NI RSN #/

void GetArgs(arge, argv)
char **argv;

int argc;

{
char s[132];

int flag;

if (arge '=3) {
printf("filter: Wrong number of arguments.\n");
exit(0);

}

*argv++;
strcpy(bitmapname, *argv++);
strepy(filtername, *argv++);

105

10

20

30

/* REEFERERREETERIIIRERIRERRFERRR LRI RRELERIRRAERRRRRGRERRRNE ¥

Initialize()

int i,j;
FILE *fp; 40
char s[80];

fp = fopen(bitmapname, "r");
fscanf(fp, "%s", s);
bitmap_x = atoi(s);
fscanf(fp, "%s", s);
bitmap_y = atoi(s);

bitmap = (int *) malloc(sizeof(int) * bitmap x * bitmap_y);

for (j=0; j < bitmap_y; j++) { 50
for (i=0; i < bitmap_x; i++) {
fscanf(fp, "%s8", s);
*(bitmap + j*bitmap_x + i) = atoi(s);
}

}
fclose(fp);

fp = fopen(filtername, "x");

fscanf(fp, "%s", s);

filter_x = atoi(s); 60
fscanf(fp, "%s", s);

filter_y = atoi(s);

filter = (int *) malloc(sigeof(int) * filter_x * filter_y);

for (j=0; j < filter_y; j++) {
for (i=0; i < filter_x; i++) {

fscanf(fp, "%s", s);

106

*(filter + j*filter_x + i) = atoi(s);
}

}
fclose(fp);

output_x = bitmap_x + filter_x — 1;

output_y = bitmap_y + filter_y — 1;

/J’ FIIZSSIIXITTT TSRS RS LRSS 2RSSR RSS2 S22 2 2L L 2 L a2 L bt Edd */

Compute()

int x, y, 1, j;

int total;

printf("%d %d\n", output_x, output_y);

for (y = 0; y < output_y; y++){
for (x = 0; x < output_x; x++){
total = 0;
for (j = 0; j < filter_y; j++){
for (i = 0; i < filter_x; i++){
if (((y-j) >=0) &&
((y—Jj) < bitmap_y)) &&
(((x—i) >= 0) &&
((x=j) < bitmap_x))) {
total+= *(filter + (filter_y — j — 1)*filter_x + (filterx —i — 1)) *
*(bitmap + (y — j)*bitmap_x + (x — i));

}

printf("%d ", total);

}
printf(*'\n");

80

20

100

/* e 3 e e e o e 2k e Yo 3 e o e e e 3 e e e e e e e e e e T o o e e o e e e e e e e e e o e oA s e Ak */

/# e 3 3 e e 3k 3 e s 3 o 3 3 3k 2 3k e 3 2 e 3 3 e e e e e e 2K 3 ek 2 e e o e e e o e 3o e e e A o A A ek */

main(argc, argv)

char **argv;

int argc;

{
GetArgs(argc, argv);
Initialize();
Compute();

}

110

108

A.3 SMOOTH.C

SMOOTH performs a ceilular atomaton antialiasing of an bitmap.

specifies how many iterations of the routine are computed.

An argument

/ * filter.c — program to digitally filter one bitmap with another */
/* C. Mayer, 10/ 16/ 90, Digital Equipment Corp. */

#include <stdio.h>
#include <strings.h>
#include <math.h>

#define TRUE 1

#define FALSE 0

#define BITMAPI1(x,y) *(bitmapl + (y) * bitmap_x + x)
#define BITMAP2(x,y) *(bitmap2 + (y) * bitmap_x + x)
#define WHITE 1000

#define BLACK —WHITE

#define NEWS MULT 7

#define DIAG_ MULT 5

#define CENTER_ MULT 0

#define DIVISOR 30.0

char bitmapname[132];
int *bitmapl, *bitmap2, *temp;
int bitmap_x, bitmap_y;

int iterations;

/# PETITITTIFIR IR FL SNSRI S22 S S RS L 2L L R 2L LA L AL S ALl i/

void GetArgs(arge, argv)
char **argv;

int argc;

{
char s[132];

int flag;

109

10

20

30

if (arge !=2) {
printf(*smooth: Wrong number of arguments.\n");
exit(0);

}

*argv+-+;

iterations = atoi(*argv++);

40
/* ERRER AR ARRRERRRRERERERERRFERRRRRERRR IR FFRRRRREREREI RS #
Initialize()

int i,j;

char s[80};

scanf("%s", s);

bitmap_x = atoi(s); 50

scanf("%s", s);
bitmap_y = atoi(s);
bitmapl = (int *) malloc(siseof(int) * bitmap_x * bitmap_y);

bitmap2 = (int *) malloc(sizeof(int) * bitmap x * bitmap_y);

for (j=0; j < bitmap_y; j++) {
for (i=0; i < bitmap_x; i++) {
scanf("%s", s);
BITMAPL(ij) = atoi(s) * 2 * WHITE — WHITE;
} 80
}
}

/ * *t#t#ﬁ*l*****#**l#*t#‘l‘#tti##*#t!*###t*#tt*tttlttl*##tttt# */

Compute()

110

int i, j, result;
int ¢, n, s, e, W, ne, se, nw, SW, reverse; 70

double r;

for (j = 1; j < (bitmap_y — 1); j++) {
BITMAP2(0,j) = BITMAP1(0,j);
BITMAP2(bitmap_x—1,j) = BITMAP1(bitmap_x—1,j);
}
for (i = 0; i < bitmap_x; i++) {
BITMAP2(i,0) = BITMAP1(i,0);
BITMAP2(i,bitmap_y—1) = BITMAPI1(i,bitmap_y—1);

} 80

for (j = 1; j < (bitmap_y — 1); j++){
for (i = 1;i < (bitmap_x — 1); i++){
¢ = BITMAPI1(i, j);
n = BITMAP1(i,j—1);
s = BITMAP1(i,j+1);
e = BITMAP1(i+1,j);
w = BITMAP1(i—1,};
BITMAP2(j, j) = c;
if (H((n == s) && (s == ¢) && (e == w))){ 90
if (((c == WHITE) &&
((n == BLACK) || (s == BLACK) || (¢ = BLACK) || (w = BLACK))) ||
((c == BLACK) &&
((n == WHITE) | (s == WHITE) || (¢ = WHITE) || (w = WHITE)))) {
ne = BITMAP1(i+1,j—1);
se = BITMAP1(i+1,j+1);
nw = BITMAP1(i-1,j—1);
sw = BITMAPI1(i—1,j+1);
if (c < 0) {
reverse = —1; 100
c *= —1;
n *= -1,

s *= —1;

