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Convergence of type-symmetric and cut-balanced
consensus seeking systems (extended version)

Julien M. Hendrickx and John N. Tsitsiklis

Abstract—We consider continuous-time consensus seeking sys-
tems whose time-dependent interactions are cut-balanced,in the
following sense: if a group of agents influences the remaining
ones, the former group is also influenced by the remaining ones
by at least a proportional amount. Models involving symmetric
interconnections and models in which a weighted average of the
agent values is conserved are special cases. We prove that such
systems always converge. We give a sufficient condition on the
evolving interaction topology for the limit values of two agents
to be the same. Conversely, we show that if our condition is
not satisfied, then these limits are generically different.These
results allow treating systems where the agent interactions are a
priori unknown, e.g., random or determined endogenously bythe
agent values. We also derive corresponding results for discrete-
time systems.

I. I NTRODUCTION

We consider continuous-time consensus seeking systems of
the following kind: each ofn agents, indexed byi = 1, . . . , n,
maintains a valuexi(t), which is a continuous function of time
and evolves according to the integral equation version of

d

dt
xi(t) =

n
∑

j=1

aij(t) (xj(t)− xi(t)) . (1)

Throughout we assume that eachaij(·) is a nonnegativeand
measurable function. We introduce the following assumption
which plays a central role in this paper.

Assumption 1. (Cut-balance) There exists a constantK ≥
1 such that for allt, and any nonempty proper subsetS of
{1, . . . , n}, we have1

K−1
∑

i∈S,j /∈S

aji(t) ≤
∑

i∈S,j /∈S

aij(t) ≤ K
∑

i∈S,j /∈S

aji(t). (2)

Intuitively, if a group of agents influences the remaining
ones, the former group is also influenced by the remaining
ones by at least a proportional amount. This condition may
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1Note that the second inequality, added to emphasize the symmetry of the
condition, is redundant.

seem hard to verify in general. But, several important particu-
lar classes of consensus seeking systems automatically satisfy
it. These include symmetric systems (aij(t) = aji(t)), type-
symmetric systems (aij(t) ≤ Kaji(t)), and, as will be seen
later, any system whose dynamics conserve a weighted average
(with positive weights) of the agent values.

Under the cut-balance condition (2), and without any further
assumptions, we prove that each valuexi converges to a limit.
Moreover, we show thatxi and xj converge to the same
limit if i and j belong to the same connected component
of the “unbounded interactions graph,” i.e., the graph whose
edges correspond to the pairs(j, i) for which

∫∞

0 aij(τ) dτ is
unbounded. (As we will show, while this is a directed graph,
each of its weakly connected components is also strongly
connected.) Conversely, we prove thatxi andxj generically
converge to different limits ifi andj belong to different con-
nected components of that graph. (This latter result involves
an additional technical assumption that

∫ T

0 aij(τ) dτ < ∞ for
everyT < ∞.)

Our method of proof is different from traditional conver-
gence proofs for consensus seeking systems, which rely on
either span-norm or quadratic norm contraction properties.
It consists of showing that for everym ≤ n, a particular
linear combination of the values of them agents with the
smallest values is nondecreasing and bounded, and that its total
increase rate eventually becomes bounded below by a positive
number if two agents with unbounded interactions were to
converge to different limits. The idea of working with these
linear combinations is inspired from and extends a technique
used in [5] to analyze a particular average-preserving system.
More specifically, [5] analyses in depth a model of opinion
dynamics for which the order between the agents is preserved,
where the coefficients switch between0 and1, are symmetric
(aij = aji), and switch at most finitely often in any finite
interval. Convergence is obtained by proving that the average
value of them first agents is nondecreasing and bounded, for
anym.

Motivation for our model comes from the fact that there are
many systems in which an agent cannot influence the others
without being subjected to at least a fraction of the reverse
influence. This is, for example, a common assumption in
numerous models of social interactions and opinion dynamics
[8], [22], or physical systems.

A. Background

Systems of the form (1) have attracted considerable attention
[19], [27], [29], [30], [37] (see also [28], [31] for surveys),
with motivation coming from decentralized coordination, data
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fusion [6], [38], animal flocking [9], [17], [36], and modelsof
social behavior [1], [4], [5], [8], [12], [21], [22].

Available results impose some connectivity conditions on
the evolution of the coefficientsaij(t), and usually guarantee
exponentially fast convergence of each agent’s value to a
common limit (“consensus”). For example, Olfati-Saber and
Murray [29] consider the system

d

dt
xi(t) =

∑

j:(j,i)∈E(t)

(xj(t)− xi(t))

with a time-varying directed graphG(t) = ({1, . . . , n}, E(t));
this is a special case of the model (1), withaij(t) equal to
one if (j, i) ∈ E(t), and equal to zero otherwise. They show
that if the out-degree of every node is equal to its in-degreeat
all times, and if each graphG(t) is strongly connected, then
the system is average-preserving and eachxi(t) converges
exponentially fast to1

n

∑

j xj(0). They also obtain similar
results for systems with arbitrary but fixed coefficientsaij .
Moreau [26] establishes exponential convergence to consensus
under weaker conditions: he only assumes that theaij(t) are
uniformly bounded, and that there existT > 0 andδ > 0 such
that the directed graph obtained by connectingi to j whenever
∫ t+T

t
aij(τ) dτ > δ has a rooted spanning tree, for everyt.

Several extensions of such results, involving for example time
delays or imperfect communications, are also available.2

All of the above described results involve conditions that
are easy to describe but difficult to ensure a priori, especially
when the agent interactions are endogenously determined. This
motivates the current work, which aims at an understanding of
the convergence properties of the dynamical system (1) under
minimal conditions. In the complete absence of any conditions,
and especially in the absence of symmetry, it is well known
that consensus seeking systems can fail to converge; see e.g.,
Ch. 6 of [2]. On the other hand, it is also known that more
predictable behavior and positive results are possible in the
following two cases: (i) symmetric (suitably defined) interac-
tions, or (ii) average-preserving systems (e.g., in discrete-time
models that involve doubly stochastic matrices).

B. Our contribution

Our cut-balance condition subsumes the two cases discussed
above, and allows us to obtain strong convergence results.
Indeed, we prove convergence (not necessarily to consensus)
without any additional condition, and then provide sufficient
and (generically) necessary conditions for the limit values of
any two agents to agree. In contrast, existing results showcon-
vergence to consensusunder some fairly strong assumptions
about persistent global connectivity, but offer no insighton
the possible behavior when convergence to consensus fails to
hold.

The fact that our convergence result requires no assumptions
other than the cut-balance condition is significant becauseit
allows us to study systems for which the evolution ofaij(t) is
a priori unknown, possibly random or dependent on the vector

2It is common in the literature to treat the system (1) as if thederivative
existed for all t, which is not always the case. Nevertheless, such results
remain correct under an appropriate reinterpretation of (1).

x(t) itself. In the latter type of models, with endogenously
determined agent interconnections, it is essentially impossible
to check a priori the connectivity conditions imposed in
existing results, and such results are therefore inapplicable. In
contrast, our results apply as long as the cut-balance condition
is satisfied. The advantage of this condition is that it can be
often guaranteed a priori, e.g., if the system is naturally type-
symmetric.

On the technical side, we note that similar convergence
results are available for the special case of discrete-time
symmetric or type-symmetric systems [3], [13], [14], [18],
[20], [21], [27], though they are obtained with a different
methodology. Discrete time is indeed much simpler because
one can exploit the following fact: either two agents interact
on a set of infinite length or they stop interacting after a certain
finite time. We will indeed show that such existing discrete-
time results can be easily extended to the cut-balanced case.

C. Outline

The remainder of the paper is organized as follows. We
state and prove our main results in Section II and expose
several particular classes of cut-balanced dynamics in Section
III. We demonstrate the application of our results to systems
with randomly determined interactions in Section IV, and to
systems with endogenously determined interactions in Section
V. We show an analogous result for discrete-time systems in
Section VI. We end with some concluding remarks and the
discussion of an open problem on the generalization of our
results to systems involving a continuum of agents in Section
VII. The Appendix contains the proof of a technical result
needed in Section II.

