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Abstract

In all sexually reproducing organisms, cells of the germ line must transition from mitosis to meiosis. In mice, retinoic acid
(RA), the extrinsic signal for meiotic initiation, activates transcription of Stra8, which is required for meiotic DNA replication
and the subsequent processes of meiotic prophase. Here we report that RA also activates transcription of Rec8, which
encodes a component of the cohesin complex that accumulates during meiotic S phase, and which is essential for
chromosome synapsis and segregation. This RA induction of Rec8 occurs in parallel with the induction of Stra8, and
independently of Stra8 function, and it is conserved between the sexes. Further, RA induction of Rec8, like that of Stra8,
requires the germ-cell-intrinsic competence factor Dazl. Our findings strengthen the importance of RA and Dazl in the
meiotic transition, provide important details about the Stra8 pathway, and open avenues to investigate early meiosis
through analysis of Rec8 induction and function.
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Introduction

Most eukaryotes reproduce sexually, with life cycles that display

an alternation of diploid and haploid phases. The generation of

haploid cells from diploid cells is achieved through meiosis,

featuring a single round of DNA replication (meiotic S) followed

by two rounds of division (meiosis I and meiosis II).

In all sexually reproducing organisms, including fungi, plants,

and animals, cells of the germ line activate the meiotic program

when conditions are opportune and appropriate to the species’

reproductive strategies. In yeast, for example, the meiotic program

is initiated only when diploid cells are starved for nutrients and

cannot proliferate. In mammals, the meiotic program is initiated

only after the specialized cells of the germ line have migrated to

the gonad. The timing of mammalian meiotic initiation differs

dramatically between the sexes. In males, meiotic initiation does

not commence until a spermatogonial stem cell population has

been established, well after birth. In females, meiosis is initiated

shortly after the germ cells have entered the gonad, during fetal

development.

In mice, the published data are consistent with a model whereby

an extrinsic meiosis-initiating signal – retinoic acid (RA) – induces

transcription and expression of a single meiotic factor – Stra8 –

which in turn governs the meiotic program [1–4]. In the ovary,

induction of Stra8 in fetal germ cells expressing Dazl, an intrinsic

factor, is required for meiotic DNA replication and the subsequent

events of meiotic prophase [2,5,6]. In fetal testes, this process is

temporarily blocked: CYP26B1, a cytochrome p450 enzyme,

degrades RA, preventing expression of Stra8 and thus precluding

meiotic initiation [1,3,7]. After birth, RA induces Stra8 in

testicular germ cells, leading to meiotic initiation [3,4].

Although the currently accepted model in mice postulates that

RA induction of Stra8 may be necessary and sufficient for meiotic

initiation [8], evidence suggests that other, independent factors are

also at play: germ cells in Stra8-deficient fetal ovaries express Rec8
[2], encoding a meiosis-specific component of the cohesin

complex. Rec8 is required for completion of sister chromatid

cohesion, proper synapsis, and chiasmata formation [9,10]. We

decided to examine how Rec8 expression is regulated during the

meiotic transition and whether RA plays a role in its expression.

Our investigation proceeded by first comparing the patterns and

regulation of Rec8 and Stra8 expression and then exploring

important differences with respect to their roles in driving meiotic

initiation. We discovered that RA activates meiosis in two

independent ways, both of which require Dazl expression in the

germ cells.

Results

Rec8, like Stra8, is expressed in an anterior-to-posterior
wave in fetal ovaries

We first sought to investigate how Rec8 expression is initiated in

the germ cells of fetal ovaries. If Rec8 is regulated like Stra8 and

other early meiotic markers, it should initiate expression in an

anterior-to-posterior pattern between E12.5 and E16.5 [5,11,12].

Using whole mount in situ hybridization, we discovered that Rec8
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expression does unfold this way from E13.0 to E16.0 (Figure 1A).

These findings suggested that Rec8, like Stra8, could be a target of

RA signaling. Furthermore, since Dazl expression is required for

ovarian germ cells to respond to RA signaling, perhaps, as with

Stra8 expression, expression of Rec8 requires both DAZL and

RA. We tested this new model (Figure 1B) in fetal ovaries, fetal

testes and adult testes.

RA induces Rec8 in fetal ovaries
We examined if RA signaling was required for Rec8 expression

in the germ cells of fetal ovaries. We harvested ovaries at E12.5

and cultured them for two days in the presence of the RA receptor

pan-antagonist BMS-204493 and then evaluated expression of

both Stra8 and Rec8 using quantitative RT-PCR. BMS-204493

antagonizes all three RAR isotypes [13] and prevents RA signaling

in fetal ovaries without killing the germ cells. We discovered that

BMS-204493 dramatically lowered Rec8 expression, similar to

Stra8 (Figure 2A), indicating that, in wild-type fetal ovaries, RA

signaling is required for the germ cells to express Rec8. Taking

these results together with our laboratory’s previous finding that

Stra8-deficient fetal ovaries express Rec8 [2], we conclude that RA

induces Rec8 in fetal ovaries independently of Stra8.