111

e *= —1;

w*¥= —1,
ne *= —1;
se *= —1;
nw *= —1;
sw *= —1;
} 110

else reverse = 1;

result = NEWS_ MULT * (n +s + e + w) + DIAG_ MULT *
(nw + sw -+ ne + se) + CENTER_MULT * ¢;

r = (double) result;

result = floor(r / DIVISOR);

if (result < 1) result = 1;

if (result > WHITE) result = WHITE;

BITMAP2(i, j) = result * reverse;

} 120

/* RRA RN IR R R IR RE IR BRI IR FRRE AR RRIEFRREREE KRR TR R RN #/

Output()

{ 130

int ij;

printf("%d %d\n", bitmap_x, bitmap_y);
for (j=0; j < bitmap_y; j++) {
for (i=0; i < bitmap_x; i++) {
printf("%3d ", BITMAPI1(i,j) + WHITE);
}
printf("\n");

}

112

} 140

/# FYTTI e ssrrr e s PR ET S FEESEEL 22 P2 2L 22 22 A L L LRl ttd -*/

/* REHEEERREERRE R RIRERRERERRE T RREE RN KRR R FEKRARE R TR RE */

main(arge, argv)

char **argv;

int argc;
{
int count;
150
GetArgs(arge, argv);
Initialize();
for (count = 0; count < iteraticns; count++){
Compute();
temp = bitmap2;
bitmap2 = bitmapl;
bitmapl = temp;
}
Output();
} 160

113

A.4 CREATE_CIRC.C

CREATE_CIRC creates a pattern of vectors which is used during the learning process
of building antialiasing ROMS.

#include <stdio.h>

#include <maih.h>

#define S 10
#define PRECISION 10000
#define VECTORS 25

main()

double sin(), cos();
int i;

int t;

double r;

FILE *fp;

fp = fopen("vectors.dat", "w");

for(t=0;t < 360;t +=S) {
for(r=290; r > 40.0; r —= 10.12345) { 20
fprintf(fp, "%1f *, r * cos((double) t / 180.0 * 3.1415) + 250.0);
fprintf(fp, "%1f ", r * sin((double) t / 180.0 * 3.1415) + 250.0);
fprintf(fp, "%12 ", r * cos(((double) (t + S) — 300.0 / r) /
180.0 * 3.1415) + 250.0);
fprintf(fp, "%1t ", r * sin(((double) (t + S) — 300.0 / r) /
180.0 * 3.1415) + 250.0);
fprintf(fp, "\n");
}
}

30

for (i = 0; i < VECTORS; i++) {

114

fprintf(fp, "%1¢ ", (double) (random() % (100 * PRECISION)) /
PRECISION + 200.0);
fprintf(fp, "%1f ", (double) (random() % (100 * PRECISION)) /
PRECISION + 200.0);
fprintf(fp, "%1¢ ', (double) (random() % (100 * PRECISION)) /
PRECISION + 200.0);
fprintf(fp, "%1¢ ", (double) (random() % (100 * PRECISION)) /
PRECISION + 200.0);
fprintf(fp, "\n");
}
fclose(fp);

}

40

115

A.5 CREATE MAP.C

CREATE_MAP creates an antialiasing ROM from a set of vectors.

/ * create_map2.c adaptive anti—aliasing program */
/ * This program creates aliased and anti—aliased bitmaps from vectors
and then outputs a mapping between the two bitmaps. */

/* C. Mayer, 11— 14—90, Digital Equipment Corp. */

#include <stdio.h>
#Finclude <math.h>
#include <strings.h>

#define TRUE 1 10
#define FALSE 0
#define MAXDOUBLE 1.0e20

#define THRESHOLD 0.5000
#define PRECISION 1000

struct WINDOW TYPE {
int x;
int y;
double weight; 20

h

struct MAPPING_TYPE {
int pattern;

double value, sumsqr;

int count;
struct MAPPING_TYPE *left, *right;
ki
char data_file_name[80], filter_name[80}, rom_name[80], window_name[80]; 30

int *bitmap, *bitmap_a, *bitmap_n;

int *filter;

116

struct WINDOW _TYPE *window;

struct MAPPING_TYPE *mapping_head;

int xpix, ypix;

int filter_length, window size;

int mode;

int output_mode;

int pow2[32];

double error; 40

FILE *fp;

double rint();
double floor();
double sqrt();
double pow();

/* P22 232X FF XTSRS RSS2 LSS S L E 22 22 22 2 2 2 2 4’/
/* FERRERERARERRARERRRRRRREERRRRRRRERRRRRRERRRERIRRERAERN H]
50
void GetArgs(argc, argv)
char **argv;

int argc;

{

char s[80];

int flag;

if (output_mode == 2) printf("Initializing.\n");

strecpy(data_file_name, "vectors.dat"); 60
strepy(filter_name, "filter.dat");

strcpy(rom_name, "mapping.dat");

strcpy(window_name, "window.dat");

xpix = 50;

yPix = xpix;

output_mode = 2;

argv++;

arge——;

while(arge > 0){
arge——; 70
flag = 0;
strepy(s, *argv++);

if(strcasecmp(s, "-VECTORS") == 0){
argc——;

strcpy(data_file_name, *argv++);

flag = 1;

}

if(strcasecmp(s, "-FILTER") == 0){ 80
argc——;

strepy(filter_name, *argv++);
flag = 1;

}

if(strcasecmp(s, "-MAPPING") == 0){
arge——;
strcpy(rom_name, *argv++);
flag = 1;
} 90

if(strcasecmp(s, "-WINDOW") == 0){
argc——;
strcpy(window_name, *argv++);
flag = 1;

}

if(strcasecmp(s, "~XPIX") == 0){
argc——;
xpix = atoi(*argv++); 100
if ((xpix < 1) || (xpix > 1000)) {
printf("Exrror: xpix out of range.\n");
exit(0);

118

flag = 1;

if(strcasecmp(s, "-YPIX") == 0){
argc——;
ypix = atoi(*argv++); 110
if ((ypix < 1) || (ypix > 1000)) {
printf("Error: ypix out of range.\n");
exit(0);
}
flag = 1;
}

if(strcasecmp(s, "~NORMAL") == 0){
output_mode = 0;
flag = 1L 120

}

if(strcasecmp(s, "~ANTIALIAS") == 0){
output_mode = 1;
flag = 1;

}

if(flag == 0){
printf("Illegal argument: %s\n",s);
printf("create_map [-parameter ...]J\n\nValid parameters are:\n 130
[-vectors <fn>]\n [-filter <fm>]\n [-mapping <fn>]\n [-window <fn>]\n
{-xpix <int>]\n [-ypix <int>]\n [-normal | -antialias]\n");
exit(0);
}
}
}

