
MIT Open Access Articles

Queueing system topologies with limited flexibility

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: John N. Tsitsiklis and Kuang Xu. 2013. Queueing system topologies with limited
flexibility. SIGMETRICS Perform. Eval. Rev. 41, 1 (June 2013), 167-178.

As Published: http://dx.doi.org/10.1145/2494232.2465757

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/90978

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90978
http://creativecommons.org/licenses/by-nc-sa/4.0/

Queueing System Topologies with Limited Flexibility

John N. Tsitsiklis †
MIT, LIDS

Cambridge, MA 02139
jnt@mit.edu

Kuang Xu †

MIT, LIDS
Cambridge, MA 02139
kuangxu@mit.edu

ABSTRACT
We study a multi-server model with n flexible servers and rn queues,
connected through a fixed bipartite graph, where the level of flexi-
bility is captured by the average degree, d(n), of the queues. Ap-
plications in content replication in data centers, skill-based routing
in call centers, and flexible supply chains are among our main mo-
tivations.

We focus on the scaling regime where the system size n tends
to infinity, while the overall traffic intensity stays fixed. We show
that a large capacity region (robustness) and diminishing queueing
delay (performance) are jointly achievable even under very limited
flexibility (d(n) � n). In particular, when d(n) � lnn, a fam-
ily of random-graph-based interconnection topologies is (with high
probability) capable of stabilizing all admissible arrival rate vec-
tors (under a bounded support assumption), while simultaneously
ensuring a diminishing queueing delay, of order lnn/d(n), as n→
∞. Our analysis is centered around a new class of virtual-queue-
based scheduling policies that rely on dynamically constructed par-
tial matchings on the connectivity graph.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Queuing theory; C.2.1 [Network
Architecture and Design]: Distributed networks

General Terms
Performance, Theory

Keywords
queueing system, flexibility, partial resource pooling, random graph,
expander graph, asymptotics

1. INTRODUCTION
At the heart of many modern queueing networks lies the prob-

lem of allocating processing resources (e.g., manufacturing plants,

† Research supported in part by the National Science Foundation, under
grant CMMI-1234062, and an MIT-Xerox Fellowship. The authors are
grateful for the feedback from the anonymous reviewers.
This document is an extended technical report for a conference paper ap-
pearing at SIGMETRICS’13, June, 2013, [26].

web servers, or call-center staff) to meet multiple types of demands
that arrive dynamically over time (e.g., orders, data queries, or cus-
tomer inquiries). It is often the case that a fully flexible or com-
pletely resource-pooled system, where every unit of processing re-
source is capable of serving all types of demands, delivers the best
possible performance. Our inquiry is, however, motivated by the
unfortunate reality that such full flexibility is often infeasible due
to overwhelming implementation costs (in the case of a data center)
or human skill limitations (in the case of a skill-based call center).

What are the key benefits of flexibility and resource pooling in
such queueing networks? Can we harness the same benefits even
when the degree of flexibility is limited, and how should the net-
work be designed and operated? These are the main questions that
we address in this paper. While these questions can be approached
from several different angles, we will focus on the metrics of ex-
pected queueing delay and capacity region; the former is a direct
reflection of performance, while the latter measures the system’s
robustness against demand uncertainties, when the arrival rates
for different demand types are unknown or likely to fluctuate over
time. Our main message is positive: in the regime where the sys-
tem size is large, improvements in both capacity region and delay
are jointly achievable even under very limited flexibility, given a
proper choice of the interconnection topology.

Figure 1: Extreme (in)flexibility: d(n) = n vs. d(n) = 1.

Benefits of Full Flexibility. We begin by illustrating the ben-
efits of flexibility and resource pooling using two simple exam-
ples.1 Consider a system of n servers, each running at rate 1, and n
queues, where each queue stores jobs of a particular demand type.
For each i ∈ {1, . . . , n}, queue i receives a Poisson arrival stream
of rate λi = ρ ∈ (0, 1), independently from all other queues.
The job sizes are independent and exponentially distributed with
mean 1.

For the remainder of this paper, we will use as a measure of
flexibility the average number of servers that a demand type can

1The lack of mathematical rigor in this section is intended to make
the results easier to state. Formal definitions will be given in later
sections.

receive service from, denoted by d(n). Let us consider the two
extreme cases: a fully flexible system, with d(n) = n (Figure 1(a)),
and an inflexible system, with d(n) = 1 (Figure 1(b)). Fixing the
traffic intensity ρ, and letting the system size, n, tend to infinity, we
observe the following qualitative benefits of full flexibility.

1. Diminishing Delay: Let W be the steady-state expected time
in queue. In the fully flexible case and under any work-conserving
scheduling policy2, the collection of all jobs in the system evolves
as anM/M/n queue with arrival rate ρn. It is not difficult to verify
that the expected total number of jobs in queue is bounded by a
constant independent of n, and hence the expected waiting time in
queue (the time from entering the queue to the initiation of service)
satisfies E (W)→ 0, as n→∞.3 In contrast, the inflexible system
is simply a collection of n unrelated M/M/1 queues, and hence
the expected waiting time is E (W) = ρ

1−ρ > 0, for all n. In
other words, expected delay diminishes in a fully flexible system,
as the system size increases, but stays bounded away from zero in
the inflexible case.

2. Large Capacity Region: Suppose that we now allow the ar-
rival rate λi to queue i to vary with i. For the fully flexible case, and
treating it again as an M/M/n queue, it is easy to see that the sys-
tem is stable for all arrival rate vectors that satisfy

∑n
i=1 λi < n,

whereas in the inflexible system, since all M/M/1 queues operate
independently, we must have λi < 1, for all i, in order to achieve
stability. Comparing the two, we see that the fully flexible system
attains a much larger capacity region, and is hence more robust to
uncertainties or changes in the arrival rates.

3. Joint Achievability: Finally, it is remarkable, though perhaps
obvious, that a fully flexible system can achieve both benefits (di-
minishing delay and large capacity region) simultaneously, without
sacrificing one for the other. In particular, for any ρ ∈ (0, 1),
the condition

∑n
i=1 λi < ρn for all n implies that E (W) →

0, as n→∞.
Preview of Main Result. Will the above benefits of flexibility

continue to be present if the system is no longer fully flexible (i.e.,
if d(n) � n)? The main result of the paper (Theorem 1) shows
that the objectives of diminishing delay and a large capacity region
can still be jointly achieved, even when the amount of flexibility in
the system is limited (lnn � d(n) � n), as long as the arrival
rates are appropriately bounded. However, when flexibility is lim-
ited, the interconnection topology and scheduling policy need to
be chosen with care: our solution is based on connectivity graphs
generated by the Erdös-Rényi random bipartite graph construction,
combined with a new class of scheduling policies that rely on dy-
namically constructed partial matchings. Furthermore, the schedul-
ing policies are completely oblivious to the exact values of λi, and
adapt to them automatically.

1.1 Motivating Applications
We describe here some motivating applications for our model,

which share a common overall architecture illustrated in Figure 2.
Content replication is commonly used in data centers for band-
width intensive operations such as database queries [2] or video
streaming [9], by hosting the same piece of content on multiple
servers. Here, a server corresponds to a physical machine in a data
center, and each queue stores incoming demands for a particular
piece of content (e.g., a video clip). A server j is connected to

2Under a work-conserving policy, a server is always busy whenever
there is at least one job in the queues to which it is connected.
3The diminishing expected waiting time follows from the bounded
expected total number of jobs in steady-state, Little’s Law, and
the fact that the total arrival rate is ρn, which goes to infinity as
n→∞.

queue i if there is a copy of content i on server j, and d(n) cor-
responds to the average number of replicas per content across the
network. Similar structures also arise in skill-based routing (SBR)
in call centers, where agents (servers) are assigned to answer calls
from different categories (queues) based on their domains of ex-
pertise [15], and in process-flexible supply chains [3]-[8], where
each plant (server) is capable of producing multiple product types
(queues). In many of these applications, demand rates can be un-
predictable and may change significantly over time (for instance,
unexpected “spikes” in demand traffic are common in modern data
centers [1]). The demand uncertainties make robustness an im-
portant criterion for system design. These practical concerns have
been our primary motivation for studying the trade-off between
robustness, performance, and the level of flexibility.

1.2 Related Work
Bipartite graphs serve as a natural model of the relationships be-

tween demand types and service resources. It is well known in the
supply chain literature that limited flexibility, corresponding to a
sparse bipartite graph, can be surprisingly effective in resource al-
location even when compared to a fully flexible system [3, 4, 5,
6, 7]. The use of sparse random graphs or expanders as flexibil-
ity structures that improve robustness has recently been studied in
[8] in the context of supply chains, and in [9] for content replica-
tion. Similar to the robustness results reported in this paper, these
works show that expanders or random graphs can accommodate a
large set of demand rate vectors. However, in contrast to our work,
nearly all analytical results in this literature focus on static allo-
cation problems, where one tries to match supply with demand in
a single slot, as opposed to the queueing context, where resource
allocation decisions need to be made dynamically over time.

Figure 2: A processing network with rn queues and n servers.

In the queueing theory literature, the models we consider fall
under the umbrella of so-called multi-class multi-server systems,
where multiple queues and servers are connected through a bipar-
tite graph. Under these (and similar) settings, complete resource
pooling (full flexibility) is known to improve system performance
[12, 13, 14], but much less is known when only limited flexibil-
ity is available, because systems with a non-trivial connectivity
graph are very difficult to analyze, even under seemingly simple
scheduling policies (e.g, first-come-first-serve) [10, 11]. Simula-
tions in [15] show empirically that limited cross-training can be
highly effective in a large call center under a skill-based routing al-
gorithm. Using a very different set of modeling assumptions, [16]
proposes a specific chaining structure with limited flexibility, which
is shown to perform well under heavy traffic. Closer to the spirit
of the current work is [17], which studies a partially flexible sys-
tem where a fraction p > 0 of all processing resources are fully
flexible, while the remaining fraction, 1 − p, is dedicated to spe-
cific demand types, and shows an exponential improvement in de-

lay scaling under heavy-traffic. However, both [16] and [17] focus
on the heavy-traffic regime, which is different from the current set-
ting where traffic intensity is assumed to be fixed while the system
size tends to infinity, and provide analytical results for the special
case of uniform demand rates. Furthermore, with a constant frac-
tion of fully flexible resources, the average degree in [17] scales
linearly with the system size n, whereas we are interested in the
case of a much slower degree scaling. Finally, the expected delay
in the architecture considered in [17] does not tend to zero as the
system size increases.

At a higher level, our work is focused on the joint trade-off be-
tween robustness, delay, and the degree of flexibility in a queueing
network, which is little understood in the existing literature, espe-
cially for networks with a non-trivial interconnection topology.

On the technical end, we build on several existing ideas. The
techniques of batching (cf. [18, 19]) and the use of virtual queues
(cf. [20, 21]) have appeared in many contexts in queueing theory,
but the specific models considered in the literature bear little re-
semblance to ours. The study of perfect matchings on a random
bipartite graph dates back to the seminal work in [22]; while it has
become a rich topic in combinatorics, we will refrain from giving a
thorough literature survey because only some elementary and stan-
dard properties of random graphs are used in the current paper.

Organization of the Paper. We describe the model in Section
2 along with the notation to be used throughout. The main result
is stated in Section 3, with a discussion of potential improvements
postponed till Section 7. Section 3.2 studies a specific flexibility
structure and compares it against the architecture proposed in this
paper. The rest of the paper is devoted to the proof of our main
result (Theorem 1), with an overview of the proof strategy given in
Section 3.3.