In fetal testes, RA-mediated upregulation of Rec8 requires
Dazl

We next considered whether RA regulation of Rec8 expression

resembles that of Stra8 in other respects. Germ cells in wild-type

fetal testes express Stra8 when exposed to high levels of exogenous

RA [3], but germ cells in Dazl-deficient testes do not [6]. Thus,

during meiotic initiation, the germ cells must express Dazl in order

to respond to RA signaling. We tested whether RA-mediated

upregulation of Rec8 expression similarly requires Dazl. We used

quantitative RT-PCR to compare Rec8 expression levels in E12.5

Dazl-deficient testes cultured for two days with or without RA

added to the medium (Figure 2B). We found that, unlike Stra8,

Rec8 is expressed, albeit at very low levels, in wild-type and Dazl-
deficient testes. However, similarly to Stra8, Rec8 expression was

significantly upregulated by RA treatment in wild-type but not

Dazl-deficient testes (Figure 2B). Thus RA-induced upregulation

of Rec8 in embryonic testes depends on Dazl.

RA induces Rec8 expression in adult testes independently
of Stra8

RA also regulates Stra8 expression and meiotic initiation in

germ cells of postnatal testes [3,4]. We examined whether Rec8
followed a similar pattern to Stra8 here as well. Since retinoic acid

is a metabolite of vitamin A, vitamin A-deficient (VAD) mice can

be used to evaluate the effects of dramatically reduced RA

signaling on postnatal testes. We removed testes from several

vitamin A-deficient adult males and VAD males with restored RA

signaling (24 hours post RA injection) and evaluated Rec8 and

Stra8 transcripts by quantitative RT-PCR. Like Stra8, Rec8
transcription was dramatically increased 24 hours after injection of

RA (Figure 2C). These results demonstrate that RA regulates Rec8
transcription in adult testes in vivo, as in fetal ovaries; this

signaling event is shared between the sexes.

To test whether this Rec8 upregulation in postnatal testes was

Stra8-dependent, we examined Rec8 expression in Stra8-defi-

cient, VAD testes before and after injection of RA. While the

Stra8-deficient, RA-deficient VAD testes expressed very little

Rec8, restoration of RA resulted in dramatically increased

expression of Rec8 (Figure 2D). Thus, as in fetal ovaries, RA

induces Rec8 expression in postnatal testes independently of Stra8.

Figure 1. In fetal ovaries, Rec8 is expressed in an anterior-to-posterior wave. A) Rec8 expression pattern from E12.5–E16.0 in fetal gonads. B)
Proposed model: RA signaling regulates meiotic initiation in mouse germ cells in parallel pathways through Stra8 and Rec8. In all panels, testes are at
left and ovaries at right.
doi:10.1371/journal.pgen.1004541.g001

Author Summary

The transition from mitosis to meiosis is a defining feature
of germ cells, the precursors of eggs and sperm. In mice,
retinoic acid (RA), a vitamin A derivative, induces expres-
sion of the gene Stra8, which in turn is required for the first
critical steps of meiosis. The timing of Stra8 expression in
mammalian germ cells is influenced by an RA-degrading
enzyme, CYP26B1, that is normally expressed in fetal testes
to delay meiosis in males. It is unknown if Stra8 is RA’s only
meiosis-inducing target in germ cells or if other such
genes are regulated by RA independently of Stra8. To
investigate this question, we generated two lines of mice:
Cyp26b1 mutants and Stra8 mutants. Our genetic exper-
iments comparing germ cell development in these two
mutants revealed a new RA target, Rec8. We demonstrate
that Rec8 upregulation by RA occurs in the same temporal
and spatial manner as Stra8, but Rec8 expression is
independent of Stra8. Rec8, like Stra8, plays a critical role
during early meiotic processes, suggesting that RA induces
meiosis in at least two independent pathways. These
findings expand our understanding of the gene regulatory
network involved in meiotic initiation in mammals.

Retinoic Acid Activates Two Pathways Required for Meiosis in Mice
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RA induces Rec8 expression in Cyp26b1-deficient fetal
testes independently of Stra8

Germ cells in Cyp26b1-deficient fetal testes express Stra8 and

several other early meiotic factors at the same time as they do in

fetal ovaries because of uninhibited RA signaling [1,7,14](Figure

S1). However, whether STRA8 protein is expressed and, if so,

whether it influences other early meiotic factors has not been

determined. We developed a system of single- and double-mutant

mice with which to analyze in vivo the effects of RA signaling on

germ cells in the presence and absence of STRA8. We found that

STRA8 protein is expressed in Cyp26b1-deficient fetal testes but

not in double-mutant Cyp26b1-deficient/Stra8-deficient testes

(Figure 3A). We then assayed Rec8 expression in single- and

double-mutant fetal testes using quantitative RT-PCR. In both

cases, Rec8 expression is higher than in wild type, achieving

similar levels in single- and double-mutant samples (Figure 3B).