/I ERE N BRI R IR R R R R GGG RRER I RE R BRI TR RR RN RRG R E R RN R R G R R BN */

void initialize() 140

119

int i, j;

double x;

for (i=0; 1<32; i++)
pow2[i] = (int) rint(pow(2.0, (double) i));

fp = fopen(filter_name, "r");
fscanf(fp, ""%d", &filter_length); 150
filter = (int *) calloc(filter_length, sizeof{int));
for (i = 0; 1 < filter_length; i++) {
fscanf(fp, "%12", &x);
*(filter+i) = (int) rint(x * PRECISION);
}
fclose(fp);

fp = fopen(window_name, "r"});
fscanf(fp, "%d", &window_size);
window = (stract WINDOW TYPE *) calloc(window size, sizeof(struct WINDOW _TYPE))ie0
for (i = 0; i < window size; i++) {
fscanf(fp, "%d", &j);
(window+i)—>x = j;
fscanf(fp, "%d", &j);
(window+i)—>y = j;
fscanf(fp, "%1t", &x);
(window+i)—>weight = x;
}

fclose(fp);
} 170

/# PP RN R RIS IR R R R R R PR RS E R R R SRR RS RPN R TR BB RN SRS R R DEROR RIS t/

int map(oldval, distance)
int oldval;

double distance;

120

{

int newval;

int i;
180
i = (int) floor(distance / 2.0 * (double) filter_length);
if (i >= filter_length) i = filter_length — 1;
if (mode == 0) {
if (distance < THRESHOLD) i = 1; else i = oldval;
} else {
newval = *(filter + i);
if (newval > oldval) {
1 = newval;
} else {
i = oldval; 190
}
}
return(i);
}
JE RRERRRAARRRES RS RS TR RRTRRRRRRERRARAEAAR ARSI RRS SR 24 3]
scan_convert_line(x1, y1, x2, y2)
double x1, y1, x2, y2;
200
{
double i, j, x, y, b, xx, yy, d, m;
int k;
if (fabs(y2 — y1) > fabs(x2 — x1)) {
if ((y2 — y1) < 0.0) {
y=yLiyl=y2y2=y;
x = x1; x1 = x2; x2 = x;
}
m = (x2 — x1) / (y2 — yl); 210

b=x1-m*yl;

121

for (i = rint(yl — 1.0);i <= rint(y2 + 1.0);i =i+ 1.0) {
y=%
x=m*y+ b;
for (j = rint(x — 1.0); j <= rint(x + 1.0); j =j + 1.0) {
if ((i >= 0.0) && (j >= 0.0) && (i < ypix) && (j < xpix)) {
yy=(m*({-b)+i)/(m*m+1)
Xxx =m *yy + b;
d=sqrt((y — i) * (y — 1) + (x - J) * (x = j))
k = map(*(bitmap + ((int) i) * xpix + ((int) j}), d);
*(bitmap + ((int) i) * xpix + ((int) j)) = k;
}
}

}
} else {

if ((x2 — x1) < 0.0) {

x = x1; x1 = x2; x2 = x;
y=ylLiyl=y%y2=y;
}

m = (y2 — y1) / (x2 — x1);
b=yl —m*xl;

for (i = rint(x1 — 1.0);i <= rint(x2 + 1.0);i =i + 1.0) {

X =1

y=m?*x+ b;

for (j = rint(y — 1.0); j <= rint(y + 1.0);j =j + 1.0) {

if ((i >= 0.0) && (j >= 0.0) && (i < xpix) && (j < ypix)) {

x=(m*(§-b)+i)/(m*m+1)
yy =m * xx + b;
d=sqrt((x — i) * (x =) + (y = 3) * (y = I
k = map(*(bitmap + ((int) j) * xpix + ((int) i)), d);
*(bitmap + ((int) j) * xpix + ((int) i)) = k;

}

122

220

230

240

250

/l *t*i***#****#***####t*ttd###***#I###*##t##*#*#l*##l#l#* t/

void make_image()

{

double x1, x2, y1, y2;

if (output_mode == 2) printf("Making image.\n");
bitmap = (int *) calloc(xpix * ypix, sizeof(int));
260

fp = fopen(data _file_name, "r");
while (!feof(fp)){

fscanf(fp, "%1f %1f %1f %1f", &x1, &yl, &x2, &y2);

scan_convert line(x1, y1, x2, y2);
}
fclose(fp);

}

/l **##tt*######*litﬁ###****t*t&######tl*#l###tt###*###*## */

270

void write_image()

{

int i, j;

if (output_mode == mode) {
printf("%d %d\n", xpix, ypix);
for (j = 0;j < ypix; j++) {
for (i = 0; i < xpix; i++) {
printf("%d ", *(bitmap + j * xpix + i)); 280
}
printf("*\n");
}
}

123

/# ##*t***#*t#*t###*#*#*####i###*##t###******##*t###t**##* */

struct MAPPING_TYPE *create_node()

290

int i;

struct MAPPING_TYPE *m;

m = (struct MAPPING_TYPE *) malloc(siseof(struct MAPPING_TYPE));

m—>pattern = 0;

m—>value = 0.0;

m—>sumsqr = 0.0;

m-—>count = 0;

m—>left = NULL; 300
m—>tight = NULL;

return(m);

/* #ttl*##l#i###*’*l***#**t#*t###*###*t*’#t#########i*##t# #/

generate_mapping()

{

int 1, k, y2, x2, p; 310
char s[80];
struct MAPPING_TYPE *m;

if (output_mode == 2) printf("Generating mapping.\n");
mapping_head = create_node();
for (j = 0; j < ypix; j++) {

for (i = 0; i < xpix; i++) {

P=0;
for (k = 0; k < window size; k++) {
x2 =i + (window+k)—>x; 320

124

y2 = j + (window+k)—>y;
if (((x2 < 0) || (x2 >= xpix) || (y2 < 0) || (y2 >= ypix)))
if (*(bitmap_n + y2 * xpix + x2) == 1)
p = p + pow2(window size — k — 1];
}
m = mapping_head;
while (m—>pattern != p) {
if (p > m—>pattern) {
if (m—>right == NULL) {
m—>right = create_node(); 330

m->right—>pattern = p;

}
m = m— >right;
} else {

if (m—>left == NULL) {
m—>left = create_node();
m—>left—>pattern = p;

}

m = m—>left;

} 340

}

k = *(bitmap_a + j * xpix + i);

m—>count++;

m—>sumsqr += pow((double) k, 2.0});

m—>value = (((m—>count — 1) * m—>value) + ((double) k)) / m—>count;

/# *##i###l.‘#t#*#lt#t#####t‘###l"#t#t*t####**t#tt#t##t### t/ 350

print_tree(m)
struct MAPPING_TYPE *m;