II. M AIN CONVERGENCERESULT AND PROOF

We now state formally our main theorem, based on an
integral formulation of the agent dynamics. The integral for-
mulation avoids issues related to the existence of derivatives,
while allowing for discontinuous coefficientsaij(t) and possi-
ble Zeno behaviors (i.e., a countable number of discontinuities
in a finite time interval).

Without loss of generality, we assume thataii(t) = 0 for
all t. We define a directed graph,G = ({1, . . . , n}, E), called
the unbounded interactions graph, by letting (j, i) ∈ E if
∫∞

0
aij(t) dt = ∞.

Lemma 1. Suppose that Assumption 1 (cut-balance) holds.
Every weakly connected component of the unbounded interac-
tion graphG is strongly connected. Equivalently, if there is a
directed path fromi to j, then there is also a directed path
from j to i.

Proof: Consider a weakly connected componentW of the
graphG. We assume, in order to derive a contradiction, that
W is not strongly connected. Consider the decomposition of
W into strongly connected components. More precisely, we
partition the nodes inW into two or more subsetsC1, C2, . . .,
so that eachCk is strongly connected and so that any edge
in W that leaves a strongly connected component leads to a
component with a larger label: ifi ∈ Ck, (i, j) ∈ E, and
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j /∈ Ck, then j ∈ Cl for somel > k. (This decomposition
is unique up to certain permutations of the subset labels.) In
particular, there is no edge fromC2 ∪ C3 ∪ · · · , that leads
into C1. SinceW is weakly connected, there must therefore
exist an edge fromC1 into C2 ∪ C3 ∪ · · · . However, it is an
immediate consequence of the cut-balance condition (applied
to S = C1) that if there is an edge that leavesC1 there must
also exist an edge that entersC1. This is a contradiction, and
the proof is complete.

The following assumption will be in effect in some of the
results.

Assumption 2. (Boundedness) For everyi and j, and every
T < ∞,

∫ T

0 aij(t) dt < ∞.

We now state our main result.

Theorem 1. Suppose that Assumption 1 (cut-balance) holds.
Let x : ℜ+ → ℜn be a solution to the system of integral
equations

xi(t) = xi(0) +

∫ t

0

n
∑

j=1

aij(τ) (xj(τ) − xi(τ)) dτ, (3)

for i = 1, . . . , n. Then:

(a) The limit x∗
i = limt→∞ xi(t) exists, and

x∗
i ∈ [minj xj(0),maxj xj(0)], for all i.

(b) For every i and j,
∫∞

0
aij(t) |xj(t)− xi(t)| dt < ∞.

Furthermore, ifi and j belong to the same connected
component ofG, thenx∗

i = x∗
j .

If, in addition, Assumption 2 (boundedness) holds, then:

(c) If i and j are in different connected components of
G, thenx∗

i 6= x∗
j , unlessx(0) belongs to a particular

n− 1 dimensional sub-space ofℜn, determined by the
functionsaij(·).

The proof of convergence relies on the fact that a particular
weighted sum of them smallest componentsxi(t) is nonde-
creasing. In order to provide the intuition behind this proof,
we first sketch the argument for the special case where: (i)
the functionsxi(·) are differentiable, (ii) the ordering of the
componentsxi(t) changes at most a finite number of times
during any finite time-interval, and (iii) the coefficients satisfy
the stronger type-symmetry assumption:0 ≤ K−1aji(t) ≤
aij(t) ≤ Kaji(t).

For any time t, let y1(t) be the smallest of the com-
ponentsxi(t), y2(t) the second smallest, etc., and let us
defineSm(t) =

∑m
i=1 K

−iyi(t). Observe that theyi(·) are
continuous. Indeed, any two componentsxi(·) whose order is
reversed at some time, must be equal at that time, by continuity
of x(·). As a result,Sm(·) is also continuous.

Since we assume that the ordering of thexi(t) changes
at most a finite number of times during a finite time-interval,
there exists an increasing and divergent sequencet0, t1, t2, . . .
such that the ordering remains constant on any(tk, tk+1): It
suffices to let thetk be the times at which the order changes,
and to complete the sequence by an arbitrary diverging se-
quence if there are only finitely many order changes. We
consider such an interval, on which we assume without loss of
generality that thexi(t) are already sorted, in nondecreasing

order. Thus, for anyt ∈ (tk, tk+1), andi > j, we havexi(t) ≥
xj(t). Also, yi(t) = xi(t), and thusSm(t) =

∑m
i=1 K

−ixi(t).
It follows from (1) that, fort ∈ (tk, tk+1),

d

dt
Sm(t) =

m
∑

i=1

K−i d

dt
xi(t)

=

m
∑

i=1

K−i
(

n
∑

j=1

aij(t)
(

xj(t)− xi(t)
)

)

.

This can be rewritten as

d

dt
Sm(t) =

m
∑

i=1

m
∑

j=1

K−iaij(t) (xj(t)− xi(t))

+

m
∑

i=1

n
∑

j=m+1

K−iaij(t) (xj(t)− xi(t)) .

The second term on the right-hand side is always nonnegative,
because the coefficientsaij(t) are nonnegative and because we
havexj(t) − xi(t) ≥ 0 when j > m ≥ i. By rearranging the
first term, we obtain

d

dt
Sm(t) ≥

m−1
∑

i=1

m
∑

j=i

(

K−iaij(t)−K−jaji(t)
)

(xj(t)− xi(t)) .

(4)
Recall the assumptionaij(t) ≥ K−1aji(t) for any i, j. It
implies that

K−iaij(t)−K−jaji(t) ≥ aji(t)(K
−(i+1) −K−j).

Whenj > i, as in (4), this quantity is nonnegative, and so is
xj(t) − xi(t). It then follows from (4) thatddtSm(t) ≥ 0 for
all t ∈ (tk, tk+1).

Since our argument is valid for any interval(tk, tk+1), and
since the sequencet0, t1, . . . diverges, this implies thatSm(·)
is nondecreasing. Observe now thatxi(t) ≤ maxj xj(0), for
all i andt ≥ 0, because equation (3) and the non-negativity of
the aij imply that maxi xi(t) is nonincreasing. Thus,Sm(t)
is bounded above, and therefore convergent, for anym. As
a result, allyi(t) converge, i.e., the smallest entry ofxi(t)
converges, the second smallest converges, etc. A continuity
argument can then be used to show the convergence of each
xi(t).

The proof for the general case relies on the following lemma
on the rate of change of the weighted sumsSm(t), when the
coefficientsaij satisfy the cut-balance assumption. We say that
a vectory ∈ ℜn is sorted if y1 ≤ y2 ≤ · · · ≤ yn.

Lemma 2. For i, j = 1, . . . , n, i 6= j, let bij be nonnegative
coefficients that satisfy the cut-balance condition

K−1
∑

i∈S

∑

j /∈S

bji ≤
∑

i∈S

∑

j /∈S

bij ≤ K
∑

i∈S

∑

j /∈S

bji,

for someK ≥ 1, and for every nonempty proper subsetS of
{1, . . . , n}. Then,

m
∑

i=1

K−i





n
∑

j=1

bij(yj − yi)



 ≥ 0

for every sorted vectory ∈ ℜn, and everym ≤ n.



4

Proof: We prove the stronger result that
∑n

i=1 wi

(

∑n
j=1 bij(yj − yi)

)

≥ 0 for any nonnegative
weights wi such thatwi ≥ Kwi+1 for i = 1, . . . , n − 1.
Observe that the expression above can be rewritten as

n
∑

i=1

yi





n
∑

j=1

wjbji −
n
∑

j=1

wibij



 =

n
∑

i=1

yiqi,

where the last equality serves as the definition ofqi. We
observe that

n
∑

i=1

yiqi = y1

n
∑

i=1

qi +

n−1
∑

k=1

(

(yk+1 − yk)

n
∑

i=k+1

qi

)

.

It follows that the desired inequality
∑n

i=1 yiqi ≥ 0 holds for
every sorted vectory if and only if (i)

∑n
i=1 qi = 0, and (ii)

∑n
i=k+1 qi ≥ 0, for k = 1, . . . , n− 1. We have

n
∑

i=1

qi =

n
∑

i=1





n
∑

j=1

wjbji −
n
∑

j=1

wibij





=

n
∑

i=1

n
∑

j=1

wjbji −
n
∑

j=1

n
∑

i=1

wibij

= 0,

which establishes property (i). To establish property (ii), we
observe that

n
∑

i=k+1

(

n
∑

j=1

wjbji −
n
∑

j=1

wibij

)

=

n
∑

i=k+1

k
∑

j=1

wjbji +
n
∑

i=k+1

n
∑

j=k+1

wjbji

−
n
∑

i=k+1

k
∑

j=1

wibij −
n
∑

i=k+1

n
∑

j=k+1

wibij .