High expression levels in the double mutant indicate that RA

induction of Rec8 in Cyp26b1-deficient fetal testes is independent

of Stra8.

DNA replication, DNA double-strand break formation,
and upregulation of Dmc1 are all dependent on STRA8
induction in Cyp26b1-deficient fetal testes

In our studies above, we have established that RA regulates

Rec8, and that it does so in parallel to its other known target,

Stra8, in fetal ovaries, adult testes and in Cyp26b1-deficient fetal

testes (Figure 1B). Drawing on the comparative model we used to

examine Rec8 expression in fetal testes, we explored whether RA

regulates other early meiotic factors in parallel to Stra8.

We first tested whether ectopic RA signaling is sufficient to drive

DNA replication in germ cells of fetal testes, and, if so, whether

this effect is also mediated through STRA8. The thymidine analog

5-bromo-2-deoxyuridine (BrdU) can be incorporated into newly

synthesized DNA during S phase. We injected BrdU into pregnant

Figure 2. In fetal ovaries and postnatal testes, Rec8 is a target of RA signaling. Quantitative RT-PCR analyses of A) Stra8 and Rec8
transcription in E12.5 ovaries cultured in control medium or with pan-RAR inhibitor added, B) Stra8 and Rec8 transcription in E14.5 control and Dazl-
deficient testes cultured in control medium or with RA added (Stra8 is undetectable in Dazl2/2; indicated by asterisks), C) Stra8 and Rec8 expression
in RA-restored or control adult VAD testes compared to pre-injection, contralateral testes, and D) Rec8 expression in Stra8-deficient VAD adult testes,
without and with RA restoration.
doi:10.1371/journal.pgen.1004541.g002
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females, dissected E16.5 fetal gonads and immunostained them

with anti-GCNA (a germ cell marker) and anti-BrdU antibodies.

In wild-type animals, testicular germ cells have arrested in G0/G1

by E16.5. We can therefore detect ectopic germ cell proliferation

in response to STRA8 upregulation by assaying for ongoing DNA

replication in E16.5 fetal gonads. BrdU incorporation was evident

in germ cells of Cyp26b1-deficient testes (Figure 4A), consistent

with transition towards meiosis. In contrast, GCNA-positive germ

cells of double-mutant Cyp26b1-deficient/Stra8-deficient testes

were uniformly negative for BrdU at E16.5. We conclude that the

DNA replication observed in germ cells of Cyp26b1-deficient fetal

testes at E16.5 depends on and is mediated through STRA8

(Figure 4A).

We then determined if RA is sufficient in fetal testes to induce

DNA double strand breaks (DSBs), which are required for meiotic

recombination [15–19], and if the generation of these DSBs is

mediated through STRA8 induction. We assayed for the presence

of cH2AX, a phosphorylated histone variant that localizes to

DSBs, by immunostaining at E15.5, when DSBs are first observed

[20]. Cyp26b1-deficient testes displayed many germ cells positive

for cH2AX, suggesting that DSBs are induced by RA (Figure 4B).

In contrast, we rarely observed cH2AX-positive germ cells in

double-mutant Cyp26b1-deficient/Stra8-deficient testes (Fig-

ure 4B). This result suggests that the induction of DSBs in

Cyp26b1-deficient testes is driven by ectopic RA and STRA8.

Since DSBs arise not only during meiotic recombination but

also during apoptosis [21], and apoptosis has been reported in

Cyp26b1-deficient testes [7], we tested whether cH2AX-positive

germ cells observed in Cyp26b1-deficient testes represent meiotic

and not simply apoptotic events. We first generated double mutant

Cyp26b1-deficient/Bax-deficient embryos. Bax is a proapoptotic

gene, and its deletion has been shown to suppress apoptosis in

germ cells [14,22,23](Figure S2). Staining in double-mutant

Cyp26b1-deficient/Bax-deficient testes revealed many cH2AX-

positive germ cells (Figure 4B), confirming that most cH2AX-

positive germ cells observed in Cyp26b1-deficient testes represent

meiotic rather than apoptotic DNA DSBs. Formation of meiotic

DNA DSBs thus represents another portion of the meiotic

pathway that is STRA8-mediated.

Meiotic DSBs are processed by DMC1, an ortholog of the

bacterial strand exchange protein RecA, which commences

expression early during meiotic initiation. We compared the

effects of RA on Dmc1 expression in Cyp26b1-deficient testes and

in double-mutant (Cyp26b1-deficient/Stra8-deficient) testes. The

Figure 3. In Cyp26b1-deficient/Stra8-deficient fetal testes, Rec8 is induced by RA signaling. A) Fluorescent immunohistochemical staining
for STRA8 protein (green) and GCNA (red) in E15.5 testes of the indicated genotypes (4006). Scale bar: 50 mm. B) Quantitative RT-PCR analysis of Rec8
transcription in E14.5 gonads of the indicated genotypes.
doi:10.1371/journal.pgen.1004541.g003
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Cyp26b1-deficient testes displayed increased levels of Dmc1, while

levels of Dmc1 in double-mutant testes were similar to controls

(Figure 4C). Thus, RA is sufficient to drive Dmc1 expression in

fetal testes in vivo, but this induction requires mediation by

STRA8.

In summary, it appears that RA induction of STRA8 in fetal

testes is required for all of the above-tested markers/processes

during early meiosis, with the notable exception of RA-regulated

Rec8 expression.

Stra8 and Dmc1 are expressed independently of Rec8
To exclude the possibility that induction of Stra8 and its

downstream target Dmc1 depends on Rec8 function, we examined

Stra8 and Dmc1 expression in Rec8-deficient (Rec8mei8/mei8)

ovaries and testes [9]. As expected, we found no significant

difference in Stra8 and Dmc1 expression levels between control

and Rec8-deficient E13.5 ovaries (Figure 5A). Similarly, we

detected STRA8 and DMC1 proteins in both control and Rec8-
deficient adult testes (Figure 5B). We conclude that RA induction

Figure 4. In Cyp26b1-deficient testes, STRA8 induces Dmc1 expression, DNA replication and DNA double-strand break formation. A)
Fluorescent immunohistochemical staining for BrdU (green) and GCNA (red) in E16.5 testes of the indicated genotypes (4006). Scale bar: 50 mm. B)
Fluorescent immunohistochemical staining for cH2AX protein (green) in E15.5 testes of the indicated genotypes (4006). Scale bar: 50 mm. C)
Quantitative RT-PCR analysis of Dmc1 transcription in E14.5 gonads of the indicated genotypes.
doi:10.1371/journal.pgen.1004541.g004
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of Stra8, and its downstream targets, is independent of and occurs

in parallel with RA induction of Rec8.

Discussion

Our findings lead us to conclude that RA plays a broad and

encompassing role in regulating and coordinating the transi-

tion from mitosis to meiosis in mouse germ cells, in both fetal

ovaries and postnatal testes. Surprisingly, RA accomplishes

this by independently inducing both Stra8 and Rec8, which

both play critical roles in the earliest stages of meiosis. The

discovery that RA induction of Stra8 in Cyp26b1-deficient

fetal testes mediates DNA replication, DSB formation, and the

expression of recombinase Dmc1 provides critical details about

the Stra8 pathway. Moreover, Stra8 induction was recently

shown to be required for SYCP3 expression in Cyp26b1-
deficient testes [24]. Rec8 induction is the first component of

the molecular program of meiotic initiation shown to be Stra8-
independent in mice. Now that Rec8’s independent induction

has been established, its expression pattern and function invite

deeper investigation.

How Rec8 expression is induced by RA remains elusive. Stra8’s
promoter region contains two putative RA Response Elements

(RAREs), suggesting that RA could be turning on this gene

directly [25]. A chromatin immunoprecipitation-sequencing

(ChIP-Seq) study in embryonic stem cells identified RAR

binding sites in both Stra8 and Rec8 promoter regions,

suggesting that Rec8 may also be regulated by RA directly

[26]. Intriguingly, in the same study, Dmc1, which is dependent

on STRA8, does not show such RAR binding sites, consistent

with Stra8 and Rec8 being regulated directly, unlike Stra8’s

downstream targets.

What purpose does RA upregulation of REC8 serve? It may

ensure that Rec8 is expressed during pre-meiotic S phase so that its

product can be incorporated into the meiotic cohesin complex that

joins sister chromatids. Indeed, germ cells in Rec8-deficient mice

later show defects that can be traced to its cohesion function –

incorrect synapsis topology and failure at chromosome segregation

and chiasmata formation [9,10]. Recent studies also suggest a role

for cohesins in direct regulation of gene expression by novel

mechanisms involving DNA looping [27,28]. It is presently

unknown if Rec8 is a direct transcriptional regulator. However,

Figure 5. Stra8 and Dmc1 expression in male and female germ cells is independent of Rec8. A) Quantitative RT-PCR analysis of Stra8 and
Dmc1 transcription in E13.5 Rec8-deficient and control ovaries. B) Colorimetric immunohistochemical staining for STRA8 and DMC1 proteins in
control, Stra82/2, and Rec8mei8/mei8 adult testes. Scale bar: 10 mm.
doi:10.1371/journal.pgen.1004541.g005
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Rec8 null animals exhibit partial embryonic lethality and fail to

thrive [10], phenotypes hard to reconcile with an exclusive role in

germ cell meiotic cohesion.

The mechanisms that govern meiotic initiation have been

explored most thoroughly in yeast, and these studies offer

interesting parallels to our findings in mice. In both yeast and

mice, the decision to initiate the meiotic program is taken prior to

pre-meiotic DNA replication [2,29]. Our finding that RA

regulates Rec8 is consistent with an early role of RA in this

transition, since at least in budding yeast, REC8 associates with

chromosomes from late G1 phase [30]. In addition, in both yeast

and mice, the decision to initiate meiosis requires an extrinsic

signal and an intrinsic competence factor [1,3,6,31,32]. In yeast,

the extrinsic signal – nutrient depletion – activates multiple

molecular pathways in parallel, and these converge on IME1,

which is required for upregulating the expression of meiosis-

specific transcripts. However, IME1 is not sufficient to induce

meiosis in yeast [33,34]. Our studies show that, analogously, RA

activates at least two pathways by regulating Stra8 and Rec8
independently. While many early meiotic processes described so

far hinge on STRA8, STRA8 may not be sufficient for meiosis in

mice. The search for additional RA targets will likely yield further

insights into the networks governing transition from mitosis to

meiosis in mammals.

Materials and Methods

Ethics statement
All experiments involving mice were approved by the Commit-

tee on Animal Care at the Massachusetts Institute of Technology.

Targeted disruption of the Cyp26b1 gene
Cyp26b1-deficient mice were generated by deleting a 2.9-kb

portion of the gene (including exons 4, 5, 6, and the coding region

of exon 7) by homologous recombination in embryonic stem (ES)

cells (Figure S1). A Cyp26b1/PGK-Neo targeting construct was

assembled using PCR products amplified with Advantage HF2

polymerase (Clontech) using mouse (C57BL/6J) genomic BAC

RP24-470O13 (GenBank Accession AC159337) as template. The

targeting construct was linearized and electroporated into v6.5 ES

cells [35]. Cells harboring the construct were selected using

neomycin (Invitrogen). ES cell colonies were screened by PCR for

homologous integration at both the 59 and 39 arms of the

construct. Clones that tested positive by both PCR assays were

confirmed by Southern blot analysis using EcoRV and Nde1

restriction endonucleases.

Correctly targeted ES cell clones were injected into Balb/c or

C57Bl/6N blastocysts and transferred to pseudopregnant Swiss

Webster females. Germline transmission was obtained with one

clone, and the resulting homozygous embryos displayed anomalies

of limb, eye, and facial development and died at birth, as

previously described [7,36]. Embryos were genotyped by PCR,

(primer sequences available in Note S1).

Additional mutant mouse strains
Mice carrying the DazlTM1Hgu allele [37] were generously

provided by Howard Cooke, MRC Human Genetics Unit,

Western General Hospital, Edinburgh, UK, and Dazl-deficient

mice were generated as described previously [6,38]. Stra8-

deficient mice were generated as described previously [2,4].

Bax-deficient mice were generated by mating Baxtm1Sjk/+ mice

obtained from The Jackson Laboratory (Bar Harbor, ME). Rec8-
deficient mice were generated by mating Rec8mei8/+ mice [9],

which were generously provided by John Schimenti, Cornell

University, Ithaca, New York.

Mouse embryo collection and in situ hybridization
Mouse embryos used in whole mount in situ hybridizations and

gonad cultures were obtained from matings between CD1 random

bred mice (Charles River Labs). Noon of the day when vaginal

plug was recorded was considered E0.5. Whole mount in situ

hybridizations with the Stra8 probe were performed as previously

described [3,39]. Digoxigenin riboprobe for Rec8 was generated

by amplifying cDNA fragments by RT-PCR from Rec8
(NM_020002.2: bases 274–865), and inserting them into TA

cloning vector pCR4-TOPO (Invitrogen). Plasmid was linearized

with Spe1 or Not1 and transcribed with T7 or T3 respectively to

make the antisense and sense probes.

RT-PCR
For experiments involving Rec8-deficient mice, total RNAs

were prepared from gonads using the RNeasy plus Micro RNA

isolation kit (QIAGEN), and reverse transcription was carried out

using the high-capacity cDNA reverse transcription kit (Applied

Biosystems). For all other experiments, total RNAs were prepared

using TRIzol (Invitrogen) extraction followed by DNase (Ambion)

treatment, and reverse transcription was carried out using the

RETROscript reverse transcription kit (Life Technologies). The

resulting total cDNAs were analyzed quantitatively using SYBR

Green PCR reagents (Applied Biosystems) with primers for Dmc1,

Rec8, Stra8, or Dazl. Expression profiles were tested in triplicate

on at least two litters of embryos on an ABI 7500 instrument

(Applied Biosystems). Data were analyzed using the comparative

Ct (DDCt) method and one-tail, unpaired student T test

(significance cutoff p,0.01). Results were normalized to Rps2
(VAD experiments on adult testis), Dazl (Rec8-mutant experi-

ments on embryonic ovary), and Hprt (all other experiments).

Primers were selected from PrimerBank [40] (Note S1).

Immunofluorescent studies of tissue sections
Fetal gonads were dissected in phosphate buffered saline (PBS),

fixed in 4% paraformaldehyde overnight at 4uC, embedded in

paraffin and sectioned. Slides were incubated with anti-GCNA

IgM (courtesy of G. Enders, undiluted supernatant), anti-STRA8

(Abcam. 1:100), and anti-phosphoH2A.X (Upstate Cell Signaling

Solutions, 1:250 dilution). Colorimetric staining was performed

using ABC reagents (Vector Laboratories) and developed with

DAB peroxidase substrate (Vector Laboratories).

Sections were mounted in Vectashield Medium with DAPI

(Vector Laboratories), and fluorescent staining was obtained using

Texas-Red or FITC-conjugated secondary antibodies (Jackson

Immunoresearch Laboratories, 1:500 dilution).

Immunohistochemical studies of tissue sections
Adult testes were fixed in Bouin’s solution overnight at 4uC,

washed with PBS and 70% ethanol, embedded in paraffin, and

sectioned at 5 mm thickness. Slides were matured overnight, de-

waxed, rehydrated, and heated in 10 mM sodium citrate buffer

(pH 6.0) for antigen retrieval. Sections were incubated in 3%

hydrogen peroxide for 5 min and blocked in 2.5% normal horse

serum (Vector Laboratories) for 80 minutes at room temperature.

Later, slides were incubated overnight with anti-STRA8 (Abcam,

1:500) or anti-DMC1 (Santa Cruz Biotechnology, 1:50 dilution).

The following day, slides were washed three times in PBS and

incubated with anti-rabbit ImmPRESS peroxidase reagent (Vector

Laboratories) for 30 minutes. The slides were later developed

Retinoic Acid Activates Two Pathways Required for Meiosis in Mice
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using a DAB substrate kit (Vector Laboratories) for 1 minute. The

slides were counterstained with Mayer’s hematoxylin for 5 min-

utes and washed in running water, dehydrated, and mounted with

Permount (Fisher Scientific).

TUNEL analysis
Apoptotic cells were detected in paraffin sections of fetal testes

using the Fluorescein in situ Cell Death Detection Kit (Roche

Applied Science) and mounted in Vectashield Medium with DAPI

(Vector Laboratories).

BrdU incorporation
Pregnant females were injected with 5-bromo-2-deoxyuridine

(BrdU) solution (50 mg/kg) at 18.5 days post coitum. Six hours

later, fetal gonads were dissected. Gonads were then fixed in 4%

paraformaldehyde overnight at 4uC, embedded in paraffin, and

sectioned. Prior to antibody application, sections were treated with

denaturing reagent (3.5N HCl) for 2 min. Incorporated BrdU was

detected using anti-BrdU (Accurate Chemical & Scientific Corp.,

1:500 dilution) in anti-GCNA IgM supernatant.

Mouse fetal gonad culture
Pregnant female mice were sacrificed by cervical dislocation and

embryos were removed into PBS solution. After determining tail

somite number, fetal ovaries and mesonephroi were dissected. One

gonad from each embryo was then placed in a 35 ml droplet of

culture media (DME +10% FBS) supplemented with either 5 mM

pan-RAR inhibitor BMS-204493 (Bristol-Myers Squibb) or all

trans RA (Sigma) dissolved in ethanol in a Petri plate. Control

media contained vehicle (ethanol) alone. Petri plates were then

inverted and placed within larger plates containing water and

incubated at 37uC with 5% CO2. Media was replaced after

24 hours. After 48 hours, tissue was removed from media,

mesonephroi were dissected off and ovaries were placed individ-

ually into TRIzol reagent (Invitrogen). Samples were then

processed for quantitative RT-PCR as described above.

Analysis of Rec8 expression in vitamin-A-deficient testes
Adult female mice (129/SvJ) were fed a Vitamin-A-Deficient

(VAD) diet (Harlan Teklad, Indianapolis) for at least 2 weeks

before mating and throughout pregnancy. Their male offspring

were fed a VAD diet for 13–14 weeks. In the first experiment with

wild-type animals, one testis was removed from each animal and

cut into two pieces; one fixed in Bouin’s solution for histological

assessment of spermatogenesis and the other placed in TRIzol

(Invitrogen) for RNA extraction to serve as a pre-injection control

in RT-PCR analysis. Incisions were sutured and the animals

recovered for 24 h. Three animals with similarly deficient

spermatogenesis (as judged by pre-injection testicular histology)

were injected with 100 ml of 7.5 mg/ml all-trans retinoic acid

(Sigma) in 10% ethanol/90%sesame oil solution. The animals’

remaining testes were harvested 24 h after injection. In contrast,

both testes were harvested from two Stra8-deficient VAD animals

at the same time (one was analyzed histologically to confirm

depletion) and compared to testes harvested from two RA-restored

Stra8-deficient animals. Quantitative RT-PCR analysis was

performed, in triplicate, using Stra8 and Rec8 primers, and

Rps2 was used as a normalization control (primer sequences in

Note S1).