{
if (m == NULL) return(0);

else {

125

}

/# PEL R 222 S22 222 222 R SR R AR 2 R R R R 2 2222 2 22 2 2R 2l Rt */

printf("%d 7%5.31f ¥%5.31f ¥%5d\n", m—>pattern, m—>value, m—>sumsqr,

m—>count);
print_tree(m— >right);
print_tree(m—>left);

}

double weight diff(p1, p2)

{

}

/-ﬁ RRRREERRL DR RRRRRRERRE R RRG RN IR RIRE R IR BRI ERRRER RN RN #/

int pl, p2;

int i, j;

double total;

i=0;
total = 0.0;
J=pl " p2;

for (i = 0; i < window size; i++) {
if (j & pow2|[window size — i — 1})
total += (window+i)—>weight;

}

return(total);

struct MAPPING _TYPE *find_closest_node(m, p)

{

struct MAPPING_TYPE *m,;

int p;

struct MAPPING TYPE *ml], *mr;
double m_error;

int 1, j, k, done;

126

360

370

380

390

if (m == NULL) return(NULL);

if (p == m—>pattern) {

error = 0.0;

return(m);
}
if (p > m—>pattern) { / * Take a right */
mr = find_closest_node(m—>right, p);
if (error == 0.0) / * Quick return for a zero */
return(mrj;
m_error = weight_diff(m—>pattern, p); / * Incorporate self */

if (m_error < error) {
error = m_error;
mr = m;
}
/* Now figure out the closest that we can come in the other side of the tree. */
/* Start with the highest order bit (also highest weighted) and work until
one of the bits 1s not able to match. Then match all the rest. */
k =0;
done = FALSE;
for (i = 0; (i < window size) && (!done); i++){
k += p & pow2[window size — i — 1J;
if (k > m—>pattern) {
k —= p & pow2[window size — i — 1];
k += p & (pow2[window sise — i — 1] — 1);
done = TRUE;

}
}
m_error = weight_diff(k, p); /* Find how small the error could be */
if (m_error < error) { /* If it is smaller, branch */

m_ertor = error; / * Save error for test later */

ml = find_closest_node(m—>left, p);
if (error == 0.0) /* Quick return for a zero */

return(ml);

127

400

420

if (error < m_error)
mr = ml; 430

}

return(mr);

} else { /* Take a left */

ml = find_closest_node(m—>left, p);

if (error == 0.0) /* Quick return for a zero */
return(ml);
m_error = weight_diff(m—>pattern, p); /* Incorporate self */
if (m_error < error) { 440

error = m_error;
ml = m;
}
/* Now figure out the closest that we can come in the other side of the tree. */
/ * Start with the highest order bit (also highest weighted) and work until
one of the bits 1s not able to match. Then match all the rest. */
k = pow2(window size] — 1;
done = FALSE;
j=p (pow2[window size] — 1);
for (i = 0; (i < window size) && (!done); i++){ 450
k —= j & pow2[window size — i — 1];
if (k > m—>pattern) {
k += j & pow2[window size — i — 1];
k —= j & (pow2[window size — i — 1] — 1);

done = TRUE;
}
}
m_error = weight _diff(k, p); /* Find how small the error could be */
if (m_error < error) { / * If it 1s smaller than what we have, branch */
mn_error = error; / * Save error for test later */ 480

mr = find_closest_node(m—>right, p);

if (error == 0.0) /* Quick return for a zero */
return(mrj;

if (error < m_error)

128

ml = mr;

}

return(ml);
}
}
470
/3 l#t-‘“l"t"tl#t‘i"t‘#.t“ﬁ“'"ﬁ"“ll‘ltlt#‘#l‘ltttt# ‘/
expand_mapping()
{
int i, j, k, num_nodes;
struct MAPPING TYPE *m;
num_nodes = pow2[window size];
if (output_mode == 2) printf(""Expanding mapping to %d nodes.\n", num_nodes); 480
fp = fopen(rom_name, "w");
for(i = 0; i < num_nodes; i++){
if (output_mode == 2)
if ((i & 0x00000ff) == 0)
printf(" Expanding... node %d\n", i);
error = MAXDOUBLE; /* This MUST precede every call to find_closest_node */
m = find_closest_node(mapping_head, i);
putw((int) rint(m— >value), fp);
}
fclose(fp); 490
}
/l i*#‘#"*’t##'tt##t-“##*l*##l’l#3‘##'##“'*t*t‘ll**#l‘*t#t*l I/
/* ﬁ*##*#l""‘“"#**&I‘t*#"'**‘t#*"‘*‘#*#'tt'*t*ﬁ#tl#*‘t */
main(argc, argv)
char **argv;
int argc;
{
500

GetArgs(arge, argv);

129

initialise();
for (mode = 0; mode < 2; mode++) {
make_image();
if (mode == 0) {
bitmap_n = bitmap;
} else {
bitmap_a = bitmap;
}
write_image();
}
if (output_mode == 2) {
generate_mapping();
expand_mapping();
}

510

130

A.6 ANTI_ALIAS.C

ANTIALIAS uses an antialiasing ROM to antialias a bitonal bitmap.

/ * anti—alas.c adaptive anti—aliasing program */

/* This program anti—aliases bitmaps using a mapping */

/* C. Mayer, 11—26—90, Digital Equipment Corp. */

#include <stdio.h>
#include <math.h>

#include <strings.h>

#define TRUE 1
#define FALSE 0

struct WINDOW _TYPE {
int x;
int y;
double weight;

H

struct MAPPING_TYPE {
char *pattern;
double value, sumsqr;
int count;

double error;

struct MAPPING TYPE *left, *right;
}

char rom_name[80], window_name[80];
int *bitmap;

struct WINDOW _TYPE *window;
struct MAPPING_TYPE *mapping_head;
int xpix, ypix;

int window_size;

int pow2(32];

131

10

20

30

FILE *fp;

double rint();
double floor();
double sqrt();
double pow();

/# CRRRP IR R ER BB R EE RN R PF R RN B R DR RGP G R AR RN R BB R ERE SRRSO R RS l/

/& PP YT sz Ty yr y R R R SIS 22222 2 222 2 22 2 2 2 2 R 22 20 Lt by t/

void GetArgs(arge, argv)
char **argv,

int arge;

char s[80];

int flag;

strcpy(rom_name, "mapping.dat");
strcpy(window_name, "window.dat");
xpix = 50;
ypix = xpix;
argv+-+;
argc——;
while(arge > 0){
arge——;
flag = 0;
strcpy(s, *argv++);

if(strcasecmp(s, "-MAPPING") == 0){
arge——;
strcpy(rom_name, *argv++);
flag = 1;

}

if(strcasecmp(s, "-WINDOW") == 0){

132

40

50

80

argc——;

strepy(window_name, *argv++); 70
flag = 1;

}

if(flag == 0){

printf("Illegal argument: %s\n",s);
printf("anti_alias -mapping <fn> -window <fn>\n");
exit(0);
}
}
} 80