The second and the fourth terms cancel each other. We use
the inequalitywj ≥ wk for j ≤ k in the first term, and the
inequalitywi ≤ wk+1 for i ≥ k+1 in the third term, to obtain

n
∑

i=k+1

qi =

n
∑

i=k+1





n
∑

j=1

wjbji −
n
∑

j=1

wibij





≥ wk

n
∑

i=k+1

k
∑

j=1

bji − wk+1

n
∑

i=k+1

k
∑

j=1

bij .

Using the propertywk ≥ Kwk+1, and the cut-balance as-
sumption, we conclude that the right-hand side in the above
inequality is nonnegative, which completes the proof of prop-
erty (ii). We now letwi = K−i, for i = 1, . . . ,m, andwi = 0
for i > m, to obtain the desired result.

We now prove Theorem 1.
Proof (of Theorem 1):For everyt, we define a permuta-

tion p(t) of the indices{1, . . . , n} which sorts the components
of the vectorx(t). (More precisely, it sorts the pairs(xi(t), i)
in lexicographic order.) In particular,pi(t) is the index of the
ith smallest component ofx(t), with ties broken according to
the original indices of the components ofx(t). Formally, if

i < j, then eitherxpi(t)(t) < xpj(t)(t) or xpi(t)(t) = xpj(t)(t)
andpi(t) < pj(t). For everyi, we then letyi(t) = xpi(t)(t).
The vectory(t) is thus sorted, so thatyi(t) ≤ yj(t) for i < j.
Let also bij(t) = api(t)pj(t)(t). (This coefficient captures
an interaction between theith smallest and thejth smallest
component ofx(t).) Proposition 2, proved in the Appendix,
states thaty(t) satisfies an equation of the same form as (3):

yi(t) = yi(0) +

∫ t

0

n
∑

j=1

bij(τ) (yj(τ)− yi(τ)) dτ, (5)

for i = 1, . . . , n. The definition of the functionsbij implies
that they also satisfy the cut-balance condition (2). We now
defineSm(t) to be a weighted sum of the values of the first
m (sorted) agents:

Sm(t) =

m
∑

i=1

K−iyi(t)

= Sm(0) +

∫ t

0

m
∑

i=1

K−i
n
∑

j=1

bij(τ) (yj(τ) − yi(τ)) dτ.

It follows from Lemma 2, that the integrand is always non-
negative, so thatSm(t) is nondecreasing. Moreover, since
all bij(t) are nonnegative, Eq. (5) can be used to show that
y1(0) ≤ yi(t) ≤ yn(0), for all i and t. In particular, each
Sm(t) is bounded above and therefore converges. This implies,
using induction oni, that everyyi(t) converges to a limity∗i =
limt→∞ yi(t) ∈ [y1(0), yn(0)] = [minj xj(0),maxj xj(0)].
Using the continuity ofx and the definition ofy, it is then an
easy exercise to show that eachxi(t) must also converge to
one of the valuesy∗j . This concludes the proof of part (a) of
the theorem.

We now prove part (b). For everym = 1, . . . , n, sinceSm(t)
converges to someS∗

m, we have
∫ ∞

0

m
∑

i=1

K−i
n
∑

j=1

bij(t) (yj(t)− yi(t)) dt = S∗
m−Sm(0) < ∞.

(6)
The integrand in this expression can be rewritten as

m
∑

i=1

K−i

(

m
∑

j=1

bij(t) (yj(t)− yi(t))

+
n
∑

j=m+1

bij(t) (ym(t)− yi(t))

)

+

m
∑

i=1

K−i
n
∑

j=m+1

bij(t) (yj(t)− ym(t)) (7)

It follows from Lemma 2 applied to the coefficientsbij and
the sorted vector(y1(t), y2(t), . . . , ym(t), ym(t), . . . , ym(t))
that the first term in the sum above is nonnegative, and thus
that

m
∑

i=1

K−i
n
∑

j=m+1

bij(t) (yj(t)− ym(t))

≤
m
∑

i=1

K−i
n
∑

j=1

bij(t) (yj(t)− yi(t)) .
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Equation (6) then implies that
∫ ∞

0

m
∑

i=1

n
∑

j=m+1

K−ibij(t) (yj(t)− ym(t)) dt < ∞.

Since K−ibij(t) ≥ 0 and yj(t) ≥ ym(t) for j > m,
every term of the sum in the integrand above is nonnegative,
for every t. Then, the boundedness of the integral implies
the boundedness of every

∫∞

0 bij(t) (yj(t)− ym(t)) dt =
∫∞

0 bij(t) |yj(t)− ym(t)| dt when m < j. A symmetri-
cal argument shows that

∫∞

0
bij(t) |yj(t)− ym(t)| dt is also

bounded whenj < m, so that
∫ ∞

0

n
∑

i=1

n
∑

j=1

bij(t) |yj(t)− yi(t)| dt < ∞. (8)

Because of the definitionsyi(τ) = xpi(τ)(τ) and bij(τ) =
api(τ)pj(τ)(τ), and the fact thatp(t) is a permutation, the
equality

n
∑

i=1

n
∑

j=1

aij(t) |xj(t)− xi(t)| =
n
∑

i=1

n
∑

j=1

bij(t) |yj(t)− yi(t)|

holds for all t, which together with the nonnegativ-
ity of all aij(t) |xj(t)− xi(t)| and (8) implies that
∫∞

0
aij(t) |xj(t)− xi(t)| dt < ∞ for all i, j.

Suppose now that the edge(j, i) is in the graphG,
i.e., that

∫∞

0
aij(t) dt = ∞. From part (a), we know that

|xi(t)− xj(t)| converges to a constant value for everyi, j.

Assumption 2 (
∫ t′

0 aij(t) dt < ∞ for all t′) and the fact
that

∫∞

0 aij(t) |xj(t)− xi(t)| dt < ∞ imply that the value
to which |xi(t)− xj(t)| converges must be 0, and thus that
x∗
i = x∗

j . If i andj are not directly connected, i.e.,(j, i) is not
and edge inG, but belong to the same connected component
of G, the equalityx∗

i = x∗
j follows by using transitivity along

a path fromi to j.
It remains to prove part (c). Consider a partition of the

agents in two groups,V1 andV2, that are disconnected inG,
i.e., limt→∞

∫ t

0
aij(τ) dτ < ∞ for all i ∈ V1 and j ∈ V2,

and also for alli ∈ V2 and j ∈ V1. Thus, there exists some
t1/4 such that

∫∞

t1/4

∑

i∈V1,j∈V2
(aij(τ) + aji(τ)) dτ < 1

4 . We
will first show that there exists a full-dimensional set of initial
vectorsx(0) for which limt→∞ xi(t) 6= limt→∞ xj(t), when
i ∈ V1 andj ∈ V2.

Since
∫ t

0 aij(τ) dτ < ∞, it can be proved that the system in
Eq. (3) admits a unique solution and that the state transition (or
fundamental) matrix, which maps the initial conditionsx(0)
to x(t), has full rank for any finitet; see [32], for example
(specifically, Theorem 54, Proposition C3.8, appendix C3, and
appendix C4). In particular, we can chosex(0) such that
xi(t1/4) = 0 if i ∈ V1, andxi(t1/4) = 1 if i ∈ V2. Let m be
the number of agents inV1, and lety be the sorted version of
x as above. There holdsy1(t1/4) = · · · = ym(t1/4) = 0 and
ym+1(t1/4) = · · · = yn(t1/4) = 1.