Supporting Information

Figure S1 Targeted disruption of the Cyp26b1 locus on mouse

chromosome 6. A) Homologous recombination removes exons 4,

5, 6 and the coding portion of exon 7, and replaces them with a

loxP-PGK-Neo-loxP selection cassette. B) Correctly targeted ES

cell clones were confirmed by Southern blot analysis (E, EcoRV;

N, Nde1). Positions of 59 (red) and 39 (green) probes are shown in

part A. C) E14.5 Cyp26b12/2 embryos exhibit defects in limb

and facial development as previously reported (Yashiro et al.,

2004). D) Whole-mount in situ hybridization with Stra8 probe

reveals staining in Cyp26b12/2 testes. E) Quantitative real-time

PCR shows increase in Stra8 expression levels in Cyp26b12/2

testes.

(PDF)

Figure S2 Immunohistochemical staining for MVH protein

(red) and TUNEL staining (green) in E15.5 control ovary and

testis, Cyp26b1-deficient testis, and double-mutant (Cyp26b1-

deficient, Bax-deficient) testis.

(PDF)

Note S1 Primer sequences for genotyping Cyp26b1-deficient

mice and RT-PCR analyses.

(DOCX)

Acknowledgments

We thank Howard Cooke for DazlTM1Hg8/+ mice, John Schimenti for

Rec8mei8/+ mice, Ericka Anderson for cDNA from VAD Stra8-deficient

testes, Bristol-Myers Squibb for RAR antagonist BMS-204493, George

Enders for anti-GCNA antisera, and Greg Dokshin, Jennifer Hughes, and

Katherine Romer for critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: JK MDG DCP. Performed the

experiments: JK YCH TB YQSS MEG MLG CAH. Analyzed the data:

JK YCH TB YQSS MEG CAH MDG. Wrote the paper: JK DCP.

References

1. Bowles J, Knight D, Smith C, Wilhelm D, Richman J, et al. (2006) retinoid

signaling determines germ cell fate in mice. Science 312: 596–600.

2. Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, et al. (2006) in

germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes

premeiotic dna replication. Nat Genet 38: 1430–1434.

3. Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, et al. (2006) retinoic

acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad

Sci U S A 103: 2474–2479.

4. Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG,

et al. (2008) stra8 and its inducer, retinoic acid, regulate meiotic initiation in

both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A 105:

14976–14980.

5. Menke DB, Koubova J, Page DC (2003) sexual differentiation of germ cells in xx

mouse gonads occurs in an anterior-to-posterior wave. Dev biol 262: 303–312.

6. Lin Y, Gill ME, Koubova J, Page DC (2008) germ cell-intrinsic and -extrinsic

factors govern meiotic initiation in mouse embryos. Science 322: 1685–1687.

7. Maclean G, Li H, Metzger D, Chambon P, Petkovich M (2007) apoptotic

extinction of germ cells in testes of cyp26b1 knockout mice. Endocrinology 148:

4560–4567.

8. Griswold MD, Hogarth CA, Bowles J, Koopman P (2012) initiating meiosis: the

case for retinoic acid. Biol reprod 86: 35.

9. Bannister LA, Reinholdt LG, Munroe RJ, Schimenti JC (2004) positional

cloning and characterization of mouse mei8, a disrupted allelle of the meiotic

cohesin rec8. Genesis 40: 184–194.

10. Xu H, Beasley MD, Warren WD, van der Horst GT, Mckay MJ (2005) absence

of mouse rec8 cohesin promotes synapsis of sister chromatids in meiosis. Dev cell

8: 949–961.

11. Yao HH, Dinapoli L, Capel B (2003) meiotic germ cells antagonize mesonephric

cell migration and testis cord formation in mouse gonads. Development 130:

5895–5902.

12. Bullejos M, Koopman P (2004) germ cells enter meiosis in a rostro-caudal wave

during development of the mouse ovary. Mol reprod dev 68: 422–428.

Retinoic Acid Activates Two Pathways Required for Meiosis in Mice

PLOS Genetics | www.plosgenetics.org 8 August 2014 | Volume 10 | Issue 8 | e1004541



13. Germain P, Iyer J, Zechel C, Gronemeyer H (2002) co-regulator recruitment

and the mechanism of retinoic acid receptor synergy. Nature 415: 187–192.
14. Suzuki A, Saga Y (2008) nanos2 suppresses meiosis and promotes male germ cell

differentiation. Genes dev 22: 430–435.

15. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) chromosome synapsis
defects and sexually dimorphic meiotic progression in mice lacking spo11. Mol

cell 6: 989–998.
16. Romanienko PJ, Camerini-Otero RD (2000) the mouse spo11 gene is required

for meiotic chromosome synapsis. Mol cell 6: 975–987.

17. Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, et al. (1998) the
mouse reca-like gene dmc1 is required for homologous chromosome synapsis

during meiosis. Mol cell 1: 707–718.
18. Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, et al. (1998)

meiotic prophase arrest with failure of chromosome synapsis in mice deficient for
dmc1, a germline-specific reca homolog. Mol cell 1: 697–705.

19. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) dna double-

stranded breaks induce histone h2ax phosphorylation on serine 139. J biol chem
273: 5858–5868.

20. Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, et al. (2001)
recombinational dna double-strand breaks in mice precede synapsis. Nat genet

27: 271–276.

21. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM (2000)
initiation of dna fragmentation during apoptosis induces phosphorylation of

h2ax histone at serine 139. J biol chem 275: 9390–9395.
22. Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995)

bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science
270: 96–99.

23. Stallock J, Molyneaux K, Schaible K, Knudson CM, Wylie C (2003) the pro-

apoptotic gene bax is required for the death of ectopic primordial germ cells
during their migration in the mouse embryo. Development 130: 6589–6597.

24. Saba R, Wu Q, Saga Y (2014) cyp26b1 promotes male germ cell differentiation
by suppressing stra8-dependent meiotic and stra8-independent mitotic path-

ways. Dev biol 389: 173–181.

25. Oulad-Abdelghani M, Bouillet P, Decimo D, Gansmuller A, Heyberger S, et al.
(1996) characterization of a premeiotic germ cell-specific cytoplasmic protein

encoded by stra8, a novel retinoic acid-responsive gene. J cell biol 135: 469–477.
26. Mahony S, Mazzoni EO, Mccuine S, Young RA, Wichterle H, et al. (2011)

ligand-dependent dynamics of retinoic acid receptor binding during early
neurogenesis. Genome biol 12: r2.

27. Dorsett D (2011) cohesin: genomic insights into controlling gene transcription

and development. Curr opin genet dev 21: 199–206.

28. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, et al. (2010)

mediator and cohesin connect gene expression and chromatin architecture.

Nature 467: 430–435.

29. Marston AL, Amon A (2004) meiosis: cell-cycle controls shuffle and deal. Nat rev

mol cell biol 5: 983–997.

30. Michaelis C, Ciosk R, Nasmyth K (1997) cohesins: chromosomal proteins that

prevent premature separation of sister chromatids. Cell 91: 35–45.

31. Hopper AK, Hall BD (1975) mating type and sporulation in yeast. I. Mutations

which alter mating-type control over sporulation. Genetics 80: 41–59.

32. Hopper AK, Kirsch J, Hall BD (1975) mating type and sporulation in yeast. Ii.

Meiosis, recombination, and radiation sensitivity in an alpha-alpha diploid with

altered sporulation control. Genetics 80: 61–76.

33. Colomina N, Liu Y, Aldea M, Gari E (2003) tor regulates the subcellular

localization of ime1, a transcriptional activator of meiotic development in

budding yeast. Mol cell biol 23: 7415–7424.

34. Smith HE, Su SS, Neigeborn L, Driscoll SE, Mitchell AP (1990) role of ime1

expression in regulation of meiosis in saccharomyces cerevisiae. Mol cell biol 10:

6103–6113.

35. Rideout WM 3rd, Wakayama T, Wutz A, Eggan K, Jackson-Grusby L, et al.

(2000) generation of mice from wild-type and targeted es cells by nuclear

cloning. Nat genet 24: 109–110.

36. Yashiro K, Zhao X, Uehara M, Yamashita K, Nishijima M, et al. (2004)

regulation of retinoic acid distribution is required for proximodistal patterning

and outgrowth of the developing mouse limb. Dev cell 6: 411–422.

37. Ruggiu M, Speed R, Taggart M, Mckay SJ, Kilanowski F, et al. (1997) the

mouse dazla gene encodes a cytoplasmic protein essential for gametogenesis.

Nature 389: 73–77.

38. Lin Y, Page DC (2005) dazl deficiency leads to embryonic arrest of germ cell

development in xy c57bl/6 mice. Dev biol 288: 309–316.

39. Wilkinson DG, Nieto MA (1993) detection of messenger rna by in situ

hybridization to tissue sections and whole mounts. Methods enzymol 225: 361–

373.

40. Wang X, Seed B (2003) a pcr primer bank for quantitative gene expression

analysis. Nucleic acids res 31: e154.

Retinoic Acid Activates Two Pathways Required for Meiosis in Mice

PLOS Genetics | www.plosgenetics.org 9 August 2014 | Volume 10 | Issue 8 | e1004541