/* -ﬂ'*t&##'##t‘***##tt*##tt####il###Il*llt*#**t##*###tltt##*#t#** #/

void initialize()

{
int i, j, k;

double x;

for (i=0; i<32; i++) 90
pow2[i] = (int) rint(pow(2.0, (double) i));

fp = fopen(window_name, "1");
fscanf(fp, "%d", &window_size);
window = (struct WINDOW _TYPE *) calloc(window size, siseof(struct WINDOW _TYPE));
for (i = 0;i < window size; i++) {
fscanf(fp, "%d", &j);
(window+i)—>x = j;
fscanf(fp, "%d", &j);
(window+i)—>y = J; 100
fscanf(fp, "%1L", &x);
(window+i)—>weight = x;
}
felose(fp);

133

scanf("%d ‘%d", &xpix, &ypix);
bitmap = (int *) malloc(xpix * ypix * siseof(int));
for (j=0; j < ypix; j++)
for (i=0; i < xpix; i++) {
scanf("%d", &k); 110
*(bitmap + j*xpix + i) = k;

}

fp = fopen(rom_name, "x");

/# AR IR R AR NI R R RN R TR R R R T ERRRN R RRRE R BB F AR R RRRS R KRR ENERRR R RN #/

make_bitmap()
120

inti, j, k, p, x2, y2, v;
char *s[80];

printf("%d %d\n", xpix, ypix);
for (j = 0; j < ypix; j++) {
for (i = 0;i < xpix; i++) {
p=0
for (k = 0; k < window size; k++) {
x2 =i + (window+k)—>x; 130
y2 = j + (window+k)—>y;
if ((x2 >= 0) && (x2 < xpix) && (y2 >= 0) && (y2 < ypix)) {
if (*(bitmap + y2 * xpix + x2) == 1) {
p = p + pow2[window size — k — 1J;
}
}

}
fseek(fp, p * siseof(int), SEEK SET);

v = getw(fp);
if (v <0){

140

134

printf("ERROR: Read past EOF.\n");
exit(0);
}
printf("%d ", v);
}
printf("\n");
}
}

/# t####*##l#tl#t‘ll#t####tl#t“‘#l###l###l#ttltil###l‘##*#’l’#ﬁ I/ 150

/ﬂ i‘i*t#t#l‘&t"#t*#t##ﬁ####’*#’#t‘#it#*tlttt######*‘#‘tt#‘tt#& #/

main(arge, argv)

char **argv;

int argc;

{
GetArgs(arge, argv);
initialize();
make_bitmap();

160

135

A.7 PRINTSIM.C

PRINTSIM simpulates the printing process of a laser printer. The OPC drum energy
level and the resulting toner distribution are displayed for a specified bitmap and

modulation scheme.

/ * printsim.c laser printer simulation */

/* C. Mayer, 6— 19— 90, Digital Equipment Corp. */

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>
#include <math.h>
#include <strings.h>

#define fontWidth(f) ((f)—>max_bounds.width) 10
#define fontHeight(f) ((f)—>max_bounds.ascent + (f)—>max_bounds.descent)

#define X_PIX DIVS_MAX 100
#define Y_PIX_DIVS_MAX 100

#include ""grid_size.h"

#define INTEGRATION_ ACCURACY 200.0

#define TRUE 1 20
#define FALSE 0

#define K1 1.2 / * power */

#define K2 1.0 /* quality or drop off */
#define K3 0.8 /* y/z scale factor */
#define ENERGY_SCALE 4.2

#define TONER_THRESHOLD 1.0

#define PWM_MODELS 32
/* Caution: if PWM_MODELS is changed, change the masking below */ 30

136

#tdefine X_SIZE x_pix _divs * X GRID
#define Y _SIZE y_pix_divs * Y_GRID
#define INT_STEP (2.0 / INTEGRATION_ ACCURACY)

int digital_image[Y_GRID](X_GRID};

double gaussian_x(PWM_MODELS|[3 * X_PIX_DIVS_MAX];

double gaussian_y[3 * Y_PIX_DIVS MAX];

int x_pix_divs, y_pix_divs;

double xpl[PWM_MODELS], xp2(PWM_MODELS], xp3[PWM_MODELS], xp4[PWM_MODELS];
char data_file_name[128]; 40

char pwm _data_file_name[128];

int drawn, energy, toner;
struct PAGE_ TYPE {
double data[Y PIX _DIVS_ MAX * Y _GRID][X_PIX_DIVS_ MAX * X_GRIDJ;

} page_map;

typedef char *COLORNAMES;
#define COLORLEVELS 8 50
COLORNAMES colornames(] = { "BLACK",
"DARKGREEN",
“MIDNIGHTBLUE",
“BLUE",
“RED",
"GREEKN",
"“YELLOW",
"WHITE" };
unsigned long pixelvalue{ COLORLEVELS];
60
Display *dpy;
Window window_toner, window_energy;
GC gc_energy, gc_energy_text, gc_toner, gc_toner_text;

XFontStruct *font_text;

/ﬁ «t*l#-ﬁﬁ"t###tﬁt”#ﬁ#t#‘lt##ttt*##l"'#ﬁ*#ttt#l&*t#t*#‘#tt&‘## #/

137

/t ERRR R TR RR R R G R R RRRERRRRRRRRE TR G SRS R R RN RRR R R R RE SRR R 4’/

void GetArgs(arge, argv)
char **argv; 70

int argc;

char s[80};
int flag;

strcpy(data_file name, "printsim.dat");
strcpy(pwm_data_file_name, "modulation.dat");
x_pix_divs = 50;
y_pix_divs = 50; 80
toner = FALSE;
energy = FALSE;
argv++;
arge——;
while(arge > 0){
arge——;
flag = 0;
strepy(s, *argv++);
if(strcasecmp(s, "-XPIXEL") == 0){
x_pix_divs = atoi(*argv++); 90
arge——;
if((x_pix_divs > X_PIX_DIVS_MAX) || (x_pix_divs < 0)){
printf("Error: XPIXEL out of range.\n");
exit(0);
}
flag = 1;
}
if(strcasecmp(s, "-YPIXEL") == 0){
y_pix_divs = atoi(*argv++);
arge——; 100
if{ (y_pix_divs > Y_PIX_DIVS_ MAX) || (y_pix_divs < 0)){
printf("Error: YPIXEL out of range.\n");

138

exit(0);
}
flag = 1;
}
if(strcasecmp(s, "~PULSEMOD") == 0){
arge——;
stecpy(pwm_data_file_name, *argv++);
flag = 1; 110
}
if(strcasecmp(s, "-FILENAME") == 0){
arge——;
strecpy(data_file_name, *argv++);
flag = 1;
}
if(strcasecmp(s, "-ENERGY") == 0){
energy = TRUE;
flag = 1;
} 120

if(strcasecmp(s, "-TONER") == 0){

toner = TRUE;
flag = 1;
}
if(flag == 0){
printf("Illegal argument: %s\n",s);
exit(0);
}
}
if ((energy == FALSE) && (toner == FALSE)) 130
toner = TRUE;