Consider now at∗ ≥ t1/4 such thatym(t) < ym+1(t)
holds for all t ∈ [t1/4, t

∗]. The continuity of x and the
definition of y implies that for all t ∈ [t1/4, t

∗], we have
xi(t) ≤ ym(t) for every i ∈ V1, and xj(t) ≥ ym+1(t) for
everyj ∈ V2. In the same time interval, the permutationp(t)

that maps the indices ofx(t) to the corresponding indices of
y(t) takes thus values smaller than or equal tom for indices
i ∈ V1 and larger thanm for indices j ∈ V2. As a result,
∑

i≤m,j>m (bij(t) + bji(t)) =
∑

i∈V1,j∈V2
(aij(t) + aji(t))

for all t ∈ [t1/4, t
∗]. The definition oft1/4 and the nonnega-

tivity of the aij(t) imply that, for all t in that interval,
∫ t

t1/4

m
∑

i=1

n
∑

j=m+1

(bij(τ) + bji(τ)) dτ

=

∫ t

t1/4

∑

i∈V1,j∈V2

(aij(τ) + aji(τ)) dτ <
1

4
. (9)

We now fix an arbitraryt ∈ [t1/4, t
∗], and show thatym(t)

andym+1(t) remain separated by at least1/2. Using Eq. (5)
andym(t1/4) = 0, we see that

ym(t) =

∫ t

t1/4

m
∑

j=1

bmj(τ) (yj(τ)− ym(τ)) dτ

+

∫ t

t1/4

n
∑

j=m+1

bmj(τ) (yj(τ) − ym(τ)) dτ. (10)

The first term is non-positive by the definition ofy. Consider
now the second term. Sinceyi(t1/4) ∈ [0, 1] for all i, we obtain
yi(τ) ∈ [0, 1] for all t ≥ t1/4, so thatyj(τ) − ym(τ) ≤ 1 for
everyj. Equations (10) and (9) then imply that

ym(t) ≤

∫ t

t1/4

n
∑

j=m+1

bmj(τ) dτ <
1

4
,

for every t ∈ [t1/4, t
∗]. A similar argument shows that

ym+1(t) > 3/4 for all t ∈ [t1/4, t
∗]. Recalling the definition of

t∗, we have essentially proved that, after timet1/4 and as long
asym(t) < ym+1(t), we must haveym+1(t) − ym(t) > 1/2.
Becausey(t) is continuous, it follows easily that the inequality
ym+1(t) − ym(t) > 1/2 must hold for all times. Since we
have seen that, fort ∈ [t1/4, t

∗] , there holdsxj(t) > 3/4
for all j ∈ V2 and xi(t) < 1/4 for all i ∈ V1, this
implies that x∗

i = limt→∞ xi(t) ≤ 1/4 for i ∈ V1 and
x∗
j = limt→∞ xj(t) ≥ 3/4 for j ∈ V2.
Note that the function that maps the initial conditionx(0) to

x∗ = limt→∞ x(t) is linear; letL be the matrix that represents
this linear mapping. We useei to denote theith unit vector in
ℜn. We have shown above that ifi and j belong to different
connected components ofG, there exists at least onex(0) for
which x∗

i − x∗
j = (ei − ej)

TLx(0) 6= 0. Therefore,(ei −
ej)

TL 6= 0. In particular, the set of initial conditionsx(0)
for which (ei − ej)

TLx(0) = 0 is contained in ann − 1
dimensional subspace ofℜn, which establishes part (c) of the
theorem.

We note that Theorem 1 has an analog for the case where
each agent’s valuexi(t) is actually a multi-dimensional vector,
obtained by applying Theorem 1 separately to each compo-
nent.

The key assumption in Theorem 1, which allows us to prove
the convergence of thexi, is that the aggregate influence of
a group of agents on the others remains within a constant
factor of the reverse aggregate influence. As we will see in
Section III (Proposition 1), the cut-balance assumption isa
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generalization (weaker version) of a more local type-symmetry
condition. The latter condition requires thataij(t) be positive
if and only if aji(t) is positive, and that the ratio of these two
quantities be bounded byK. (A system satisfying the type-
symmetry condition withK automatically satisfies the cut-
balance condition with the sameK.) The requirement that the
ratio be bounded is essential. To demonstrate this, we present
an example whereaij(t) > 0 wheneveraji(t) > 0, but for
which convergence fails to hold.

Example 1. Let n = 3 and consider the trajectories

x1(t) = 3 + e−t, x2(t) = sin(t), x3(t) = −3− e−t.
(11)

These trajectories are a solution to (1), for the case where

a12(t) =
1

et(3 − sin(t)) + 1
, a32(t) =

1

et(3 + sin(t)) + 1
,

a21(t) =
1

2
+
sin(t) + cos(t)

6 + 2e−t
, a23(t) =

1

2
−
sin(t) + cos(t)

6 + 2e−t
,

and a13(t) = a31(t) = 0. Note that the trajectory (x2(t), in
particular) does not converge. This system satisfies a weak
form of type-symmetry: an agent cannot influence another
without being itself influenced in return, but the ratio between
these two influences can grow unbounded. �

One might speculate that the failure to converge in Example
1 is due to the exponential growth of some of the ratios
aij(t)/aji(t), and that convergence might still be guaranteed
if these ratios were bounded by a slowly growing function of
time. However, this is not the case either: an example with fast-
growing ratios is equivalent to one with slow-growing ratios,
once we rescale the time axis.

More concretely, letg(t) be a nonnegative increasing func-
tion that grows slowly to infinity, and letz(t) = x(g(t)),
where x(·) is as in the preceding example. Then,z(t) sat-
isfies (1) with new coefficientsaij(t) = ġ(t)aij(g(t)). The
ratio aij(t)/aji(t) is a slowed down version of the ratio
aij(t)/aji(t), and is therefore slowly growing. On the other
hand, sincex(t) does not converge,z(t) does not converge
either.

III. PARTICULAR CASES OF CUT-BALANCED DYNAMICS

The cut-balance condition is a rather weak assumption, but
may be hard to check. The next proposition provides five
special cases of cut-balanced systems that often arise naturally.
It should however be understood that the class of cut-balanced
systems is not restricted to these five particular cases.

Proposition 1. A collection of nonnegative coefficientsaij(·)
that satisfies any of the following five conditions also satisfies
the cut-balance condition (Assumption 1).

(a) Symmetry:aij(t) = aji(t), for all i, j, t.
(b) Type-symmetry: There existsK ≥ 1 such that

K−1aji(t) ≤ aij(t) ≤ Kaji(t), for all i, j, t.
(c) Average-preserving dynamics:

∑

j aij(t) =
∑

j aji(t),
for all i, t.

(d) Weighted average-preserving dynamics: There exist
wi > 0 such that

∑

j wiaij(t) =
∑

j wjaji(t), for all
i, t.

(e) Bounded coefficients and set-symmetry: There existM
and α with M ≥ α > 0 such that for alli, j, t either
aij(t) = 0 or aij(t) ∈ [α,M ]; and, for any subsetS of
{1, . . . , n}, there existi ∈ S and j 6∈ S with aij(t) >
0 if and only if there existi′ ∈ S and j′ 6∈ S with
aj′i′(t) > 0.

Proof: Condition (a) implies condition (b), withK = 1.
If condition (b) holds, then by summing over alli in some set
of nodesS and allj /∈ S, we obtain the cut-balance condition.

Condition (c) implies condition (d), withwi = 1. Suppose
that condition (d) holds. Then,

∑

i∈S,j /∈S

wjaji(t) =
∑

i∈S

n
∑

j=1

wjaji(t)−
∑

i∈S,j∈S

wjaji(t)

=
∑

i∈S

n
∑

j=1

wiaij(t)−
∑

i∈S,j∈S

wiaij(t).

It follows that
∑

i∈S,j /∈S wjaji(t) =
∑

i∈S,j /∈S wiaij(t), and
thus that

∑

i∈S,j /∈S

aji(t) ≥
miniwi

maxiwi

∑

i∈S,j /∈S

aij(t).

A reverse inequality follows from a symmetrical argu-
ment. Therefore, the cut-balance condition holds withK =
maxi wi/miniwi, which is well defined and no less than 1
becausewi > 0 for all i.