2. MODEL AND NOTATION
Notation. To avoid clutter, we will minimize the use of floor and

ceiling notation throughout the paper (e.g., writing Trn instead of
Tbrnc). We will assume that all values of interest are appropriately
rounded up or down to an integer, whenever doing so does not cause
ambiguity or confusion. We denote by Gn the set of all rn × n
bipartite graphs. For gn ∈ Gn, let deg(gn) be the average degree
among the rn left vertices. Anm×n Erdös-Rényi random bipartite
graphG = (E, I∪J),4 where each of themn edges is present with
probability p, is referred to as an (m,n, p) random graph. We will
use Pn,p (·) to denote the probability measure on Gn induced by an
(rn, n, p) random graph,

Pn,p (g) = p|E| (1− p)rn
2−|E| , ∀g ∈ Gn, (1)

where |E| is the cardinality of the set of edges, E. For a subset of
vertices, M ⊂ I ∪ J , we will denote by g|M the graph induced
by g on the vertices in M . Throughout, we will use the letter K to
denote a generic constant.

The following short-hand notation for asymptotic comparisons
will be used; here f and g are positive functions:

1. f(x) . g(x) for f(x) = O (g(x)), and f(x) & g(x) for
f(x) = Ω (g(x)).

2. f(x)� g(x) for lim infx→∞
f(x)
g(x)

=∞, and f(x)� g(x)

for lim supx→∞
f(x)
g(x)

= 0.

3. f(x) ∼ g(x) for limx→∞
f(x)
g(x)

= 1.

4Throughout, we denote by E, I , and J the set of edges and left
and right vertices, respectively.

When labeling a sequence, we will use the notation a(n) if the
value of a has a meaningful dependence on n, or an if n serves
merely as an index. We will use Expo (λ), Geo (p), Bino(n, p)
as shorthands for the exponential, geometric and binomial distri-
butions with the standard parameters, respectively. The expression
X

d
= Y means thatX and Y have the same distribution. Whenever

possible, we will use upper-case letters for random variables, and
lower-case letters for deterministic values.

The Model. We consider a sequence of systems operating in
continuous time, indexed by an integer n, where the nth system
consists of n servers and rn queues, where r is a positive constant
that is fixed as n varies (Figure 2). The connectivity of the system is
encoded by an rn×n undirected bipartite graph gn = (E, I ∪ J),
where I and J represent the set of queues and servers, respectively,
and E the set of edges between them.5 A server j ∈ J is capable
of serving a queue i ∈ I if and only if (i, j) ∈ E. We will denote
byN (i) the set of servers in J connected to queue i, and similarly,
byN (j) the set of queues in I connected to server j.

In the nth system, each queue i receives a stream of incoming
jobs according to a Poisson process of rate λn,i, independent of
all other streams. We will denote by λn the arrival rate vector,
i.e., λn = (λn,1, λn,2, . . . , λn,rn). The sizes of the jobs are ex-
ponentially distributed with mean 1, independent from each other
and from the arrival processes. All servers are assumed to run at
a constant rate of 1. The system is assumed to be empty at time
t = 0.

Jobs arriving at queue i can be assigned to any server j ∈ N (i)
to receive service. The assignment is binding, in the sense that once
the assignment is made, the job cannot be transferred to, or simul-
taneously receive service from, any other server. Moreover, service
is non-preemptive, in the sense that once service is initiated for a
job, the assigned server has to dedicate its full capacity to that job
until its completion.6 Formally, if a server j just completed the ser-
vice of a previous job at time t, its available actions are: 1. Serve
a new job: Server j can choose to fetch a job from any queue in
N (j) and immediately start service. The server will remain occu-
pied and take no other actions until the current job is completed.
2. Remain idle: Server j can choose to remain idle. While in the
idling state, it will be allowed to initiate a service (Action 1) at any
point in time.

The performance of the system is fully determined by a schedul-
ing policy, π, which specifies for each server j ∈ J , when to remain
idle, when to serve a new job, and from which queue in N (j) to
fetch a job when initiating a new service.

We only allow policies that are causal, in the sense that the de-
cision at time t depends only on the history of the system (arrivals
and service completions) up to t. We allow the scheduling policy
to be centralized (i.e., to have full control over all servers’ actions),
and to be based on the knowledge of the graph gn and the past his-
tory of all queues and servers. On the other hand, a policy does not
observe the actual sizes of jobs before they are served, and does
not know the arrival rate vector λn.

5For notational simplicity, we omit the dependence of E, I , and J
on n.
6While we restrict ourselves to binding and non-preemptive
scheduling polices in this paper, other common architectures where
(a) a server can serve multiple jobs concurrently (processor shar-
ing), (b) a job can be served by multiple servers concurrently, or (c)
job sizes are revealed upon entering the system, are clearly more
powerful than the current setting, and are therefore capable of im-
plementing the scheduling policy we consider here. Hence the per-
formance upper bounds developed in this paper also apply to these
more powerful variants.

Performance metric: Let Wk be the waiting time in queue for
the kth job, defined as the time from the job’s arrival to a queue until
when it starts to receive service from some server. With a slight
abuse of notation, we define the expected waiting time, E (W), as

E (W)
4
= lim sup

k→∞
E (Wk) . (2)

Note that E (W) captures the worst-case expected waiting time
across all jobs in the long run, and is always well defined, even
under scheduling policies that do not induce a steady-state distri-
bution.

We are primarily interested in the scaling of E (W) in the regime
where the total traffic intensity (i.e., the ratio between the total ar-
rival rate and the total service capacity) stays fixed, while the size
of the system, n, tends to infinity.

3. MAIN THEOREM
Before stating our main theorem, we first motivate a condition

on the arrival rate vector, λn. Since we allow the arrival rates λn,i
to vary with i, and since on average each queue is connected to
d(n) servers, the range of fluctuations of the λn,i with respect to i
should not be too large compared to d(n), or else the system would
become unstable. We will therefore let the amount of rate fluctua-
tion or uncertainty be bounded by some u(n), an upper bound on
λn,i for all i. The following condition summarizes these points.

Condition 1. (Rate Condition) We fix a constant ρ ∈ (0, 1) (re-
ferred to as the traffic intensity) and a sequence {u(n)}n≥1 of pos-
itive reals with infn u(n) > 0. For any n ≥ 1, the arrival rate
vector λn satisfies:

1. max1≤i≤rn λn,i ≤ u(n).

2.
∑rn
i=1 λn,i ≤ ρn.

We denote by Λn ⊂ Rn+ the set of all arrival rate vectors that
satisfy the above conditions.

We denote by Eπ (W | gn,λn) the expected waiting time (cf.
Eq. (2)) under a scheduling policy π, a graph gn, and an arrival
rate vector λn. The following is the main result of the paper.

Theorem 1. We assume that d(n) � lnn and u(n) �
√

d(n)
lnn

,
and fix ρ ∈ (0, 1), γ > 0, and n ≥ 1. Then, there exists a policy
πn such that for every arrival vector λn that satisfies Condition 1,
the following hold.

1. There exists a bipartite graph, gn ∈ Gn (possibly depending
on λn) such that deg(gn) ≤ (1 + γ)d(n), and

Eπn (W | gn,λn) ≤ Ku2(n) lnn

d(n)
= o(1), (3)

where K > 0 is a constant independent of n, gn and λn.

2. Let Gn be a random graph in Gn, chosen at random ac-
cording to the Erdös-Rényi measure P

n,
d(n)
n

(cf. Eq. (1)). ThenGn
has the property in Part 1, with high probability, uniformly over all
λn ∈ Λn. Formally,

P
n,
d(n)
n

(
Gn has the property in Part 1

)
≥ 1− δn, ∀λn ∈ Λn,

where {δn}n≥1 is a sequence wth limn→∞ δn = 0.

The reader is referred to Section 7 for a discussion on potential
improvements of the result.

3.1 Remarks on Theorem 1
Note that Part 1 of the theorem is a special case of Part 2, which

states that for large values of n, and for a graph chosen accord-
ing to the Erdös-Rényi model, the scheduling policy will have a
large probability (with respect to the random graph generation) of
achieving diminishing delay, as in Eq. (3). At a higher level, Eq. (3)
relates three key characteristics of the system: delay E (W), level
of robustness u(n), and degree of flexibility d(n). Furthermore, the
scheduling policy only requires knowledge of ρ, not of the arrival
rate vector; this is important in practice because this vector need
not be known a priori or may change significantly over time.

The fact that a large capacity region (as given by Condition 1)
is achievable when d � n should not be too surprising: expander
graphs (such as those obtained through a random graph construc-
tion) are known to have excellent max-flow performance. The more
difficult portion of the argument is to show that a diminishing de-
lay (a temporal property) can also be achieved without significantly
sacrificing the range of admissible arrival rates, through appropri-
ately designed scheduling policies. In our proof, the achievability
of a large capacity region is not shown explicitly, but comes as a
by-product of the delay analysis; in fact, the scheduling policy au-
tomatically finds, over time, a feasible flow decomposition over the
connectivity graph (see Section 6).

Dependence on ρ.
It is possible to incorporate the traffic intensity ρ in the leading

constant in Eq. (3), to obtain a bound of the form

Eπn (W | gn,λn) ≤ K′

1− ρ ·
u2(n) lnn

d(n)
, (4)

where K′ is a constant independent of ρ. This captures a trade-
off between the traffic intensity and the degree of flexibility in the
system. A proof of Eq. (4) is given in Appendix A.7.

Adversarial Interpretation of Rate Robustness.
To better understand the power and limitations of the “rate ro-

bustness” entailed by Theorem 1, it is useful to view the system as
a game between two players: an Adversary who chooses the rate
vector λn, and a Designer who chooses the interconnection topol-
ogy gn and the scheduling policy πn. The goal of the Designer is to
achieve small average waiting time (which would also imply stabil-
ity of all queues), while the goal of the Adversary is the opposite.
The following definition will facilitate our discussion.

Definition 1. (Good Graphs) Let us fix n, d(n), u(n), ρ, γ, and
K, as in Theorem 1. We define the set Good (λn) of good graphs
for λn as the subset of Gn for which deg(gn) ≤ (1 + γ)d(n) and
the inequality in Eq. (3) holds, for some policy πn.

We now examine the robustness implications of Theorem 1 un-
der different orderings of the actions in the game, listed according
to increasing levels of difficulties for the Designer.

Level 1: Adversary acts first (weak adversary). The Designer
gets to pick gn and πn after observing the realization of λn. Note
that this weak form of adversary fails to capture the rate uncertainty
arising in many applications, where the arrival rates are unknown
at the time when the system is designed. For this setting, it is not
hard to come up with a simple deterministic construction of a good
graph and a corresponding policy. Formally, the set Good (λn)
is nonempty for every λn ∈ Λn. However, Part 1 of Theorem
1 actually makes a stronger statement. While the graph is chosen
after observing λn, the policy is designed without knowledge of
λn, albeit at the expense of a much more complex policy.

Level 2: Adversary and Designer act independently (inter-
mediate adversary). Suppose that both the Adversary and the De-
signer make their decisions independently, without knowing each
other’s choice. This case models most practical applications, where
λn is generated by some exogenous mechanism, unrelated to the
design process, and is not revealed to the Designer ahead of time.
Here, our randomization in the construction of the graph offers pro-
tection against the choice of the Adversary. Part 2 of the theorem
can be rephrased into the statement that there exists a policy for
which

inf
λn∈Λn

P
n,
d(n)
n

(
Gn ∈ Good (λn)

)
→ 1. (5)

As an extension, we may consider the case where the Adversary
chooses λn at random, according to some probability measure µn
on Λn, but still independently from Gn. However, this additional
freedom to the Adversary does not make a difference, and it can be
shown, through an easy application of Fubini’s Theorem, that

inf
µn

(
P
n,
d(n)
n

× µn
) (
Gn ∈ Good (λn)

)
→ 1, (6)

and where× is used to denote product measure. The proof is given
in Appendix A.8.