/l’ ERRRRER R IR RE R IR R BRI RN RERRF RS E RN G R R R SR RSB RN RS SRR RGN RO NN #/

void UpdateScreen()

139

XEvent event;

int i, j, c_energy, c_toner, lastc_energy, lastc_toner;

while (XEventsQueued(dpy, QueuedAlready))
{
XNextEvent(dpy, &event);
switch(event.type)
{
case Expose :
if (event.xexpose.count == 0)
{ if (energy == TRUE) XClearWindow(dpy, window_energy);
if (toner == TRUE) XClearWindow(dpy, window_tonet);
drawn = 0;
}
break;
case ButtonPress:
printf("Exiting...\n");
XCloseDisplay(dpy);
exit(0);
break;
case MappingNotify:
XRefreshKeyboardMapping((XMappingEvent *)&event);
break;
}
}
if (!drawn) {
printf("'Developing...\n");

c_energy = —1;
if (energy == TRUE){
for(i = 0;i < X_SIZE; i++){
if (XEventsQueued(dpy, QueuedAlready))
drawn = 0;
else {
for(j = 0; j < Y_SIZE; j++){
lastc_energy= Map_energy_process(page_map.datal[j]fi]);

140

140

150

160

if (c_energy != lastc_energy) {
c_energy = lastc_energy;
XSetForeground(dpy, gc_energy, pixelvalue[c_energy]);
}
XDrawPoint(dpy, window_energy, gc_energy, i, j);
}
}

c_toner = —1;
if (toner == TRUE){
for(i = 0; i < X_SIZE; i++){
if (XEventsQueued(dpy, QueuedAlready))
drawn = 0;
else {
for(j = 0; j < Y_SIZE; j++){
lastc_toner= Map_toner_process(page_map.data(j][i]);
if (c_toner != lastc_toner) {
c_toner = lastc_toner;
XSetForeground(dpy, gc_toner, pixelvalue[c_toner]);
}
XDrawPoint(dpy, window_toner, gc_toner, i, j);
}
}

XSync(dpy, 0);
drawn = 1;

}

XSync(dpy, 0);
}

/t BERNRB RN ARG R RN SIS RN IR AR RRRR B RRE BRI IR RRER SR IR R R RREERRRIBR S -t/

141

180

190

200

double PowerLevel(c)
int c;
{

return(pow({(double) ¢ / 7.0),0.75));
}

/4’ EEZ L2 L P2 R P 2 R R R P2 e R a2 2222 2 a2 Rt sl tlss -vt/

int Map_energy_process(x) 220

double x;

int temp;
double r;

r = (double) (random()&511) — 256;

r=1r*0.4/ 256;

temp = (int) floor(x * ENERGY SCALE + 1);

if (temp > 7) temp = T,

if (temp < 0) temp = 0; 230

return(temp);

/# KRRRIR B F RGN R RN RN IR BRI RN R AR R R RRRRRERRE R R RER R TR T & t/

int Map_toner_process(x)

double x;

int temp;

double r; 240

r = (double)j (random()&511) — 256;
r=r*0.1/ 256
r = x / TONER_THRESHOLD + r;
if (r >=1)

temp = 0;

142

else
temp = T,
return(temp);

} 250

/-* PXTIITYFIEIIS LIS L 02 L2 S 2 R 2 2 R 2 2 2 222 22 22 2 222 Rt Rttty l’/

void MakeTables()
{
double x, y;
int i, pwm;
char s[80];
FILE *fp;
double strtod(); 260

printf("Reading pulse width modulation schemes from %s...\n", pwm data file name);
fp = fopen(pwm_data _file_name, "r");
for (i=0; i < PWM_MODELS; i++){
fscanf(fp, "%s", s); xpl[i] = strtod(s, (char **) NULL) / 8.0;
fscanf(fp, "%s", s); xp2[i] = strtod(s, (char **) NULL) / 8.0;
fscanf(fp, "%s", s); xp3[i] = strtod(s, (char **) NULL) / 8.0;
fscanf(fp, "%s", s); xp4[i] = strtod(s, (char **) NULL) / 8.0;
}
fclose(fp); 270
printf("Computing gaussian tables...\n");
for(pwm = 0; pwm < PWM_MODELS; pwm ++){
for(i = 0;i < (3 * x_pix_divs); i++){
x = (double) (i — (x_pix_divs * 3 / 2)) / (x_pix_divs / 2);
/* z ranges from —3 to 3 */
gaussian_x(pwmj|(i] = 0.0;
for(y = xpl[pwm]; y <= xp2[pwm]}; y+= INT_STEP){
gaussian_x[pwm][i] += K1 * exp(—1 * K2 * pow(x — y, 2.0)) * INT_STEP;
}
if (xp3(pwm] != xp4[pwm]) { 280
for(y = xp3[pwm]; y <= xp4{pwm]; y+= INT_STEP){
gaussian_x[pwm][i] += K1 * exp(-1 * K2 * pow(x — y, 2.0)) * INT_STEP;

143

}

}
}
for(i = 0; 1 < (3 * y_pix_divs); i++){

y = (double) (i — (y_pix_divs * 3 / 2)) / (y_pix_divs / 2);

/* y ranges from —3 to 3 */

gaussian_y[i] = exp(—-1 * K2 * K3 *K3 * y * y); 290

}
}

/# ERRR IR R R TR TR RN RN IR G R RN ER TR R R TR EF LR KRN RRRR R KR IR R, -*/

double Intensity(pl, pwm, x, y)
int x, y, pl, pwm;

{

double res;

300

res = PowerLevel(pl) * gaussian_x[pwm]{x] * gaussian_y([y];

return(res);

}

/I RRRE R DR R E DRI RN R RN R R R R R LB R ER R R I IR RO RSB R IR SR RER RN RO ¥ '/

void Compute()
{
int i, j, x, y, power_level, pulse_width_modulation; 310
int n;
char s[80];
FILE *{p;

printf("Making Image...\n");
for(i = 0; i < X_SIZE; i++){
for(j = 0; j < Y_SIZE; j++){
page_map.data[j][i] = (double) 0.0;