Finally, suppose that the condition (e) is satisfied, and
consider a setS and a timet. If aij(t) = 0 for all i ∈ S
and j 6∈ S, then (e) implies thataji(t) = 0 for all i ∈ S and
j 6∈ S so that

∑

i∈S,j /∈S aij(t) = 0 =
∑

i∈S,j /∈S aji(t), and
the cut-balance condition is trivially satisfied for that set S and
anyK. If on the other hand there existsi ∈ S, j 6∈ S for which
aij(t) > 0, then (e) implies the existence ofi′ ∈ S, j′ 6∈ S
such thataj′i′(t) > 0, andaj′i′ , aij ∈ [α,M ]. Let |S| be the
cardinality ofS. Then,

|S| (n− |S|)M ≥
∑

i∈S,j /∈S

aij(t) ≥ α,

and
|S| (n− |S|)M ≥

∑

i∈S,j /∈S

aji(t) ≥ α,

so that the cut balance condition holds withK =
maxS

|S|(n−|S|)M
α ≤ n2 M

4α .
Note that condition (d) remains sufficient for cut-balance

if the weightswi change with time, provided that the ratio
(maxiwi(t))/(mini wi(t)) remains uniformly bounded (the
same proof applies). We also note that the connectivity condi-
tion in (e) is equivalent to requiring every weakly connected
component to be strongly connected in the graph obtained by
connecting(j, i) if aij(t) > 0, for everyt.

IV. A PPLICATION TO SYSTEMS WITH RANDOM

INTERACTIONS

We give a brief discussion of systems with random interac-
tions. Consensus seeking systems where interactions are de-
termined by a random process have been the object of several
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recent studies. For example, Matei et al. [24] consider the
case where the matrix of coefficientsaij(t) follows a (finite-
state) irreducible Markov process, and is always average-
preserving. They prove that the system converges almost surely
to consensus for all initial conditions if and only if the union
of the graphs corresponding to each of the states of the
Markov chain is strongly connected. This result is extendedto
continuous-time systems in [23]. In [33], Tahbaz-Salehi and
Jadbabaie consider discrete-time consensus-seeking systems
where the interconnection is generated by an ergodic and
stationary random process, without assuming that the average
is preserved. They prove that the system converges almost
surely to consensus if and only if an associated average graph
contains a directed spanning tree.

It turns out that convergence for the case of random inter-
actions is a simple consequence of deterministic convergence
results: Theorem 1 can be directly applied to systems where
the coefficientsaij(·) are modeled as a random process whose
sample path satisfies the cut-balance condition with probability
1 (possibly with a different constantK for different sample
paths, and even in the absence of global upper bound on
K). Indeed, if this is the case, Theorem 1 implies that
each xi(t) converges, with probability 1. Furthermore, if
P(
∫∞

0
aij(t)dt = ∞) = 1, thenx∗

i = x∗
j , with probability 1.

V. A PPLICATION TO SYSTEMS WITH ENDOGENOUS

CONNECTIVITY

Theorem 1 dealt with the case where the coefficientsaij(t)
are given functions of time; in particular,x(t) was generated
by a linear, albeit time-varying, differential or integral equa-
tion. We now show that Theorem 1 also applies tononlinear
systems where the coefficients (and the interaction topology)
are endogenously determined by the vectorx(t) of agent
values. This is possible because Theorem 1 allows for arbitrary
variations of the coefficientsaij(t), thus encompassing the
endogenous case.

Corollary 1. For everyi and j, we are given a nonnegative
measurable functionaij : ℜ+ ×ℜn → ℜ+. Let x : ℜ+ → ℜn

be a measurable function that satisfies the system of integral
equations

xi(t) = xi(0)+

∫ t

0

∑

j

aij(τ, x(τ)) (xj(τ)− xi(τ)) dτ, (12)

for i = 1, . . . , n. Suppose that there existsK ≥ 1 such that for
all x, andt, and any nonempty proper subsetS of {1, . . . , n},
we have

K−1
∑

i∈S,j /∈S

aji(t, x) ≤
∑

i∈S,j /∈S

aij(t, x) ≤ K
∑

i∈S,j /∈S

aji(t, x).

(a) The limit x∗
i = limt→∞ xi(t) exists, and x∗

i ∈
[minj xj(0),maxj xj(0)].

(b) If i andj belong to the same connected component ofG,
thenx∗

i = x∗
j , where the unbounded interactions graph

G is defined for each trajectory by letting(j, i) ∈ E if
∫∞

0 aij(t, x(t)) dt = ∞.

Proof: Let us fix a solutionx to Eq. (12). For this
particular functionx, and for everyi, j, we define a (nec-
essarily measurable) function̂aij : ℜ+ → ℜ+ by letting
âij(t) = aij(t, x(t)). By the assumptions of the corollary, the
functions âij satisfy the cut-balance condition (Assumption
1). Furthermore,x is also a solution to the system of (linear)
integral equations

xi(t) = xi(0) +

∫ t

0

âij(τ) (xj(τ)− xi(τ)) dτ,

for i = 1, . . . , n. The result follows by applying Theorem 1
to the latter system.

Note that the nonlinear system of integral equations (12)
considered in Corollary 1 may have zero, one, or multiple solu-
tions. Our result does not have any implication on the problem
of existence or uniqueness of a solution, but applies to every
solution, if one exists. Naturally, Corollary 1 also holds if the
coefficientsaij(x, t) satisfy stronger conditions such as type-
symmetry or the condition

∑

j wjaji(t, x) =
∑

j wiaij(t, x)
for some positive coefficientswi, as in Proposition 1.

We note that part (c) of Theorem 1 does not extend to the
nonlinear case where the coefficientsaij also depend onx.
Indeed, the proof of Corollary 1 applies Theorem 1 to an
auxiliary linear system, and the choice of this linear system is
based on the actual solutionx(·). Part (c) of Theorem 1 does
apply to this particular linear system, and implies thatx∗

i is
indeed different fromx∗

j wheneveri andj belong to different
connected components of the associated graphG, unlessx(0)
belongs to a lower-dimensional exceptional set. However, this
exceptional set is associated with the particular linear system,
which is in turn determined byx(0); different x(0) can be
associated with different exceptional setsD(x(0)). So, it is in
principle possible that everyx(0) in a full-dimensional set falls
in the exceptional setD(x(0)). This is not just a theoretical
possibility, as illustrated by the four-dimensional example that
follows.

Example 2. Let n = 4. Consider a sorted initial vector,
so that x1(0) ≤ x2(0) ≤ x3(0) ≤ x4(0). Suppose that
the coefficientsaij have no explicit dependence on time,
but are functions ofx, with a13(x) = a31(x) = 1 and
a24(x) = a42(x) = 1 as longx1 < x2 < x3 < x4. Otherwise,
a13(x) = a31(x) = a24(x) = a42(x) = 0. All other
coefficients are 0. These coefficients are symmetric, and thus
cut-balanced. The corresponding system has a solution of the
following form: x1(t), x2(t) keep increasing andx3(t), x4(t)
keep decreasing, until some timet∗ at which agents 2 and 3
hold the same value; after that time, all values remain constant.
Thus, there is a4-dimensional set of initial conditions for
which the resulting limits satisfyx∗

2 = x∗
3. Note that

∫ ∞

0

aij(t) dt =

∫ t∗

0

aij(t) dt < ∞, for all i, j,

and the unbounded interactions graphG has no edges. Yet,
despite the fact that nodes 2 and 3 belong to different
strongly connected components,x∗

2 and x∗
3 are equal on a

4-dimensional set of initial conditions.�
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Finally, we note that the structure of the graphG in
Corollary 1 can be hard to determine, becauseG depends on
the evolution ofx via theaij(t, x(t)), and the evolution ofx
is a priori unknown. In particular, it may be hard to determine
whetherG will be connected, thus guaranteeing consensus.
However, as will be illustrated in the application below, the
first part of the Corollary guarantees the convergence of any
system satisfying the cut-balance condition. One can then use
additional information on the graphG to characterize the
possible limiting statesx∗.