Level 3: Designer acts first (strong adversary). In this case,
the Adversary chooses λn after observing the gn and πn picked
by the Designer. While such an adversary may be too strong for
most practical applications, it is still interesting to ask whether there
exist fixed gn and πn that will work well for any λn that satisfies
Condition 1 (or even weaker conditions). We conjecture that this is
the case.

20 40 60 80 100 120 140 160 180 200
10

−2

10
−1

10
0

10
1

10
2

System Size (n)

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

Matching−based

Greedy

Figure 3: Diminishing Delay. Simulations with n× n networks
(r = 1), λn,i = ρ = 0.95, and d(n) =

√
n.

On Practical Scheduling Policies.
The scheduling policy that we will use in the proof of Theo-

rem 1 was mainly designed for the purpose of analytical tractabil-
ity, rather than practical efficiency. For instance, simulations sug-
gest that a seemingly naive greedy heuristic, where any free server
chooses a job from a longest queue to which it is connected, can
achieve a superior delay scaling (see Figure 3).7 Unfortunately, de-
riving an explicit delay upper bound for the greedy policy or other
similar heuristics appears to be challenging. See also the discussion
in Section 7.

3.2 A Comparison with Modular Architectures
Assume for simplicity that there is an equal number of queues

and servers (i.e., r = 1). In a modular architecture, the designer
partitions the system into n/d(n) separate sub-networks. Each

7The scheduling policy being simulated is a discrete-time version
of the continuous-time policy analyzed in this paper.

Figure 4: A modular architecture, consisting of n/d(n) dis-
counted clusters, each of size d(n). Within each cluster, all
servers are connected to all queues.

sub-network consists of d(n) queues and servers that are fully con-
nected within the sub-network (Figure 4). Note that this architec-
ture guarantees a degree of exactly d(n), by construction. Assume
that all queues have the same arrival rate ρ ∈ (0, 1) and that each
server uses an arbitrary work-conserving service policy. Since each
sub-network is fully connected, it is not difficult to see that the mod-
ular architecture achieves a diminishing queueing delay as n→∞,
as long as d(n) → ∞. This seems even better than the random-
graph-based architecture, which requires d(n) to scale at least as
fast as lnn. However, this architecture fares much worse in terms
of robustness, as we now proceed to discuss.

Since the sub-networks are completely disconnected from each
other, the set of arrival rates that are admissible is severely re-
duced due to the requirement that the total arrival rate in each sub-
network be less than d(n), which is much more restrictive than the
rate constraint given in Condition 1. Thus, the modular design may
achieve a better delay scaling when the arrival rates are (almost)
uniform, but at the risk of instability when the arrival rates are ran-
dom or chosen adversarially, because the processing resources are
not shared across different sub-networks.

3.3 Proof Overview
Sections 4 through 6 contain the proof of Theorem 1. We will

provide an explicit construction of scheduling policies πn, and then
show that they achieve the delay scaling in Eq. (3). At the core of
the construction is the use of virtual queues, whose operation is
described in detail in Section 4.

The proof of Theorem 1 is completed in two steps. In Section 5,
we first prove the result in the special case where all λi are equal
to some λ < 1/r. The symmetry brought about by the uniform
arrival rates will significantly simplify the notation, while almost all
intuition developed here will carry over to the proof for the general
case. We then show in Section 6 that, perhaps surprisingly, the
original scheduling policies designed for the uniform arrival rate
case can be applied directly to achieve the delay scaling in Eq. (3)
for any λn satisfying Condition 1.

4. VIRTUAL QUEUE AND THE SCHEDUL-
ING POLICY

This section provides a detailed construction of a virtual-queue-
based scheduling policy that achieves the delay scaling in Theorem
1. We begin by describing some high-level ideas behind our design.

Regularity vs. Discrepancies. Setting aside computational is-
sues, an efficient scheduling policy is difficult to design because
the future is unpredictable and random: one does not know a pri-

ori which part of the network will become more loaded, and hence
current resource allocation decisions must take into account all pos-
sibilities of future arrivals and job sizes.

However, as the size of the system, n, becomes large, certain
regularities in the arrival processes begin to emerge. To see this,
consider the case where r = 1, λn,i = λ < 1 for all n and i, and
assume that at time t > 0, all servers are busy serving some job.
Now, during the interval [t, t+ γn), “roughly” λnγn new jobs will
arrive, and nγn servers will become available. For this [t, t + γn)
interval, denote by Γ the set of queues that received a job, and by
∆ the set of roughly nγn servers that became available. If γn is
chosen so that λnγn � n, these incoming jobs are likely to spread
out across the queues, so that most queues receive at most one job.
Assuming that this is indeed the case, we see that the connectivity
graph gn restricted to Γ ∪∆, denoted gn|Γ∪∆, is a subgraph sam-
pled uniformly at random among all (λnγn×nγn)-sized subgraphs
of gn. When nγn is sufficiently large, and gn is well connected (as
in an Erdös-Rényi random graph with appropriate edge probabil-
ity), we may expect that, with high probability, gn|Γ∪∆ admits a
matching (Definition 4) that includes the entire set Γ, in which case
all λnγn jobs can start receiving service by the end of the interval.

Note that when n is sufficiently large, despite the randomness in
the arrivals, the symmetry in the system makes delay performance
at a short time scale insensitive to the exact locations of the ar-
rivals. Treated collectively, the structure of the set of arrivals and
available servers in a small interval becomes less random and more
“regular,” as n → ∞. Of course, for any finite n, the presence
of randomness means that discrepancies (events that deviate from
the expected regularity) will be present. For instance, the follow-
ing two types of events will occur with small, but non-negligible,
probability.

1. Arrivals may be located in a poorly connected subset of gn.
2. Arrivals may concentrate on a small number of queues.

We need to take care of these discrepancies, and show that their
negative impact on performance is insignificant.

Following this line of thought, our scheduling policy aims to use
most of the resources to dynamically target the regular portion of
the traffic (via matchings on subgraphs), while ensuring that the
impact of the discrepancies is well contained. In particular, we will
create two classes of virtual queues to serve these two objectives:

1. A single Matching queue that targets regularity in arrival and
service times, and discrepancies of the first type.

2. A collection of rn Residual queues, one for each (physical)
queue, which targets the discrepancies in arrival and service
times of the second type.

The queues are “virtual,” as opposed to “physical,” in the sense
that they merely serve to conceptually simplify the description of
the scheduling policy.

Good Graphs: The management of the virtual queues must com-
ply with the underlying connectivity graph, gn, which is fixed over
time. We informally describe here some desired properties of gn;
more detailed definitions and performance implications will be given
in subsequent sections, as a part of the queueing analysis. We are
interested in graphs that belong to a setHn, defined as the intersec-
tion of the following three subsets of Gn:

1. Ĝn (cf. Lemma 1): For the case r = 1, gn ∈ Ĝn if it admits a
full matching. For the more general case, a suitable general-
ization is provided in the context of Lemma 1. This property
will be used in both Matching and Residual queues to handle
discrepancies.

2. G̃n (cf. Lemmas 5-7) We have gn ∈ G̃n if a randomly sam-
pled sublinear-sized subgraph admits a full matching, with

high probability. This property will be used in the Matching
queue to take advantage of regularity.

3. Ln (cf. Section 5.3) : We have gn ∈ Ln if gn has aver-
age degree approximately equal to d(n). This property is to
comply with our degree constraint.

Once the description of the policy is completed, the proof will
consist of establishing the following:

(i) If gn ∈ Hn, then the claimed delay bound holds.

(ii) The probability that a random bipartite graph belongs toHn
tends to 1, as n→∞.

Inputs to the Scheduling Policy: Besides n and r, the schedul-
ing policy uses the following inputs:

1. ρ, the traffic intensity as defined in Condition 1,

2. ε, a constant in (0, 1− ρ),

3. b(n), a batch size function,

4. gn, the interconnection topology.

4.1 Arrivals to Virtual Queues
The arrivals to the Matching and Residual queues are arranged

in batches. Roughly speaking, a batch is a set of jobs that are
treated collectively as a single entity that arrives to a virtual queue.
We define a sequence of random times {TB (k)}k∈Z+

, by letting
TB (0) = 0, and for all k ≥ 1,

TB(k)
4
= time of the k

ρ

r
b(n)th arrival to the system,

where b(n) ∈ Z+ is a design parameter, and will be referred to as
the batch parameter.8 We will refer to the time period (TB(k −
1), TB(k)] as the kth batch period.

Definition 2. (Arrival Times to Virtual Queues) The time of ar-
rival of the kth batch to all virtual queues is TB(k), and the corre-

sponding interarrival time is A(k)
4
= TB (k + 1)− TB (k).

While all virtual queues share the same arrival times, the contents
of their respective batches are very different. We will refer to them
as the Matching batch and Residual batch, respectively.

The kth Matching batch is the set of jobs that first arrive to their
respective queues during the kth batch period. Since for each queue
only the first job belongs to the Matching batch, it is convenient to
represent the Matching batch as the set of queues that receive at
least one job during the batch period.

The kth batch arriving to the ith Residual queue is the set of all
jobs, except for the first one, that arrive to queue i during the kth
batch.

Definition 3. (Size of a Residual Batch). Let Hi(k) be the total
number of jobs arriving to queue i during the kth batch period. The
size of the ith Residual batch is

Ri(k)
4
= (Hi(k)− 1)+ . (7)

A graphical illustration of the Matching and Residual batches is
given in Figure 5.

8We chose not to absorb the constant ρ/r into b(n) at this point
because this will allow for simpler notation in subsequent sections.

Figure 5: An illustration of the arrivals during a single batch
period.

4.2 State Transitions and Service Rules
This section describes how the batches will be served by the

physical servers. Before getting into the details, we first describe
the general ideas.

1. The sizes of Residual batches are typically quite small, and
the physical servers will process them using a (non-adaptive)
randomized scheduling rule.

2. For each Matching batch, we will first “collect” a number of
available servers, equal to the size of the batch:
(a) With high probability, all jobs in the Matching batch can
be simultaneously processed by these servers through a match-
ing over gn.
(b) With small probability, some jobs in the Matching batch
are located in a poorly connected subset of gn and cannot be
matched with the available servers. In this case, all jobs in
the batch will be served, one at a time, according to a fixed
server-to-queue assignment (a “clear” phase).

To implement the above queueing dynamics, we will specify the
evolution of states and actions of all physical servers and virtual
queues, to be described in detail in the remainder of this section.

4.2.1 States and Actions of (Physical) Servers and
Residual Queues

We first introduce the notion of an assignment function, which
will be used to schedule the physical servers. An assignment func-
tion L maps each queue i ∈ I to a server L(i) ∈ J . We say that L
is an efficient assignment function for the connectivity graph gn if
(i, L(i)) ∈ E for all i ∈ I , and∣∣L−1 (j)

∣∣ ≤ r + 1, (8)

for all j ∈ J . As will become clear in the sequel, our schedul-
ing policy will use an assignment function L to ensure that every
Residual queue receives at least a “minimum service rate” from
some server. Let Ĝn be the set of all gn ∈ Gn such that gn has an
efficient assignment function. With our random graph construction,
an efficient assignment function exists with high probability. The
proof can be found in Appendix A.1.