144

}

} 320
fp = fopen(data_file name, "r");
for(j = 0; j < Y_GRID; j++){
for{(i = 0;i < X_GRID; i++){
fscanf(fp, "%s", s);
n = atoi(s) * 8;
fscanf(fp, "%s", s);
n += atoi(s);
printf("%3d ", n);
digital_image(j][i] = n;
} 330
[* while(fgete(fp) != \n’); ¥/
putchar(’\n’);
}
felose(fp);
for(i = 0; i < X_GRID;i++){
for{j = 0; j < Y_GRID; j++){
power level = digital_imagelj][i] & 0x07;
/ * mask power bits */
pulse_width_modulation = digital image[jj[i] >> 3;
/ * Shift (and masi) pwm bits */ 340
for(x = —x_pix_divs; x < (2*x_pix_divs); t++){
for(y = —y_pix_divs; y < (2*y_pix_divs); y++){
if((digital_imagel[j][i]) &&
(G * y_pix_divs + y) >= 0) &&
((i * x_pix_divs + x) >=0) &&
((G * y_pix_divs + y) < Y_SIZE) &&
((i * x_pix_divs + x) < X_SIZE))
page_map.data[j * y_pix_divs + y]fi * x_pix_divs + x|+=
Intensity(power_level, pulse_width_modulation,

x + x_pix_divs, y + y_pix_divs); 350

145

/i KRR RRERERR RN TR RR BT EFRRERERRRE IR R R TEERRRR G TR RREE LR RN R */

void InitScreen()
{ 360
XEvent event;

unsigned long foreground, background, pixvalues(8], status;

Colormap cmap;
XColor cdef;
int screen;

XSizeHints hint;

int i

printf("Creating window(s)...\n"};
dpy = XOpenDisplay(""); 370

if (energy == TRUE) {
screen = DefaultScreen(dpy);
cmap = DefaultColormap(dpy, screen);
foreground = WhitePixel(dpy, screen);
background = BlackPixel(dpy, screen);

hint.x = (DisplayWidth(dpy, screen) — 2 * X SIZE — 10) / 2;

hint.y = (DisplayHeight(dpy, screen) — Y_SIZE) / 2;

hint.width = X _SIZE;

hint.height = Y _SIZE; 380

hint.flags = PPosition | PSise;

window_energy = XCreateWindow(dpy, DefaultRootWindow(dpy), hint.x, hint.y,
hint.width, hint.height, 5, DefaultDepth(dpy, screen),
InputOutput, (Visual *)CopyFromParent, 0L, NULL);

for(i=0; i<COLORLEVELS; i++){
status = XParseColor(dpy, cmap, colornames|i], &cdef);
status = XAllocColor(dpy, cmap, &cdef);
pixelvalue[i] = cdef.pixel;

} 390

146

status = XParseColor(dpy, cmap, "WHITE", &cdef);
status = XAllocColor(dpy, cmap, &cdef);

foreground = cdef.pixel;

status = XParseColor(dpy, cmap, "BLACK", &cdef);
status = XAllocColor(dpy, cmap, &cdef);
background = cdef.pixel;

XSetWindowBackground(dpy, window_energy, background);
XSetWindowBorder(dpy, window_energy, foreground);
XSetStandardProperties(dpy, window_energy,

"OPC Drum Energy",

"0PC Drum Energy", None,

NULL, 0, &hint);

gc_energy = XCreateGC(dpy, window_energy, 0, 0);
XSetForeground(dpy, gc_energy, foreground);
XSetBackground(dpy, gc_energy, background);

gc_energy_text = XCreateGC(dpy, window_energy, 0, 0);
XSetForeground(dpy, gc_energy_text, foreground);

XSetBackground(dpy, gc_energy_text, background);

XSelectInput(dpy, window_energy,

ButtonPressMask|ExposureMask|VisibilityChangeMask);

XMapRaised(dpy, window _energy);

font_text = XLoadQueryFont(dpy,

"-adobe-new century schoolbook-bold-i-normal--12-120-76-765-p-76-i8088560-1");

XSetFont(dpy, gc_energy_text, font_text—>fid);

do
XNextEvent(dpy, &event);

400

410

420

while (event.type != VisibilityNotify);

XClearWindow(dpy, window_energy);
XSync(dpy, 0);
}

if (toner == TRUE) {

screen = DefaultScreen(dpy);

cmap = DefaultColormap(dpy, screen);

foreground = WhitePixel(dpy, screen);

background = BlackPixel(dpy, screen);

hint.x = (Display Width(dpy, screen) + 10) / 2;

hint.y = (DisplayHeight(dpy, screen) — Y_SIZE) / 2;

hint.width = X_SIZE;

hint.height = Y_SIZE;

hint.flags = PPosition | PSize;

window_toner = XCreateWindow(dpy, DefaultRootWindow(dpy), hint.x, hint.y,
hint.width, hint.height, 5, DefaultDepth(dpy, screen),
InputOutput, (Visual *)CopyFromParent, 0L, NULL);

for(i=0; i<cCOLORLEVELS; i++){
status = XParseColor(dpy, cmap, colornames|i], &cdef);
status = XAllocColor(dpy, cmap, &cdef);
pixelvalue(i] = cdef.pixel;

}

status = XParseColor(dpy, cmap, "WHITE", &cdef);
status = XAllocColor(dpy, cmap, &cdef);

foreground = cdef.pixel;
status = X ParseColor(dpy, cmap, "BLACK", &cdef);

status = XAllocColor(dpy, cmap, &cdef);
background = cdef.pixel;

XSet WindowBackground(dpy, window_toner, background);
XSetWindowBorder(dpy, window_toner, foreground);

148

430

440

450

460

XSetStandard Properties(dpy, window_toner, "Toner", "Toner", None, NULL, 0,
&hint);

ge_toner = XCreateGC(dpy, window_toner, 0, 0);
XSetForeground(dpy, gc_toner, foreground);
XSetBackground(dpy, gc_toner, background);

gc_toner_text = XCreateGC(dpy, window_toner, 0, 0); 470
XSetForeground(dpy, gc_toner_text, foreground);
XSetBackground(dpy, gc_toner_text, background);

XSelectInput(dpy, window_toner,
ButtonPressMask|ExposureMask|VisibilityChangeMask);

XMapRaised(dpy, window_toner);

font_text = XLoadQueryFont(dpy,
"-adobe-new century schoolbook-bold-i-normal--12-120-76-76-p-76-i808869-1");480

XSetFont(dpy, gc_toner_text, font_text—>fid);

do
XNextEvent(dpy, &event);
while (event.type != VisibilityNotify);

XClearWindow(dpy, window_toner);
XSyne(dpy, 0);
} 490

drawn = 0;

}

main(arge, argv)
char **argv;
int argc;

{

149

GetArgs(arge, argv);
InitScreen(); 500
MakeTables();
Compute();
while (1) {
UpdateScreen();
}
}

150

Appendix B

Experimental results

B.1 Celllular automata smoothing

The cellular automata smoothing technique described in chapter 3 is demonstrated

here. Smoothing is performed on the letter “S” in a bitmap of approximately 72 x 36

pixels.