We now apply Corollary 1 to a nonlinear multi-agent system
of a form studied in [1], [5], [7], [10], [12], [19], [22], [25]
(often in the context of bounded confidence models) in which
the agent values evolve according to the integral equation
version of

d

dt
xi(t) =

∑

j: |xi(t)−xj(t)|<1

(xj(t)− xi(t)) . (13)

The evolution of the interaction topology for this system
is a priori unknown, because it depends on the a priori
unknown evolution ofx. In addition, the interaction topology
can, in principle, change an infinite number of times during
a finite time interval. Determining whether such a system
converges can be complicated. And indeed, the convergence
of an asymmetric counterpart of (13) remains open [25].
Observe now that (13) is of the form (12), withaij(x) = 1 if
|xi − xj | < 1, andaij(x) = 0 otherwise. The coefficientsaij
are symmetric and therefore satisfy the cut-balance condition
in Corollary 1. Part (a) of the corollary implies that the limit
x∗
i = limt→∞ xi(t) exists for everyi. Suppose now that for

somei, j, we have
∣

∣x∗
i − x∗

j

∣

∣ < 1. Then, there exists a time
after which |xi(t) − xj(t)| < 1 and thereforeaij(x(t)) = 1.
As a consequence,

∫∞

0
aij(x(t)) dt = ∞, and Corollary 1(c)

implies thatx∗
i = x∗

j . This proves that the system converges,
and that the limiting values of any two agents are either equal
or separated by at least 1, a result which had been obtained
by ad hoc arguments in [13].

Exactly the same argument can be made for a system that
evolves according to the integral equation version of

d

dt
xi(t) =

∑

j: |xi(t)−xj(t)|<r (xj(t)− xi(t))
∑

j: |xi(t)−xj(t)|<r 1
.

(We let ẋi(t) = 0 whenever the denominator on the right-hand
side is zero.) This system satisfies a type-symmetry condition
with K = N . A variant of such a system, with a different
interaction radiusri for each i, has been studied in [19]
under the assumption that the graph of interactions is strongly
connected at everyt.

A further variation of (13) is of the form

d

dt
xi(t) =

∑

j

f(xj(t)− xi(t)) (xj(t)− xi(t)) , (14)

wheref is an even nonnegative function. A multidimensional
version of (14), where eachxi is a vector, is studied in [7],
for the special case of a radially decreasing functionf that
becomes zero beyond a certain threshold. (The results in [7]
also allow for a continuum of agents, which arise for example

when studying discrete-agent models in the limit of a large
number of agents). The system (14) is of the form (12), with
aij(x) = f(xi − xj). It satisfies a type-symmetry condition,
with K = 1, and Corollary 1 implies convergence. Moreover,
if f is bounded and is continuous except on a finite set, then
for any i, j, eitherx∗

i = x∗
j , or x∗

i −x∗
j belongs to the closure

of the set{z : f(z) = 0} of roots off . To see this, Corollary
1 asserts that ifx∗

i 6= x∗
j , then

∫∞

0 f(xi(t) − xj(t)) dt < ∞,
which implies thatxi(t) − xj(t) cannot stay forever in a set
on whichf admits a positive lower bound.

VI. D ISCRETE-TIME SYSTEMS

Much of the literature on consensus-seeking processes is
focused on discrete-time systems. Typical results guarantee
convergence to consensus under the assumption that the sys-
tem is “sufficiently connected” on any time interval of a certain
length [17], [27], [35] and sometimes provide bounds on
the convergence rate. When interactions are type-symmetric,
convergence to consensus is guaranteed under the weaker
assumption that the system remains “sufficiently connected”
after any finite time [3], [18], [27] and results 2.5.9 and 2.6.2 in
[20]. One can then easily deduce that type-symmetric systems
always converge to a limit, at which we have consensus within
each of possibly many agent clusters [13], [14], [21].

In this section, we show that the convergence proof in [3],
[13] can be extended easily to prove that cut-balance is alsoa
sufficient condition for convergence in the discrete-time case,
as in Theorem 1. A special case of this result asserts the
convergence of systems that preserve some weighted average
of the states, and thus includes a sample path version of recent
results of [34] on stochastic consensus-seeking systems.

Discrete-time systems are in some sense simpler because
of the absence of Zeno behaviors or unbounded sets of
finite measure. However, discrete-time systems allow for large
instantaneous variations of the agents’ values. In particular,
an agent could entirely “forget” its value at timet when
computing its value at timet + 1, leading to instabilities
where agents keep switching their values. For this reason, we
introduce two additional assumptions: each agent is influenced
by its own value when computing its new value, and every
positive coefficient must be larger than some fixed positive
lower bound.

Theorem 2. Let x : N → ℜn satisfy

xi(t+ 1) =

n
∑

j=1

aij(t)xj(t), i = 1, . . . , n,

whereaij(t) ≥ 0 for all i, j, and t, and
∑n

j=1 aij(t) = 1 for
all i and t. Assume that the following three conditions hold.

(a) Lower bound on positive coefficients: there exists some
α > 0 such that ifaij(t) > 0, thenaij(t) ≥ α, for all i,
j, and t.

(b) Positive diagonal coefficients: we haveaii(t) ≥ α, for all
i and t.

(c) Cut-balance: for any nonempty proper subsetS of
{1, . . . , n}, there existi ∈ S andj 6∈ S with aij(t) > 0 if
and only if there existi′ ∈ S andj′ 6∈ S with aj′i′(t) > 0.
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Then, the limit x∗
i = limt→∞ xi(t) exists, andx∗

i ∈
[minj xj(0),maxj xj(0)]. Furthermore, consider the directed
graphG = ({1, . . . , n}, E) in which (j, i) ∈ E if aij(t) > 0
infinitely often. Then, every weakly connected component of
G is strongly connected, and ifi and j belong to the same
connected component ofG, thenx∗

i = x∗
j .

Proof: The fact that every weakly connected component
of G is strongly connected is proved exactly as in Theorem 1.

Consider such a connected componentC. It follows from
the definition ofG that there exists a timet∗ after which
aij(t) = aji(t) = 0 for anyi ∈ C andj 6∈ C. Thus, the values
xi(t) with i ∈ C do not influence and are not influenced by
the remaining values after timet∗. In particular, if t∗ ≤ t′ <
t, then minj∈C xj(t

′) ≤ xi(t) ≤ maxj∈C xj(t
′) holds for

all i ∈ C; furthermore,maxi∈C xi(t) and mini∈C xi(t) are
monotonically nonincreasing and nondecreasing, respectively.

We now show that there exists a constantγ > 0 such that for
any t′ ≥ t∗, there exists at′′ > t for which maxi∈C xi(t

′′)−
mini∈C xi(t

′′) ≤ γ
(

maxi∈C xi(t
′) − mini∈C xi(t

′)
)

. We
assume that|C| ≥ 2, because otherwise the claim is trivially
true.

Suppose thatmaxi∈C xi(t
′) = 1 and mini∈C xi(t

′) = 0.
This is not a loss of generality; the argument can be carried
out for any other values by appropriate scaling and translation.
For any t, let Ck(t) be the set of indicesi ∈ C for which
xi(t) ≥ αk. Clearly,C0(t

′) is nonempty. Consider somet and
k such that∅ 6= Ck(t) 6= C. We distinguish two cases.

(i) Suppose thataij(t) = 0 for all i ∈ Ck(t) and j ∈
C \ Ck(t). Then, for anyi ∈ Ck(t), we have

xi(t+ 1) =

n
∑

j=1

aij(t)xj(t) =
∑

j∈Ck(t)

aij(t)xj(t)

≥
∑

j∈Ck(t)

aij(t)α
k ≥ αk.

(We have used here the facts thataij(t) = 0 for every j 6∈
Ck(t), and

∑

j aij(t) = 1.) Therefore,i belongs toCk(t+1)
as well. So, in this case we haveCk(t) ⊆ Ck(t+ 1).

(ii) Suppose now thataij(t) > 0 for somei ∈ Ck(t) and
j ∈ C \ Ck(t). Then the cut-balance condition, together with
t ≥ t∗, implies thatai′j′ > 0 for at least onei′ ∈ C \ Ck(t)
andj′ ∈ Ck(t). For thisi′, we have

xi′ (t+ 1) =

n
∑

j=1

ai′j(t)xj(t) =
∑

j∈C

ai′j(t)xj(t)

≥ ai′j′(t)xj′ (t) ≥ α · αk = αk+1

where we have used the fact thatxj(t) ≥ mini∈C xi(t
′) ≥ 0,

for all j ∈ C and t ≥ t′. Therefore,i′ ∈ Ck+1(t + 1). More-
over, for anyi ∈ Ck(t), we havexi(t) =

∑

j∈C aij(t)xj(t) ≥
aii(t)xi(t) ≥ α·αk = αk+1, becauseaii(t) ≥ α for all i andt.
Thus, ifaij(t) > 0 for somei ∈ Ck(t) andj ∈ C\Ck(t), then
the setCk+1(t+1) containsCk(t) and at least one additional
node.

Recall now thatC0(t
′) is nonempty. Moreover, the defini-

tion of C as a strongly connected component ofG implies
that for any t and any nonempty setS ⊂ C, there exists

a t̂ and somei ∈ S, j ∈ S \ C, such thataij(t̂) > 0.
Then, a straightforward inductive argument based on the above
two cases shows the existence of a timet′′ > t′ at which
C|C|−1(t

′′) = C, i.e., a timet′′ at which mini∈C xi(t
′′) ≥

α|C|−1. Sincexi(t) remains less than or equal to 1 fori ∈ C
andt > t′, we conclude thatmaxi∈C xi(t

′′)−mini∈C xi(t
′′)

is bounded by

(1− α|C|−1)

(

max
i∈C

xi(t
′)−min

i∈C
xi(t

′)

)

.

This inequality, together with the fact thatmaxi∈C xi(t) and
mini∈C xi(t) are respectively nonincreasing and nondecreas-
ing after time t∗, implies the convergence ofxi(t), for all
i ∈ C, to a common limit.

Observe that part (c) of Theorem 1, convergence to generi-
cally different values for the different components ofG, has no
counterpart for the discrete-time case. Indeed, ifaij(1) = 1/n
for all i, j, the system reaches global consensus after one time
step, irrespective of the connectivity properties ofG.

Condition (c) in Theorem 2 has a graph-theoretic interpre-
tation. For everyt, letGt be the graph onn nodes obtained by
connectingj to i if aij(t) is positive. Condition (c) is satisfied
if and only if for everyt, every weakly connected component
of Gt is strongly connected.

Finally, note that convergence results for discrete-time
consensus seeking systems with random or endogenously
determined interactions can be derived from Theorem 2 in a
straightforward manner, exactly as in Section IV and Corollary
1, respectively.

VII. C ONCLUDING REMARKS

In this paper, we introduced a cut-balance condition, which
is a natural and perhaps the broadest possible symmetry-like
assumption for consensus seeking systems. This assumption
is satisfied, in particular, if the dynamics preserve a weighted
average, or if no agent can influence another without incurring
a proportional reverse influence. We proved that the cut-
balance assumption is a sufficient condition for the conver-
gence of continuous-time consensus seeking systems, and
provided a characterization of the resulting local consensus, in
terms of the evolution of the interaction coefficients. We then
applied our results to systems with endogenously determined
connectivity. Related results were also obtained for the discrete
time case. We also showed that our result fails to hold if the
proportionality constantK in the cut-balance assumption can
grow with time, without bound.

We end by discussing the possibility of extending our result
to models involving a continuum of agents. Such models
appear naturally when studying discrete-agent models, in the
limit of a large number of agents [1], [5], [7], [11], [22]. Let
xt(α) be the value of agentα ∈ [0, 1] at timet. Consider then
a functionx : [0, 1]×ℜ+ → ℜ : (α, t) → xα(t) that satisfies

d

dt
xα(t) =

∫

aα,β (xβ(t)− xα(t)) dβ, (15)

for some measurable nonnegative functiona : [0, 1]× [0, 1]×
ℜ+ → ℜ+ : (α, β, t) → aα,β(t). The extent to which our
discrete-agent convergence result can be generalized to the
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model (15) is an open problem, and the same is true in the
discrete time-case.

In addition to some technical difficulties inherent to treating
a continuum of agents, the main reason that our approach does
not apply directly to such systems is the following. Our proofs
of Theorem 1 and Lemma 2 rely on a collection of functions
Sm of the vector of agent states, with the property that∂Sm

∂xi
≥

K ∂Sm

∂xj
≥ 0 if j > i, whereK ≥ 1 is the constant from the

cut-balance assumption. Finding nontrivial functions having
that property seems impossible in the case of a continuum of
agents whenK > 1. Suppose indeed that we have a function
S of the configuration of agent values such that

∂S

∂xα
≥ K

∂S

∂xβ
≥ 0 (16)

whenβ > α. For two agentsα < β, take now a sequenceα <
γ1 < γ2 < · · · < γn < β. By a repeated application of (16)
we obtain∂Sm

∂xα
≥ Kn+1 ∂Sm

∂xβ
. Since this is true for arbitraryn,

the derivative ofS with respect to the agent state would either
be 0 everywhere or unbounded almost everywhere. Whether
an alternative approach can be used to establish unconditional
convergence is an open problem.

Let us also note that some convergence results for the
continuum model are available for some special cases with
K = 1, for example because of symmetric interactions, i.e.,
at(α, β) = at(β, α); see [5], [7]).

REFERENCES

[1] E. Ben-Naim, P.L. Krapivsky, and S. Redner. Bifurcations and patterns
in compromise processes.Physica D, 183(3):190–204, 2003.

[2] D.P. Bertsekas and J.N. Tsitsiklis.Parallel and Distributed Computation:
Numerical Methods.Prentice-Hall, Englewood Clifffs (NJ), USA, 1989.

[3] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. Con-
vergence in multiagent coordination, consensus, and flocking. In
Proceedings of the 44th IEEE Conference on Decision and Control
(CDC’2005), pp. 2996–3000, Seville, Spain, December 2005.

[4] V.D. Blondel, J.M. Hendrickx, and J.N. Tsitsiklis. On Krause’s multi-
agent consensus model with state-dependent connectivity.IEEE trans-
actions on Automatic Control, 54(11):2586–2597, 2009.

[5] V.D. Blondel, J.M. Hendrickx, and J.N. Tsitsiklis. Continuous-time
average-preserving opinion dynamics with opinion-dependent communi-
cations.SIAM Journal on Control and Optimization, 48(8):5214–5240,
2010.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms:
Design, analysis and applications. InProceedings of the 24th IEEE
conference on Computer Communications (Infocom’2005), Vol. 3, pp.
1653–1664, Miami (FL), USA, March 2005.

[7] C. Canuto, F. Fagnani, and P. Tilli. A Eulerian approach to the analysis
of rendez-vous algorithms. InProceedings of the 17th IFAC World
Congress (IFAC’08), pp. 9039–9044, July 2008.

[8] C. Castellano, S. Fortunato, and V. Loreto. Statisticalphysics of social
dynamics.Reviews of Modern Physics, 81(2):591–646, 2009.

[9] B. Chazelle. The convergence of bird flocking.arXiv:0905.4241v1
[cs.CG], 2009.

[10] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs
among interacting agents.Advances in Complex Systems, 3:87–98, 2000.

[11] S. Fortunato, V. Latora, A. Pluchino, and Rapisarda R. Vector opinion
dynamics in a bounded confidence consensus model.International
Journal of Modern Physics C, 16:1535–1551, 2005.

[12] R. Hegselmann and U. Krause. Opinion dynamics and
bounded confidence models, analysis, and simulations.Journal
of Artificial Societies and Social Simulation, 5(3), 2002.
http://jasss.soc.surrey.ac.uk/9/1/8.html

[13] J.M. Hendrickx.Graphs and Networks for the Analysis of Autonomous
Agent Systems. PhD thesis, Université catholique de Louvain, 2008.
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APPENDIX

In this appendix we prove that if we sort the components
of the vectorx, the resulting vector satisfies essentially the
same evolution equation as the original system, even though
the required permutation can change with time as the relative
order of different components changes. The result appears
elementary (if not obvious), yet we are not aware of a simple
proof.

Proposition 2. Let x : ℜ+ → ℜn be a continuous function
that satisfies

xi(t) = xi(0) +

∫ t

0

vi(τ) dτ, i = 1, . . . , n. (17)

For any t ≥ 0, let p(t) be the permutation of{1, . . . , n}
defined by the following lexicographic rule: ifi < j, then,
either (i) xpi(t)(t) < xpj(t)(t), or (ii) xpi(t)(t) = xpj(t)(t)
and pi(t) < pj(t). Then,

xpi(t)(t) = xpi(0)(0) +

∫ t

0

vpi(τ)(τ) dτ. (18)

Note thatxpi(t)(t) is a sorted version ofx(t), with lexico-
graphic tie breaking. Observe that when allvi(t) are smooth
and the order ofx changes only a finite number of times within
a bounded interval, the result follows immediately from the
continuity ofxpi(t)(t) and the fact thatddtxpi(t)(t) = vpi(t)(t)
on every interval on whichpi(t) is constant. The proof that we
present here is more general, and only assumes measurability.
In particular, it allows for infinitely many discontinuities or
order changes in finite time, something that cannot be ruled
out, in general.

Our proof uses induction onn, starting with the particular
cases wheren = 2 or n = 3.

Lemma 3. Proposition 2 holds whenn = 2.

Proof: Let us fix a timet > 0. We only give the proof
for the case wherex1(0) ≤ x2(0), so thatp1(0) = 1. (The
proof for the case wherex1(0) > x2(0) is almost the same.)

We start by considering the case wherep1(t) = 1. Equation
(17), applied toi = 1, yields

x1(t) = x1(0) +

∫ t

0

v1(τ) dτ.

We define T1 = {τ ∈ [0, t] : x1(τ) ≤ x2(τ)} and
T2 = {τ ∈ [0, t] : x1(τ) > x2(τ)}. Thus, p1(τ) = 1 for
all τ ∈ T1 (including τ = 0), andp1(τ) = 2 for all τ ∈ T2.
Moreover, sincex is continuous,T1 and T2 are measurable
sets. Therefore,

x1(t) = x1(0) +

∫

τ∈T1

v1(τ) dτ +

∫

τ∈T2

v1(τ) dτ

= xp1(0)(0) +

∫

τ∈T1

vp1(τ)(τ) dτ +

∫

τ∈T2

v1(τ) dτ

The continuity ofx, and a fortiori ofx1 − x2, implies thatT2

is the union of an at most countable collection of disjoint open

intervals(ak, bk), with 0 < ak < bk < t, x2(ak) = x1(ak),
andx2(bk) = x1(bk). For every such interval, we have

∫ bk

ak

v1(τ) dτ = x1(bk)− x1(ak)

= x2(bk)− x2(ak)

=

∫ bk

ak

v2(τ) dτ

=

∫ bk

ak

vp1(τ)(τ) dτ,

which implies that
∫

τ∈T2

v1(τ) dτ =
∑

k

(

∫ bk

ak

v1(τ) dτ

)

=
∑

k

(

∫ bk

ak

vp1(τ)(τ) dτ

)

=

∫

τ∈T2

vp1(τ)(τ) dτ.

It follows that

xp1(t)(t) = x1(t)

= x1(0) +

∫

τ∈T1

vp1(τ)(τ) dτ +

∫

τ∈T2

vp1(τ)(τ) dτ

= xp1(0) +

∫ t

0

vp1(τ) dτ,

as claimed.
Suppose now thatp1(t) = 2. Let t∗ = max{τ ≤ t :

x1(τ) ≤ x2(τ)}; the maximum is attained becausex1(0) ≤
x2(0) andx is continuous. Furthermore,x1(t

∗) = x2(t
∗), and

p1(τ) = 2 for τ ∈ (t∗, t]. We havep1(t∗) = 1, so applying the
result we have proved above, with the interval[0, t∗] replacing
[0, t], in the fourth equality below, we obtain

xp1(t)(t) = x2(t)

= x2(t
∗) +

∫ t

t∗
v2(τ) dτ

= xp1(t∗)(t
∗) +

∫ t

t∗
v2(τ) dτ

= xp1(0)(0) +

∫ t∗

0

vp1(τ)(τ) dτ +

∫ t

t∗
vp1(τ)(τ) dτ

= xp1(0)(0) +

∫ t

0

vp1(τ)(τ) dτ,

as desired.
This concludes the proof regardingxp1(t)(t). The result for

xp2(t)(t) is obtained from a symmetrical argument.

Lemma 4. Proposition 2 holds whenn = 3.

Proof: The main idea of the proof is to note that
mini=1,2,3 xi(t) = min{x1(t),min{x2(t), x3(t)}} and to use
Lemma 3 twice.

Let l(t) = 2 if x2(t) ≤ x3(t), and letl(t) = 3 otherwise.
Let alsoz2(t) = xl(t)(t) andw2(t) = vl(t)(t). It follows from
Lemma 3, applied tox2(t) and x3(t) that z2(t) = z2(0) +
∫ t

0
w2(τ) dτ .
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We letz1(t) = x1(t) andw1(t) = v1(t). We then letλ(t) =
1 if y1(t) ≤ y2(t), andλ(t) = 2 otherwise. Using Lemma 3
once more, onz1(t) andz2(t), we havezλ(t)(t) = zλ(0)(0)+
∫ t

0
wλ(τ)(τ) dτ . Observe now thatmini xi(t) = mini zi(t),

so thatp1(t) = 1 when λ(t) = 1, and p1(t) = l(t) when
λ(t) = 2. Therefore,

xp1(t)(t) = zλ(t)(t)

= zλ(0)(0) +

∫ t

0

wλ(τ)(τ) dτ

= xp1(0)(0) +

∫ t

0

vp1(τ)(τ) dτ.

This proves the desired result forp1(t). A symmetrical argu-
ment shows the result forp3(t) as well.

It remains to prove the result forp2(t). Observe that since
p is a permutation, we have

∑3
i=1 xi(t) =

∑3
i=1 xpi(t)(t) and

∑3
i=1 vi(t) =

∑3
i=1 vpi(t)(t). Therefore,

xp2(t)(t) =

(

3
∑

i=1

xi(t)

)

− xp1(t)(t)− xp3(t)(t)

=

(

3
∑

i=1

xi(0)

)

− xp1(0)(0)− xp3(0)(0)

+

∫ t

0

((

3
∑

i=1

vi(τ)

)

− vp1(τ)(τ) − vp3(τ)(τ)

)

dτ

= xp2(t)(t) +

∫ t

0

vp2(τ)(τ)dτ.

We can now prove Proposition 2, using induction.
Proof: Lemmas 3 and 4 establish the result forn = 2, 3.

Suppose that the result holds forn− 1, wheren ≥ 4; we will
show that it also holds forn.

Let q(t) be a permutation on{1, . . . , n − 1} such that, if
i < j then eitherxqi(t)(t) < xqj(t) or xqi(t)(t) = xqj(t) and
qi(t) < qj(t). (This corresponds to a sorting of the firstn −
1 components ofx(t), according to the same lexicographic
rules used earlier to definep(t).) It follows from our induction
hypothesis that

xqi(t)(t) = xqi(0)(0) +

∫ t

0

vqi(τ)(τ) dτ.

for i = 1, . . . , n− 1.
Let us now fix somek 6= 1, n. We will prove the desired

result for xpk(t). Note that the sorted version ofx(t) (as
captured by the coefficientspi(t)) is obtained by inserting
xn(t) into the sorted version of the firstn− 1 components of
x(t) (as captured by the coefficientsqi(t)), at the appropriate
position. In particular, there are only three possible values for
pk(t), namelyqk(t), qk−1(t), andn. In more detail, the value
of pk(t) is determined as follows:

xn(t) < xqk−1(t)(t) ⇒ pk(t) = qk−1(t),
xqk−1(t)(t) ≤ xn(t) < xqk(t)(t) ⇒ pk(t) = n,
xqk(t)(t) ≤ xn(t) ⇒ pk(t) = qk(t).

(19)
In order to focus on the three possible values ofpk(t),
we now definez1(t) = xqk−1(t)(t), w1(t) = vqk−1(t)(t),

z2(t) = xqk(t)(t), w2(t) = vqk(t)(t), z3(t) = xn(t), and
w3(t) = vn(t). Let thenr(t) be a permutation on{1, 2, 3}
that sorts the components ofz(t) according to the same
lexicographic rules used earlier forq and p. It follows from
(19) and the definition ofz, w, r, that zr2(t) = xpk(t)(t) and
wr2(t)(t) = vpk(t)(t). Using Lemma 4, we obtain

xpk(t)(t) = zr2(t)

= zr2(0)(0) +

∫ t

0

wr2(τ)(τ) dτ

= xpk(0)(0) +

∫ t

0

vpk(τ)(τ) dτ.

This completes the proof of the result fork 6= 1, n. The proof
made use of the induction hypothesis together with Lemma 4.
The proof for the remaining cases (k = 1 or k = n) is entirely
similar, except that relies on Lemma 3 instead of Lemma 4.
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