Lemma 1. Let p (n) = d(n)/n and assume that d(n) � lnn.
Then,

lim
n→∞

Pn,p(n)

(
Ĝn
)

= 1.

A physical server can be, at any time, in one of two states: “BUSY”
and “STANDBY;” cf. Fig. 4.2.1. The end of a period in the BUSY
state will be referred to as an event point, and the time interval be-
tween two consecutive event points an event period. At each event

Figure 6: State evolution of a physical server.

point, a new decision is to be made as to which virtual queue the
server will choose to serve, during the next event period. All servers
are initialized in a BUSY state, with the time until the first event
point distributed as Expo (1), independently across all servers.

Recall that ε be a parameter in (0, 1 − ρ). The state transitions
defined below also involve the current state of the Matching queue,
whose evolution will be given in Section 4.2.2. When a server j ∈
J is at the kth event point:

1. With probability ρ+ε, the kth event period is of type “match-
ing” :
(a) If the Matching queue is in state COLLECT, server j en-
ters state STANDBY.
(b) If the Matching queue is in state CLEAR, let B′ be the
Matching batch at the front of the Matching queue, and let
M ′ ⊂ I be the set of queues that still contain an unserved
job from batch B′. Let i∗ = min {i : i ∈M ′} .

i) If L (i∗) = j, then server j starts processing the job in
queue i∗ that belongs to B′, entering state BUSY.

ii) Else, server j goes on a vacation of length Expo (1),
entering state BUSY.

(c) If the Matching queue is in state IDLE, server j goes on
a vacation of length Expo (1), entering state BUSY.

2. With probability 1− (ρ+ ε), the kth event period is of type
“residual.” Let i be an index drawn uniformly at random
from the set L−1 (j).
(a) If the ith Residual queue is non-empty, server j starts pro-
cessing a job from the Residual batch that is currently at the
front of the ith Residual queue, entering state BUSY.9

(b) Else, server j goes on a vacation of length Expo (1), en-
tering state BUSY.

The above procedure describes all the state transitions for a sin-
gle server, except for one case: when in state STANDBY, any server
can be ordered by the Matching queue to start processing a job, or
initiate a vacation period. The transition out of the STANDBY state
will be specified in the next subsection.

4.2.2 States and Actions of the Matching Queue
As mentioned earlier, the Matching queue is not a physical en-

tity, but a mechanism that coordinates the actions of the physical
servers. The name “Matching” reflects the fact that this virtual
queue is primarily focused on using matchings to schedule batches,
where a matching is defined as follows.

Definition 4. (Matching in a Bipartite Graph) Let F ⊂ E be a
subset of the edges of g = (E, I ∪ J). We say that F is a matching,
if |{j′ : (i, j′) ∈ F}| ≤ 1, and |{i′ : (i′, j) ∈ F}| ≤ 1, for all
i ∈ I, j ∈ J. A matching F is said to contain S ⊂ I ∪ J if for all
s ∈ S, there exists some edge in F that is incident on s, and is said
to be full if it contains I or J .

Figure 7: State evolutions of the Matching queue.

The Matching queue can be in one of three states: IDLE, COL-
LECT, and CLEAR. It is initialized to state IDLE.

1. If the Matching queue is in state IDLE, it remains so until the
arrival of a Matching batch, upon which the Matching queue
enters state COLLECT.

2. If the Matching queue is in state COLLECT, it remains so un-
til there are exactly (ρ/r)b(n) servers in state STANDBY.10

Denote by Γ ⊂ I the Matching batch currently at the front
of the Matching queue, and by ∆ ⊂ J the set of servers in
STANDBY at the end of the COLLECT period. The Match-
ing queue makes the following decisions:
(a) If gn|Γ∪∆ admits a full matching F :

i) Let all matched servers in ∆ start processing a job in
the current Matching batch according to the matching
F , entering state BUSY. If there are unmatched servers
in ∆ (which will occur if |Γ| < |∆| = (ρ/r)b(n)),
let all unmatched servers enter state BUSY by initiat-
ing a vacation, with a length independently distributed
according to Expo (1).

ii) This completes the departure of a Matching batch from
the Matching queue. If the Matching queue remains
non-empty at this point, it returns to state COLLECT (to
deal with the rest of the Matching batch); else, it enters
state IDLE.

(b) If gn|Γ∪∆ does not admit a full matching, the Matching
queue enters state CLEAR. All servers in state STANDBY
enter state BUSY by initiating a vacation, with a length in-
dependently distributed according to Expo (1).

3. If the Matching queue is in state CLEAR, it remains so until
all jobs in the current Matching batch have started receiv-
ing processing from one of the servers, upon which it enters
state COLLECT if the Matching queue remains non-empty,
or state IDLE, otherwise.

By now, we have described how the batches are formed (Sec-
tion 4.1), and how each physical server operates (Section 4.2). The
scheduling policy is hence fully specified, provided that the under-
lying connectivity graph g admits an efficient assignment function.

5. DYNAMICS OF VIRTUAL QUEUES
– UNIFORM ARRIVAL RATES

We now analyze the queueing dynamics induced by the virtual-
queue-based scheduling policy introduced in Section 4. In this sec-
tion, we will prove Theorem 1 for the special case of uniform ar-
rival rates, where

λn,i = λ < 1/r, (9)

i ∈ I . In particular, we have ρ = λr < 1. Starting with this
section, we will focus on a specific batch size function of the form

b(n) = K
n lnn

d(n)
= K

n

y(n)
, (10)

9The Residual batch at the front of the Residual queue is defined to
be the oldest Residual batch that contains any as yet unserved job.

10This particular number is equal to the total number of jobs arriving
in a single batch period.

for a suitably chosen constant K, where y(n) is defined by

y(n) =
d(n)

lnn
. (11)

The specifics of the choice of K will be given later. We have as-
sumed that d(n) � lnn, and hence y(n) → ∞ as n → ∞. Note
that this implies that b(n) � n. As will be seen soon, this guar-
antees that only a small fraction of the jobs will enter the Residual
queues.

The main idea behind the delay analysis is rather simple: we
will treat each virtual queue as a GI/GI/1 queue, and use King-
man’s bound to derive an upper bound on the expected waiting time
in queue. The combination of a batching policy with Kingman’s
bound is a fairly standard technique in queueing theory for deriv-
ing delay upper bounds (see, e.g., [19]). Our main effort will go
into characterizing the various queueing primitives associated with
the virtual queues (arrival rates, traffic intensity, and variances of
inter-arrival and processing times), as well as in resolving the sta-
tistical dependence induced by the interactions among the physical
servers. We begin by stating a simple fact on the inter-arrival-time
distribution for the virtual queues. Even though in this section we
assume that r = 1, we state the lemma for the general case.

Lemma 2. The inter-arrival times of batches to the virtual queues,
{A (k)}k≥1, are i.i.d., with E (A (k)) = b(n)/(rn), and Var (A (k)) .

b(n)/n2.

Proof. By definition, A (k) is equal in distribution to the time until
a Poisson process with rate λrn records λb (n) arrivals. There-
fore, E (A (k)) =

(
λb (n)

)
/(λrn)=b(n)/(rn), and Var (A (k))

= λb (n) · 1
(λrn)2

. b(n)/n2.

Definition 5. (Service Times in Virtual Queues) Consider the kth
batch arriving at a virtual queue (Matching or Residual). Define
the time of service initiation, Ek, to be when the batch first reaches
the front of the queue, and the time of departure, Dk, to be when
the last job in the batch starts receiving service from one of the
physical servers. Let Dk = Ek if the batch contains no jobs. The
service time for the k batch is defined to be

S(k) = Dk − Ek.

The interval [Ek, Dk] is referred to as the service period of the kth
batch.

We will denote by SM (k) and SRj (k) the service time for the
kth batch in the Matching queue and the jth Residual queue, re-
spectively. Note that our scheduling policy (Section 4.2) induces
interactions among the physical servers, and hence in general, the
service times in a Residual queue are neither independent across
batches or queues nor identically distributed.

5.1 Delays in Matching Queues
We first turn our attention to the service times SM (k) of the

batches in the Matching queue. Based on our construction, it is
not difficult to verify that the SM (k) are i.i.d. for any fixed graph,
gn. Furthermore, the value of SM (k) is equal to the length of a
COLLECT period plus possibly the length of a CLEAR period, if
the subgraph formed during the COLLECT period, gn|Γ∪∆, fails
to contain a matching that includes all queues in the current batch.
We will therefore write

SM (k)
d
= Scol +Xq(gn) · Scle, (12)

where Scol and Scle correspond to the length of a COLLECT and
CLEAR period, respectively, and Xq is a Bernoulli random vari-
able with P (Xq = 1) = q. The value of q(gn) is defined by

q(gn) = P {gn|Γ∪∆ does not admit a full matching} , (13)

where the probability is taken over the randomness in Γ and ∆, but
is conditional on Gn = gn.

We begin by analyzing the properties of Scle. Recall from Sec-
tion 4.2.1 that, when the Matching queue is in state CLEAR, the
jobs in the current Matching batch are to be served in a sequential
fashion (Step 1-(b)) by a designated server. In particular, letting
i∗ be the smallest index of the queues that contain an unserved job
from the current Matching batch, then the job in queue i∗, denoted
by b, will be served by server L(i∗) whenever that server enters an
event period of type “matching.” No other unprocessed jobs in the
Matching batch can be served until job b begins to receive service,
and the amount of time it takes until this occurs is exponentially
distributed with mean 1/(ρ+ ε), since the probability for an event
period at a physical server to be of type “matching” is (ρ+ ε) (Step
1). Since there are at most λb (n) jobs in a Matching batch, the
length of a CLEAR period, Scle, is no greater than the amount of
time it takes for a Poisson process of rate ρ + ε to record λb (n)
arrivals. Arguing similar to the proof of Lemma 2, we have the fol-
lowing lemma. Note that the distribution of Scle does not depend
on the structure of gn, as long as gn admits an efficient assignment
function (cf. Lemma 1).

Lemma 3. E (Scle) = λ
ρ+ε

b (n), and E
(
S2
cle

)
. b2 (n).

To analyze Scol, we argue as follows. A COLLECT period con-
sists of the time until a first server in ∆ completes service, fol-
lowed by the time until one of the remaining servers completes ser-
vice, etc., until we have a total of λb(n) service completions. Thus
the length of the period is the sum of λb(n) independent exponen-
tial random variables with parameters λ(ρ + ε)n, λ(ρ + ε)(n −
1), . . . , λ(ρ + ε)(n − λb(n) + 1). Using the fact that b(n) � n,
this is essentially the same situation as in our analysis of Scle, and
we have the following result.

Lemma 4. E (Scol) ∼
(
λ/(ρ+ ε)

)
·
(
b(n)/n

)
and E

(
S2
col

)
.

b2(n)/n2.

Finally, we want to focus our attention to a set G̃n ⊂ Gn of
graphs that possess the following two properties.

1. The value of E
(
Xq(gn)

)
= q(gn) is small, for all gn ∈

G̃n. This property will help us upper bound the service time
SM (k), using Eq. (12) and the moment bounds for Scle and
Scol developed earlier.

2. The set G̃n has high probability under the Erdös-Rényi ran-
dom graph model.

We start with some definitions. For m ≤ n, let Mm,n be the
family of all m ×m subsets of I ∪ J , that is, h ∈ Mm,n if and
only if |h∩ I| = |h∩J | = m. Let m(n) be such that m(n)→∞
as n→∞. Let PMm(n),n

be a probability measure onMm(n),n.
Let, for each g ∈ Gn,

l(g) = PMm(n),n

({
h ∈Mm(n),n : g|h does not admit

a full matching
})
,

and p(n) = d(n)/n. We now define G̃n as the set of graphs in Gn
that satisfy

l(g) ≤ m2(n) (1− p (n))m(n) . (14)

Informally, this is a set of graphs which, for the given measure
PMm(n),n

on subgraphs, have a high probability that a random
subgraph will have a full matching. Consistent with the general
outline of the proof given in Section 4, we will show that a) graphs
in G̃n have favorable delay guarantees (Proposition 1) and b) that
random graphs are highly likely to belong to G̃n (Lemma 5).

Lemma 5. (Probability of Full Matching on Random Subgraphs)
With p(n) = d(n)/n, we have

lim
n→∞

Pn,p(n)

(
G̃n
)

= 1, (15)

Remark on Lemma 5: Eq. (15) states that graphs in G̃n can be
found using the Erdös-Rényi model, with high probability. This
probabilistic statement is not to be confused with Eq. (14), which
is a deterministic property that holds for all g ∈ G̃n. For the lat-
ter property, the randomness lies only in the sampling of subgraphs
(via PMm(n),n

). This distinction is important for our analysis, be-
cause the interconnection topology, gn, stays fixed over time, while
the random subgraph, gn|Γ∪∆, is drawn independently for different
batches.

Before proving Lemma 5, we state the following useful fact. The
proof consists of a simple argument using Hall’s marriage theorem
and a union bound (cf. Lemma 2.1 in [23] for a proof of the lemma).

Lemma 6. Let G be an (n, n, p) random bipartite graph. Then

Pn,p (G does not admit a full matching) ≤ 3n (1− p)n . (16)

Proof. (Lemma 5) Let H be a random element ofMm(n),n, dis-
tributed according to PMm(n),n

(h). Let G be an (rn, n, p (n))
random bipartite graph over I ∪ J , generated independently of H .
Note that the distribution of G restricted to any m(n)-by-m(n)
subset of I ∪ J is that of an (m(n),m(n), p(n)) random bipartite
graph. Therefore, by Lemma 6, we have

E (l(G)) = P (G|H does not admit a full matching)

≤ 3m(n) (1− p(n))m(n) , (17)

where P(·) represents the distributions of both G and H . Eq. (17),
combined with Markov’s inequality, yields

Pn,p(n)

(
G̃n
)

= 1− P
(
l (G) > m2(n) (1− p(n))m(n)

)
≥1− E (l(G))

m2(n) (1− p(n))m(n)
≥ 1− 3

m(n)
, (18)

which converges to 1 as n→∞, because m(n)→∞.

Using Lemma 5, we can now obtain an upper bound on the value
of q(gn). The proof is given in Appendix A.3.

Lemma 7. Let b (n) = Kn/y(n), as in Eq. (10), for some con-
stant K > 8/λ. If gn ∈ G̃n, then

q(gn) ≤ 1

y2(n)
· n−(λK−4)/2.

We are now ready to bound the mean and variance of the ser-
vice time distribution for the Matching queue, using Eq. (12) and
Lemmas 3, 4, and 7. The proof is given in Appendix A.4.

Lemma 8. (Service Time Statistics for the Matching Queue) As-
sume that gn ∈ G̃n, and let b (n) = Kn/y(n), for some constant
K > 8/λ. The service times of the Matching batches, SM (k), are
i.i.d., with

E
(
SM (k)

)
∼ λ

ρ+ ε
· 1

y(n)
, and Var

(
SM (k)

)
.

1

y2(n)
.

Let WM be the steady-state waiting time of a batch in the
Matching queue, where waiting time is defined to be the time
from when the batch is formed until when all jobs in the batch have
started to receive service from a physical server. The following is
the main result of this subsection.

Proposition 1. (Delays in the Matching Queue) Assume gn ∈
Ĝn ∩ G̃n, where Ĝn and G̃n were defined before Lemmas 1 and 5,
respectively. We have

E (WM) .
1

y(n)
. (19)

Proof. We use Kingman’s bound, which states that the expected
value of the waiting time in a GI/GI/1 queue, W , is bounded

by E (W) ≤ λ̃
σ2
a+σ2

s
2(1−ρ̃) , where λ̃ is the arrival rate, ρ̃ is the traffic

intensity, and σ2
a and σ2

s are the variances for the interarrival times
and service times, respectively. Using Lemmas 2 and 8, the claim
follows by substituting

λ̃ =
1

E (A(k))
.

n

b(n)
=
y(n)

K
,

ρ̃ =
E
(
SM (k)

)
E (A(k))

≤
λ
ρ+ε

K
y(n)

K
ry(n)

=
ρ

ρ+ ε
< 1, (20)

σ2
a = Var (A(k)) ∼ 1

λ

b(n)

n2
.

1

ny(n)
,

σ2
s = Var

(
SM (k)

)
.

1

y(n)2
,

for all sufficiently large values of n. We obtain

E (WM) . y(n)

(
1

ny(n)
+

1

y(n)2

)
.

1

y(n)
.

5.2 Delays in a Residual Queue
The delay analysis for the Residual queues is conceptually sim-

pler compared to that of the Matching queue, but requires more care
on the technical end. The main difficulty comes from the fact that,
due to the physical servers’ interactions with the Matching queue,
the service times in a Residual queue i,

{
SRi (k)

}
k≥0

, are neither
identically distributed nor independent over k (Section 4.2.1). To
overcome this difficulty, we will use a trick to restore the i.i.d. na-
ture of the service times. In particular, we will create a per-sample-
path coupling of the SRi (k)’s to an i.i.d. sequence

{
S̃Ri (k)

}
k≥0

,

such that SRi (k) ≤ S̃Ri (k) for all k, almost surely. If we pretend
that the S̃Ri (k)’s are indeed the true service times, an upper bound
on the expected waiting time can be established using Kingman’s
bound. We finish the argument by showing that this upper bound
applies to the expected value of the original waiting time. The fol-
lowing proposition is the major technical result of this section.

Proposition 2. Assume gn ∈ Ĝn, where Ĝn was defined in Lemma
1. Fix any i ∈ I . Let k be the index for batches. Denote by{
TRi (k)

}
k≥0

and
{
SRi (k)

}
k≥0

the sequences of interarrival and
service times at the ith Residual queue, respectively, defined on a
common probability space. There exists a sequence

{
S̃Ri (k)

}
k≥0

,

defined on the same probability space, that satisfies:
1. P

(
S̃Ri (k) ≥ SRi (k) , ∀k ∈ N

)
= 1.

2. Elements of
{
S̃Ri (k)

}
are i.i.d. over k, and independent of

{
TRi (k)

}
.

3. E
(
S̃Ri (1)

)
. b2(n)

n2 , and E
(
S̃Ri (1)2

)
. b2(n)

n2 .

Proof. The proof is given in Appendix A.5. It involves an explicit
coupling construction of the sequence

{
S̃Ri (k)

}
, which is then

shown to satisfy all three claims. Technicalities aside, the proof
makes use of the following simple observations: (1) the event peri-
ods can be “prolonged” via coupling to be made independent, with-
out qualitatively changing the scaling of the service time, S̃Ri (k),
and (2) the first and second moments of SRi (k) are mainly influ-
enced by the size of the Residual batch, R(k), which is small (
. b(n)

n
) by design.

Denote by WR
i the steady-state waiting times in the ith Resid-

ual queue, where waiting time is defined to be the time from when
the batch is formed till when all jobs in the batch have started to
receive service. The next proposition is the main result of this sub-
section, which is proved using the stochastic dominance result of
Proposition 2, and the same Kingman’s bound as in Proposition 1.
The proof is given in A.6.

Proposition 3. (Delay in a Residual Queue) Assume gn ∈ Ĝn ∩
G̃n, where Ĝn and G̃n were defined before Lemmas 1 and 5, re-
spectively. We have11

max
i∈I

E
(
WR
i

)
.

1

y(n)
. (21)

5.3 Proof of Theorem 1 Under Uniform Ar-
rival Rates

Proof. Let H′n = Ĝn ∩ G̃n for all n ≥ 0, where Ĝn and G̃n were
defined before Lemmas 1 and 5, respectively. Since each job is
served either through the Matching queue or a Residual queue, the
total queueing delay is no more than that of the waiting time in a
virtual queue plus the time to form a batch (A(k)). Hence, letting
b(n) = Kn/y(n), by Lemma 2, and Propositions 1 and 3, we have

Eπ (W |gn,λn) ≤ E (A(1)) + max
{
E
(
WM

)
,E
(
WR

1

)}
≤ K′

y(n)
= K′ · lnn

d(n)
, (22)

if gn ∈ H′n, where K′ is a constant independent of n and gn. It is
not difficult to show, by the weak law of large numbers, that there
exist εn ↓ 0, such that

P
(

1− εn ≤
deg (Gn)

d(n)
≤ 1 + εn

)
= 1, (23)

for all n, where Gn is a
(
rn, n, d(n)

n

)
random graph. Let Ln ={

gn ∈ Gn :
deg(gn)

d(n)
∈ [1− εn, 1 + εn]

}
, and Hn = H′n ∩ Ln.

By Eq. (23), and Lemmas 1 and 7, we have

P
n,
d(n)
n

(Hn) ≥ 1− δn, (24)

for all n, for some δn ↓ 0. Note that the definitions of Ĝn, G̃n and
Ln do not depend on the arrival rates λn, and hence the value of
δn also does not depend on λn.

Eqs. (22) and (24) combined prove the first two claims of the
theorem. Since all λi are equal in this case, the scheduling policy
is oblivious to the arrival rates by definition. This completes the
proof of Theorem 1 when λn,i = λ < 1/r for all n and i.

11The expectation is defined in the sense of Eq. (2).

6. GENERAL CASE AND ARRIVAL-RATE
OBLIVIOUS SCHEDULING

We now complete the proof of Theorem 1 for the general case,
for λn satisfying Condition 1. In particular, we will show that the
original virtual-queue-based scheduling policy given in Section 4.2
automatically achieves the u2(n) lnn/d(n) delay scaling, while
being fully oblivious to the values of the λn,i. We will use a defi-
nition ofHn identical to that in the uniform case, so that the prob-
ability of this set will still converge to 1. To avoid replicating our
earlier arguments, and since the delays in each of the virtual queues
are completely characterized by the statistics of arrival times and
job sizes, we will examine the changes in each of these queueing
primitives as we move to the general case. Throughout the section,
we will analyze a system where the arrival rate vector, λn, satisfies
Condition 1, and the scheduling rules are the same as before, with
b(n) = Kn/y(n).

1. Inter-arrival times of batches. The inter-arrival times to all
virtual queues are equal to the time it takes to collect enough jobs to
form a single batch. By the merging property of Poisson processes,
the aggregate stream of arrivals to the system is a Poisson process
of rate

∑
i∈I λn,i, with ∑

i∈I

λn,i ≤ ρn. (25)

We will make a further assumption, that there exists ρ̃, with 0 <
ρ̃ < ρ, such that ∑

i∈I

λn,i ≥ ρ̃n. (26)

This assumption will be removed by the end of this section by a
small modification to the scheduling policy. Given Eqs. (25) and
(26), a result analogous to Lemma 2 holds:

E (A(k)) =
b(n)

n
, and Var (A(k)) .

b(n)

n2
. (27)

2. Service times for Residual queues. The distributions of the
times at which a server tries to fetch a job from a Residual queue
can vary due to the different values of the λn,i’s. However, it is
not difficult to show that the upper bound on the service times at
the Residual queues (Proposition 2) depend only on the batch size
ρ
r
b(n), and are independent of the specific values of the λn,i’s.

Therefore, the only factor that may significantly change the de-
lay distribution at the ith Residual queue is its associated Resid-
ual batch size, Ri(k) (Eq. (7)). Since the arrival rates are no longer
uniform, this distribution will in principle be different from the uni-
form setting. However, we will show that the difference is small
and does not change the scaling of delay.

Denote by pi the probability that an incoming job to the system
happens to arrive at queue i. We have that

pi =
λn,i∑
i∈I λn,i

≤ u(n)

ρ̃n
=

1
ρ̃

u(n)
n
, (28)

where u(n) is the upper bound on λn,i defined in Condition 1, and
the inequality follows from the assumptions that λn,i ≤ u(n) and
that

∑
i∈I λn,i ≥ ρ̃n (Eq. (26)). Using Eq. (28), and following the

same steps as in the proof of Proposition 2, one can show that

max
i∈I

E
(
S̃Ri (k)

)
.
b2(n)u2(n)

n2
,

and

max
i∈I

Var
(
S̃Ri (k)

)
.
b2(n)u2(n)

n2
.

We repeat the arguments in Proposition 3 by replacing, e.g., the
bounds on Var

(
S̃Ri (k)

)
with maxi∈I Var

(
S̃Ri (k)

)
. b2(n)u2(n)

n2 .

Letting b(n) = K n lnn
d(n)

, we have that, whenever u(n)�
√

d(n)
lnn

,

max
i∈I

E
(
WR
i

)
.

n

b(n)

(
b(n)

n2
+
b2(n)u2(n)

n2

)
.
b(n)u2(n)

n

.
lnn

d(n)
u2(n). (29)

3. Service times for the Matching queue. Surprisingly, it turns
out that the bounds on the service times statistics for the Matching
queue in the uniform arrival-rate case (Lemma 8) will carry over to
the general setting, unchanged. Recall from Eq. (12) that the ser-
vice time of a Matching batch is composed of two elements: the
length of a COLLECT phase, Scol, and, with probability q(gn),
the length of a clearing phase Scle. Since the size of the Match-
ing batch is at most ρ

r
b(n) by definition, the characterizations of

Scol and Scle given by Lemmas 3 and 4 continue to hold, with λ
being replaced by λ = ρ

r
. It remains to verify that the bound on

q(gn) stays unchanged. While the λn,i’s are now different and the
subgraph induced by ∆ and Γ is no longer uniformly distributed,
the upper bound on q(gn) given in Lemma 7 still holds, because
Lemma 5 applies to arbitrary distributions of subgraphs. There-
fore, the scaling in Proposition 1

E
(
WM

)
.

1

y(n)
=

lnn

d(n)
, (30)

continues to hold under non-uniform arrival rates.
Combining Eqs. (25), (29) and (30), we have, analogous to Eq. (22),

that for all n ≥ 1,

Eπ (W |gn,λn) ≤ E (A(1)) + max
{
E
(
WM

)
,E
(
WR

1

)}
≤K1 lnn

d(n)
+
K2u

2(n) lnn

d(n)
≤ Ku2(n) lnn

d(n)
, (31)

if gn ∈ Hn, where K1,K2 and K are positive constants indepen-
dent of n, gn and λn.

Finally, we justify the assumption made in Eq. (26), by show-
ing that the scheduling policy could be easily modified such that
Eq. (26) always holds: we simply insert to each queue an inde-
pendent Poisson stream of “dummy packets” at rate δ, where δ
is chosen to be any constant in (0, 1−ρ

r
). The dummy packets

are merely place-holders: when a server begins serving a dummy
packet, it simply goes on a vacation of duration Expo (1). This
trivially guarantees the validity of Eq. (26), with λ̃ = δ, and since∑
i∈I λn,i ≤ ρn, doing so is equivalent to having a new system

with ρ replaced by ρ′ = ρ+ δr < 1. Hence, all results continue to
hold.12 This concludes the proof of Theorem 1.

7. CONCLUSIONS AND FUTURE WORK
The main message of this paper is that the benefits of dimin-

ishing delay and large capacity region can be jointly achieved in
a system where the level of processing flexibility of each server
is small compared to the system size. The main result, Theorem
1, proves this using a randomly constructed interconnection topol-
ogy and a virtual-queue-based scheduling policy. As a by-product,
it also provides an explicit upper bound (Eq. (3)) that captures a

12This maneuver of inserting dummy packets is of course a mere
technical device for the proof. In reality, delay and capacity would
both become much less of a concern when the traffic intensity, ρ,
is too small, at which point less sophisticated scheduling policies
may suffice.

trade-off between the delay (E (W)), level of robustness (u(n)),
and degree of processing flexibility (d(n)).

The scaling regime considered in this paper assumes that the traf-
fic intensity is fixed as n increases, which fails to capture system
performance in the heavy-traffic regime (ρ ≈ 1). It would be inter-
esting to consider a scaling regime in which ρ and n scale simul-
taneously (e.g., the celebrated Halfin-Whitt regime [25]), but it is
unclear at this stage what exact formulations and analytical tech-
niques are appropriate. At a higher level, it would be interesting to
understand how long-term input characteristics in a queueing net-
work (e.g., how arrival rates are drawn or evolve over time) impact
its temporal performance (e.g., delay), and what role the network’s
intrinsic structure (e.g., flexibility) has to play here.

Theorem 1 also leaves open several promising directions for fu-
ture improvements and extensions, which we discuss briefly. It is
currently necessary to have that d(n) � lnn in order to achieve a
diminishing delay. The lnn factor is essentially tight if a random-
graph-based connectivity structure is to be used, because d(n) =
Ω(lnn) is necessary for an Erdös-Rényi type random graph to be
connected (i.e., not have isolated queues). We suspect that the lnn
factor can be reduced using a different graph generation procedure.

Fixing u(n) to a constant, we observe that when d(n) = n (fully
connected graph), the system behaves approximately as aM/M/n
queue with total arrival rate nρ; if ρ is held fixed, then the expected
delay is known to vanish exponentially fast in n. Thus, there is a
gap between this fact and the polynomial scaling ofO (lnn/d(n))
given in Theorem 1. We believe that this gap is due to an intrin-
sic inefficiency of the batching procedure used in our scheduling
policy. The batching procedure provides analytical convenience
by allowing us to leverage the regularity in the arrival traffic in
obtaining delay upper bounds. However, the use of batching also
mandates that all jobs wait for a prescribed period of time before
receiving any service. This can be highly inefficient in the scal-
ing regime that we consider, where the traffic intensity is fixed at
ρ, because a 1 − ρ fraction of all servers (approximately) are ac-
tually idle at any moment in time. We therefore conjecture that a
scheduling policy that tries to direct a job to an available server im-
mediately upon its arrival (such as a greedy policy) can achieve a
significantly better delay scaling, but the induced queueing dynam-
ics, and the appropriate analytical techniques, may be very different
from those presented in this paper.

Finally, the parameter u(n) captures the level of robustness against
uncertainties in the arrival rates. In terms of inducing a diminish-
ing waiting time as n→∞, there is still a gap between the current
requirement that u(n) �

√
d(n)/lnn and the upper bound that

u(n) = O (d(n)) (since each queue is connected to only d(n)
servers on average). The u2(n) factor in the scaling of E (W) is
due to the impact on delay by the arrival rate fluctuations in the
Residual queues (cf. Eq. (29)). It is unclear what the optimal de-
pendence of E (W) on u(n) is. It is also possible that the condition
u(n)� d(n) alone is sufficient for achieving a diminishing delay;
we conjecture that this is the case.

8. REFERENCES
[1] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken,

“Nature of datacenter traffic: measurements and analysis,”
IMC, 2009.

[2] G. Soundararajan, C. Amza, and A. Goel, “Database
replication policies for dynamic content applications,” Proc.
of EuroSys, 2006.

[3] W. Jordan and S. C. Graves, “Principles on the benefits of
manufacturing process flexibility,” Management Science,
41(4):577–594, 1995.

[4] S. Gurumurthi and S. Benjaafar, “Modeling and analysis of

flexible queueing systems,” Management Science,
49:289–328, 2003.

[5] S. M. Iravani, M. P. Van Oyen, and K. T. Sims, “Structural
flexibility: A new perspective on the design of manufacturing
and service operations,” Management Science,
51(2):151–166, 2005.

[6] M. Chou, G. A. Chua, C-P. Teo, and H. Zheng, “Design for
process flexibility: efficiency of the long chain and sparse
structure,” Operations Research, 58(1):43–58, 2010.

[7] D. Simchi-Levi and Y. Wei, “Understanding the performance
of the long chain and sparse designs in process flexibility,”
submitted, 2011.

[8] M. Chou, C-P. Teo, and H. Zheng, “Process flexibility
revisited: the graph expander and its applications,”
Operations Research, 59:1090–1105, 2011.

[9] M. Leconte, M. Lelarge and L. Massoulie, “Bipartite Graph
Structures for Efficient Balancing of Heterogeneous Loads,”
ACM Sigmetrics, London, 2012.

[10] R. Talreja, W. Whitt, “Fluid models for overloaded
multiclass many-service queueing systems with FCFS
routing,” Management Sci., 54(8):1513-1527,2008.

[11] J. Visschers, I. Adan, and G. Weiss, “A product form solution
to a system with multi-type jobs and multi-type servers,”
Queueing Systems, 70:269-298, 2012.

[12] A. Mandelbaum and M. I. Reiman, “On pooling in queueing
networks,” Management Science, 44(7):971-981, 1998.

[13] J. M. Harrison and M. J. Lopez, “Heavy traffic resource
pooling in parallel-server systems,” Queueing Systems,
33:39-368, 1999.

[14] S. L. Bell and R. J. Williams, “Dynamic scheduling of a
system with two parallel servers in heavy traffic with
resource pooling: asymptotic optimality of a threshold
policy,” Ann. Appl. Probab., 11(3): 608-649, 2001.

[15] R. Wallace and W. Whitt, “A staffing algorithm for call
centers with skill-based routing,” Manufacturing and Service
Operations Management, 7:276–294, 2005.

[16] A. Bassamboo, R. S. Randhawa, and J. A. Van Mieghem, “A
little flexibility is all you need: on the asymptotic value of
flexible capacity in parallel queuing systems,” submitted,
2011.

[17] J. N. Tsitsiklis and K. Xu, “On the power of (even a little)
resource pooling,” Stochastic Systems, 2: 1–66 (electronic),
2012.

[18] M. Neely, E. Modiano and Y. Cheng, “Logarithmic delay for
n×n packet switches under the crossbar constraint,”
IEEE/ACM Trans. Netw., 15(3):657–668, 2007.

[19] J. N. Tsitsiklis and D. Shah, “Bin packing with queues,” J.
Appl. Prob., 45(4):922–939, 2008.

[20] N. McKeown, A. Mekkittikul, V. Anantharam and J.
Walrand, “Achieving 100% throughput in an input-queued
switch,” IEEE Trans. on Comm., 47(8):1260–1267, 1999.

[21] S. Kunniyur and R. Srikant, “Analysis and design of an
adaptive virtual queue,” ACM SIGCOMM, 2001.

[22] P. Erdös and A. Rényi, “On random matrices,” Magyar Tud.
Akad. Mat. Kutato Int. Kozl, 8:455–461, 1964.

[23] S. R. Bodas, “High-performance scheduling algorithms for
wireless networks,” Ph.D. dissertation, University of Texas at
Austin, Dec. 2010.

[24] V. F. Kolchin, B. A. Sevast’yanov, and V. P. Chistyakov,
Random Allocation, John Wiley & Sons, 1978.

[25] S. Halfin and W. Whitt, “Heavy-traffic limits for queues with
many exponential servers,” Operations Research, 29:
567-588, 1981.

[26] J. N. Tsitsiklis and K. Xu, “Queueing system topologies with
limited flexibility,” Sigmetrics, Pittsburgh, PA, June, 2013.

APPENDIX
A. ADDITIONAL PROOFS

A.1 Proof of Lemma 1

Proof. (Lemma 1) Let Gn be an (rn, n, p(n)) random bipartite
graph. We first assume that r ≤ 1. Since d(n) � lnn, it is well
known that (cf. [22]; see also Lemma 6),

P (Gn admits a full matching)→ 1,

as n → ∞. We let Ĝn be the set of all graphs that admit a full
matching. For each g ∈ Ĝn, choose one full matching M , and let
L(i) = j such that (i, j) ∈ M . L is an efficient assignment func-
tion by the definition of a full matching, since each j is matched
with at most one i thorough L.

We now consider the case of r > 1. For each n, partition I into
r disjoint subsets, I1, . . . , Ir , where each subset has size at most n.
Using again Lemma 6, we have that

P (Gn|Ik∪J admits a full matching for all k = 1, . . . , r)→ 1,
(32)

as n→∞, whereGn|Ik∪J is the graphGn restricted to the vertex
set Ik ∪ J . Similar to the previous case, we let Ĝn be the set of
graphs that satisfy the event in Eq. (32). For each n and k, let Mk

be a full matching in Gn|Ik∪J , and for all i ∈ Ik, let L(i) = j
where (i, j) ∈Mk. We then have

∣∣L−1(j)
∣∣ ≤ r ≤ r + 1 and L is

an efficient assignment function.

A.2 Proof of Lemma 4
The following technical lemma is useful (see [24], Chapter 1,
§2).

Lemma 9. Consider throwing balls uniformly into n bins. LetNm
be the number of balls required so that at least m bins are non-
empty. If m = o(n), then E (Nm) ∼ m, and Var (Nm) = o(m).

Proof. (Lemma 4) The length of Scol is equal to the time it takes
for λb(n) many servers to enter the state STANDBY. Denote by
Tλ(j) the time of the jth jump in a rate-λ Poisson process. We
have that

E (Scol) = E
(
T(ρ+ε)n

(
Nλb(n)

))
=

∞∑
j=1

E
(
T(ρ+ε)n(j)

)
P
(
Nλb(n) = j

)
(a)
=

1

(ρ+ ε)n

∞∑
j=1

jP
(
Nλb(n) = j

)
=

1

(ρ+ ε)n
E
(
Nλb(n)

)
, (33)

where the equality (a) follows from the fact that T(ρ+ε)n(j)
d
=∑j

i=1 Ei, where the Ei’s are i.i.d., with distribution

Ei
d
= Expo ((ρ+ ε)n). By Lemma 9, and since b(n) � n, we

have that

E (Scol) ∼
1

(ρ+ ε)n
λb(n) =

λ

(ρ+ ε)
· b(n)

n
. (34)

To compute the second moment, by Lemma 14 in Appendix B,
we have that

E
(
T 2

(ρ+ε)n(j)
)

=
j (j + 1)

(ρ+ ε)2 n2
. (35)

Using a similar argument to that in the calculation of E (Scol), we
have

E
(
S2
col

)
=E

(
T 2

(ρ+ε)n

(
Nλb(n)

))
=

∞∑
j=1

E
(
T(ρ+ε)n(j)2)P (Nλb(n) = j

)
(a)
=

1

(ρ+ ε)2n2

∞∑
j=1

j(j + 1)P
(
Nλb(n) = j

)
=

1

(ρ+ ε)2n2

(
E
(
Nλb(n)

)
+ E

(
N2
λb(n)

))
=

1

(ρ+ ε)2n2

[
E
(
Nλb(n)

)
+
(
E
(
Nλb(n)

))2
+ Var

(
Nλb(n)

)]
.
b2(n)

n2
, (36)

where the equality (a) follows from Eq. (35), and the last step fol-
lows from Lemma 9.

A.3 Proof of Lemma 7

Proof. (Lemma 7) Let G̃n be as in Lemma 5. The size of the
random subset Γ ⊂ I induced by a Matching batch is at most
λb(n), and the size of the random subset ∆ ⊂ J induced by the
STANDBY servers is exactly λb(n). Hence, let m(n) = λb(n),
and there exists a distribution PMm(n),n

overMm(n),n, withMm(n),n

defined as in Lemma 5, such that Γ ∪∆ is covered by the random
subset generated by PMm(n),n

almost surely. Note that Γ and ∆
are generated independently of gn. We now apply Lemma 5 to
obtain that for all gn ∈ G̃n

q(gn) ≤ l(gn)

.b2(n) (1− p(n))λb(n) = b2(n) exp [−λb(n) · ln (1− p(n))]

(a)
= b2(n) exp

(
−λb(n)p(n)− λb(n)

p(n)2

2
+O

(
b(n)p(n)3))

(b)

.
n2

y(n)2
exp
(

ln
1

nλK/2

)
=

1

y(n)2
n−(λK−4)/2, (37)

where step (a) is based on the Taylor expansion: ln(1 − x) =

−x − x2

2
+ O

(
x3
)
, and (b) is based on the substitution b(n) =

K n
y(n)

and p(n) = d(n)
n

= y(n) lnn
n

. The constant 1
2

in (b) can be
replaced by any other positive value less than 1.

A.4 Proof of Lemma 8

Proof. (Lemma 8) Combining Eqs. (12) and Lemmas 3 (for Scle),
4 (for Scol), and 7 (for q(gn)), we have

E
(
SM (k)

)
(a)
= E (Scol) + q(gn)E (Scle)

≤ λ

ρ+ ε
· K

y(n)
+ C

(
1

y(n)2
n−

1
2

(λK−4)

)
n

y(n)

=
λ

ρ+ ε
· K

y(n)
+

C

y(n)3
n−

1
2

(λK−6),

∼ λ

ρ+ ε
· K

y(n)
, (38)

whenever K > 6
λ

, where C is some positive constant. Note that
in (a) we have used the fact that Xq(gn) and Scle are independent.

Similarly,

E
(
SM (k)2

)
= (1− q(gn))E

(
S2
col

)
+ q(gn)E

(
S2
col + S2

cle + 2ScolScle
)

=E
(
S2
col

)
+ 2q(gn)E (Scol)E (Scle) + q(gn)E

(
S2
cle

)
.

1

y(n)2
+

1

y(n)2
n−(λK−4)/2 1

y(n)
· n

y(n)

+
1

y(n)2
n−(λK−4)/2 n2

y(n)2
,

.
1

y(n)2
+

1

y(n)4
n−(λK−8)/2,

.
1

y(n)2
, (39)

whenever K > 8
λ

. Note that Var
(
SM (k)

)
≤ E

(
SM (k)2) .

1
y(n)2

. This completes the proof.

A.5 Proof of Proposition 2

Proof. (Proposition 2) We will explicitly construct the sequence{
S̃Ri (k)

}
and show that it satisfies all three claims. Throughout

the proof, we will omit the superscript R and the subscript i in our
notation (e.g., write S(k) in place of SRi (k)).

Before describing the coupling procedure in detail, we explain in
words what is to be accomplished. Recall from Section 4.2.1 that
the type of an event point for the server can be either “matching”
or “residual”. The times between adjacent event points (i.e., event
periods) are an i.i.d. exponential random variables, with one ex-
ception: if the event point is of type “matching” and the Matching
queue is in state COLLECT. In this case, the server has to remain
in STANDBY state until the end of the COLLECT period, and this
induces dependency among the event periods.

The main idea of the coupling procedure is to simply “prolong”
the lengths of all event periods, so that the resulting lengths are
i.i.d. (Step 1). As a technical maneuver, we will also append an
additional event period, if the first event point in a Residual batch
is not of a Matching type (Step 2). This guarantees that the number
of event periods, and hence the total service time for a Residual
batch, is i.i.d. among different batches.

Let L be an efficient assignment function for gn (Section 4.2.1),
and j = L (i) the index of the server assigned to queue i. Fix any
k ≥ 1. The service period (Definition 5) of the kth batch, [Ek, Dk],
is composed of a sequence of event periods for server j (Section
4.2.1). Let {em}1≤m≤Mk be the times of all event points that fall
within [Ei, Dk), and let e0 be the event point that immediately
precedes Ek. We have

e0 ≤ Ek ≤ e1 ≤ e2 ≤ · · · ≤ eMk = Dk, (40)

We will define
{
S̃ (k)

}
k≥1

, for every sample path of the system,

as follows

A coupled construction of S̃(k)

For all k ≥ 1:

• Step 1: For all m = 0, 1, . . . ,Mk − 1:

(a) If em is of type “matching,” and the Matching queue is
in state COLLECT at time em, we let

pm = (em+1 − em) + h− (l − em) , (41)

where l is the first time after em when the Matching
leaves state COLLECT, and h is the total amount of time
it has spent in COLLECT before exiting. Note that by
definition, h ≥ (l− em) almost surely, and hence pm ≥
em+1 − em almost surely.

(b) Otherwise, let

pm = (em+1 − em) + h̃, (42)

where h̃ is drawn according to the distribution of the
length of a COLLECT period in the Matching queue (See
Lemma 4),

h̃
d
=

Nλb(n)∑
i=1

Expo
(

1

n (ρ+ ε)

)
, (43)

where Nm was defined in Lemma 9.
• Step 2: Draw p̃ from the distributions

p̃
d
=

{
0, if e0 is of type “matching”;

Expo (1) +
∑Nλb(n)

i=1 Expo
(

1
n(ρ+ε)

)
otherwise,

(44)
• Step 3: Set

S̃ (k) = p̃ · I (R (k) > 0) +

Mk−1∑
m=0

pm, (45)

whereR (k), defined in Eq. (7), is the size of the kth Residual
batch. The indicator function ensures that the service time is
zero if the batch is empty.

By construction, p̃ ≥ 0, and pm ≥ em+1 − em for all 0 ≤ m ≤
Mk − 1, almost surely. Therefore, the first claim of Proposition 2,
that S̃(k) ≥ S(k) for all k almost surely, holds. We now show that

the elements in
{
S̃ (k)

}
are i.i.d., and independent from the arrival

times {T (k)}. The following lemma is useful.

Lemma 10. For any k, the random variables p0, p1, . . . , pMk−1, p̃
are i.i.d., with distribution

p
d
= Expo (1) +

Nλb(n)∑
i=1

Expo (n (ρ+ ε)) . (46)

Furthermore,

E (p)→ 1, (47)

as n→∞.

Proof. At server j, no two event points of type “match” can oc-
cur during the same COLLECT period of the Matching queue,
since after the first such event point, server j will remain in state
STANDBY until the end of the COLLECT period. Therefore, Step
1 of the coupling does not introduce any dependency among the
pm’s, and the definitions of p̃ and all the pm’s involve only indepen-
dent random variables. The specific distribution of p is immediate
from the construction, and the fact that all jobs sizes and vacation
lengths are distributed according to Expo (1).

To show Eq. (47), by the same argument as that in the proof of
Lemma 4, we have that

E

Nλb(n)∑
i=1

Expo (n (ρ+ ε))

 = E
(
Nλb(n)

)
· E (Expo (n (ρ+ ε)))

.
b(n)

n
, (48)

and hence E (p)→ E (Expo (1)) = 1 as n→∞.

We say that an event point at server j is of type “residual-i,” if

1. The event point is of type “residual”.

2. A job from queue i is selected to be processed.

By the definition of a Residual batch, if R (k) > 0, the departure
time of the kth Residual batch, Dk, coincides with the Ri (k)th
event point of type “residual-i” after Ek. Recall that an event pe-
riod is of type “residual” with probability 1 − (ρ+ ε), and when
this occurs, queue i will be selected with probability 1

|L−1(j)| . De-

note by M̃k the number of non-zero terms in S̃ (k) (Eq. (45)). The
preceding arguments show that that M̃k’s are independent, and

M̃k
d
= I (R (k) > 0) +

R(k)∑
u=1

Gk,u, ∀k ≥ 0. (49)

where the Gk,u’s are i.i.d., with distribution

Gk,u
d
= Geo

(
1− (ρ+ ε)

|L−1 (j)|

)
. (50)

Finally, by Lemma 10, we have that

S̃ (k) = p · I (R (k) > 0) +

R(k)∑
u=1

Gk,n∑
v=1

pk,u,v, (51)

where p and the pk,u,v’s are i.i.d., with distribution given in Eq. (46).
Since the size of Residual batches (R (k)) are i.i.d., and indepen-
dent from the arrival times, we have established the second claim
of Proposition 2.

To prove the last claim of the Proposition 2 that concerns the
first two moments of S̃ (k), we begin with the following fact on the
balls-into-bins problem.

Lemma 11. Denote by Hi(m,n) be the number of balls in bin i
after throwing m balls uniformly into n bins. Define

Ri(m,n) = (Hi(m,n)− 1)+ . (52)

If m = o(n) , then

E (Ri(m,n)) .
m2

n2
, (53)

E
(
Ri(m,n)2) . m2

n2
, (54)

as n→∞.

Proof. By the definition of Ri, we have the following two cases

1. Conditioning on Hi (m,n) ≥ 1, then

Ri (m,n)
d
= Hi (m− 1, n)

d
= Bino

(
m− 1,

1

n

)
, (55)

where Bino(n, p) is the binomial distribution with parameter
n and p.

2. Conditioning on Hi (m,n) = 0, then Ri (m,n) = 0.

Therefore, we have that

E (Ri (m,n)) = P (Hi (m,n) ≥ 1) ·
(
m− 1

n

)
, (56)

and

E
(
Ri (m,n)2)

=P (Hi (m,n) ≥ 1) ·

[(
m− 1

n

)2

+
m− 1

n

(
1− 1

n

)]
.

(57)

Since Hi (m,n)
d
= Bino

(
m, 1

n

)
, we have

P (Hi (m,n) ≥ 1) = 1−
(

1− 1

n

)m
= 1− exp

(
m ln

(
1− 1

n

))
(a)

. 1− exp
(
−m
n

)
(b)

. 1−
(

1− m

n

)
.
m

n
. (58)

where steps (a) and (b) follow from the Taylor expansions ln(1−
x) & −x and exp (x) & 1− x as x ↓ 0, respectively. The claim is
proved by substituting Eq. (58) into Eqs. (56) and (57).

Recall thatR(k) is the number of jobs in the kth Residual batch,
defined in Eq. (7). We have that

R(k)
d
= R1 (λb(n), λn) , (59)

where R (·, ·) on the right-hand side is defined in Lemma 11. By
Lemma 11, we have

E (R(k)) .
b2(n)

n2
, (60)

E
(
R(k)2) . b2(n)

n2
. (61)

By Eq. (51), we have

E
(
S̃(k)

)
= E

p · I (R (k) > 0) +

R(k)∑
u=1

Gk,n∑
v=1

pk,u,v


(a)
= E (p)P (R (k) > 0) + E (p)E (R (k))E (Gk,n)

(b)

≤ E (p)E (R (k)) + E (p)E (R (k))E (Gk,n)

= [E (p) (E (Gk,n) + 1)]E (R (k))

(c)

. E (R (k)) ,

.
b2(n)

n2
, (62)

where the step (a) is based on Lemma 13 in Appendix B, step (b)
from the fact that P (X > 0) ≤ E (X) for any random variable X
defined on Z+, step (c) from Eqs. (47) and (50), and step (d) from

Eq. (60). Similarly,

E
(
S̃(k)2

)
= E

p · I (R (k) > 0) +

R(k)∑
u=1

Gk,n∑
v=1

pk,u,v

2
= E

(
p2)P (R (k) > 0)

+ 2E (p)P (R (k) > 0)E

R(k)∑
u=1

Gk,n∑
v=1

pk,u,v


+ E

R(k)∑
u=1

Gk,n∑
v=1

pk,u,v

2
(a)

. E (R (k)) + E (R (k))2 +
(
E (R (k)) + E

(
R (k)2))

.
b2(n)

n2
, (63)

where step (a) follows from Lemma 13 from Appendix B, and the
fact that P (R(k) > 0) ≤ E (R(k)). With Eqs. (62) and (63), we
have completed the proof of Proposition 2.

A.6 Proof of Proposition 3

Proof. (Proposition 3) We begin by stating a technical lemma which
formalizes the obvious fact that, on a per-sample-path basis, delays
are monotone with respect to the service times. The proof is ele-
mentary and omitted.
Lemma 12. Consider an initially empty first-come-first-serve (FIFO)
queue with a single server. Let {T (k)}k≥1 be a sequence of arrival

times, and let {S (k)}k≥1 and
{
S̃ (k)

}
k≥1

be sequences of ser-

vice times, all defined on a common probability space. Denote by
{W (k)}k≥1 and

{
W̃ (k)

}
k≥1

the resulted waiting times induced

by ({T (k)} , {S (k)}) and
(
{T (k)} ,

{
S̃ (k)

})
, respectively. If

P
(
S̃ (k) ≥ S (k) , ∀k ∈ N

)
= 1, then

P
(
W̃ (k) ≥W (k) , ∀k ∈ N

)
= 1, (64)

which also implies that

E
(
W̃ (k)

)
≥ E (W (k)) , ∀k ≥ 1. (65)

Fix i ∈ I . By Lemma 12 and Proposition 2, E
(
WR
i

)
is upper-

bounded by the expected waiting time in steady-state of anGI/GI/1

queue with arrival times {A(k)} and service times
{
S̃Ri (k)

}
. Us-

ing the Kingman’s formula, Lemma 2, and Proposition 2, we have
E
(
WR
i

)
≤ λ̃σ

2
a+σ2

s
2(1−ρ̃) , where

λ̃ =
1

E (A(k))
∼ n

b(n)
, ρ̃ =

E
(
S̃R1 (k)

)
E (A(k))

.
b2(n)

n2

b(n)
n

.
b(n)

n
,

(66)

σ2
a = Var (A(k)) .

b(n)

n2
, σ2

s = Var
(
S̃R1 (k)

)
.
b2(n)

n2
,

(67)

which yield

E
(
WR
i

)
.

n

b(n)

(
b(n)

n2
+
b2(n)

n2

)
.
b(n)

n
. (68)

In particular, if b(n) = K n
y(n)

, then E
(
WR
i

)
. 1

y(n)
, ∀i ∈ I . It

is also clear that the scaling in the above equation holds uniformly
over all i ∈ I . This completes the proof.

A.7 Proof of Eq. (4)
We show in this section that the constant in Eq. (3) can be further

expanded to incorporate the traffic intensity, ρ. In particular, there
exists a constant K′, independent of ρ, such that

K ≤ K′

1− ρ . (69)

To see why this is true, we go back to Propositions 1 and 3, which
characterize the expected delays in the Matching queue and Resid-
ual queues, respectively. It is easy to verify, from the proof of
Proposition 3, that the bounds on the delays in the Residual queues
can be made to be independent of ρ (This is intuitively consis-
tent with the fact that the Residual queues are used to only absorb
the “discrepancies”). By Proposition 1, the expected delay in the
Matching queue does depend on ρ, but only through the value of
the effective traffic intensity, ρ̃. In particular, by Eq. (20), we have

ρ̃ ≤ ρ

ρ+ ε
≤ 1

1 + ε
, ∀ρ ∈ (0, 1). (70)

Setting ε = 1
2
(1− ρ), we have

1

1− ρ̃ ≤
1

1− 1

1+ 1
2

(1−ρ)

=
2

1− ρ . (71)

Eq. (71) combined with the Kingman’s formula proves our claim,
for the case with uniform traffic rates (λi,n = ρ/r for all i). The
validity of Eq. (4) in the general case (λ satisfying Condition 1)
can be established with an identical argument.

A.8 Proof of Eq. (6)
Define

fn,K′(gn,λn) = I
(
Eπn (W |gn,λn) ≤ K′ u

2(n) lnn

d(n)

)
, (72)

where πn be the scheduling policy given in Theorem 1. Let Gn be
an
(
rn, n, d(n)

n

)
random bipartite graph. By the first two claims

of Theorem 1, there exists K > 0 such that whenever

P
n,
d(n)
n

(fn,K(Gn,λn) = 1) ≥ 1− δn, (73)

for all n and λn ∈ Λn, where δn ↓ 0 and do not depend on λn.
Now let λn be distributed as µn, and Gn as P

n,
d(n)
n

. We have, by
Eq. (73), that

P (fn,K(Gn,λn) = 1)

=

∫
λn

P
n,
d(n)
n

(fn,K(Gn,λn) = 1) dµn

≥
∫
λn

(1− δn)dµn

=1− δn. (74)

This proves Eq. (6).

B. TECHNICAL LEMMAS

Lemma 13. Let X,Y and Z be random variables taking values in
Z+. Let random variables X , {Yi}i≥1 and {Zi,j}i,j≥1 be drawn

independently according to the distributions of X,Y and Z, re-
spectively. Define

W =

X∑
i=1

Yi∑
j=1

Zi,j .

We have

E (W) = µXµY µZ ,

E
(
W 2) ≤ µXµY sZ + µXsY µ

2
Z + sXµ

2
Y µ

2
Z ,

where µX
4
= E (X) , sX

4
= E

(
X2
)
, and similarly for Y and Z.

Lemma 14. Let Xi be a sequence of i.i.d. random variables, with
E (X) = µ and E

(
X2
)

= s, then

E

((
n∑
i=1

Xi

)2)
= n s+ n(n− 1)µ2. (75)

In the special case where Xi
d
= Expo (λ), we have

E

((
n∑
i=1

Xi

)2)
=

2

λ2
n+

1

λ2
n(n− 1) =

n(n+ 1)

λ2
. (76)

	Introduction
	Motivating Applications
	Related Work

	Model and Notation
	Main Theorem
	Remarks on Theorem 1
	A Comparison with Modular Architectures
	Proof Overview

	Virtual Queue and the Scheduling Policy
	Arrivals to Virtual Queues
	State Transitions and Service Rules
	States and Actions of (Physical) Servers and Residual Queues
	States and Actions of the Matching Queue

	Dynamics of Virtual Queues – Uniform Arrival Rates
	Delays in Matching Queues
	Delays in a Residual Queue
	Proof of Theorem 1 Under Uniform Arrival Rates

	General Case and Arrival-rate Oblivious Scheduling
	Conclusions and Future Work
	References
	Additional Proofs
	Proof of Lemma 1
	Proof of Lemma 4
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Eq. (4)
	Proof of Eq. (6)

	Technical Lemmas