151

i

ot

TUire

5

J
T

H 1 . N . 1) - .
Povore B0 b s ptter aopont e e At -

Foogvure B0 Terter ONT arrer cmmondt i baternations

Figure B-5: Letter “S” after smoothing 8 iterations.

154

B.2 Windowed ROM antialiasing

The windowed ROM antialiasing algorithm described in chapter 3 is demonstrated
here. Two different learning patterns are used. First, a learning pattern consisting
solely of one pixel wide lines is programmed. The window shapes are shown in
diagram B-6. The pattern is composed of a circular arrangement of straight lines.
spaced ten degrees apart. In the center, several lines are overlapped randomly to
allow the mapping to include overlapping lines.

The algorithm was applied to test cases of randomly arranged overlapping lines,
various thickness lines with one pixel steps, and the letter “S”. The results are quite
satisfactory for one pixel wide lines, but results from edges bordering on solid areas
are inadequate.

The learning pattern is changed to include areas; several regions between concen-
tric circles are shaded. The algorithm is again applies to the test cases. The results
are markedly better, showing excellent edges on all thickness lines and particularly

on the letter “S”.

155

(a) (b)

(c) (d)
Figure B-6: Window shapes used in the windowed ROM antialiasing routine. (a)

five pixel window (b) nine pixel window (c) thirteen pixel window (d) nineteen pixel

window

156

Ongmal Bitonal Co

P - LE
o [N
: = |}
&7
P
{ O
x

i
i
i
‘N

G

6 3S W

oH

| =
@
&
p 3
o
[« 4

'ROM_Size 5

a—

Pty

L1 3ns noy

g

) oo
STy
Thet iy

o

B

(L3NS NOY

v Bitonad

8

ROM Sie 5

a4

1

A

Do

ang Wou T
-

oo

¢ 3

Figure B

carningy

N

ROM_Sue 17

“

antialiased

B eI At

NN

A LANT

Tased agth g

a amdow aze ot

R RSTE FRRtY

Lev YT vt
P T TS

e

Bibliography

1]

8]

9]

(10]

G. Abram, L. Westover, and T. Whitted. Efficient alias—free rendering using
bit-masks and look-up tables. Siggraph ACM, 19(3):53-59, 1985.

Huseyin Abut. Vector Quantization. IEEE Press, New York, 1990.

Jules Bloomenthal. Edge inference with applications to anti-aliasing. Computer

Graphics, 17(3):157-162, July 1983.

J.E. Bresenham. Algorithm for computer control of a digital plotter. IBM Sys-
tems Journal, 4(1):25-30, July 1965.

Donald M. Burland and Lawrence B. Schlein. The physics of electrophotography.
Physics Today, pages 46-53, May 1986.

Bill Burling. Conversations with bill burling, 1990.

Loren Carpenter. The a-buffer, and antialiased hidden surface method. (C'om-
puter Graphics, 18(3):103-108, July 1984.

Inan Chen. Optimization of photoreceptors for digital electrophotography. Jour-
nal of Imaging Science, 34(1):15-20, January 1990.

Vincent Cordonnier. Antialiasing characters by pattern recognition. Proceedings

of the SID, 30(1), 1989.

L. D. Dickson. Characteristics of a propagating gaussian beam. Applied Optics,
8(9), August 1970.

175

[11]

[12]

[13]

14

[15]

[16]

18]

(19]

(20]

(21]

[22]

E. Fiume and A. Fournier. A parallel scan conversion algorithm with anti-aliasing
for a general-purpose ultracomputer. Computer Graphics, 17(3):141-150, July
1983.

James D. Foley, Andries Van Dam, Steven K. Feiner, and John F. Hughes. Com-
puter Graphics, Principles and Practice. Addison-Wesley Publishing Company,
Reading, MA, 1990.

D. Ghazanfarpour and B. Peroche. Antialiasing by successive steps with a z-

buffer. Eurographics, pages 235-244, 1989.

Satish Gupta and Robert F. Sproull. Filtering edges for gray-scale displays.
Computer Graphics, 15(3):1-5, August 1981.

H. M. Haskal. Laser recording with truncated gaussian beams. Applied Optics,
18(13):2143-2146, July 1979.

J. Kajiya and M. Ullner. Filtering high quality text for display on raster scan
devices. Computer Graphics, 15(3):7-15, August 1981.

Don Lancaster. Postscript insider secrets. Byte Magazine, pages 293-302, July
1990.

Ho John Lee. Vector quantization of gray scale images. Master’s thesis, Mas-

sachusetts Institute of Technology, June 1985.

William J. Leller. Human vision, anti-aliasing, and the cheap 4000 line display.
Computer Graphics, 14(3):308-313, July 1980.

Avi Naiman. Some new ingredients for the cookbook approach to anti-aliased

text. Graphics Interface 88, pages 99-108, 1984.

Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing.
Prentice Hall, Englewood Cliffs, NJ, 1989.

Richard Rubinstein. Digital Typography. Addison-Wesley Publishing Company,
Reading, MA, 1988.

176

(23] Christopher Schmandt. Grevscale fonts designed from video signal analysis.
Proceedings 1983 Conference of National Computer Graphics Association, pages
549-558, 1983.

(24] John M. Sturge, Vivian Walworth, , and Alan Shepp. Imaging Processes and
Materials. Van Nostrand Reinhold, New York, 1989.

[25] John W. Trueblood. Theory and measurement of anti-aliased line performance.

Sony Corporation, San Diego, CA.
[26] Robert Ulichney. Digital Halftoning. The MIT Press, Cambridge, MA, 1987.

[27] John E. Warnock. The display of characters using gray level sample arrays.
Computer Graphics, 14(3):302-307, July 1986.

(28] Carl F. R. Weiman. Continuous anti-aliased rotation and zoom of raster images.

Computer Graphics, 14(3):286-293, July 1980.

(29] Turner Whitted. Anti-aliased line drawing using brush extension. Computer
Graphics, 17(3):151-156, July 1983.

(30] G. Wyvill and P. Sharp. Fast antialiasing of ray traced images. New Advances
in Computer Sciences (Proc. CG Intl. ’89), pages 579-587, 1989.

177

THESIS PROCESSING SLIP

FIXED FIELD: 1l name

index biblio

~.
.

o

> COPIES: Archives - Aero Dewey Barker © Hum

Lindgren Music Rotch Science Sche-Plough

TITLE VARIES: »[]

NAME VARIES: »[|

IMPRINT: (COPYRIGHT)

» COLLATION:

» ADD: DEGREE: — = » DEPT..

» ADD: DEGREE: — » DEPT.:

SUPERVISORS:

NOTES:
cat'r date
page
» DEPT 4
»YEAR: > DEGREE:

